WorldWideScience

Sample records for ocean winds research

  1. Wind Forcing of the Pacific Ocean Using Scatterometer Wind Data

    Science.gov (United States)

    Kelly, Kathryn A.

    1999-01-01

    The long-term objective of this research was an understanding of the wind-forced ocean circulation, particularly for the Pacific Ocean. To determine the ocean's response to the winds, we first needed to generate accurate maps of wind stress. For the ocean's response to wind stress we examined the sea surface height (SSH) both from altimeters and from numerical models for the Pacific Ocean.

  2. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  3. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  4. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter

    2001-01-01

    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  5. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  6. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  7. The Interaction of Ocean Waves and Wind

    Science.gov (United States)

    Janssen, Peter

    2004-10-01

    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  8. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  9. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  10. Grid Integration Research | Wind | NREL

    Science.gov (United States)

    Grid Integration Research Grid Integration Research Researchers study grid integration of wind three wind turbines with transmission lines in the background. Capabilities NREL's grid integration electric power system operators to more efficiently manage wind grid system integration. A photo of

  11. Research Staff | Wind | NREL

    Science.gov (United States)

    Research Staff Research Staff Learn more about the expertise and technical skills of the wind power research team and staff at NREL. Name Position Email Phone Anstedt, Sheri Professional III-Writer/Editor /Web Content Sheri.Anstedt@nrel.gov 303-275-3255 Baker, Donald Research Technician V-Electrical

  12. Impact of Scatterometer Ocean Wind Vector Data on NOAA Operations

    Science.gov (United States)

    Jelenak, Z.; Chang, P.; Brennan, M. J.; Sienkiewicz, J. M.

    2015-12-01

    Near real-time measurements of ocean surface vector winds (OSVW), including both wind speed and direction from non-NOAA satellites, are being widely used in critical operational NOAA forecasting and warning activities. The scatterometer wind data data have had major operational impact in: a) determining wind warning areas for mid-latitude systems (gale, storm,hurricane force); b) determining tropical cyclone 34-knot and 50-knot wind radii. c) tracking the center location of tropical cyclones, including the initial identification of their formation. d) identifying and warning of extreme gap and jet wind events at all latitudes. e) identifying the current location of frontal systems and high and low pressure centers. f) improving coastal surf and swell forecasts Much has been learned about the importance and utility of satellite OSVW data in operational weather forecasting and warning by exploiting OSVW research satellites in near real-time. Since December 1999 when first data from QuikSCAT scatterometer became available in near real time NOAA operations have been benefiting from ASCAT scatterometer observations on MetOp-A and B, Indian OSCAT scatterometer on OceanSat-3 and lately NASA's RapidScat mission on International Space Station. With oceans comprising over 70 percent of the earth's surface, the impacts of these data have been tremendous in serving society's needs for weather and water information and in supporting the nation's commerce with information for safe, efficient, and environmentally sound transportation and coastal preparedness. The satellite OSVW experience that has been gained over the past decade by users in the operational weather community allows for realistic operational OSVW requirements to be properly stated for future missions. Successful model of transitioning research data into operation implemented by Ocean Winds Team in NOAA's NESDIS/STAR office and subsequent data impacts will be presented and discussed.

  13. Geophysical potential for wind energy over the open oceans.

    Science.gov (United States)

    Possner, Anna; Caldeira, Ken

    2017-10-24

    Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m -2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m -2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  14. Geophysical Potential for Wind Energy over the Open Oceans

    Science.gov (United States)

    Possner, A.; Caldeira, K.

    2017-12-01

    Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  15. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  16. Ocean Mixed Layer Response to Gap Wind Scenarios

    National Research Council Canada - National Science Library

    Konstantinou, Nikolaos

    2006-01-01

    This study focuses on understanding the oceanic response to gap outflow and the air-sea interaction processes during the gap wind event between 26 and 28 February 2004 over the Gulf of Tehuantepec, Mexico. The U.S...

  17. On the Effect of Offshore Wind Parks on Ocean Dynamics

    Science.gov (United States)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  18. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  19. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  20. Offshore wind development research.

    Science.gov (United States)

    2014-04-01

    Offshore wind (OSW) development is a new undertaking in the US. This project is a response to : New Jerseys 2011 Energy Master Plan that envisions procuring 22.5% of the states power : originating from renewable sources by 2021. The Offshore Wi...

  1. Research on wind energy

    CSIR Research Space (South Africa)

    Szewczuk, S

    2012-10-01

    Full Text Available heights; short-term predictions ? CSIR 2012 Slide 9 Innovation & preliminary wind energy technology tree ? South African Industry?s propensity to innovate is in the same league as their counterparts in Europe. To state this differently, South African...? ? CSIR 2012 Slide 18 Modular form of electrification in rural communities Project funded by the Royal Danish Embassy in Pretoria and carried out by: ? eThekwini (Durban) Municipality ? Ris? DTU (Danish National Laboratory for Sustainable Energy...

  2. Evaluating and Extending the Ocean Wind Climate Data Record

    Science.gov (United States)

    Ricciardulli, Lucrezia; Rodriguez, Ernesto; Stiles, Bryan W.; Bourassa, Mark A.; Long, David G.; Hoffman, Ross N.; Stoffelen, Ad; Verhoef, Anton; O'Neill, Larry W.; Farrar, J. Tomas; Vandemark, Douglas; Fore, Alexander G.; Hristova-Veleva, Svetla M.; Turk, F. Joseph; Gaston, Robert; Tyler, Douglas

    2017-01-01

    Satellite microwave sensors, both active scatterometers and passive radiometers, have been systematically measuring near-surface ocean winds for nearly 40 years, establishing an important legacy in studying and monitoring weather and climate variability. As an aid to such activities, the various wind datasets are being intercalibrated and merged into consistent climate data records (CDRs). The ocean wind CDRs (OW-CDRs) are evaluated by comparisons with ocean buoys and intercomparisons among the different satellite sensors and among the different data providers. Extending the OW-CDR into the future requires exploiting all available datasets, such as OSCAT-2 scheduled to launch in July 2016. Three planned methods of calibrating the OSCAT-2 σo measurements include 1) direct Ku-band σo intercalibration to QuikSCAT and RapidScat; 2) multisensor wind speed intercalibration; and 3) calibration to stable rainforest targets. Unfortunately, RapidScat failed in August 2016 and cannot be used to directly calibrate OSCAT-2. A particular future continuity concern is the absence of scheduled new or continuation radiometer missions capable of measuring wind speed. Specialized model assimilations provide 30-year long high temporal/spatial resolution wind vector grids that composite the satellite wind information from OW-CDRs of multiple satellites viewing the Earth at different local times. PMID:28824741

  3. Enhancing Ocean Research Data Access

    Science.gov (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  4. Ocean Research - Perspectives from an international Ocean Research Coordination Network

    Science.gov (United States)

    Pearlman, Jay; Williams, Albert, III

    2013-04-01

    The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of

  5. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  6. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. ... A case study using the TRMM Microwave Imager (TMI) and ... parameter is essential when the values of the parameter ...

  7. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  8. Research opportunities and challenges in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.; Naqvi, S.W.A.; Wiggert, J.; Goes, J.; Coles, V.; McCreary, J.; Bates, N.; Karuppasamy, P.K.; Mahowald, N.; Seitzinger, S.; Meyers, G.

    research questions. Ocean Currents and Variability The unique physical properties of the IO occur largely as a result of forcing by the strong semiannually reversing monsoon winds (Figure 1). These winds drive intense upwelling and seasonally reversing... the Pacifi c via the Indonesian Throughfl ow [Interna- tional CLIVAR Project Offi ce, 2006]. In gen- eral, there is a need to characterize and better understand the ecological and bio- geochemical responses to these physical forcings (Figure 1) as well...

  9. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  10. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    Science.gov (United States)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  11. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  12. Wind Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    an organizational mission? Research campuses should consider the following before undertaking an Wind and Solar PV Financing. Organizational Mission A research campus undertaking an on-site wind application of good engineering and operational practices that support the integration of wind power into the

  13. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  14. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  15. South African southern ocean research programme

    CSIR Research Space (South Africa)

    SASCAR

    1987-01-01

    Full Text Available This document describes the South African National Antarctic Research Programme's (SANARP) physical, chemical and biological Southern Ocean research programme. The programme has three main components: ecological studies of the Prince Edward Islands...

  16. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  17. Global ocean monitoring for the World Climate Research Programme.

    Science.gov (United States)

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment

  18. Scientists’ perspectives on global ocean research priorities

    Directory of Open Access Journals (Sweden)

    Murray Alan Rudd

    2014-08-01

    Full Text Available Diverse natural and social science research is needed to support policies to recover and sustain healthy oceans. While a wide variety of expert-led prioritization initiatives have identified research themes and priorities at national and regional scale, over the past several years there has also been a surge in the number of scanning exercises that have identified important environmental research questions and issues ‘from the bottom-up’. From those questions, winnowed from thousands of contributions by scientists and policy-makers around the world who participated in terrestrial, aquatic and domain-specific horizon scanning and big question exercises, I identified 657 research questions potentially important for informing decisions regarding ocean governance and sustainability. These were distilled to a short list of 67 distinctive research questions that, in an internet survey, were ranked by 2179 scientists from 94 countries. Five of the top 10 research priorities were shared by respondents globally. Despite significant differences between physical and ecological scientists’ priorities regarding specific research questions, they shared seven common priorities among their top 10. Social scientists’ priorities were, however, much different, highlighting their research focus on managerial solutions to ocean challenges and questions regarding the role of human behavior and values in attaining ocean sustainability. The results from this survey provide a comprehensive and timely assessment of current ocean research priorities among research-active scientists but highlight potential challenges in stimulating crossdisciplinary research. As ocean and coastal research necessarily becomes more transdisciplinary to address complex ocean challenges, it will be critical for scientists and research funders to understand how scientists from different disciplines and regions might collaborate and strengthen the overall evidence base for ocean

  19. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  20. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  1. Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude

    Science.gov (United States)

    Ridder, Nina N.; England, Matthew H.

    2014-09-01

    Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.

  2. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  3. Marine renewable energies. When researchers consider the ocean as an energy source. Offshore wind power. The thermal energy of seas, a solar resource to be no longer neglected. Lipid biofuels production by micro-algae

    International Nuclear Information System (INIS)

    Ruer, J.; Gauthier, M.; Zaharia, R.; Cadoret, J.P.

    2008-01-01

    In the present day context of search for renewable energy sources, it is surprising that the oceans energy, potentially enormous, is poorly taken into consideration with respect to the other renewable energy sources, while France has been a pioneer in this domain with the construction of the Rance tidal power plant in the 1960's, and still in operation today. However, the scientific community, and in particular the IFREMER institute in France, is developing R and D programs on marine energy technologies. On the other hand, the development of wind power is growing up rapidly with a worldwide installed capacity exceeding today 94000 MW and supplying 3% of the electricity consumed in Europe. The development of offshore wind farms represents today 1122 MW and should grow up very fast in the coming years. The ocean is also a huge reservoir of thermal energy which can be exploited to generate electricity and desalinated water. Finally, the cultivation of micro-algae for the enhanced production of lipids may be a more ecological alternative to the terrestrial production of biofuels, strongly criticized today for its long term environmental impacts. (J.S.)

  4. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  5. Ocean Margins Programs, Phase I research summaries

    Energy Technology Data Exchange (ETDEWEB)

    Verity, P. [ed.

    1994-08-01

    During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

  6. Structural Research Facilities | Wind | NREL

    Science.gov (United States)

    -hydraulic equipment and data acquisition systems tailored for researching composite blades and components 61400-23 standard. General types of rotor blade research performed at the NWTC includes: Property

  7. CEOS Ocean Variables Enabling Research and Applications for Geo (COVERAGE)

    Science.gov (United States)

    Tsontos, V. M.; Vazquez, J.; Zlotnicki, V.

    2017-12-01

    The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative seeks to facilitate joint utilization of different satellite data streams on ocean physics, better integrated with biological and in situ observations, including near real-time data streams in support of oceanographic and decision support applications for societal benefit. COVERAGE aligns with programmatic objectives of CEOS (the Committee on Earth Observation Satellites) and the missions of GEO-MBON (Marine Biodiversity Observation Network) and GEO-Blue Planet, which are to advance and exploit synergies among the many observational programs devoted to ocean and coastal waters. COVERAGE is conceived of as 3 year pilot project involving international collaboration. It focuses on implementing technologies, including cloud based solutions, to provide a data rich, web-based platform for integrated ocean data delivery and access: multi-parameter observations, easily discoverable and usable, organized by disciplines, available in near real-time, collocated to a common grid and including climatologies. These will be complemented by a set of value-added data services available via the COVERAGE portal including an advanced Web-based visualization interface, subsetting/extraction, data collocation/matchup and other relevant on demand processing capabilities. COVERAGE development will be organized around priority use cases and applications identified by GEO and agency partners. The initial phase will be to develop co-located 25km products from the four Ocean Virtual Constellations (VCs), Sea Surface Temperature, Sea Level, Ocean Color, and Sea Surface Winds. This aims to stimulate work among the ocean VCs while developing products and system functionality based on community recommendations. Such products as anomalies from a time mean, would build on the theme of applications with a relevance to CEOS/GEO mission and vision. Here we provide an overview of the COVERAGE initiative with an

  8. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  9. Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands

    Science.gov (United States)

    Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge

    2013-11-01

    The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.

  10. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  11. Winds of change: research libraries

    DEFF Research Database (Denmark)

    Bang, Tove; Harbo, Karen

    2002-01-01

    The article takes its starting point in new trends and paradigm shifts in scholarly research methods and discusses how research libraries must act in relation to this. Various innovative initiatives at LASB are described, especially within the areas of electronic dissemination and presentation...... at ASB and a software company. LASB is positive towards and will continue working with this method. Finally the investment in future library services is discussed and a tangible offer is put into perspective: electronic reference services...

  12. Atmospheric Wind Relaxations and the Oceanic Response in the California Current Large Marine Ecosystem

    Science.gov (United States)

    Fewings, M. R.; Dorman, C. E.; Washburn, L.; Liu, W.

    2010-12-01

    On the West Coast of North America in summer, episodic relaxation of the upwelling-favorable winds causes warm water to propagate northward from southern to central California, against the prevailing currents [Harms and Winant 1998, Winant et al. 2003, Melton et al. 2009]. Similar wind relaxations are an important characteristic of coastal upwelling ecosystems worldwide. Although these wind relaxations have an important influence on coastal ocean dynamics, no description exists of the regional atmospheric patterns that lead to wind relaxations in southern California, or of the regional ocean response. We use QuikSCAT wind stress, North American Regional Reanalysis atmospheric pressure products, water temperature and velocity from coastal ocean moorings, surface ocean currents from high-frequency radars, and MODIS satellite sea-surface temperature and ocean color images to analyze wind relaxation events and the ocean response. We identify the events based on an empirical index calculated from NDBC buoy winds [Melton et al. 2009]. We describe the regional evolution of the atmosphere from the Gulf of Alaska to Baja California over the few days leading up to wind relaxations, and the coastal ocean temperature, color, and current response off southern and central California. We analyze ~100 wind relaxation events in June-September during the QuikSCAT mission, 1999-2009. Our results indicate south-central California wind relaxations in summer are tied to mid-level atmospheric low-pressure systems that form in the Gulf of Alaska and propagate southeastward over 3-5 days. As the low-pressure systems reach southern California, the atmospheric pressure gradient along the coast weakens, causing the surface wind stress to relax to near zero. The weak wind signal appears first at San Diego and propagates northward. QuikSCAT data indicate the relaxed winds extend over the entire Southern California Bight and up to 200 km offshore of central California. Atmospheric dynamics in

  13. Ocean Research Enabled by Underwater Gliders.

    Science.gov (United States)

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  14. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  15. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  16. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  17. Atmospheric radiocarbon as a Southern Ocean wind proxy over the last 1000 years

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff Fletcher, S.; Galbraith, E.; Sarmiento, J. L.; Gnanadesikan, A.; Slater, R. D.; Naegler, T.

    2009-04-01

    Measurements of radiocarbon in tree rings over the last 1000 years indicate that there was a pre-industrial latitudinal gradient of atmospheric radiocarbon of 3.9-4.5 per mail and that this gradient had temporal variability of order 6 per mil. Here we test the idea that the mean gradient as well as variability in he gradient is dominated by the strength of the winds over the Southern Ocean. This is done using an ocean model and an atmospheric transport model. The ocean model is used to derive fluxes of 12CO2 and 14CO2 at the sea surface, and these fluxes are used as a lower boundary condition for the transport model. For the mean state, strong winds in the Southern Ocean drive significant upwelling of radiocarbon-depleted Circumpolar Deep Water (CDW), leading to a net flux of 14CO2 relative to 12CO2 into the ocean. This serves to maintain a hemispheric gradient in pre-anthropogenic atmospheric delta-c14. For perturbations, increased/decreased Southern Ocean winds drive increased/decreased uptake of 14CO2 relative to 12CO2, thus increasing/decreasing the hemispheric gradient in atmospheric delta-c14. The tree ring data is interpreted to reveal a decrease in the strength of the Southern Ocean winds at the transition between the Little Ice Age and the Medieval Warm Period.

  18. Research in wind pumping, so what?

    International Nuclear Information System (INIS)

    Smulders, P.T.; Diepens, J.F.L.

    1991-01-01

    The three main objectives of the Consultancy Services Wind Energy in Developing Countries (CWD), R ampersand D, transfer of know-how and windmill projects, are explained. During its existence (1975-1990), the CWD has carried out research on rotors, safety systems, transmissions, system behaviour and testing. R ampersand D is still important to reduce investment costs, to improve the efficiency and reliability, and to reduce the operation and maintenance costs. Examples are given of innovative projects: the so-called matching valve and hydraulic sealing. The advantages of the first are more water output, especially at a low wind speed (no hysteresis) and a less critical matching to the wind regime. Hydraulic seals make it possible to reduce the maintenance needs. It replaces the traditional leather cups. 4 figs., 1 tab., 1 app., 1 ref

  19. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  20. WindScanner.eu - a new Remote Sensing Research Infrastructure for On- and Offshore Wind Energy

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Siggaard Knudsen, Søren; Sjöholm, Mikael

    2012-01-01

    will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D Wind......A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology......Scanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind...

  1. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    Prediction System (NOGAPS) model, C-band geophysical model functions (GMFs) which describe the normalized radar cross section (NRCS) dependence on the wind speed and the geometry of radar observations (i.e., incidence angle and azimuth angle with respect to wind direction) such as CMOD5 and newly developed......The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high...

  2. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  3. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  4. The future of naval ocean science research

    Science.gov (United States)

    Orcutt, John A.; Brink, Kenneth

    The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.

  5. Research Developments on Power System Integration of Wind Power

    DEFF Research Database (Denmark)

    Chen, Zhe; Hansen, Jens Carsten; Wu, Qiuwei

    2011-01-01

    variability and prediction, wind power plant ancillary services, grid connection and operation, Smart grids and demand side management under market functionality. The topics of the first group of PhD program starting 2011 under the wind energy Sino-Danish Centre for Education & Research (SDC) are also......This paper presents an overview on the recent research activities and tendencies regarding grid integration of wind power in Denmark and some related European activities, including power electronics for enhancing wind power controllability, wind turbines and wind farms modeling, wind power...

  6. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG

    2016-01-01

    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  7. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Science.gov (United States)

    Rodgers, K. B.; Mikaloff-Fletcher, S. E.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B. R.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-10-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980) or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980). As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  8. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    Directory of Open Access Journals (Sweden)

    K. B. Rodgers

    2011-10-01

    Full Text Available Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004 indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the period between AD 950 and 1830. The Northern and Southern Hemispheric Δ14C records display similar variability, but from the data alone is it not clear whether these variations are driven by the production of 14C in the stratosphere (Stuiver and Quay, 1980 or by perturbations to exchanges between carbon reservoirs (Siegenthaler et al., 1980. As the sea-air flux of 14CO2 has a clear maximum in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the interhemispheric gradient. In this study, model simulations are used to show that Southern Ocean winds are likely a main driver of the observed variability in the interhemispheric gradient over AD 950–1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980–2004. This interpretation also implies that there may have been a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds at the Medieval Climate Anomaly to Little Ice Age transition remain unknown. Our process-focused suite of perturbation experiments with models raises the possibility that the current generation of coupled climate and earth system models may underestimate the natural background multi-decadal- to centennial-timescale variations in the winds over the Southern Ocean.

  9. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    Science.gov (United States)

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  10. DOE Ocean Carbon Sequestration Research Workshop 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Chavez, Francisco [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Maltrud, Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Eric [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Arrigo, Kevin [Stanford Univ., CA (United States). Dept. of Geophysics; Barry, James [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Carmen, Kevin [Louisiana State Univ., Baton Rouge, LA (United States); Bishop, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bleck, Rainer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gruber, Niki [Univ. of California, Los Angeles, CA (United States); Erickson, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kennett, James [Univ. of California, Santa Barbara, CA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tagliabue, Alessandro [Lab. of Climate and Environmental Sciences (LSCE), Gif-sur-Yvette (France); Paytan, Adina [Stanford Univ., CA (United States); Repeta, Daniel [Woods Hole Oceanographic Inst. (WHOI), Woods Hole, MA (United States); Yager, Patricia L. [Univ. of Georgia, Athens, GA (United States); Marshall, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gnanadesikan, Anand [Geophysical Fluid Dynamics Lab. (GFDL), Princeton, NJ (United States)

    2007-01-11

    The purpose of this proposal was to fund a workshop to bring together the principal investigators of all the projects that were being funded under the DOE ocean carbon sequestration research program. The primary goal of the workshop was to interchange research results, to discuss ongoing research, and to identify future research priorities. In addition, we hoped to encourage the development of synergies and collaborations between the projects and to write an EOS article summarizing the results of the meeting. Appendix A summarizes the plan of the workshop as originally proposed, Appendix B lists all the principal investigators who were able to attend the workshop, Appendix C shows the meeting agenda, and Appendix D lists all the abstracts that were provided prior to the meeting. The primary outcome of the meeting was a decision to write two papers for the reviewed literature on carbon sequestration by iron fertilization, and on carbon sequestration by deep sea injection and to examine the possibility of an overview article in EOS on the topic of ocean carbon sequestration.

  11. Ocean energy researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  12. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation

    OpenAIRE

    Ortego Trujillo, Patxi

    2016-01-01

    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  13. Wind power forecasting: IEA Wind Task 36 & future research issues

    DEFF Research Database (Denmark)

    Giebel, Gregor; Cline, J.; Frank, Helmut Paul

    2016-01-01

    the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD...

  14. The relationship between the statistics of open ocean currents and the temporal correlations of the wind stress

    International Nuclear Information System (INIS)

    Bel, Golan; Ashkenazy, Yosef

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate analytically and numerically the relationship between the wind-stress distribution and its temporal correlations and the statistics of the open ocean currents. We found that temporally long-range correlated winds result in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated winds lead to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore to a Rayleigh distribution of the current amplitude, if the wind stress is isotropic. We found that the second moment of the current speed exhibits a maximum as a function of the correlation time of the wind stress for a non-zero Coriolis parameter. The results were validated using an oceanic general circulation model. (paper)

  15. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Fore- casts (NCMRWF), New .... mization of a generalized cost function using the. Spectral ... power from a given location on the sea surface at multiple ...

  16. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during.......3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscillation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals...

  17. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  18. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  19. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean

    CSIR Research Space (South Africa)

    Schmidt, KM

    2017-12-01

    Full Text Available observations in the Southern Ocean 2 3 Kevin M. Schmidta, Sebastiaan Swartb,c,d, Chris Reasonc, Sarah Nicholsonb,c 4 a Marine Research Institute, University of Cape Town, Rondebosch, South Africa 5 b Southern Ocean Carbon & Climate Observatory, Council...

  20. Geotechnical deep ocean research apparatus (DORA)

    International Nuclear Information System (INIS)

    1986-01-01

    As part of the research programme on radioactive waste disposal in seabed geological formations, a Deep Ocean Research Apparatus (DORA) seabed machine has been conceptually designed and prototypes of principal subsystems built and tested by four DORA Project partners. The DORA is designed to operate in 6000 m of water and drive a string of test rods and a piezocone about 50 m into soft soil. Partner responsibility was Fugro for project management and the penetration apparatus; ISMES for data acquisition and control; Laboratorium voor Grondmechanica for the piezocone probe and its sensors; and Marine Structure Consultants for the mission profile and DORA handling requirements. The DORA will have a maximum thrust of 50 kN. The probe will measure cone resistance, sleeve friction, pore pressure and inclination. Stability on the seabed will be assisted by using a combination of polyester and polypropylene-nylon (double) braided rope. A continuous wheel-drive subsystem will drive the test rods. Gelled or lead-acid batteries can power a hydraulic powerpack. Acoustic data transmission will be used. Software for data processing automation has been tested with simulation of all input channels. Successful operation of subsystem prototypes indicates that a DORA can be constructed at any future time for use on fundamental or applied deep ocean science and seafloor engineering investigations by industry, government and universities

  1. Wind energy input into the upper ocean over a lengthening open water season

    Science.gov (United States)

    Mahoney, A. R.; Rolph, R.; Walsh, J. E.

    2017-12-01

    Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional

  2. Monthly mean wind stress along the coast of the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Antony, M.K.; Krishnakumar, V.

    Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean...

  3. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  4. QuikSCAT and SSM/I ocean surface winds for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Per

    2007-01-01

    -European mid-latitudes and in the Atlantic trade belt zone are compared. Distinct differences are identified and these agree well with independent data from meteorological masts in the two regions. Seven years of twice daily observations from QuikSCAT are used for the offshore wind resource assessment. Wind...

  5. CROOS - Collaborative Research on Oregon Ocean Salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Goal 1: Improve understanding of salmon ocean ecology by integrating stock-specific distribution patterns over space and time with biological and environmental data....

  6. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Directory of Open Access Journals (Sweden)

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  7. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  8. 77 FR 72831 - Meeting of the Ocean Research Advisory Panel

    Science.gov (United States)

    2012-12-06

    ... commentary. ADDRESSES: The meeting will be held at the Consortium for Ocean Leadership, 1201 New York Avenue... Committee Act (5 U.S.C. App. 2). The meeting will include discussions on ocean research, resource management, and other current issues in the ocean science and management communities. Dated: November 29, 2012. L...

  9. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant additional...energy flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the

  10. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica

    2004-04-01

    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  11. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  12. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  13. Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun

    2016-08-01

    A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.

  14. Improving model biases in an ESM with an isopycnic ocean component by accounting for wind work on oceanic near-inertial motions.

    Science.gov (United States)

    de Wet, P. D.; Bentsen, M.; Bethke, I.

    2016-02-01

    It is well-known that, when comparing climatological parameters such as ocean temperature and salinity to the output of an Earth System Model (ESM), the model exhibits biases. In ESMs with an isopycnic ocean component, such as NorESM, insufficient vertical mixing is thought to be one of the causes of such differences between observational and model data. However, enhancing the vertical mixing of the model's ocean component not only requires increasing the energy input, but also sound physical reasoning for doing so. Various authors have shown that the action of atmospheric winds on the ocean's surface is a major source of energy input into the upper ocean. However, due to model and computational constraints, oceanic processes linked to surface winds are incompletely accounted for. Consequently, despite significantly contributing to the energy required to maintain ocean stratification, most ESMs do not directly make provision for this energy. In this study we investigate the implementation of a routine in which the energy from work done on oceanic near-inertial motions is calculated in an offline slab model. The slab model, which has been well-documented in the literature, runs parallel to but independently from the ESM's ocean component. It receives wind fields with a frequency higher than that of the coupling frequency, allowing it to capture the fluctuations in the winds on shorter time scales. The additional energy calculated thus is then passed to the ocean component, avoiding the need for increased coupling between the components of the ESM. Results show localised reduction in, amongst others, the salinity and temperature biases of NorESM, confirming model sensitivity to wind-forcing and points to the need for better representation of surface processes in ESMs.

  15. Relationship of oceanic whitecap coverage to wind speed and wind history

    NARCIS (Netherlands)

    Callaghan, A.; Leeuw, G. de; Cohen, L.; O'Dowd, C.D.

    2008-01-01

    Sea surface images obtained during the 2006 Marine Aerosol Production (MAP) campaign in the North East Atlantic were analysed for values of percentage whitecap coverage (W). Values of W are presented for wind speeds up to circa 23 m s-1. The W data were divided into two overlapping groups and a

  16. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    Science.gov (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  17. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  18. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  19. Wind2050 – a transdisciplinary research partnership about wind energy

    DEFF Research Database (Denmark)

    Borch, Kristian; Nyborg, Sophie; Clausen, Laura Tolnov

    2017-01-01

    Strategic orientation and priority setting in energy planning are high on the political agenda in Denmark due to the ambitious national goal of fossil-free energy systems. One key issue concerns the involvement of stakeholders – and non-expert stakeholders in particular – in discussions on how...... such as environment and health or what is per-ceived as an unfair distribution of economic gains, as well as how wind turbines could contribute to local development or be seen as a local contribution to a national transi-tion of the energy system. This calls for a transdisciplinary approach to science and innovation...

  20. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  1. Ocean Sciences and Remote Sensing Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: A 52,000 ft 2 state-of-the-art buildig designed to house NRL's Oceanography Division, part of the Ocean and Atmospheric Science and Technology Directorate....

  2. NODC Standard Format Ocean Wind Time Series from Buoys (F101) Data (1975-1985) (NODC Accession 0014194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file type contains time series measurements of wind and other surface meteorological parameters taken at fixed locations. The instrument arrays may be deployed...

  3. Research on large-scale wind farm modeling

    Science.gov (United States)

    Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng

    2017-01-01

    Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.

  4. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Directory of Open Access Journals (Sweden)

    A. Roobaert

    2018-03-01

    Full Text Available The calculation of the air–water CO2 exchange (FCO2 in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2. The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014, where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009 as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗ for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study

  5. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis

    Science.gov (United States)

    Roobaert, Alizée; Laruelle, Goulven G.; Landschützer, Peter; Regnier, Pierre

    2018-03-01

    The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° × 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991-2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ṡ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates

  6. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  7. Intercomparison of the Charnock and COARE bulk wind stress formulations for coastal ocean modelling

    Directory of Open Access Journals (Sweden)

    J. M. Brown

    2013-08-01

    Full Text Available The accurate parameterisation of momentum and heat transfer across the air–sea interface is vital for realistic simulation of the atmosphere–ocean system. In most modelling applications accurate representation of the wind stress is required to numerically reproduce surge, coastal ocean circulation, surface waves, turbulence and mixing. Different formulations can be implemented and impact the accuracy of the instantaneous and long-term residual circulation, the surface mixed layer, and the generation of wave-surge conditions. This, in turn, affects predictions of storm impact, sediment pathways, and coastal resilience to climate change. The specific numerical formulation needs careful selection to ensure the accuracy of the simulation. Two wind stress parameterisations widely used in the ocean circulation and the storm surge communities respectively are studied with focus on an application to the NW region of the UK. Model–observation validation is performed at two nearshore and one estuarine ADCP (acoustic Doppler current profiler stations in Liverpool Bay, a hypertidal region of freshwater influence (ROFI with vast intertidal areas. The period of study covers both calm and extreme conditions to test the robustness of the 10 m wind stress component of the Coupled Ocean–Atmosphere Response Experiment (COARE bulk formulae and the standard Charnock relation. In this coastal application a realistic barotropic–baroclinic simulation of the circulation and surge elevation is set-up, demonstrating greater accuracy occurs when using the Charnock relation, with a constant Charnock coefficient of 0.0185, for surface wind stress during this one month period.

  8. Offshore wind development research (technical brief).

    Science.gov (United States)

    2014-04-01

    The study addresses all aspects of Offshore Wind (OSW) development. This includes identifying : vessel types, vessel installation methods, needs and operating characteristics through all phases : of OSW installation, construction, operations and main...

  9. Offshore Wind Farm Research at the NWO Institutes

    NARCIS (Netherlands)

    J.A.S. Witteveen (Jeroen)

    2013-01-01

    htmlabstractFundamental scientific research is essential to take the necessary next step in offshore wind farm innovation. The NWO scientific research institutes play a central role in the Dutch knowledge infrastructure for disseminating scientific discoveries into industrial innovations. Multiple

  10. Comparison of the ocean surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Bourassa, Mark A.; Petersen, Gudrún Nína; Steffen, John

    2017-03-01

    Ocean surface vector wind fields from reanalysis data sets and scatterometer-derived gridded products are analyzed over the Nordic Seas and the northern North Atlantic for the time period from 2000 to 2009. The data sets include the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR), Cross-Calibrated Multiplatform (CCMP) wind product version 1.1 and recently released version 2.0, and QuikSCAT. The goal of the study is to assess discrepancies across the wind vector fields in the data sets and demonstrate possible implications of these differences for ocean modeling. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. A cyclone tracking methodology is developed and applied to the wind fields to compare cyclone characteristics in the data sets. Additionally, the winds are evaluated against observations collected from meteorological buoys deployed in the Iceland and Irminger Seas. The agreement among the wind fields is better for longer time and larger spatial scales. The discrepancies are clearly apparent for synoptic timescales and mesoscales. CCMP, ASR, and CFSR show the closest overall agreement with each other. Substantial biases are found in the NCEPR2 winds. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The experiments demonstrate differences in the net surface heat fluxes during storms. In the experiment forced by NCEPR2 winds, there are discrepancies in the large-scale wind-driven ocean dynamics compared to the other experiments.

  11. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  12. The role of research in the diffusion of wind technology

    International Nuclear Information System (INIS)

    Pirazzi, L.

    2009-01-01

    This last year for the first time in Europe the stunning global growth of wind technology has made wind energy to rank highest in diffusion among all energy sources. The role of research remains critical to achieve ever more ambitions E U goals. [it

  13. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board

    Science.gov (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.

    2012-12-01

    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  14. An ocean gazetteer for education and research

    Science.gov (United States)

    Delaney, R.; Staudigel, D.; Staudigel, H.

    2003-04-01

    Global travel, economy, and news coverage often challenge the student's and teacher's knowledge of the geography of the seas. The International Hydrographic Organization (IHO) has published a description of all the major seas making up earth's oceans, but there is currently no electronic tool that identifies them on a digital map. During an internship at Scripps Institution of Oceanography, we transferred the printed visual description of the seas from IHO publication 23 into a digital format. This digital map was turned into a (Flash) web application that allows a user to identify any of the IHO seas on a world map, simply by moving the computer cursor over it. In our presentation, we will describe the path taken to produce this web application and the learning process involved in this path during our internship at Scripps. The main steps in this process included the digitization of the official IHO maps, the transfer of this information onto a modern digital map by Smith and Sandwell. Adjustments were necessary due to the fact that many of the landmasses were placed incorrectly on a lat/long grid, off by as much as 100km. Boundaries between seas were often misrepresented by the IHO as straight lines on a Mercator projection. Once the digitization of the seas was completed we used the 2d animation environment Flash and we produced an interactive map environment that allows any teacher or student of ocean geography to identify an ocean by name and location. Aside from learning about the geography of the oceans, we were introduced to the use of digitizers, we learned to make maps using Generic Mapping Tools (GMT) and digital global bathymetry data sets, and we learned about map projections. We studied Flash to produce an interactive map of the oceans that displays bathymetry and topography, highlighting any particular sea the cursor moves across. The name of the selected sea in our Flash application appears in a textbox on the bottom of the map. The result of this

  15. Wind2050 – a transdisciplinary research partnership about wind energy

    DEFF Research Database (Denmark)

    Borch, Kristian; Nyborg, Sophie; Clausen, Laura Tolnov

    2017-01-01

    Strategic orientation and priority setting in energy planning are high on the political agenda in Denmark due to the ambitious national goal of fossil-free energy systems. One key issue concerns the involvement of stakeholders – and non-expert stakeholders in particular – in discussions on how to...... based on an exhaustive contextual understanding of interplay, divergences and relationships between stakeholders and methods for transparent strategic priority setting in research....

  16. Comparison of wind data from QuikSCAT and buoys in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Satheesan, K.; Sarkar, A; Parekh, A; RameshKumar, M.R.; Kuroda, Y.

    QuikSCAT derived winds over NIO matches better with in-situ compared to those derived over the EIO. Earlier studies by Thompson et al., (1983) and Keller et al., (1985) have reported a dependence of backscatter cross section in L and X...-120. SENGUPTA D, GOSWAMI B N AND SENAN R 2001, Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon, Geophys. Res. Lett., 28, 4127 – 4130. THOMPSON, T. W., D. E. WEISSMAN AND F. I. GONZALEZ, 1983: L band radar...

  17. Wind and temperature data from current meter in the TOGA - Pacific Ocean (30 N to 30 S) as part of the Equatorial Pacific Ocean Climate Studies (EPOCS), 28 May 1994 to 21 March 1995 (NODC Accession 9800041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and temperature data were collected using current meter in the TOGA Area - Pacific Ocean (30 N to 30 S) from May 28, 1994 to March 21, 1995. Data were submitted...

  18. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  19. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  20. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification.

    Science.gov (United States)

    Munday, Philip L

    2017-09-01

    Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this

  1. U.S. ocean acidification researchers: First national meeting

    Science.gov (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather

    2011-09-01

    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee (http://www.us-ocb.org/about/subcommittees.html) held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  2. Collaborative Oceanographic Research Opportunities with Schmidt Ocean Institute

    Science.gov (United States)

    Zykov, V.

    2014-12-01

    Schmidt Ocean Institute (http://www.schmidtocean.org/) was founded by Dr. Eric Schmidt and Wendy Schmidt in 2009 to support frontier oceanographic research and exploration to expand the understanding of the world's oceans through technological advancement, intelligent, data-rich observation and analysis, and open sharing of information. Schmidt Ocean Institute operates a state-of-the-art globally capable research vessel Falkor (http://www.schmidtocean.org/story/show/47). After two years of scientific operations in the Atlantic Ocean, Gulf of Mexico, Caribbean, Eastern and Central Pacific, R/V Falkor is now preparing to support research in the Western Pacific and Eastern Indian Oceans in 2015 and 2016. As part of the long term research program development for Schmidt Ocean Institute, we aim to identify initiatives and projects that demonstrate strong alignment with our strategic interests. We focus on scientific opportunities that highlight effective use of innovative technologies to better understand the oceans, such as, for example, research enabled with remotely operated and autonomous vehicles, acoustics, in-situ sensing, telepresence, etc. Our technology-first approach to ocean science gave rise to infrastructure development initiatives, such as the development of a new full ocean depth Hybrid Remotely Operated Vehicle, new 6000m scientific Autonomous Underwater Vehicle, live HD video streaming from the ship to YouTube, shipboard high performance supercomputing, etc. We also support projects focusing on oceanographic technology research and development onboard R/V Falkor. We provide our collaborators with access to all of R/V Falkor's facilities and instrumentation in exchange for a commitment to make the resulting scientific data openly available to the international oceanographic community. This presentation aims to expand awareness about the interests and capabilities of Schmidt Ocean Institute and R/V Falkor among our scientific audiences and further

  3. Turbulent kinetic energy of the ocean winds over the Kuroshio Extension from QuikSCAT winds (1999-2009)

    Science.gov (United States)

    Yu, Kai; Dong, Changming; King, Gregory P.

    2017-06-01

    We investigate mesoscale turbulence (10-1000 km) in the ocean winds over the Kuroshio Extension (28°N-40°N, 140°E-180°E) using the QuikSCAT data set (November 1999 to October 2009). We calculate the second (Djj) and third-order structure functions (Djjj) and the spatial variance (Vj) as a function of scale r (j=L,T denotes, respectively, the longitudinal (divergent) and transverse (vortical) component). The most interesting results of the analysis follow. Although both Vj>(r>) and Djj>(r>) measure the turbulent kinetic energy (TKE), we find that Vj>(r>) is the more robust measure. The spatial variance density (dVj/dr) has a broad peak near 450 km (close to the midlatitude Rossby radius of deformation). On interannual time scales, TKE correlates well with the El Niño 3.4 index. According to turbulence theory, the kinetic energy cascades downscale (upscale) if DLLL>(r>) (also skewness SL=DLLL/DLL3/2) is negative (positive). Our results for the Kuroshio Extension are consistent with a downscale cascade (indicating convergence dominates). Furthermore, classical turbulence theory predicts that SL=-0.3 and independent of r; however, we find SL varies strongly with r, from -4 at small scales to -0.3 at large scales. This nonclassical behavior implies strong-scale interaction, which we attribute to the rapid, and sometimes explosive, growth of storms in the region through baroclinic instability. Finally, we find that ST (a measure of cyclonic/anticyclonic asymmetry) is positive (cyclonic) and also varies strongly with r, from 4 at small scales to 0.5 at large scales. New turbulence models are needed to explain these results, and that will benefit Weather Prediction and climate modeling.Plain Language SummaryThe turbulent winds near the ocean surface give rise to air-sea heat and momentum exchange. The turbulence is caused by convective processes - processes generated at weather fronts, in squalls, tropical disturbances and extra-tropical cyclones. In order to improve

  4. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    KAUST Repository

    Dodla, Venkata B.

    2016-05-03

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  5. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.

    2009-04-25

    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 × 10 -3 to a constant drag coefficient of 1.2 × 10-3 reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8°C to 0.3°C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3°C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm. Copyright 2009 by the American Geophysical Union.

  6. Denmark - supplier of competitive offshore wind solutions. Megavind's strategy for offshore wind research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    In May 2006, the Danish Government presented a report on promoting environmentally effective technology and established a number of innovative partnerships. The partnerships intend to strengthen public-private cooperation between the state, industry, universities and venture capital to accelerate innovation for a number of green technologies. The partnership for wind energy is called Megavind. Megavind's strategy for offshore wind describes the offshore challenges and suggests research, development and demonstration (RD and D) priorities to enable offshore wind power become to competitive with other energy technologies. The strategy lists key recommendations as well as key thematic priorities and for each of these a number of RD and D priorities. Under each thematic priority references are made to the European Strategic Energy Technology plan (SET-plan), which prioritises offshore wind RD and D in Europe. (LN)

  7. Conducting research in the middle of the ocean. Platforms FINO 1-3 supply planning data for utilising offshore wind energy in the North and Baltic Seas; Forschen mitten im Meer. Plattformen FINO 1-3 liefern Planungsdaten fuer die Offshore-Windenergienutzung in Nord- und Ostsee

    Energy Technology Data Exchange (ETDEWEB)

    Milles, Uwe

    2011-07-01

    In the future, a large part of Germany's electricity requirement is intended to come from offshore wind farms in order to utilise the favourable wind conditions there. This represents unknown territory in both technical and ecological terms, and is taking place in sensitive biotopes. Three largely remote-controlled research platforms have therefore been constructed in the North and Baltic Seas (FINO). In particular it is being investigated into how the wind actually behaves above the sea and how much electricity can be generated. The data will be incorporated into the planning, design and certification of future farms. (orig.)

  8. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  9. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  10. Estimates of oceanic surface wind speed and direction using orthogonal beam scatterometer measurements and comparison of recent sea scattering theories

    Science.gov (United States)

    Moore, R. K.; Fung, A. K.; Dome, G. J.; Birrer, I. J.

    1978-01-01

    The wind direction properties of radar backscatter from the sea were empirically modelled using a cosine Fourier series through the 4th harmonic in wind direction (referenced to upwind). A comparison with 1975 JONSWAP (Joint North Sea Wave Project) scatterometer data, at incidence angles of 40 and 65, indicates that effects to third and fourth harmonics are negligible. Another important result is that the Fourier coefficients through the second harmonic are related to wind speed by a power law expression. A technique is also proposed to estimate the wind speed and direction over the ocean from two orthogonal scattering measurements. A comparison between two different types of sea scatter theories, one type presented by the work of Wright and the other by that of Chan and Fung, was made with recent scatterometer measurements. It demonstrates that a complete scattering model must include some provisions for the anisotropic characteristics of the sea scatter, and use a sea spectrum which depends upon wind speed.

  11. Assessment of research needs for wind turbine rotor materials technology

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Engineering and Technical Systems; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1991-01-01

    ... on Assessment of Research Needs for Wind Turbine Rotor Materials Technology Energy Engineering Board Commission on Engineering and Technical Systems National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1991 Copyrightthe true use are Please breaks Page inserted. accidentally typesetting been have may original the from errors not...

  12. Critical Infrastructure for Ocean Research and Societal Needs in 2030

    Energy Technology Data Exchange (ETDEWEB)

    National Research Council

    2011-04-22

    The United States has jurisdiction over 3.4 million square miles of ocean expanse greater than the land area of all fifty states combined. This vast marine area offers researchers opportunities to investigate the ocean's role in an integrated Earth system, but also presents challenges to society, including damaging tsunamis and hurricanes, industrial accidents, and outbreaks of waterborne diseases. The 2010 Gulf of Mexico Deepwater Horizon oil spill and 2011 Japanese earthquake and tsunami are vivid reminders that a broad range of infrastructure is needed to advance our still-incomplete understanding of the ocean. The National Research Council (NRC)'s Ocean Studies Board was asked by the National Science and Technology Council's Subcommittee on Ocean Science and Technology, comprised of 25 U.S. government agencies, to examine infrastructure needs for ocean research in the year 2030. This request reflects concern, among a myriad of marine issues, over the present state of aging and obsolete infrastructure, insufficient capacity, growing technological gaps, and declining national leadership in marine technological development; issues brought to the nation's attention in 2004 by the U.S. Commission on Ocean Policy. A 15-member committee of experts identified four themes that encompass 32 future ocean research questions enabling stewardship of the environment, protecting life and property, promoting economic vitality, and increasing fundamental scientific understanding. Many of the questions in the report (e.g., sea level rise, sustainable fisheries, the global water cycle) reflect challenging, multidisciplinary science questions that are clearly relevant today, and are likely to take decades of effort to solve. As such, U.S. ocean research will require a growing suite of ocean infrastructure for a range of activities, such as high quality, sustained time series observations or autonomous monitoring at a broad range of spatial and temporal scales

  13. The contribution of the social sciences to wind power research

    International Nuclear Information System (INIS)

    Edge, H.M.

    1990-01-01

    Research has been carried out to investigate future scenarios for renewable resources and their use in rural areas of the UK, and attitudes to wind and other renewables technology, amongst sample population in the north east of Scotland. Future scenarios were explored by means of a three road 'Delphi' survey. Attitudinal data was gathered by questionnaire survey. Results suggest a degree of antipathy towards new technology and little correlation between confidence in the future of such technology and enthusiasm for it. Further research is proposed to explore the relationships between attitudes to wind turbines and political and ideological belief. Such research will fill a gap in knowledge relating to Scottish attitudes to the exploration of this large sector of the UK wind energy resource. (Author)

  14. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  15. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  16. HAB outreach using multimedia: integrating ocean research and ...

    African Journals Online (AJOL)

    The 'Special topics' section features freshwater blooms, ocean colour, detection methods and research on South African HABs. This online resource is augmented by educational activities (www.bigelow. org/edhab) that allow teachers to use the topic of HABs as a vehicle to investigate the role that algae play in our ...

  17. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  18. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed

  19. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    Science.gov (United States)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used

  20. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  1. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m

    Science.gov (United States)

    Beal, R. C.

    1980-01-01

    A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.

  2. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  3. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    Science.gov (United States)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  4. The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean

    NARCIS (Netherlands)

    Manola, Iris; Selten, F. M.; De Ruijter, W. P M; Hazeleger, W.

    2014-01-01

    In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the

  5. Wind power - research and development. The wind turbine industry's view of the promotion of state-supported research and development

    International Nuclear Information System (INIS)

    Kroh, S.

    1995-10-01

    The windmill industry in Denmark is currently confronted with making a choice between competing technologies so that the role of the stimulus of state subsidies for research has lately increased in importance. The Ministry of Energy, it is claimed, must be aware of this as possibilities for making use of research results are dictated by the market and competition. The industry is not sympathetic to the idea of state research contracts with specified goals for which manufacturers must produce a technical solution. Consultancy firms should work towards solving general problems which could help the industry as a whole. Wind turbines which are cheap to produce and operate are of more interest to industry than those which are technologically advanced or of a lighter construction. It is not thought to be advantageous to concentrate the allocation of subsidies on one key project chosen by the Ministry itself, such as the current intense interest in turbine blades. Aerodynamics, noise pollution and materials are considered as more vital areas for research. A special interest in smaller windmills is not currently relevant. Evaluations of the quality of research projects demanding subsidies should be more critical. A detailed list of subjects within this field which are considered as being relevant for research is given. The Danish windmill industry advises a centralized wind power research institution and a gradual shift of the test station at Risoe National Laboratory to Jutland as wind conditions at Risoe are not considered satisfactory. A better communication between Risoe test station and the wind power industry is recommended. (AB)

  6. Ocean Sense: Student-Led, Real-Time Research at the Bottom of the Ocean - Without Leaving the Classroom

    Science.gov (United States)

    Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.

    2016-12-01

    This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of

  7. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    Science.gov (United States)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  8. Wind Energy in the United States: Market and Research Update

    International Nuclear Information System (INIS)

    Goldman, P.R.; Thresher, R.W.; Hock, S.M.

    1999-01-01

    U.S. market activity has increased over the last two years. In 1998, new capacity totaled about 150 MW and projected 1999 capacity additions are over 600 MW. As the electricity market continues to evolve under restructuring, the U.S. Department of Energy (U.S. DOE) Wind Energy Program has positioned itself to work with industry to meet current challenges and opportunities, and prepare for the market of tomorrow. Some opportunities include green power markets and distributed applications, although a primary challenge involves the fact that avoided cost payments to renewable generators are not high enough to economically support projects. A recently incorporated power exchange in California, APX, Inc., has demonstrated that green power does attract a premium over prices on the conventional power exchange. The key elements of the U.S. DOE Wind Program are (1) Applied Research, which is critical for achieving advanced turbine designs capable of competing in a restructured market that emphasizes low cost generation; (2) Turbine Research, which supports the U.S. industry in developing competitive, high performance, reliable wind turbine technology for global energy markets; and (3) Cooperative Research and Testing, under which standards development and certification testing are the key activities for the current year

  9. Observations of C-Band Brightness Temperature and Ocean Surface Wind Speed and Rain Rate in Hurricanes Earl And Karl (2010)

    Science.gov (United States)

    Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem

    2012-01-01

    Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.

  10. Ocean Science for the Year 2000. A Report on an Inquiry by the Scientific Committee on Oceanic Research and the Advisory Committee on Marine Resources Research.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.

    This report, which examines expected major trends in ocean research up to the year 2000, focuses on the most important ocean research problems that should receive particular attention during the next decades, what major advances should be expected and what kinds of research should be encouraged for them to be achieved, and impediments to achieving…

  11. Strategy for Danish wind energy research; Startegi for dansk vindenergiforskning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The objective of the strategy for Danish wind energy research is to support future prioritizations - primarily as regards publicly funded programs. Most recent energy political objectives formulated in 2004 by the Danish Ministry of Economic and Business Affairs state: 'The objective of the governmental energy policy is to create efficient energy markets within a framework that secures cost efficiency, security of supplies, environmental considerations and efficient use of energy. The markets must be transparent and the competition must be fair. This will secure the energy consumers the lowest possible energy prices.' The wind energy strategy mirrors user needs and is, among other things, based upon a number of interviews with interested parties and a hearing on the strategy draft. (BA)

  12. Recent studies on wind seas and swells in the Indian Ocean: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rashmi, R.; Samiksha, S.V.; Aboobacker, V.M.

    resolution winds are necessary to understand the effect of land-sea breeze on wind-sea generation in the coastal regions We have used atmospheric models such as MM5 and WRF to generate fine resolution winds, and the same will be used in wave models...

  13. Role of CO2 and Southern Ocean winds in glacial abrupt climate change

    Directory of Open Access Journals (Sweden)

    M. Montoya

    2012-06-01

    Full Text Available The study of Greenland ice cores revealed two decades ago the abrupt character of glacial millennial-scale climate variability. Several triggering mechanisms have been proposed and confronted against growing proxy-data evidence. Although the implication of North Atlantic deep water (NADW formation reorganisations in glacial abrupt climate change seems robust nowadays, the final cause of these reorganisations remains unclear. Here, the role of CO2 and Southern Ocean winds is investigated using a coupled model of intermediate complexity in an experimental setup designed such that the climate system resides close to a threshold found in previous studies. An initial abrupt surface air temperature (SAT increase over the North Atlantic by 4 K in less than a decade, followed by a more gradual warming greater than 10 K on centennial timescales, is simulated in response to increasing atmospheric CO2 levels and/or enhancing southern westerlies. The simulated peak warming shows a similar pattern and amplitude over Greenland as registered in ice core records of Dansgaard-Oeschger (D/O events. This is accompanied by a strong Atlantic meridional overturning circulation (AMOC intensification. The AMOC strengthening is found to be caused by a northward shift of NADW formation sites into the Nordic Seas as a result of a northward retreat of the sea-ice front in response to higher temperatures. This leads to enhanced heat loss to the atmosphere as well as reduced freshwater fluxes via reduced sea-ice import into the region. In this way, a new mechanism that is consistent with proxy data is identified by which abrupt climate change can be promoted.

  14. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  15. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean

    Science.gov (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric

    2016-04-01

    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  16. Wind erosion research at an uranium mill tailings site

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-07-01

    A uranium mill tailings pile at Grants, New Mexico, was selected for wind erosion research since the configuration provides flat area containing fine sand and made up of larger particles. The wind erosion experiment is discussed. Experimental equipment consists of meteorological instrumentation to automatically activate air samplers as a function of wind speed increments and direction, particle cascade impactors to measure airborne respirable concentrations as a function of particle size, inertial impaction devices to measure nonrespirable fluxes of airborne particles, a virtual particle cascade impactor to measure airborne concentrations of toxic trace elements, and soil depth gauges to measure changes in surface soil elevations as a function of time. Both radioactive particles as well as toxic trace element concentrations are measured. Radioactive particles are measured with both particle cascade impactors as well as high-volume air samplers. In contrast, toxic trace element airborne concentrations are measured only with a two-stage virtual particle cascade impactor. Fluxes of nonrespirable airborne particles are measured with inertial impaction devices. At particle cascade impactor sites, a rotating cyclone preseparator collects nonrespirable particles. In addition at all sites, fluxes of nonrespirable particles are measured using an open cavity inertial impaction device

  17. Ocean Data Interoperability Platform (ODIP): using regional data systems for global ocean research

    Science.gov (United States)

    Schaap, D.; Thijsse, P.; Glaves, H.

    2017-12-01

    Ocean acidification, loss of coral reefs, sustainable exploitation of the marine environment are just a few of the challenges researchers around the world are currently attempting to understand and address. However, studies of these ecosystem level challenges are impossible unless researchers can discover and re-use the large volumes of interoperable multidisciplinary data that are currently only accessible through regional and global data systems that serve discreet, and often discipline specific, user communities. The plethora of marine data systems currently in existence are also using different standards, technologies and best practices making re-use of the data problematic for those engaged in interdisciplinary marine research. The Ocean Data Interoperability Platform (ODIP) is responding to this growing demand for discoverable, accessible and reusable data by establishing the foundations for a common global framework for marine data management. But creation of such an infrastructure is a major undertaking, and one that needs to be achieved in part by establishing different levels of interoperability across existing regional and global marine e-infrastructures. Workshops organised by ODIP II facilitate dialogue between selected regional and global marine data systems in an effort to identify potential solutions that integrate these marine e-infrastructures. The outcomes of these discussions have formed the basis for a number of prototype development tasks that aim to demonstrate effective sharing of data across multiple data systems, and allow users to access data from more than one system through a single access point. The ODIP II project is currently developing four prototype solutions that are establishing interoperability between selected regional marine data management infrastructures in Europe, the USA, Canada and Australia, and with the global POGO, IODE Ocean Data Portal (ODP) and GEOSS systems. The potential impact of implementing these solutions for

  18. 77 FR 40860 - Strategic Plan for Federal Research and Monitoring of Ocean Acidification

    Science.gov (United States)

    2012-07-11

    ... Plan for Federal Research and Monitoring of Ocean Acidification AGENCY: National Marine Fisheries... Federal Research and Monitoring of Ocean Acidification is being made available for public review and... understanding of the process of ocean acidification, its effects on marine ecosystems, and the steps that could...

  19. Archive of Geosample Information from the British Ocean Sediment Core Research Facility (BOSCORF)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Ocean Sediment Core Research Facility (BOSCORF), National Oceanography Centre, is a contributor to the Index to Marine and Lacustrine Geological Samples...

  20. Archive of Geosample Information from the GEOMAR Helmholtz Centre for Ocean Research Kiel Core Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOMAR Helmholtz Centre for Ocean Research Kiel made a one-time contribution to the Index to Marine and Lacustrine Geological Samples (IMLGS) database of...

  1. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  2. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    Science.gov (United States)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  3. Energy researchers - 8. Wind power production: Wind power, the energy of the future; A mature sector; The ecological attraction of wind

    International Nuclear Information System (INIS)

    Minster, Jean-Francois; Appert, Olivier; Moisan, Francois; Salha, Bernard; Tardieu, Bernard; Florette, Marc; Ghidaglia, Jean-Michel; Viterbo, Jerome

    2012-01-01

    A first article comments the development in the design of wind turbines which become more powerful, with higher performance. Researchers are also working on blade shape, on alternator technology, on the use of multiplier to enable the reduction of the alternator weight, on better control and command systems to increase the load factor. The development of offshore wind farms is also a challenge in terms of maintenance, in wind turbine design in order to withstand sea corrosion, and in terms of connection to the grid. A second article comments the evolution of the wind energy sector in terms of installed capacity, costs and competitiveness. In an interview, three researchers outline the extremely positive carbon footprint and other benefits of wind power, and also discuss its disadvantages: they mainly concern the impact on landscape, but also birds and marine fauna

  4. The Wind Energy programme - SFOE Research Programme 2000 - 2003; Programm Wind. Konzept BFE-Forschungsprogramm 'Wind' 2000 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2001-07-01

    This document, issued by the Swiss Federal Office of Energy (SFOE) describes the concept behind the Swiss wind energy programme. The first part of the report discusses the origins and development of the wind energy programme in Switzerland, discussing the importance of wind energy and policy matters associated with its promotion. The experience gained during the previous research programmes is reviewed. The degree to which targets were reached, promotional activities, the central government's own wind energy activities and the results of a programme evaluation are discussed. Lists of projects that have been realised and activities that have been carried out are presented and positive and negative influences on development are noted. A second part is dedicated to the goals of the wind energy programme in terms of target figures for the year 2010 and the strategies chosen to reach these goals, including pilot and demonstration projects (P and D) and promotional activities. Details of the P and D programme including lists of wind-power projects to be supported, the priorities that have been set and information and further education that is to be provided, are given. New activities in the wind power area such as the development of new type of wind turbine especially suited to alpine conditions are discussed. The role of the Swiss Association for Wind Energy 'Suisse Eole' as a network-partner in the wind energy programme is discussed. An appendix provides details of wind energy projects in Switzerland, market partners and customers. The results of a survey made of wind energy activities at Swiss institutes of higher education are presented.

  5. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    Science.gov (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  6. Draft South African wind energy technology platform: preliminary wind energy research and development framework

    CSIR Research Space (South Africa)

    Szewczuk, S

    2011-08-01

    Full Text Available The South African Wind Energy Technology Programme (SAWEP) Phase 1 aims to achieve two key strategic outputs that will guide South Africa on wind energy development. One of these outputs is the Wind Atlas for South Africa (WASA) which will play a...

  7. Mineral resources of the Indian Ocean and related scientific research

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Gujar, A.R.; Hashimi, N.H.; Valsangkar, A.B.; Nath, B.N.

    The Indian Ocean (area: 74.917 x 106 km2, water volume: 291.945 x 106 km3, average depth: 3897 m) is the third largest of the world oceans. The lands bordering the ocean contain almost 40 percent of the world's population and contribute...

  8. Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    KAUST Repository

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.; Morzel, J.

    2009-01-01

    with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using

  9. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A; Basu, S.K.; Kumar, R.; Sarkar, A

    prediction when NCMRWF winds blended with MSMR winds are utilised in the wave model. A comparison between buoy and TOPEX wave heights of May 2000 at 4 buoy locations provides a good match, showing the merit of using altimeter data, wherever it is difficult...

  10. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    " for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn...... "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing...... their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today...

  11. Biogeochemical linkage between atmosphere and ocean in the eastern equatorial Pacific Ocean: Results from the EqPOS research cruise

    Science.gov (United States)

    Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.

    2012-12-01

    Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine

  12. 77 FR 42297 - Meeting of the Ocean Research and Resources Advisory Panel

    Science.gov (United States)

    2012-07-18

    ... Consortium for Ocean Leadership, 1201 New York Avenue NW., 4th Floor, Washington, DC 2005. FOR FURTHER... discussions on ocean research, resource management, and other current issues in the ocean science and management communities. J.M. Beal, Lieutenant Commander, Office of the Judge Advocate General, U.S. Navy...

  13. The wind power prediction research based on mind evolutionary algorithm

    Science.gov (United States)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  14. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  15. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  16. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  17. [Research progress on wind erosion control with polyacrylamide (PAM).

    Science.gov (United States)

    Li, Yuan Yuan; Wang, Zhan Li

    2016-03-01

    Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.

  18. The use of Saildrones as Long Endurance, Ocean Research Platforms in Remote and Extreme Environments.

    Science.gov (United States)

    Jenkins, R.; Peacock, D.; Jones, E.

    2016-02-01

    The world's oceans are experiencing significant change, which will have a profound impact on ecosystems, fish stocks and climate. Furthermore, the areas where some of the biggest changes are occurring are also some of the least measured and understood. This is largely due to their remote location and/or harsh environment, where the cost of deploying sensors is significant. New technologies are required to supplement ships and mooring data to meet the demand for longer, more economical deployments with the ability for real-time data and adaptive sampling. The Saildrone was designed to meet this need, providing the ability to reach almost any part of the world's oceans, without requiring a ship. Deployed from the dock, the unmanned Saildrone navigates autonomously to the area of interest, where it operates for extended periods before returning to shore for servicing and subsequent re-deployment. The Saildrone is propelled by wind power from a 4 m solid wing. Stability is provided by static weight in the keel and outrigger hulls. The 5.8 m hull includes several payload bays, with a payload capacity of 100 kg. Working with the Pacific Marine Environmental Laboratory (PMEL), under a collaborative Research and Development Agreement (CRADA), the Saildrone platform was equipped with a suite of meteorological and oceanographic sensors that would enable a wide variety of ocean research missions to be undertaken. After field tests in San Francisco Bay, a 3 month mission was conducted in the eastern Bering Sea in spring 2015. The mission included rough sea-trials, sensor comparisons in coordination with the NOAAS Oscar Dyson, and a survey of the northern Bering Sea shortly after ice retreat. The mission was completed as planned, with the two Saildrones (SD-126 & SD-128) returning to the dock from which they were deployed after 97 days and each completing 4400 nautical miles. During the second half of 2015, two subsequent missions were conducted in the Gulf of Mexico. Two

  19. Reducing Losses from Wind-Related Natural Perils: Research at the IBHS Research Center

    OpenAIRE

    Standohar-Alfano, Christine D.; Estes, Heather; Johnston, Tim; Morrison, Murray J.; Brown-Giammanco, Tanya M.

    2017-01-01

    The capabilities of the Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test chamber are described in detail. This research facility allows complete full-scale structures to be tested. Testing at full-scale allows vulnerabilities of structures to be evaluated with fewer assumptions than was previously possible. Testing buildings under realistic elevated wind speeds has the potential to isolate important factors that influence the performance of components, pot...

  20. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    Science.gov (United States)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  1. Strategic Plan for Federal Research and Monitoring of Ocean Acidification

    Science.gov (United States)

    On July 19, 2010, the President signed an Executive Order establishing the nation’s first comprehensive National Policy for the Stewardship of the Ocean, Our Coasts, and Great Lakes and adopted the Final Recommendations of the Ocean Policy Task Force (OPTF 2010). The Final Recom...

  2. A review on wind-driven rain research in building science

    NARCIS (Netherlands)

    Blocken, B.J.E.; Carmeliet, J.E.

    2004-01-01

    Wind-driven rain (WDR) or driving rain is rain that is given a horizontal velocity component by the wind. WDR research is of importance in a number of research areas including earth sciences, meteorology and building science. Research methods and results are exchangeable between these domains but no

  3. Earth, Wind and Fire. Natural air conditioning. Part 2. Research results; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 2. Onderzoeksresultaten

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This second part provides a brief overview of the research. The full results are included in the thesis of the author [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. In deel 1 worden de onderzoeksdoelen en -methoden van dit concept besproken. Dit deel 2 geeft een kort overzicht van de onderzoeksresultaten. De volledige resultaten van de basale en gedetailleerde modellen, de simulaties, de metingen in de fysieke modellen en het validatieproces zijn opgenomen in het proefschrift van de auteur.

  4. Denmark - supplier of competitive offshore wind solutions. Megavind's strategy for offshore wind research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    In May 2006, the Danish Government presented a report on promoting environmentally effective technology and established a number of innovative partnerships. The partnerships intend to strengthen public-private cooperation between the state, industry, universities and venture capital to accelerate innovation for a number of green technologies. The partnership for wind energy is called Megavind. Megavind's strategy for offshore wind describes the offshore challenges and suggests research, development and demonstration (RD and D) priorities to enable offshore wind power become to competitive with other energy technologies. The strategy lists key recommendations as well as key thematic priorities and for each of these a number of RD and D priorities. Under each thematic priority references are made to the European Strategic Energy Technology plan (SET-plan), which prioritises offshore wind RD and D in Europe. (LN)

  5. Assessment of research needs for wind turbine rotor materials technology

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  6. Scales of North Atlantic wind stress curl determined from the comprehensive ocean-atmosphere data set

    Science.gov (United States)

    Ehret, Laura L.; O'Brien, James J.

    1989-01-01

    Nineteen years of wind data over the North Atlantic are used to calculate a field of wind stress curl. An empirical orthogonal function (EOF) analysis is performed on this field, resulting in spatial patterns of wind stress curl and associated time series. A Monte Carlo technique is used to establish the statistical significance of each spatial pattern, and the associated time series are spectrally analyzed. The first four statistically significant EOF modes represent more than 50 percent of the curl variance, and the spatial patterns of curl associated with these modes exhibit the major elements of North Atlantic climatology. Most of the time series spectral variance is contained in annual and semiannual frequencies. The features observed include the individual annual variation of the subtropical high and the subpolar low, the annual oscillation of intensity between pressure centers, the influence of localized strong SST gradients and associated cyclogenesis regions, and the constant nature of the trades.

  7. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission...

  8. TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.; Cronin, M.F.; Pinsard, F.; Reddy, K.G.

    Convergence Zones. ERA-I and TropFlux display the best agreement with in situ data, with correlations more than 0.93 and rms-differences less than 0.012 Nm sup(-2). TropFlux wind stresses exhibit a small, but consistent improvement (at all timescales and most...

  9. Sensitivity of a Navy Regional Ocean Model to High-Resolution Atmospheric and Scatterometer Wind Forcing

    Science.gov (United States)

    2003-09-01

    available until June 1999, synthetic QuikSCAT winds were generated using software provided by the Aerospace Corporation ( Stodden and Galasso, 1996...1994: Methods of Satellite Oceanography. Berkeley: University of California Press, 360 pp. Stodden , D.Y., and G.D. Galasso, 1996

  10. Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms

    Science.gov (United States)

    Swift, C. T.; Dehority, D. C.; Black, P. G.; Chien, J. Z.

    1984-01-01

    The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980.

  11. Imperfections of the North-Atlantic wind-driven ocean circulation: continental geometry and windstress shape

    NARCIS (Netherlands)

    Dijkstra, H.A.; Molemaker, M.J.

    1998-01-01

    Multiple equilibria of the wind-driven gyres have been found in idealized quasi- geostrophic and shallow water models.In this paper we demonstrate that multiple equilibria persist within a reduced gravity shallow water model under quite realis- tic continental geometry and windstress orcing for

  12. The use of wind data with an operational wind turbine in a research and development environment

    Science.gov (United States)

    Neustadter, H. E.

    1979-01-01

    It is noted that in 1976, 17 candidate sites were identified for detailed evaluation as potential sites for installation of large, horizontal axis Wind Turbines (WT). Attention is given to the Mod-OA, a 200 kW WT located in Clayton, New Mexico. The discussion covers the meteorological data collected, some of the analyses based on these wind data as well as additional areas currently being investigated in relation to these data.

  13. Renewable energy research 1995–2009: a case study of wind power research in EU, Spain, Germany and Denmark

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Garcia- Zorita, J. Carlos; Serrano-López, Antonio Eleazar

    2013-01-01

    The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995–2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers...... terms to map knowledge export areas. Findings show an increase in citation impact for Renewable Energy and Wind Power research albeit hampered by scarcely cited conference papers. Although EU maintains its global top position in producing Renewable Energy and Wind Power research the developments of EU...... Wind Power research are EU-self citations. An expected intensified EU collaboration in the Wind Energy field does not come about. The most productive research institutions in Denmark and Spain are also the most cited ones....

  14. Comparison of Microwave Backscatter Measurements and Small-scale Surface Wave Measurements Made from the Dutch Ocean Research Tower "Noordwijk"

    NARCIS (Netherlands)

    Snoeij, P.; Halsema, D. van; Oost, W.A.; Calkoen, C.J.; Vogelzang, J.; Waas, S.; Jaehne, B.

    1991-01-01

    To improve the understanding of the interaction between microwaves and water waves the VIERS-l project started in 1986 with the preparation of two wind/wave tank experiments and an ocean tower experiment. In February 1988, combined measurements of microwave backscatter, wind, waves and gas exchange

  15. Wind and wave extremes over the world oceans from very large ensembles

    Science.gov (United States)

    Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.

    2014-07-01

    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.

  16. WindScanner.dk - a new Remote Sensing based Research Infrastructure for on- and offshore Wind Energy Research

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    obtained in planetary boundary layer turbulent flow have been acquired from both ground-based and wind turbine-integrated space by time and space synchronized scanning lidars. Results to date include: turbulent inflow over complex terrain scanned in a horizontal-vertical 2D scan plane, and 2-dimensional...... and 3-dimensional wind vector scan measurements obtained during various WindScanner boundary-layer field campaigns. A special designed `2D upwind rotor plane scanning SpinnerLidar', mounted in the rotating spinner, and able to provide the wind turbine control systems with detailed upwind feed......-forward inflow information, is also investigated as a provider of rotor plane inflow for accurate power curve measurements. The instrument development involves both a short range (10 -200 m) and a long-range (100 - 6000 m) synchronized 3D scanning wind lidar system....

  17. On stochastic stability of regional ocean models with uncertainty in wind forcing

    Directory of Open Access Journals (Sweden)

    L. M. Ivanov

    2007-10-01

    Full Text Available A shallow-water model was used to understand model error induced by non-Gaussian wind uncertainty. Although the model was simple, it described a generic system with many degrees of freedom randomized by external noise. The study focused on the nontrivial collective behavior of finite-amplitude perturbations on different scales and their influence on model predictability. The error growth strongly depended on the intensity and degree of spatial inhomogeneity of wind perturbations. For moderate but highly inhomogeneous winds, the error grew as a power law. This behavior was a consequence of varying local characteristic exponents and nonlinear interactions between different scales. Coherent growth of perturbations was obtained for different scales at various stages of error evolution. For the nonlinear stage, statistics of prediction error could be approximated by a Weibull distribution. An approach based on the Kullback-Leibler distance (the relative entropy and probability-weighted moments was developed for identification of Weibull statistics. Bifurcations of the variance, skewness and kurtosis of the irreversible predictability time (a measure of model prediction skill were detected when the accepted prediction accuracy (tolerance exceeded some threshold.

  18. A Reduced Wind Power Grid Model for Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, V. [Energinet.dk, Fjordvejen 1-11, DK-7000 Fredericia (Denmark); Lund, T.; Hansen, A.D.; Sorensen, P.E. [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Nielsen, A.H. [Centre for Electric Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2006-07-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission System Operator of Denmark (TSO) for Natural Gas and Electricity, to the Danish Universities and the Risoe National Laboratory. Its intended usage is education and studying of interaction between electricity-producing wind turbines and a realistic transmission system. Focus in these studies is on voltage stability issues and on the ride-through capability of different wind turbine concepts, equipped with advanced controllers, developed by the Risoe National Laboratory.

  19. Small-scale open ocean currents have large effects on wind wave heights

    Science.gov (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  20. The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986

    Science.gov (United States)

    McPhaden, Michael J.; Freitag, H. Paul; Hayes, Stanley P.; Taft, Bruce A.; Chen, Zeshi; Wyrtki, Klaus

    1988-09-01

    Western Pacific westerly wind bursts of 1- to 3-week duration are potentially important in triggering and sustaining El Niño-Southern Oscillation events. One such burst of 10-day duration and maximum speeds of greater than 10 m s-1 occurred in May 1986 west of the date line. The response to this westerly wind burst is documented from equatorial current meter moorings, thermistor chain moorings, and sea level and hydrographic data. At 0°, 165°E in the western Pacific the thermocline was depressed by 25 m, sea surface temperature dropped by 0.3°-0.4°C, and sea level rose by 10-15 cm a few days after the maximum in westerly wind speed. Likewise, the South Equatorial Current rapidly accelerated eastward and attained speeds in excess of 100 cm s-1. Vertical shear in an approximately 100 m deep surface layer reversed within a few days of the winds, consistent with a simple model of equatorial mixed layer dynamics in which vertical eddy viscosities are inferred to be O(100 cm2 s-1). A sharp Kelvin wavelike pulse in sea level propagated out of the directly forced region into the central and eastern Pacific. The pulse took 45 days to travel from Tarawa (1°N, 173°E) to La Libertad (2°S, 81°W) on the South American coast, at an average phase speed of about 300 cm s-1. This is of the same order of magnitude as, but significantly higher than, the phase speed of a first baroclinic mode Kelvin wave and is probably the result of Doppler shifting by the Equatorial Undercurrent. A rise in sea surface temperature of about 1°C in 2 days occurred at 0°N, 110°W with the passage of the pulse. However, coincidental meridional advection of a sharp sea surface temperature front, rather than zonal advection of downwelling associated with the pulse, appears to be responsible for this warming. The relevance of this wind-forced pulse to the subsequent evolution of the 1986-1987 El Niño-Southern Oscillation event is discussed in the light of these observations.

  1. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    International Nuclear Information System (INIS)

    Mikkelsen, T

    2014-01-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site ''Østerild'' for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site ''Høvsøre'' DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast

  2. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  3. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  4. Research report of fiscal 1997. Feasibility research on domestic wind farms; 1997 nendo chosa hokokusho. Kokunai wind farm kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research was made on large-scale wind power generation projects under planning or construction. Issues of the following 5 areas were arranged considering topographic, geographic and meteorological conditions, and the type of municipal corporations: Tomamae town, Hokkaido, Tachikawa town, Yamagata prefecture (third-sector), Hisai city, Mie prefecture, Otoyo town, Kochi prefecture, and Kishuku town, Nagasaki prefecture (third-sector). These projects are supported by MITI`s local new energy introduction promotion project subsidy started in fiscal 1997 covering a half of construction cost (within 200 million yen/year). Requirements for this subsidy are that an applicant is either a municipal corporation or a third-sector, and that a total generating capacity is not less than 1200kW. Another subsidy system covering 1/3 of construction cost and a debt guarantee system are prepared for large-scale private projects not less than 800kW. Hearing was made on some private projects in Esashi town, Akita city and Hasaki town. Technical requirements, specifications, guideline and some examples for system interconnection are also summarized. 10 figs., 24 tabs.

  5. Estimating a relationship between aerosol optical thickness and surface wind speed over the ocean

    OpenAIRE

    Glantz , P.; Nilsson , D. E.; Von Hoyningen-Huene , W.

    2006-01-01

    International audience; Retrieved aerosol optical thickness (AOT) based on data obtained by the Sea viewing Wide Field Sensor (SeaWiFS) is combined with surface wind speed, obtained at the European Centre for Medium-Range Weather Forecasts (ECMWFs), over the North Pacific for September 2001. In this study a cloud screening approach is introduced in an attempt to exclude pixels partly or fully covered by clouds. The relatively broad swath width for which the nadir looking SeaWiFS instrument sc...

  6. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  7. 76 FR 64327 - Office of Oceanic and Atmospheric Research Draft Strategic Plan

    Science.gov (United States)

    2011-10-18

    ...: 111003608-1608-01] Office of Oceanic and Atmospheric Research Draft Strategic Plan AGENCY: Office of Oceanic... notice announces that OAR's draft Strategic Plan (FY12- 18) is available for public review and comment... next six years. These goals and objectives will provide guidance and strategic direction for program...

  8. Bibliography of Research on Ocean Fronts, 1964-1984

    Science.gov (United States)

    1985-08-01

    subtropical convergence; midtasman convergence; antarctic convergence and antarctic divergence. The search term "siome" was tried, but produced no hits ... Tabata , S. and L.F. Giovando. 1963. The seasonal thermocline at ocean weather station ’P’ during 1956 through 1959. Manus. Rep. Ser. No. 157. Fish...Res. Bd. Can. Tabata , S. and J.F.R. Gower. 1980. Comparison of ship and satellite measurements of sea surface temperatures off the Pacific Coast

  9. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    Science.gov (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  10. Computational micromechanics of wind blade materials: recent activities at the Materials Research Division, Risoe DTU

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky Jr., L.; Broendsted, P.; Qing, H.; Wang, H.; Soerensen, Bent F. (Technical Univ. of Denmark, Riso National Lab. for Sustainable Energy. Materials Research Div., Roskilde (Denmark)); OEstergaard, R.C. (LM Wind Power Blades, Composite Mechanics, Roskilde (Denmark))

    2010-10-22

    Recent research works in the area of 3D computational microstructural modelling, virtual testing and numerical optimization of wind blade materials, carried out at the Materials Research Division, Rise DTU (Programme Composites and Materials Mechanics) are summarized. The works presented here have been carried out in the framework of several research projects: EU FP6 Upwind, Danida project 'Development of wind energy technologies in Nepal' and SinoDanish project '3D Virtual Testing of composites for wind energy applications' as well as the Framework Program 'Interface design of composite materials' and recently established Danish Centre for Composite Structures and Materials for Wind Turbines. Different groups of materials, which are used or have a potential for use for the wind turbine blades, are modelled with the use of the methods of the computational micromechanics, in particular: (1) glass and carbon fiber reinforced polymer composites used in the large wind turbine blades, (2) different sorts of timber, used in small wind turbines (first of all, in developing countries) and (3) nanoparticle reinforced polymer matrix composites (which have a potential to be used as components for future high strength wind blades). On the basis of the developed 3D microstructural finite element models of these materials, we analyzed the effect of their microstructures on damage resistance, strength and stiffness. The methods of the 3D model design and results of the simulations are discussed in this paper. (Author)

  11. Theoretical contributions to solar wind research - a review

    International Nuclear Information System (INIS)

    Cuperman, S.

    1977-01-01

    The theoretical work on the solar wind phenomena done since 1958 can be divided into two main parts: Part I - development and refinement of Parker's initial macroscopic model, the emphasis being placed upon steady state, spherically symmetric flow and the identification of the structure-less background solar wind plasma with the low speed flow. It is in this part that much progress in understanding the solar wind phenomenon has been achieved; Part II - generalization of Parker's initial model such as to include microscopic (kinetic) aspects, temporal variations, deviations from spherically symmetric conditions, complex local magnetic configurations, etc. The last two aspects, in particular, have received considerable attention with the discovery of the coronal holes, their association with high-speed flows and the tentative identification of these flows with the structure-less background solar wind plasma. This review is confined to Part I, as defined above. However, for completeness, several important aspects connected with the subjects enumerated under Part II and which represent the objects of the most recent investigation are also briefly reviewed. (Auth.)

  12. Energy from the ocean. Report of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fifth Congress, Second Session by the Science Policy Research Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In the area of renewable sources of energy from the ocean, the report includes chapters on ocean thermal energy conversion; energy from ocean waves; energy from ocean currents; energy from tides; energy from oceanic winds; energy from salinity gradients; and energy from oceanic bioconversion. Also covered are the nonrenewable sources of energy from the ocean with chapters on deep ocean oil and gas; offshore geothermal energy; and offshore hard mineral energy resources. The report concludes with a bibliography and a selection of current articles on the general subject of the energy potential of the oceans.

  13. Cumulative effects of wind turbines. Volume 2: Report on qualitative public attitude research in mid-Wales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report summarises the results of research to develop a planning tool for assessing the cumulative effect of wind turbines carried out in Montgomeryshire through contact with those involved in wind farms, and those living near and further away from the wind turbine arrays. Topics examined included people's feeling about wind farms, noise, experience with wind farm developers, availability of related jobs, awareness of income to farmers from wind farms, developers' contributions to local funds, awareness of government policy, appreciation of wind as a resource, and the effects on tourism.

  14. Cumulative effects of wind turbines. Volume 2: Report on qualitative public attitude research in mid-Wales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report summarises the results of research to develop a planning tool for assessing the cumulative effect of wind turbines carried out in Montgomeryshire through contact with those involved in wind farms, and those living near and further away from the wind turbine arrays. Topics examined included people's feeling about wind farms, noise, experience with wind farm developers, availability of related jobs, awareness of income to farmers from wind farms, developers' contributions to local funds, awareness of government policy, appreciation of wind as a resource, and the effects on tourism.

  15. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  16. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  17. Wind power research at Oregon State University. [for selecting windpowered machinery sites

    Science.gov (United States)

    Hewson, E. W.

    1973-01-01

    There have been two primary thrusts of the research effort to date, along with several supplementary ones. One primary area has been an investigation of the wind fields along coastal areas of the Pacific Northwest, not only at the shoreline but also for a number of miles inland and offshore as well. Estimates have been made of the influence of the wind turbulence as measured at coastal sites in modifying the predicted dependence of power generated on the cube of the wind speed. Wind flow patterns in the Columbia River valley have also been studied. The second primary thrust has been to substantially modify and improve an existing wind tunnel to permit the build up of a boundary layer in which various model studies will be conducted. One of the secondary studies involved estimating the cost of building an aerogenerator.

  18. Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows

    Science.gov (United States)

    Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.

    2015-11-01

    Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.

  19. Revisiting four scientific debates in ocean acidification research

    Directory of Open Access Journals (Sweden)

    A. J. Andersson

    2012-03-01

    Full Text Available In recent years, ocean acidification has gained continuously increasing attention from scientists and a number of stakeholders and has raised serious concerns about its effects on marine organisms and ecosystems. With the increase in interest, funding resources, and the number of scientific investigations focusing on this environmental problem, increasing amounts of data and results have been produced, and a progressively growing and more rigorous understanding of this problem has begun to develop. Nevertheless, there are still a number of scientific debates, and in some cases misconceptions, that keep reoccurring at a number of forums in various contexts. In this article, we revisit four of these topics that we think require further thoughtful consideration including: (1 surface seawater CO2 chemistry in shallow water coastal areas, (2 experimental manipulation of marine systems using CO2 gas or by acid addition, (3 net versus gross calcification and dissolution, and (4 CaCO3 mineral dissolution and seawater buffering. As a summation of these topics, we emphasize that: (1 many coastal environments experience seawater pCO2 that is significantly higher than expected from equilibrium with the atmosphere and is strongly linked to biological processes; (2 addition of acid, base or CO2 gas to seawater can all be useful techniques to manipulate seawater chemistry in ocean acidification experiments; (3 estimates of calcification or CaCO3 dissolution based on present techniques are measuring the net of gross calcification and dissolution; and (4 dissolution of metastable carbonate mineral phases will not produce sufficient alkalinity to buffer the pH and carbonate saturation state of shallow water environments on timescales of decades to hundreds of years to the extent that any potential negative effects on marine calcifiers will be avoided.

  20. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  1. Reminiscences on the study of wind waves

    Science.gov (United States)

    MITSUYASU, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  2. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  3. BMFT. Partial programme ocean research. Annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The project sponsors 'Biology, energy, ecology' and 'Materials and raw materials research' at Forschungszentrum Juelich GmbH were charged by the Federal Ministry for Research and Technology with the supervision of the promotion of the 'Marine research' subprogram. A summary is given of marine research programs promoted in 1991. These programs covered marine pollution analysis and monitoring (research and development), marine biology (research into marine ecosystems), marine research equipment and methods, maritime meteorology (research into maritime climates), new and unconventional marine nutrition sources (aquaculture), investigation of biological and technological aspects relevant to fishery, international cooperation and marine geosciences. A general survey is given of the promoted projects, and the individual activities are briefly described on standardized data sheets. The appendix gives project and joint-project indices and a list of firms and companies. (orig./BBR) [de

  4. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines

    Science.gov (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis

    2018-02-01

    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  5. Research status on aero-acoustic noise from wind turbine blades

    International Nuclear Information System (INIS)

    Yang, B

    2013-01-01

    This paper describes the noise mechanisms and categories of modern large wind turbine and main noise sources. Then the latest progresses in wind turbine noise researches are described from three aspects: noise prediction model, detection of noise sources by microphone array technique and methods for noise reduction. Although the turbine is restricted to horizontal axis wind turbines, the noise prediction model and reduction methods also can be applied to other turbines when the noise mechanisms are similar. Microphone array technique can be applied to locate any kind of noise sources

  6. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    . The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  7. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  8. OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students

    Science.gov (United States)

    Perry, R. B.; Hamner, W. M.

    2006-12-01

    OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, http://www.msc.ucla.edu/oceanglobe/ OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an

  9. Research programme related to the influence of wind on contamination containment in nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Soares, S.; Gelain, T.; Laborde, J.C.; Ricciardi, L. [Institut de Radioprotection et de Surete Nucleaire (IRSN/DSU/SERAC/LEMAC), 91 - Gif-sur-Yvette (France)

    2006-07-01

    In nuclear industry, the response of a ventilation network to accidental disturbances, either mechanical (fan failure, damper blockage,..) or thermal (fire..) is difficult to evaluate when the network becomes complex. In order to determine and analyze the consequences of these disturbances on the radioactive materials containment, a computer code called SIMEVENT has been developed. However, among the external parameters likely to affect a ventilation network, the wind effect is actually basically modeled, due to a lack of qualified data concerning the wind impact on complex building geometries and the interaction between wind and chimney exhaust. In view of the networks complexity and the facilities diversity, a research program including experimental and model studies has been launched to assess the wind influence on contamination containment. 1. step: improvement of data (2005-2006): The diversity of facilities geometries needs the use of a qualified multi-D code for pressure coefficients Cpi assessment, characterizing the wind effect on building walls and the interaction between wind and chimney exhaust. Different chimney terminals have then been placed in a wind tunnel (the parameters are the incline angle a, the wind velocity U and the air flow in the duct W); for each angle, the evolution of the pressure coefficient versus wind velocity is determined and is characteristic of a chimney terminal geometry. Furthermore, two types of scale-model have been chosen for representing either nuclear power plants (NPP) or plants and laboratories buildings. The different values of wind pressure coefficients have been measured on both scale-models placed in a wind-tunnel. The experimental data obtained are compared with CFD simulations (CFX code), in order to qualify such code for the assessment of pressure coefficient on complex geometries. The results are quite encouraging. 2. step - wind tunnel tests on a ventilated scale model (2007-2009): Wind tunnel tests will be

  10. Research programme related to the influence of wind on contamination containment in nuclear installations

    International Nuclear Information System (INIS)

    Soares, S.; Gelain, T.; Laborde, J.C.; Ricciardi, L.

    2006-01-01

    In nuclear industry, the response of a ventilation network to accidental disturbances, either mechanical (fan failure, damper blockage,..) or thermal (fire..) is difficult to evaluate when the network becomes complex. In order to determine and analyze the consequences of these disturbances on the radioactive materials containment, a computer code called SIMEVENT has been developed. However, among the external parameters likely to affect a ventilation network, the wind effect is actually basically modeled, due to a lack of qualified data concerning the wind impact on complex building geometries and the interaction between wind and chimney exhaust. In view of the networks complexity and the facilities diversity, a research program including experimental and model studies has been launched to assess the wind influence on contamination containment. 1. step: improvement of data (2005-2006): The diversity of facilities geometries needs the use of a qualified multi-D code for pressure coefficients Cpi assessment, characterizing the wind effect on building walls and the interaction between wind and chimney exhaust. Different chimney terminals have then been placed in a wind tunnel (the parameters are the incline angle a, the wind velocity U and the air flow in the duct W); for each angle, the evolution of the pressure coefficient versus wind velocity is determined and is characteristic of a chimney terminal geometry. Furthermore, two types of scale-model have been chosen for representing either nuclear power plants (NPP) or plants and laboratories buildings. The different values of wind pressure coefficients have been measured on both scale-models placed in a wind-tunnel. The experimental data obtained are compared with CFD simulations (CFX code), in order to qualify such code for the assessment of pressure coefficient on complex geometries. The results are quite encouraging. 2. step - wind tunnel tests on a ventilated scale model (2007-2009): Wind tunnel tests will be

  11. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  12. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  13. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    Science.gov (United States)

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  14. West Indian Ocean Deltas Exchange and Research Network | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) aims to build the resilience of poor people to climate change by supporting a network of consortia to conduct high-calibre research and policy engagement in hot spots in Africa and Asia. It is jointly funded by the UK's Department for International ...

  15. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  16. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  17. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    Being land-locked at the north, the Indian Ocean and its surrounding atmosphere behave in such a way that the ocean-atmosphere interaction over this domain is different from that over the other oceans, exhibiting a peculiar dynamics. The sparse data...

  18. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  19. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    Science.gov (United States)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  20. Current meter, phytoplankton, and wind data from moored current meter casts and other instruments in the North Pacific Ocean as part of the Deep Ocean Mining and Environmental Study (DOMES) project, 1975-08-29 to 1977-02-24 (NODC Accession 7700458)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter, phytoplankton, and wind data were collected using moored current meter casts and other instruments in the Gulf of Mexico from August 29, 1975 to...

  1. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  2. Aerodynamic Research of the Experimental Prototype of the Variable Geometry Wind Turbine

    Directory of Open Access Journals (Sweden)

    Urbahs Aleksandrs

    2017-12-01

    Full Text Available The aim of this research is to develop a vertical rotation axis variable geometry wind turbine (WT. The experimental prototype is being manufactured with the help of CAM (Computer-aided manufacturing technologies – computer-based preparation of the product manufacturing process. The Institute of Aeronautics of Riga Technical University is using CNC (Computer Numerical Control machines for manufacturing the innovative WT and its components. The aerodynamic research has been done in T-4 wind tunnel at an air flow rate from 5 m/s to 30 m/s. The power increase of the variable geometry WT is a topical issue. Installation of such WTs in wind farms is possible and is subject to further research.

  3. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  4. High Performance Computing Assets for Ocean Acoustics Research

    Science.gov (United States)

    2016-11-18

    processors, effectively), and 512GB memory . The second has 24 CPU cores, dual -thread, (48 processors, effectively), and 512GB memory . The third has...28 CPU cores, dual -thread, (56 processors, effectively), and 256GB memory . Mr. Arthur Newhall ofWHOI worked with the vendors to secure the best...Headrick Office ofNaval Research, Code 322 One Liberty Center 875 North Randolph Street, Suite 4125 Arlington, VA 22203 Dear Dr. Headrick

  5. National Defense Center of Excellence for Research in Ocean Sciences

    Science.gov (United States)

    1999-09-01

    aureas , vancomycin-resistant Enterococcus and other bacteria in in vitro tests. ATI contacted Tripler Army Medical Hospital in Honolulu and Walter...an HP 712/60 workstation and is mostly written in C+ except for the radar cross- section model, which is written in FORTRAN. The output of the model...Congressional Record, contained a section entitled Research, Development, Test, and Evaluation, Defense Agencies and provided for ".. .an additional amount

  6. Research on grid connection control technology of double fed wind generator

    Science.gov (United States)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  7. A Standardized Based Approach to Managing Atmosphere Studies For Wind Energy Research

    Science.gov (United States)

    Stephan, E.; Sivaraman, C.

    2015-12-01

    Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational costs by hundreds of millions of dollars, and to improve project financing terms to more closely resemble traditional capital projects. The Data Archive and Portal (DAP) is a key capability of the A2e initiative. The DAP is a cloud-based distributed system known as the 'Wind Cloud' that functions as a repository for all A2e data. This data includes numerous historic and on-going field studies involving in situ and remote sensing instruments, simulations, and scientific analysis. Significantly it is the integration and sharing of these diverse data sets through the DAP that is key to meeting the goals of A2e. This cloud will be accessible via an open and easy-to navigate user interface that facilitates community data access, interaction, and collaboration. DAP management is working with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud. Security will be provided to facilitate storage of proprietary data alongside publicly accessible data in the Wind Cloud, and the capability to generate anonymized data will be provided to facilitate using private data by non-privileged users (when appropriate). Finally, limited computing capabilities will be provided to facilitate co-located data analysis, validation, and generation of derived products in support of A2e science.

  8. Statistical guidelines for assessing marine avian hotspots and coldspots: A case study on wind energy development in the U.S. Atlantic Ocean

    Science.gov (United States)

    Zipkin, Elise F.; Kinlan, Brian P.; Sussman, Allison; Rypkema, Diana; Wimer, Mark; O'Connell, Allan F.

    2015-01-01

    Estimating patterns of habitat use is challenging for marine avian species because seabirds tend to aggregate in large groups and it can be difficult to locate both individuals and groups in vast marine environments. We developed an approach to estimate the statistical power of discrete survey events to identify species-specific hotspots and coldspots of long-term seabird abundance in marine environments. We illustrate our approach using historical seabird data from survey transects in the U.S. Atlantic Ocean Outer Continental Shelf (OCS), an area that has been divided into “lease blocks” for proposed offshore wind energy development. For our power analysis, we examined whether discrete lease blocks within the region could be defined as hotspots (3 × mean abundance in the OCS) or coldspots (1/3 ×) for individual species within a given season. For each of 74 species/season combinations, we determined which of eight candidate statistical distributions (ranging in their degree of skewedness) best fit the count data. We then used the selected distribution and estimates of regional prevalence to calculate and map statistical power to detect hotspots and coldspots, and estimate the p-value from Monte Carlo significance tests that specific lease blocks are in fact hotspots or coldspots relative to regional average abundance. The power to detect species-specific hotspots was higher than that of coldspots for most species because species-specific prevalence was relatively low (mean: 0.111; SD: 0.110). The number of surveys required for adequate power (> 0.6) was large for most species (tens to hundreds) using this hotspot definition. Regulators may need to accept higher proportional effect sizes, combine species into groups, and/or broaden the spatial scale by combining lease blocks in order to determine optimal placement of wind farms. Our power analysis approach provides a general framework for both retrospective analyses and future avian survey design and is

  9. Aerodynamic research of a racing car based on wind tunnel test and computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Wang Jianfeng

    2018-01-01

    Full Text Available Wind tunnel test and computational fluid dynamics (CFD simulation are two main methods for the study of automotive aerodynamics. CFD simulation software solves the results in calculation by using the basic theory of aerodynamic. Calculation will inevitably lead to bias, and the wind tunnel test can effectively simulate the real driving condition, which is the most effective aerodynamics research method. This paper researches the aerodynamic characteristics of the wing of a racing car. Aerodynamic model of a racing car is established. Wind tunnel test is carried out and compared with the simulation results of computational fluid dynamics. The deviation of the two methods is small, and the accuracy of computational fluid dynamics simulation is verified. By means of CFD software simulation, the coefficients of six aerodynamic forces are fitted and the aerodynamic equations are obtained. Finally, the aerodynamic forces and torques of the racing car travel in bend are calculated.

  10. What distinguishes the Gordon Research Conference on Oceans and Human Health? A retrospective 2008-2012.

    Science.gov (United States)

    Doyle, John J

    2013-05-01

    This piece is being submitted as a short commentary for the special edition on Oceans and Human Health (OHH). It is written from the perspective of a student who has attended all three biennial Gordon Research Conferences and Seminars on OHH beginning in 2008.

  11. 77 FR 73457 - Nominations for Membership on the Ocean Research Advisory Panel

    Science.gov (United States)

    2012-12-10

    ... mandated federal advisory committee that provides senior advice to the National Ocean Research Leadership... responsibilities of the NORLC. ORAP provides independent advice and guidance to the NOC. The NOC routinely provides guidance and direction on the areas for which it seeks advice and recommendations from the ORAP. The ORAP...

  12. International collaboration and comparative research on ocean top predators under CLIOTOP

    Science.gov (United States)

    Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Scales, Kylie L.; Senina, Inna; Weng, Kevin C.

    2017-06-01

    Oceanic top predators have ecological, social and economic value of global significance. These wide-ranging marine species, which include sharks, tunas and billfishes, marine mammals, turtles and seabirds, are the focus of international research attention under the Climate Impacts on Oceanic Top Predators (CLIOTOP) science programme, one of the Integrated Marine Biosphere Research (IMBeR) projects. Over more than a decade, research conducted under CLIOTOP has involved scientists from more than 30 countries, with international collaboration increasing markedly over time, and comparative analyses resulting in new knowledge and understanding of oceanic top predators. This special issue presents 27 papers arising from the 3rd CLIOTOP symposium, held in San Sebastián, Spain in September 2015, spanning topics such as conservation biology, trophic ecology, fisheries science, climate change, and adaptive management. The maturation and synthesis of CLIOTOP's collaborative research is now resulting in real-world management applications and improving understanding of potential ecological and socio-economic impacts of climate change in oceanic systems. The ultimate CLIOTOP goal of preparing both climate-sensitive predator populations and the human societies dependent on them for the impending impacts of climate change is now within reach.

  13. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  14. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  15. The 2015-16 El Niño - Birth, Evolution and Teleconnections from Scatterometer Observations of the Ocean Surface Winds

    Science.gov (United States)

    Hristova-Veleva, S. M.; Lee, T.; Stiles, B. W.; Rodriguez, E.; Turk, J.; Haddad, Z. S.

    2016-12-01

    The 2015-16 El Niño is one of the strongest events observed during the modern instrumentation period, rivaling the two big ones observed by satellites during 1982-83 and 1997-98. Yet, the precipitation anomalies differ from the expectations that were based on these two events. While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the signature eastward-blowing anomalous surface winds in the Western and Central Tropical Pacific are the pre-cursor and the main driver of the El Nino events. Here we use observations from NASA's RapidScat, EUMETSAT's ASCAT and also from collocated ECMWF analysis to monitor the evolution of the anomalous winds associated with the 2015-16 El Niño. To detect the El Nino signal, we first compute monthly means of the wind speed, wind components and wind convergence. We then perform a low-pass filter to extract the components of the larger-scale circulation and compute the 2015-2016 anomalies with respect to the corresponding months of 2014-2015. We find fast-evolving wind anomalies and relate them to the evolution of the SST field as depicted in the observations-based OSTIA product. Furthermore, we investigate the relationship between the GPM-observed precipitation and the surface wind convergence observed by the scatterometers. El Niño is known to have basin to global scale teleconnections. In addition to the characterization of the changes in the tropical Pacific, we will also describe the associated changes in the North and South Pacific. In particular, a strong anticyclonic anomaly is observed in the north-eastern Pacific. This anomalous circulation is likely associated with the subsidence (divergent) region of a stronger-than-normal Hadley cell, leading to modification of the midlatitude storm tracks and the related precipitation anomalies. Furthermore, these

  16. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  17. Attorneys for the Ocean - Graduate Training in the Transatlantic Helmholtz Research School for Ocean System Science and Technology (HOSST/TOSST)

    Science.gov (United States)

    van den Bogaard, Christel; Dullo, Christian; Devey, Colin; Kienast, Markus; Wallace, Douglas

    2016-04-01

    The worldwide growth in population and standards of living is leading to ever increasing human pressure on the oceans: as a source of resources, a transportation/trade pathway, and a sink for pollutants. However, use of the world's ocean is not presently guided by any over-arching management plan at either national or international level. Marine science and technology provide the necessary foundation, both in terms of system understanding and observational and modeling tools, to address these issues and to ensure that management of ocean activities can be placed on the best-possible scientific footing. The transatlantic Helmholtz Research School Ocean Science and Technology pools the complementary expertise of the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Christian-Albrechts-Universität zu Kiel, Dalhousie University and the Institute for Ocean Research Enterprise (IORE), to train the next generation of researchers in the key scientific areas critical for responsible resource utilization and management of the ocean with special emphasis on our "local ocean" - the North Atlantic. The Research School is organized around three themes which encompass key sensitivities of the North Atlantic to external forcing and resource exploitation: 4D Ocean Dynamics, Ecosystem Hotspots, and Seafloor Structures. Interactions within and between these themes regulate how the ocean system responds to both anthropogenic and natural change. The HOSST/TOSST fellows gain an in-depth understanding of how these ocean systems interact, which in turn provides a solid understanding for the formulation of scientifically-sound management practices. Given the broad scope of the school, student education is two-pronged: it provides excellent institutional support where needed, including scientific input, personal support and financial incentives, while simultaneously generating an open "intellectual space" in which ingenious, often unpredictable, ideas can take root, overcoming

  18. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    Science.gov (United States)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  19. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    the respective correlation coefficients. Preliminary results with limited processed data showed that the correlation coefficients are approximately 0.6. Sample maps of wave and wind (satellite derived) in 2.5 degrees x 2.5 degrees grids have been prepared...

  20. Review of the nuclear reactor thermal hydraulic research in ocean motions

    International Nuclear Information System (INIS)

    Yan, B.H.

    2017-01-01

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  1. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  2. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  3. Five decades of N2 fixation research in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Mar eBenavides

    2015-06-01

    Full Text Available Dinitrogen (N2 fixation (the reduction of atmospheric N2 to ammonium by specialized prokaryotic microbes, represents an important input of fixed nitrogen and contributes significantly to primary productivity in the oceans. Marine N2 fixation was discovered in the North Atlantic Ocean (NA in the 1960s. Ever since, the NA has been subject to numerous studies that have looked into the diversity and abundance of N2-fixing microbes (diazotrophs, the spatial and temporal variability of N2 fixation rates, and the range of physical and chemical variables that control them. The NA provides 10-25% of the globally fixed N2, ranking as the third basin with the largest N2 fixation inputs in the world’s oceans. This basin suffers a chronic depletion in phosphorus availability, more aeolian dust deposition than any other basin in the world’s oceans, and significant nutrient inputs from important rivers like the Amazon and the Congo. These characteristics make it unique in comparison with other oceanic basins. After five decades of intensive research, here we present a comprehensive review of our current understanding of diazotrophic activity in the NA from both a geochemical and biological perspective. We discuss the advantages and disadvantages of current methods, future perspectives, and questions which remain to be answered.

  4. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    Energy Technology Data Exchange (ETDEWEB)

    LiVecchi, Albert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  5. Wind conditions in urban layout - Numerical and experimental research

    Science.gov (United States)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  6. Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Peinke, Joachim; Nijssen, R.

    2016-01-01

    knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope...

  7. Ten years statistics of wind direction and wind velocity measurements performed at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Becker, M.; Dilger, H.

    1979-06-01

    The measurements of wind direction and wind velocity performed at 60 m and 200 m height were evaluated for one year each and frequency distributions of the measured values were established. The velocity was divided into 1 m/s steps and the direction into 10 0 sectors. The frequency distribution of the wind direction reveals three maxima located in the southwest, northeast and north, respectively. The maximum of the frequency distribution of the wind velocity occurs between 4 and 5 m/s at 200 m height and between 3 and 4 m/s at 60 m height. (orig.) [de

  8. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  9. Navigating a sea of values: Understanding public attitudes toward the ocean and ocean energy resources

    Science.gov (United States)

    Lilley, Jonathan Charles

    In examining ocean values and beliefs, this study investigates the moral and ethical aspects of the relationships that exist between humans and the marine environment. In short, this dissertation explores what the American public thinks of the ocean. The study places a specific focus upon attitudes to ocean energy development. Using both qualitative and quantitative methods, this research: elicits mental models that exist in society regarding the ocean; unearths what philosophies underpin people's attitudes toward the ocean and offshore energy development; assesses whether these views have any bearing on pro-environmental behavior; and gauges support for offshore drilling and offshore wind development. Despite the fact that the ocean is frequently ranked as a second-tier environmental issue, Americans are concerned about the state of the marine environment. Additionally, the data show that lack of knowledge, rather than apathy, prevents people from undertaking pro-environmental action. With regard to philosophical beliefs, Americans hold slightly more nonanthropocentric than anthropocentric views toward the environment. Neither anthropocentrism nor nonanthropocentrism has any real impact on pro-environmental behavior, although nonanthropocentric attitudes reduce support for offshore wind. This research also uncovers two gaps between scientific and public perceptions of offshore wind power with respect to: 1) overall environmental effects; and 2) the size of the resource. Providing better information to the public in the first area may lead to a shift toward offshore wind support among opponents with nonanthropocentric attitudes, and in both areas, is likely to increase offshore wind support.

  10. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  11. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    -based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... The wind maps are geo-referenced. The second process is the analysis of a series of geo-referenced SAR-based wind maps. Previous research has shown that a relatively large number of images are needed for achieving certain accuracies on mean wind speed, Weibull A and k (scale and shape parameters......Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy...

  12. Breaking the Ice: Strategies for Future European Research in the Polar Oceans - The AURORA BOREALIS Concept

    Science.gov (United States)

    Lembke-Jene, L.; Biebow, N.; Wolff-Boenisch, B.; Thiede, J.; European Research Icebreaker Consortium

    2011-12-01

    Research vessels dedicated to work in polar ice-covered waters have only rarely been built. Their history began with Fritjof Nansen's FRAM, which he used for his famous first crossing of the Arctic Ocean 1893-1896. She served as example for the first generation of polar research vessels, at their time being modern instruments planned with foresight. Ice breaker technology has developed substantially since then. However, it took almost 80 years until this technical advance also reached polar research, when the Russian AKADEMIK FEDEROV, the German POLARSTERN, the Swedish ODEN and the USCG Cutter HEALY were built. All of these house modern laboratories, are ice-breakers capable to move into the deep-Arctic during the summer time and represent the second generation of dedicated polar research vessels. Still, the increasing demand in polar marine research capacities by societies that call for action to better understand climate change, especially in the high latitudes is not matched by adequate facilities and resources. Today, no icebreaker platform exists that is permanently available to the international science community for year-round expeditions into the central Arctic Ocean or heavily ice-infested waters of the polar Southern Ocean around Antarctica. The AURORA BOREALIS concept plans for a heavy research icebreaker, which will enable polar scientists around the world to launch international research expeditions into the central Arctic Ocean and the Antarctic continental shelf seas autonomously during all seasons of the year. The European Research Icebreaker Consortium - AURORA BOREALIS (ERICON-AB) was established in 2008 to plan the scientific, governance, financial, and legal frameworks needed for the construction and operation of this first multi-nationally owned and operated research icebreaker and polar scientific drilling platform. By collaborating together and sharing common infrastructures it is envisioned that European nations make a major contribution to

  13. SEEWIND - South-East European Wind Energy Exploitation. Wind energy research in South East Europe under the EC FP6 programme; SEEWIND - South-East European Wind Energy Exploitation. Windenergieforschung im 6. Rahmenprogramm der Europaeischen Union in Suedosteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmeier, H. [Verein Energiewerkstatt (Austria)

    2008-08-15

    Large areas in South East Europe offer perfect conditions for the Utilisation of Wind Energy. Local wind systems like ''Bora'', which occurs along the Adriatic Sea, or ''Koshava'', which flows between the ridge of the Carpathian Mountains and the Balkan Mountains from Romania over to Serbia, are generated through differences in pressure and temperature between the adjacent regions. Those wind systems therefore can be described as 'home made' and have very individual characteristics. Despite the excellent wind conditions of those locations, the mainly cliffy and complex terrain and the extreme wind conditions with turbulences and strong gusts make great demands on the design and operation of the wind turbines. Exactly those problems the European Commission asked to be investigated and therefore defined 'Complex terrain and local wind systems' as one of the research topics in the last call of the 6th Framework Programme. Under the lead management of Verein Energiewerkstatt, a consortium of ten partners from seven middle- and southeast European countries took part in this call for proposals and received acceptance for the submitted Project ''SEEWIND - South-East European Wind Energy Exploitation''. (orig.)

  14. A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2016-07-01

    Full Text Available This paper presents a review of over a decade of research on Vertical Axis Wind Turbines (VAWTs conducted at Uppsala University. The paper presents, among others, an overview of the 200 kW VAWT located in Falkenberg, Sweden, as well as a description of the work done on the 12 kW prototype VAWT in Marsta, Sweden. Several key aspects have been tested and successfully demonstrated at our two experimental research sites. The effort of the VAWT research has been aimed at developing a robust large scale VAWT technology based on an electrical control system with a direct driven energy converter. This approach allows for a simplification where most or all of the control of the turbines can be managed by the electrical converter system, reducing investment cost and need for maintenance. The concept features an H-rotor that is omnidirectional in regards to wind direction, meaning that it can extract energy from all wind directions without the need for a yaw system. The turbine is connected to a direct driven permanent magnet synchronous generator (PMSG, located at ground level, that is specifically developed to control and extract power from the turbine. The research is ongoing and aims for a multi-megawatt VAWT in the near future.

  15. Renewable energy research 1995-2009: a case study of wind power research in EU, Spain, Germany and Denmark

    OpenAIRE

    Sanz Casado, Elías; García Zorita, Carlos; Serrano-López, Antonio Eleazar; Larsen, Birger; Ingwersen, Peter

    2013-01-01

    The original publication is available at www.springerlink.com The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995&-2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers. Scientometric indicators include publication collaboration ratios, top-player distribution as well as citedness and correspondence analy...

  16. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship Researcher in the North Atlantic Ocean in support of the Integrated Global Ocean Services System (IGOSS) from 1972-04-18 to 1972-04-20 (NODC Accession 7200696)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship Researcher in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by the US DOC; NOAA;...

  17. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship Researcher in the North Atlantic Ocean in support of the Integrated Global Ocean Services System (IGOSS) from 1972-12-08 to 1972-12-14 (NODC Accession 7201459)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship Researcher in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by the US DOC; NOAA;...

  18. Temperature profiles from expendable bathythermograph (XBT) casts from NOAA Ship RESEARCHER in the North Atlantic Ocean in support of the Integrated Global Ocean Services System (IGOSS) from 1971-03-04 to 1971-05-18 (NODC Accession 7900281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT data were collected from NOAA Ship RESEARCHER in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by the US DOC; NOAA;...

  19. An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training

    Energy Technology Data Exchange (ETDEWEB)

    Sotiropoulos, Fotis [Univ. of Minnesota, Minneapolis, MN (United States); Marr, Jeffrey D.G. [Univ. of Minnesota, Minneapolis, MN (United States); Milliren, Christopher [Univ. of Minnesota, Minneapolis, MN (United States); Kaveh, Mos [Univ. of Minnesota, Minneapolis, MN (United States); Mohan, Ned [Univ. of Minnesota, Minneapolis, MN (United States); Stolarski, Henryk [Univ. of Minnesota, Minneapolis, MN (United States); Glauser, Mark [Univ. of Minnesota, Minneapolis, MN (United States); Arndt, Roger [Univ. of Minnesota, Minneapolis, MN (United States)

    2013-12-01

    In January 2010, the University of Minnesota, along with academic and industry project partners, began work on a four year project to establish new facilities and research in strategic areas of wind energy necessary to move the nation towards a goal of 20% wind energy by 2030. The project was funded by the U.S. Department of Energy with funds made available through the American Recovery and Reinvestment Act of 2009. $7.9M of funds were provided by DOE and $3.1M was provided through matching funds. The project was organized into three Project Areas. Project Area 1 focused on design and development of a utility scale wind energy research facility to support research and innovation. The project commissioned the Eolos Wind Research Field Station in November of 2011. The site, located 20 miles from St. Paul, MN operates a 2.5MW Clipper Liberty C-96 wind turbine, a 130-ft tall sensored meteorological tower and a robust sensor and data acquisition network. The site is operational and will continue to serve as a site for innovation in wind energy for the next 15 years. Project Areas 2 involved research on six distinct research projects critical to the 20% Wind Energy by 2030 goals. The research collaborations involved faculty from two universities, over nine industry partners and two national laboratories. Research outcomes include new knowledge, patents, journal articles, technology advancements, new computational models and establishment of new collaborative relationships between university and industry. Project Area 3 focused on developing educational opportunities in wind energy for engineering and science students. The primary outcome is establishment of a new graduate level course at the University of Minnesota called Wind Engineering Essentials. The seminar style course provides a comprehensive analysis of wind energy technology, economics, and operation. The course is highly successful and will continue to be offered at the University. The vision of U.S. DOE to

  20. Using Citizen Science to Close Gaps in Cabled Ocean Observatory Research

    Science.gov (United States)

    Morley, M. G.; Moran, K.; Riddell, D. J.; Hoeberechts, M.; Flagg, R.; Walsh, J.; Dobell, R.; Longo, J.

    2015-12-01

    Ocean Networks Canada operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, and a community observatory in Cambridge Bay, Nunavut. Continuous power and connectivity permit large volumes of data to be collected and made available to scientists and citizens alike over the Internet through a web-based interface. The Oceans 2.0 data management system contains over one quarter petabyte of data, including more than 20,000 hours of video from fixed seafloor cameras and a further 8,000 hours of video collected by remotely operated vehicles. Cabled observatory instrument deployments enable the collection of high-frequency, long-duration time series of data from a specific location. This enables the study of important questions such as whether effects of climate change—for instance, variations in temperature or sea-level—are seen over the long term. However, cabled observatory monitoring also presents challenges to scientific researchers: the overwhelming volume of data and the fixed spatial location can be barriers to addressing some big questions. Here we describe how Ocean Networks Canada is using Citizen Science to address these limitations and supplement cabled observatory research. Two applications are presented: Digital Fishers is a crowd-sourcing application in which participants watch short deep-sea video clips and make annotations based on scientific research questions. To date, 3,000 participants have contributed 140,000 scientific observations on topics including sablefish abundance, hydrothermal vent geology and deep-sea feeding behaviour. Community Fishers is a program in which ordinary citizens aboard vessels of opportunity collect ocean data including water temperature, salinity, dissolved oxygen and chlorophyll. The program's focus is to directly address the typical quality concerns around data that are collected using a citizen science approach. This is done by providing high quality scientific

  1. 75 FR 82377 - NOAA's Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Science.gov (United States)

    2010-12-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) NOAA's Office of... Administration (NOAA), Commerce. ACTION: Notice of availability and request for public comment. SUMMARY: NOAA's...: Yvette Jefferson. Mail: NOAA Office of Ocean Exploration and Research (OER), ATTN: OER Plan Comments...

  2. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  3. The Importance of basic Research for Inventions and Innovations in Wind Industry. Some Experiences from Denmark and China 1973 - 2011

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Xinxin, Kong

    Wind generated production of electricity by use of wind turbines began by inventions made at nearly the same time but independently by three natural science academic educated people as the Scotch professor in electrical technology James Blyth in 1887, the American mining engineer Charles F Brush...... from two Danish engineers H C Vogt and Johan Irminger who made basic research in aerodynamics a little bit of time before la Cour started up (Guy Larose and Niels Franck: Early wind engineering experiments in Denmark, in Journal of Wind Engineering and Industrial Aerodynamics, 72 (1997), pp. 493-499)...

  4. A short review of recent research activities for characterization of aerodynamic optimization of vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    There is a growing interest in wind energy harvesting in the built environment. Vertical axis wind turbines (VAWT) seem to represent an ideal candidate for this purpose due to their omni-directional operation. However, as a result of a comparatively small amount of research on VAWTs during the last

  5. Naval Ocean Research and Development Activity Journal Index for 1976 thru 1984,

    Science.gov (United States)

    1985-03-01

    and Antibiotics. Venezuela Basin. Deep-Sea Research, v. 31, Botanica Marina, v. XXIV, p. 399-404. p. 403-414. Thompson, J. Dana (1978). Ocean Deserts...v. 29, n. 102, p. 286-295. Phytoplankton Extracellular Products. Botanica marina, v~. XXXVI, p. 375-381. Radl, C.J. and J.P. Welsh (1983). Inventory...Experiments tion and Antibiotics. Botanica Marina, v. XXIV, in the Indian River Estuary, Florida. Journal of p. 399-404. ?. Marine Research, v. 36, p, 569-593

  6. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    KAUST Repository

    Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana

    2016-01-01

    prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from

  7. Development of QC Procedures for Ocean Data Obtained by National Research Projects of Korea

    Science.gov (United States)

    Kim, S. D.; Park, H. M.

    2017-12-01

    To establish data management system for ocean data obtained by national research projects of Ministry of Oceans and Fisheries of Korea, KIOST conducted standardization and development of QC procedures. After reviewing and analyzing the existing international and domestic ocean-data standards and QC procedures, the draft version of standards and QC procedures were prepared. The proposed standards and QC procedures were reviewed and revised by experts in the field of oceanography and academic societies several times. A technical report on the standards of 25 data items and 12 QC procedures for physical, chemical, biological and geological data items. The QC procedure for temperature and salinity data was set up by referring the manuals published by GTSPP, ARGO and IOOS QARTOD. It consists of 16 QC tests applicable for vertical profile data and time series data obtained in real-time mode and delay mode. Three regional range tests to inspect annual, seasonal and monthly variations were included in the procedure. Three programs were developed to calculate and provide upper limit and lower limit of temperature and salinity at depth from 0 to 1550m. TS data of World Ocean Database, ARGO, GTSPP and in-house data of KIOST were analysed statistically to calculate regional limit of Northwest Pacific area. Based on statistical analysis, the programs calculate regional ranges using mean and standard deviation at 3 kind of grid systems (3° grid, 1° grid and 0.5° grid) and provide recommendation. The QC procedures for 12 data items were set up during 1st phase of national program for data management (2012-2015) and are being applied to national research projects practically at 2nd phase (2016-2019). The QC procedures will be revised by reviewing the result of QC application when the 2nd phase of data management programs is completed.

  8. Wind energy research program 2008 - 2011; Energieforschungsprogramm Windenergie fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) discusses the Swiss research program on wind energy for the years 2008 to 2011. The Swiss government's energy research programs are defined every four years in co-operation with the Swiss Federal Energy Research Commission. This paper takes a look at the present situation in Switzerland and discusses current developments. Key figures are quoted. National work on basic and production-oriented research is discussed. The various actors and their co-ordination are discussed. National and international networking between research and practice is commented on. Technical and commercial goals are looked at, as are the possibilities for funding the work. Finally, four areas of emphasis for research are noted.

  9. Inverse Relationship of Marine Aerosol and Dust in Antarctic Ice with Fine-Grained Sediment in the South Atlantic Ocean: Implications for Sea-Ice Coverage and Wind Strength

    Directory of Open Access Journals (Sweden)

    Sharon L. Kanfoush

    2012-03-01

    Full Text Available This research seeks to test the hypothesis that natural gamma radiation (NGR from Ocean Drilling Program Site 1094, which displays variability over the last glacial-interglacial cycle similar to dust in the Vostok ice core, reflects fine-grained terrigenous sediment delivered by eolian processes. Grain size was measured on 400 samples spanning 0–20 m in a composite core. Accumulation of the <63μ size fraction at Site 1094 and dust in Vostok exhibit a negative correlation, suggesting the fine sediments are not dominantly eolian. However the technique used for grain size measurements cannot distinguish between terrigenous and biogenous materials; therefore it is possible much fine-grained material is diatoms. An inverse correlation between fine sediments and NGR supports this interpretation, and implies terrigenous materials were at times diluted by microfossils from high biological productivity. Fine marine sediments correlate positively with temperature and negatively with marine aerosol Na+ in Vostok. One plausible explanation is extensive sea-ice of cold intervals steepened ocean-continent temperature gradients, intensified winds, and led to increased transport of dust and marine aerosol to Antarctica yet also reduced biological productivity at Site 1094. Such a reduction despite increases in NGR, potentially representing Fe-rich dust influx, would require light limitation or stratification associated with sea-ice.

  10. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    Science.gov (United States)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  11. Wind rose and Radionuclide Dispersion Modelling for Nuclear Malaysia Research Reactor

    International Nuclear Information System (INIS)

    Mohd Nahar Othman

    2015-01-01

    After the incident of radioactive gasses released to the environment because of unusual earthquake and tsunamis happen in Fukushima, Japan. The problem of release of radiological radionuclide became deep concern and serious problem to the world community. The incident course almost all nuclear power plant in Japan cannot operate because opposition from local people. From this point of view Malaysian Nuclear agency don't left behind in doing it research in release of radionuclide from it research reactor, in the meantime new wind rose data had been collected from 2013 to 2014. This paper will present the new radionuclide release including the new dispersion modelling that had been developed. (author)

  12. 75 FR 15686 - NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Science.gov (United States)

    2010-03-30

    ...-01] NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015 AGENCY... and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of availability and request for public comment. [[Page 15687

  13. Directional Bias of TAO Daily Buoy Wind Vectors in the Central Equatorial Pacific Ocean from November 2008 to January 2010

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2014-07-01

    Full Text Available This article documents a systematic bias in surface wind directions between the TAO buoy measurements at 0°, 170°W and the ECMWF analysis and forecasts. This bias was of the order 10° and persisted from November 2008 to January 2010, which was consistent with a post-recovery calibration drift in the anemometer vane. Unfortunately, the calibration drift was too time-variant to be used to correct the data so the quality flag for this deployment was adjusted to reflect low data quality. The primary purpose of this paper is to inform users in the modelling and remote-sensing community about this systematic, persistent wind directional bias, which will allow users to make an educated decision on using the data and be aware of its potential impact to their downstream product quality. The uncovering of this bias and its source demonstrates the importance of continuous scientific oversight and effective user-data provider communication in stewarding scientific data. It also suggests the need for improvement in the ability of buoy data quality control procedures of the TAO and ECMWF systems to detect future wind directional systematic biases such as the one described here.

  14. Power recovery method for testing the efficiency of the ECD of an integrated generation unit for offshore wind power and ocean wave energy

    Institute of Scientific and Technical Information of China (English)

    CHEN WeiXing; GAO Feng; MENG XiangDun; REN AnYe; HU Yan

    2017-01-01

    Offshore wind power and ocean wave energy are clean,renewable and rich resources.The integrated generation unit for the two kinds of energy is introduced.The energy conversion device (ECD) is utilized to convert the mechanical energy absorbed from the wind power and wave energy into the hydraulic energy,the conversion efficiency of which is significant.In this paper,a power recovery method for testing the efficiency of the ECD is proposed.A simulation desktop is developed to validate the proposed method.The efficiency of the ECD is influenced by the hydraulic cylinders and the mechanical transmission.Here,the static efficiency of the hydraulic cylinders of the ECD is tested first.The results show that the static mechanical efficiency is about 95 % and that the volumetric efficiency is over 99%.To test the effects induced by the mechanical transmission of the ECD,each hydraulic cylinder of the ECD is substituted with two springs.Then the power loss of the ECDM under different rotational speeds is obtained.Finally,a test platform is built and the efficiency of the ECD under different rotational speeds and pressures is obtained.The results show that the efficiency is about 80%.

  15. Focal points and developments in wind energy research of the Federal Ministry for the Environment since 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, J. [Forschungszentrum Juelich GmbH (DE). Projekttraeger Juelich (PTJ)

    2007-07-01

    This article gives a short review on the wind energy research supported by the German Federal Government since 2001. The basis for this governmental support is the 5th Energy Research Programme of the Federal Government and under this programme the publication of funding schemes for wind energy research of November 2004 and of September 2006. The overall objectives of funding are directed towards a still improved and competitive position of wind energy in the national energy market as a renewable source with high potential. Further improvement of generator technologies, grid characteristics and production processes shall enable the wind industry to successfully participate in the rapidly growing world market and expand the wind energy deployment as a climate compatible technology worldwide. A focus in research is given to new offshore specific aspects especially for offshore wind energy deployment far from the shore, as it will be the case in Germany. The article gives some information about the development of the research budget and highlights some important research projects without being able to consider the complete spectrum of research of the last years. (orig.)

  16. Ocean Acidification: a review of the current status of research and institutional developments

    NARCIS (Netherlands)

    Beek, van I.J.M.; Dedert, M.

    2012-01-01

    Ocean acidification is defined as the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the atmosphere, including carbon, nitrogen and sulphur compounds. Ocean acidification is also referred to as ‘the other CO2 problem’ of anthropogenic carbon dioxide (CO2) emissions

  17. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    Science.gov (United States)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International

  18. Wind energy research at the Guajira region and inter-institutional experience

    International Nuclear Information System (INIS)

    Rodriguez Devis, J.M.

    1991-01-01

    This presentation was based on a video, describing the activities of the test station at the National University of Columbia. In the specific case of wind energy, the aim of the research group is to realize technological innovation without interfering in the Wayuu community and its ecological ambience. The Wayuu are shepherds, who occupy the arid peninsula of Guajira in the north of Columbia. The short term strategies are the fortification of the scientific and technical community in the National University and Guajira, centralized in SENA (Servicio Nacional de Aprendizaje) and Universidad de la Guajira and the integration with the community, who shall use the project. In medium terms the objective is to spread the technology in the productive rural sector, the integration of little companies and the support of health plans of the Wayuu community by means of endowing of drinking water and electricity. Detailed information on the Guajira's test field and characteristics of the developed prototype wind-powered pumps and wind generators are presented. 4 figs., 3 ills., 2 photo's, 1 tab., 2 apps

  19. Analysis of FP aerosol behavior in piping in WIND project. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Maruyama, Yu; Shibazaki, Hiroaki; Maeda, Akio; Harada, Yuhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagashima, Toshio; Yoshino, Takehito; Sugimoto, Jun

    1998-07-01

    In the analyses of aerosol behavior test in piping in WIND (Wide Range Piping Integrity Demonstration) project at Japan Atomic Energy Research Institute (JAERI), ART code developed by JAERI and VICTORIA code developed by Sandia National Laboratories are used to perform WIND test analysis and to validate the models in the both codes. It is noted that VICTORIA code is supposed to be used as reference code of ART at JAERI. As a part of these activities, WIND Aerosol Deposition tests (WAD4 and 5) and FP aerosol behaviors in safety relief valve (SRV) line during BWR high pressure sequence which will be performed in future WIND experiment were analyzed with ART and VICTORIA codes. The present analyses showed that the portion and mass with relatively large amount of cesium iodide (CsI) deposition observed in WAD4 and 5 tests were reasonably reproduced by ART and VICTORIA codes. A difference was found in condensation and revaporization behaviors of gaseous CsI between the two codes. VICTORIA overestimated the condensed mass of CsI vapor while ART reproduced better the experimental data than the VICTORIA calculation. Further investigation is needed for this issue. Although the deposition mass at the pipe connection part in WAD4 and 5 experiments was not measured, the mass at that portion will be measured from next experiment because relatively large amount of CsI could be deposited there and the measurement is considered to be useful for code verification. The predicted principal aerosol deposition mechanism in SRV line is turbulence. Temperature of SRV line could increase by about 300 K by decay heat from deposited FPs. However, the SRV line made of carbon steel would not be failed because the predicted temperature is still far lower than the melting temperature of carbon steel. (author)

  20. The aeroelasticity research project 2004[Wind turbines]; Forskning i aeroelasticitet EFP-2004

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2005-05-01

    The report presents the results of the project ''Programme for Applied Aeroelasticity'', the Danish Energy Research Programme 2004. The main results are: 1) Based on an analysis of the NREL/NASA experiment with a wind turbine in a wind tunnel a new model is formulated for 3D corrections of profile data for aeroelastic codes. Use of the model on three rotors suggests that the load distribution is determined more correctly than in existing 3D models. 2) A near-wake model, originally developed for aerodynamic loads on helicopter rotors, is implemented for calculating dynamic induction on wind turbine rotors. The model has several advantages to the other normally used model BEM. 3) A detailed comparison of the aeroelastic models FLEX5 and HAWC shows that there are no model differences that can result in large differences in the calculated loads. The comparison shows that differences in the calculated loads are due to the use of the models. 4) A model for pitch-servo dynamics on a modern wind turbine is formed and implemented in HAWC2. The conclusion from analysis of the importance of the pitch-servo characteristics showed that coupling between structure/aerodynamics and pitch actuator may be of importance, especially for the loads on the actuator itself. Also large deflections are coupled to the pitch moment and thus also to torsion of the wing and wing bearing. 5) An un-linear stability analysis has been performed in which periodic loads are included and compared to a linear analysis used in HAWCStab. For a profile with near zero aerodynamic damping in one oscillation direction, the aerodynamic force in this direction depends mostly of the square on the profile's speed. The linear damping is changed only a little by the profile's forced oscillation. It is assumed that the present HAWCStab can predict the mean aeroelastic damping for turbines' oscillations in operation. (LN)

  1. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  2. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin.

    Science.gov (United States)

    Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V

    2015-02-28

    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Increasing Capacity for Stewardship of Oceans and Coasts: Findings of the National Research Council Report

    Science.gov (United States)

    Roberts, S. J.; Feeley, M. H.

    2008-05-01

    With the increasing stress on ocean and coastal resources, ocean resource management will require greater capacity in terms of people, institutions, technology and tools. Successful capacity-building efforts address the needs of a specific locale or region and include plans to maintain and expand capacity after the project ends. In 2008, the US National Research Council published a report that assesses past and current capacity-building efforts to identify barriers to effective management of coastal and marine resources. The report recommends ways that governments and organizations can strengthen marine conservation and management capacity. Capacity building programs instill the tools, knowledge, skills, and attitudes that address: ecosystem function and change; processes of governance that influence societal and ecosystem change; and assembling and managing interdisciplinary teams. Programs require efforts beyond traditional sector-by-sector planning because marine ecosystems range from the open ocean to coastal waters and land use practices. Collaboration among sectors, scaling from local community-based management to international ocean policies, and ranging from inland to offshore areas, will be required to establish coordinated and efficient governance of ocean and coastal ecosystems. Barriers Most capacity building activities have been initiated to address particular issues such as overfishing or coral reef degradation, or they target a particular region or country facing threats to their marine resources. This fragmentation inhibits the sharing of information and experience and makes it more difficult to design and implement management approaches at appropriate scales. Additional barriers that have limited the effectiveness of capacity building programs include: lack of an adequate needs assessment prior to program design and implementation; exclusion of targeted populations in decision- making efforts; mismanagement, corruption, or both; incomplete or

  4. Temperature profile data using XBT casts in the TOGA - Atlantic Ocean from NOAA Ship RESEARCH from 1979-07-10 to 1979-07-24 (NODC Accession 7900278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT casts from NOAA Ship RESEARCHER in the TOGA - Atlantic Ocean from 10 July 1979 to 24 July 1989. Data were submitted...

  5. Processed CTD and Water Sample Data from Research Vessel Ocean Starr in the NE Pacific, Aug. 31 and Sept. 01, 2012 (NCEI Accession 0156932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The expedition by research vessel Ocean Starr on Aug. 31 and Sept. 01, 2012 had the objective to recover and re-deploy a number of moored platforms from the CORC...

  6. Research and analysis on response characteristics of bracket-line coupling system under wind load

    Science.gov (United States)

    Jiayu, Zhao; Qing, Sun

    2018-01-01

    In this paper, a three-dimensional finite element model of bracket-line coupling system is established based on ANSYS software. Using the wind velocity time series which is generated by MATLAB as a power input, by comparing and analyzing the influence of different wind speeds and different wind attack angles, it is found that when 0 degree wind acts on the structure, wires have a certain damping effect in the bracket-line coupling system and at the same wind speed, the 90 degree direction is the most unfavorable wind direction for the whole structure according to the three kinds of angle wind calculated at present. In the bracket-line coupling system, the bracket structure is more sensitive to the increase of wind speed while the conductors are more sensitive to the change of wind attack angle.

  7. Ship Sensor Observations for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and...

  8. Ship track for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and Atmospheric Administration (NOAA) Office of...

  9. Construction of research wind-solar monitoring station 'North-East Bulgaria'

    International Nuclear Information System (INIS)

    Mateeva, Z.; Filipov, A.; Filipov, V.

    2008-01-01

    The rising energy prices, the lack of conventional energy sources, as well as the growing ecological problems, imposing the development of a new energy strategy of Bulgaria, are the prerequisites for the thorough researches in the field of wind-solar resources and the construction of experimental bases with modern equipment for the detailed investigations on the specificities of these resources with the view of their optimal utilization. The lack of homogenous covering of the territory of the country with meteorological stations, as well as the rather specific microclimatic conditions in the diverse physical-geographic localities in the country make the necessity of building experimental stations for meteo-monitoring under specific local conditions still more indispensable. This work presents the monitoring parameters of wind-solar resources in a real physical-geographic environment, for carrying out scientific-research, applied-practical and educational-training activity. A broad spectrum of scientific methods and approaches - instrumental, topographic, terrain, mathematical-statistical, numerical modeling, cartographic, educational and team-working, are envisaged for attaining the set objective. (author)

  10. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    Science.gov (United States)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  11. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    Science.gov (United States)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  12. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2015-01-01

    Full Text Available Using accurate inputs of wind speed is crucial in wind resource assessment, as predicted power is proportional to the wind speed cubed. This study outlines a methodology for combining multiple ocean satellite winds and winds from WRF simulations in order to acquire the accurate reconstructed offshore winds which can be used for offshore wind resource assessment. First, wind speeds retrieved from Synthetic Aperture Radar (SAR and Scatterometer ASCAT images were validated against in situ measurements from seven coastal meteorological stations in South China Sea (SCS. The wind roses from the Navy Operational Global Atmospheric Prediction System (NOGAPS and ASCAT agree well with these observations from the corresponding in situ measurements. The statistical results comparing in situ wind speed and SAR-based (ASCAT-based wind speed for the whole co-located samples show a standard deviation (SD of 2.09 m/s (1.83 m/s and correlation coefficient of R 0.75 (0.80. When the offshore winds (i.e., winds directed from land to sea are excluded, the comparison results for wind speeds show an improvement of SD and R, indicating that the satellite data are more credible over the open ocean. Meanwhile, the validation of satellite winds against the same co-located mast observations shows a satisfactory level of accuracy which was similar for SAR and ASCAT winds. These satellite winds are then assimilated into the Weather Research and Forecasting (WRF Model by WRF Data Assimilation (WRFDA system. Finally, the wind resource statistics at 100 m height based on the reconstructed winds have been achieved over the study area, which fully combines the offshore wind information from multiple satellite data and numerical model. The findings presented here may be useful in future wind resource assessment based on satellite data.

  13. Wind Energy Industry Eagle Detection and Deterrents: Research Gaps and Solutions Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeGeorge, Elise [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-13

    The Bald and Golden Eagle Protection Act (BGEPA) prohibits the 'take' of these birds. The act defines take as to 'pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, destroy, molest or disturb.' The 2009 Eagle Permit Rule (74 FR 46836) authorizes the U.S. Fish and Wildlife Service (USFWS) to issue nonpurposeful (i.e., incidental) take permits, and the USFWS 2013 Eagle Conservation Plan Guidance provides a voluntary framework for issuing programmatic take permits to wind facilities that incorporate scientifically supportable advanced conservation practices (ACPs). Under these rules, the Service can issue permits that authorize individual instances of take of bald and golden eagles when the take is associated with, but not the purpose of, an otherwise lawful activity, and cannot practicably be avoided. To date, the USFWS has not approved any ACPs, citing the lack of evidence for 'scientifically supportable measures.' The Eagle Detection and Deterrents Research Gaps and Solutions Workshop was convened at the National Renewable Energy Laboratory in December 2015 with a goal to comprehensively assess the current state of technologies to detect and deter eagles from wind energy sites and the key gaps concerning reducing eagle fatalities and facilitating permitting under the BGEPA. During the workshop, presentations and discussions focused primarily on existing knowledge (and limitations) about the biology of eagles as well as technologies and emerging or novel ideas, including innovative applications of tools developed for use in other sectors, such as the U.S. Department of Defense and aviation. The main activity of the workshop was the breakout sessions, which focused on the current state of detection and deterrent technologies and novel concepts/applications for detecting and minimizing eagle collisions with wind turbines. Following the breakout sessions, participants were asked about their individual impressions of the

  14. Overview of GNSS-R Research Program for Ocean Observations at Japan

    Science.gov (United States)

    Ichikawa, Kaoru; Ebinuma, Takuji; Akiyama, Hiroaki; Kitazawa, Yukihito

    2015-04-01

    GNSS-R is a new remote-sensing method which uses reflected GNSS signals. Since no transmitters are required, it is suitable for small satellites. Constellations of GNSS-R small satellites have abilities on revolutionary progress on 'all-time observable' remote-sensing methods . We have started a research program for GNSS-R applications on oceanographic observations under a contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) as a'Space science research base formation program'. The duration of research program is 3 years (2015-2017). The one of important focuses of this program is creation of a new community to merge space engineering and marine science through establishment on application plans of GNSS-R. Actual GNSS-R data acquisition experiments using multi-copters, ships, and/or towers are planned, together with in-situ sea truth data such as wave spectrum, wind speed profiles and sea surface height. These data are compared to determine the accuracy and resolution of the estimates based on GNSS-R observations. Meanwhile, preparation of a ground station for receiving GNSS-R satellite data will be also established. Whole those data obtained in this project will be distributed for public. This paper introduces the overview of research plan..

  15. Charting the Course for Ocean Science in the United States for the Next Decade: An Ocean Research Priorities Plan and Implementation Strategy

    National Research Council Canada - National Science Library

    2007-01-01

    .... Understanding society's impact on the ocean and the ocean's impact on society forms the basis for ensuring a clean, healthy, and stable ocean environment that can be responsibly used and enjoyed for generations to come...

  16. Videometric research on deformation measurement of large-scale wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c...

  17. The rising tide of ocean diseases: Unsolved problems and research priorities

    Science.gov (United States)

    Harvell, Drew; Aronson, Richard; Baron, Nancy; Connell, Joseph; Dobson, Andrew P.; Ellner, Steve; Gerber, Leah R.; Kim, Kiho; Kuris, Armand M.; McCallum, Hamish; Lafferty, Kevin D.; McKay, Bruce; Porter, James; Pascual, Mercedes; Smith, Garriett; Sutherland, Katherine; Ward, Jessica

    2004-01-01

    New studies have detected a rising number of reports of diseases in marine organisms such as corals, molluscs, turtles, mammals, and echinoderms over the past three decades. Despite the increasing disease load, microbiological, molecular, and theoretical tools for managing disease in the world's oceans are under-developed. Review of the new developments in the study of these diseases identifies five major unsolved problems and priorities for future research: (1) detecting origins and reservoirs for marine diseases and tracing the flow of some new pathogens from land to sea; (2) documenting the longevity and host range of infectious stages; (3) evaluating the effect of greater taxonomic diversity of marine relative to terrestrial hosts and pathogens; (4) pinpointing the facilitating role of anthropogenic agents as incubators and conveyors of marine pathogens; (5) adapting epidemiological models to analysis of marine disease.

  18. Technical Note: Harmonizing met-ocean model data via standard web services within small research groups

    Science.gov (United States)

    Signell, Richard; Camossi, E.

    2016-01-01

    Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.

  19. Exploring the Eastern United States Continental Shelf with the NOAA Cooperative Institute for Ocean Exploration, Research, and Technology

    Science.gov (United States)

    Glickson, D.; Pomponi, S. A.

    2016-02-01

    The Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) serves NOAA priorities in three theme areas: exploring the eastern U.S. continental shelf, improving the understanding of coral and sponge ecosystems, and developing advanced underwater technologies. CIOERT focuses on the exploration and research of ecosystems and habitats along frontier regions of the eastern U.S. continental shelf that are of economic, scientific, or cultural importance or of natural hazards concern. One particular focus is supporting ocean exploration and research through the use of advanced underwater technologies and techniques in order to improve the understanding of vulnerable deep and shallow coral and sponge ecosystems. CIOERT expands the scope and efficiency of exploration and research by developing, testing, and applying new and/or innovative uses of existing technologies to ocean exploration and research activities. In addition, CIOERT is dedicated to expanding ocean literacy and building NOAA's technical and scientific workforce through hands-on, at-sea experiences. A recent CIOERT cruise characterized Gulf of Mexico mesophotic and deepwater reef ecosystems off the west Florida shelf, targeting northern Pulley Ridge. This project created and ground-truthed new sonar maps made with an autonomous underwater vehicle; conducted video and photographic transects of benthic habitat and fish using a remotely operated vehicle; and examined the connectivity of fauna from shallow to deep reef ecosystems. CIOERT was established in 2009 by FAU-Harbor Branch Oceanographic Institute, with University of North Carolina, Wilmington, SRI International, and the University of Miami. The primary NOAA partner is the Office of Oceanic and Atmospheric Research's Office of Ocean Exploration and Research.

  20. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  1. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

    Science.gov (United States)

    Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E

    2015-07-01

    Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    Science.gov (United States)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  3. Research on the effects of wind power grid to the distribution network of Henan province

    Science.gov (United States)

    Liu, Yunfeng; Zhang, Jian

    2018-04-01

    With the draining of traditional energy, all parts of nation implement policies to develop new energy to generate electricity under the favorable national policy. The wind has no pollution, Renewable and other advantages. It has become the most popular energy among the new energy power generation. The development of wind power in Henan province started relatively late, but the speed of the development is fast. The wind power of Henan province has broad development prospects. Wind power has the characteristics of volatility and randomness. The wind power access to power grids will cause much influence on the power stability and the power quality of distribution network, and some areas have appeared abandon the wind phenomenon. So the study of wind power access to power grids and find out improvement measures is very urgent. Energy storage has the properties of the space transfer energy can stabilize the operation of power grid and improve the power quality.

  4. FY 1998 Report on development of large-scale wind power generation systems. Research of wind turbines for storm worthy and easy construction; 1998 nendo ogata furyoku hatsuden system kaihatsu. Taikyofu kensetsu yoigata fusha ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development statuses in various countries are surveyed, to have useful information to draw the future R and D directions for wind turbines resistant to storms and easy construction. Greece has sites suitable for wind power generation in mountainous districts, and is developing the systems while taking the characteristic weather conditions into consideration. The country provides information regarding aerodynamic/structural design methods for wind turbine blades applicable to turbulent wind generated by complex terrain, and wind assessment and analyses in complex terrain. In India, on-the-spot surveys are made at the cyclone-attacked wind farms. One of the areas on which the USA is putting emphasis is development of small-size wind turbines and wind-diesel hybrid systems for developing countries and independent grid systems in remote areas. Australia is constructing wind-diesel hybrid systems to be connected to a number of independent grid systems in its western area. In Europe, information is collected for the advanced aerodynamic analysis, construction of offshore wind turbines, and production engineering and facilities for blades and other components from Vestas and N.E.G. Micon as the leading wind turbine makers. (NEDO)

  5. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  6. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  7. FACILITIES OF MEASURING OF WIND FOR RESEARCHES AND PLANNING OF THE AIR FIELDS AND HELIPORTS

    Directory of Open Access Journals (Sweden)

    А. Бєлятинський

    2012-04-01

    Full Text Available The choice of the place for the future airdrome (heliport construction must satisfy the financial appropriatenessand also exploitation security. For this purpose on the stage of the researches and designing the information is neededabout wind speed and its direction with an error 0,5 m/s and 10 hail accordingly, in a radius up to 15 km, as to heightfrom 2 to 1000 m with resolution 30 m, a spatial interval of measuring in a horizontal plane is not more than 20 km,in time - not rarer, than each 3 hours. Information is needed to be gained for maximal temporal period (it is desirableno less than five years. A device for the receipt of such information must be of low cost. The acoustic andradioacoustic sounding systems answer the indicated requirements most of all

  8. Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results

    Science.gov (United States)

    Usui, Norihisa; Ishizaki, Shiro; Fujii, Yosuke; Tsujino, Hiroyuki; Yasuda, Tamaki; Kamachi, Masafumi

    The Meteorological Research Institute multivariate ocean variational estimation (MOVE) System has been developed as the next-generation ocean data assimilation system in Japan Meteorological Agency. A multivariate three-dimensional variational (3DVAR) analysis scheme with vertical coupled temperature salinity empirical orthogonal function modes is adopted. The MOVE system has two varieties, the global (MOVE-G) and North Pacific (MOVE-NP) systems. The equatorial Pacific and western North Pacific are analyzed with assimilation experiments using MOVE-G and -NP, respectively. In each system, the salinity and velocity fields are well reproduced, even in cases without salinity data. Changes in surface and subsurface zonal currents during the 1997/98 El Niño event are captured well, and their transports are reasonably consistent with in situ observations. For example, the eastward transport in the upper layer around the equator has 70 Sv in spring 1997 and weakens in spring 1998. With MOVE-NP, the Kuroshio transport has 25 Sv in the East China Sea, and 40 Sv crossing the ASUKA (Affiliated Surveys of the Kuroshio off Cape Ashizuri) line south of Japan. The variations in the Kuroshio transports crossing the ASUKA line agree well with observations. The Ryukyu Current System has a transport ranging from 6 Sv east of Taiwan to 17 Sv east of Amami. The Oyashio transport crossing the OICE (Oyashio Intensive observation line off Cape Erimo) line south of Hokkaido has 14 Sv southwestward (near shore) and 11 Sv northeastward (offshore). In the Kuroshio Oyashio transition area east of Japan, the eastward transport has 41 Sv (32 36°N) and 12 Sv (36 39°N) crossing the 145°E line.

  9. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  10. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  11. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  12. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  13. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA's Jet Propulsion Laboratory (JPL) distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a...

  14. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  15. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  16. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  17. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  18. Research on Power System Scheduling Improving Wind Power Accommodation Considering Thermal Energy Storage and Flexible Load

    Science.gov (United States)

    Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang

    2018-01-01

    In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation

  19. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    Science.gov (United States)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature

  20. 76 FR 51353 - Nominations for Membership on the Ocean Research Advisory Panel

    Science.gov (United States)

    2011-08-18

    ... Leadership Council (NORLC), the governing body of the National Oceanographic Partnership Program (NOPP... extended expertise and experience in the field of ocean science and/or ocean resource management... balance a range of geographic and sector representation and experience. Applicants must be U.S. citizens...

  1. The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Van Zee, Justin W; Courtright, Ericha M; Hugenholtz, Ted M; Zobeck, Ted M; Okin, Gregory S.; Barchyn, Thomas E; Billings, Benjamin J; Boyd, Robert A.; Clingan, Scott D; Cooper, Brad F; Duniway, Michael C.; Derner, Justin D.; Fox, Fred A; Havstad, Kris M.; Heilman, Philip; LaPlante, Valerie; Ludwig, Noel A; Metz, Loretta J; Nearing, Mark A; Norfleet, M Lee; Pierson, Frederick B; Sanderson, Matt A; Sharrat, Brenton S; Steiner, Jean L; Tatarko, John; Tedela, Negussie H; Todelo, David; Unnasch, Robert S; Van Pelt, R Scott; Wagner, Larry

    2016-01-01

    The National Wind Erosion Research Network was established in 2014 as a collaborative effort led by the United States Department of Agriculture’s Agricultural Research Service and Natural Resources Conservation Service, and the United States Department of the Interior’s Bureau of Land Management, to address the need for a long-term research program to meet critical challenges in wind erosion research and management in the United States. The Network has three aims: (1) provide data to support understanding of basic aeolian processes across land use types, land cover types, and management practices, (2) support development and application of models to assess wind erosion and dust emission and their impacts on human and environmental systems, and (3) encourage collaboration among the aeolian research community and resource managers for the transfer of wind erosion technologies. The Network currently consists of thirteen intensively instrumented sites providing measurements of aeolian sediment transport rates, meteorological conditions, and soil and vegetation properties that influence wind erosion. Network sites are located across rangelands, croplands, and deserts of the western US. In support of Network activities, http://winderosionnetwork.org was developed as a portal for information about the Network, providing site descriptions, measurement protocols, and data visualization tools to facilitate collaboration with scientists and managers interested in the Network and accessing Network products. The Network provides a mechanism for engaging national and international partners in a wind erosion research program that addresses the need for improved understanding and prediction of aeolian processes across complex and diverse land use types and management practices.

  2. Blended 6-Hourly Sea Surface Wind Vectors and Wind Stress on a Global 0.25 Degree Grid (1987-2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Blended Global Sea Surface Winds products contain ocean surface wind vectors and wind stress on a global 0.25 degree grid, in multiple time resolutions of...

  3. Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid

    Science.gov (United States)

    Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei

    2018-02-01

    As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.

  4. Conference on offshore wind energy development in France and Germany - Legal framework, research results and perspectives

    International Nuclear Information System (INIS)

    Schulz, Joerg; Schlegelmilch, Kai; Schulze, Karsten; Abromeit, Carolin; Jensen, Lars Bie; Svendsen, Anne; Schwebel, Olivier; Huebner, Gundula; Heidmann, Roger; Piet, Olivier; Roudil, Jean-Philippe; Fuchs, Tina

    2010-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on offshore wind energy development in France and Germany. In the framework of this French-German exchange of experience, about 170 participants exchanged views on the actual policies, on the offshore potentialities of both countries and on the recent logistics, services, training and software innovations. This document brings together the available presentations (slides) made during this event: 1 - Opening talk by Joerg Schulz, Bremerhaven's Major; 2 - The Future of the Offshore Wind energy in Germany - Key elements of the German energy Concept (Kai Schlegelmilch); 3 - Offshore wind farms: A commercial perspective - Offshore projects profitability (Karsten Schulze); 4 - Offshore Wind Farms in the German EEZ - experiences with the German Approval Procedure: criteria for a successful approval procedure (Carolin Abromeit); 5 - Offshore Wind Parks and fishery in Denmark - Involvement and compensation of commercial fishery in Denmark (Lars Bie Jensen); 6 - Tourism, property value, residents interest and offshore parks - Usage conflicts or regional development? (Anne Svendsen); 7 - Logistics for offshore wind projects - classic ports usable? An overview (Roger Heidmann); 8 - Offshore wind energy and French harbours (Olivier Piet); 9 - French offshore wind power market and component suppliers (Jean-Philippe Roudil); 10 - Trident software - the Offshore Wind Manager. Review and Forecast after one year of construction (Tina Fuchs)

  5. A Research on Wind Farm Micro-sitting Optimization in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... that the CPSO method has a higher optimal value, and could be used to optimize the actual wind farm micro-sitting engineering projects.......Wind farm layout optimization in complex terrain is a pretty difficult issue for onshore wind farm. In this article, a novel optimization method is proposed to optimize the layout for wind farms in complex terrain. This method utilized Lissaman and Jensen wake models for taking the terrain height...... turbines’ park coordinates which subject to the boundary and minimum distance conditions between two wind turbines. A Cross Particle Swarm Optimization (CPSO) method is developed and applied to optimize the layout for a certain wind farm case. Compared with the uniform and experience method, results show...

  6. Research in connexion with the possible disposal of high level radioactive waste on or beneath the ocean floor

    International Nuclear Information System (INIS)

    1983-01-01

    Progress on five research contracts, selection and evaluation of areas and sites, the properties of ocean sediments, biological transfer of materials between seabed and surface, studies of the benthic boundary layer and dispersion in the Northwest Atlantic, is reported. (U.K.)

  7. Wind_Speeds_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included wind speeds for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  8. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  9. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  10. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  11. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  12. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    Science.gov (United States)

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  13. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  14. Developments in Acoustic Navigation and Communication for High-Latitude Ocean Research

    Science.gov (United States)

    Gobat, J.; Lee, C.

    2006-12-01

    Developments in autonomous platforms (profiling floats, drifters, long-range gliders and propeller-driven vehicles) offer the possibility of unprecedented access to logistically difficult polar regions that challenge conventional techniques. Currently, however, navigation and telemetry for these platforms rely on satellite positioning and communications poorly suited for high-latitude applications where ice cover restricts access to the sea surface. A similar infrastructure offering basin-wide acoustic geolocation and telemetry would allow the community to employ autonomous platforms to address previously intractable problems in Arctic oceanography. Two recent efforts toward the development of such an infrastructure are reported here. As part of an observational array monitoring fluxes through Davis Strait, development of real-time RAFOS acoustic navigation for gliders has been ongoing since autumn 2004. To date, test deployments have been conducted in a 260 Hz field in the Pacific and 780 Hz fields off Norway and in Davis Strait. Real-time navigation accuracy of ~1~km is achievable. Autonomously navigating gliders will operate under ice cover beginning in autumn 2006. In addition to glider navigation development, the Davis Strait array moorings carry fixed RAFOS recorders to study propagation over a range of distances under seasonally varying ice cover. Results from the under-ice propagation and glider navigation experiments are presented. Motivated by the need to coordinate these types of development efforts, an international group of acousticians, autonomous platform developers, high-latitude oceanographers and marine mammal researchers gathered in Seattle, U.S.A. from 27 February -- 1 March 2006 for an NSF Office of Polar Programs sponsored Acoustic Navigation and Communication for High-latitude Ocean Research (ANCHOR) workshop. Workshop participants focused on summarizing the current state of knowledge concerning Arctic acoustics, navigation and communications

  15. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem

    Science.gov (United States)

    Queiros, A. M.

    2016-02-01

    Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors

  16. A miniature research vessel: A small-scale ocean-exploration demonstration of geophysical methods

    Science.gov (United States)

    Howell, S. M.; Boston, B.; Sleeper, J. D.; Cameron, M. E.; Togia, H.; Anderson, A.; Sigurdardottir, T. D.; Tree, J. P.

    2015-12-01

    Graduate student members of the University of Hawaii Geophysical Society have designed a small-scale model research vessel (R/V) that uses sonar to create 3D maps of a model seafloor in real-time. A pilot project was presented to the public at the School of Ocean and Earth Science and Technology's (SOEST) Biennial Open House weekend in 2013 and, with financial support from the Society of Exploration Geophysicists and National Science Foundation, was developed into a full exhibit for the same event in 2015. Nearly 8,000 people attended the two-day event, including children and teachers from Hawaii's schools, home school students, community groups, families, and science enthusiasts. Our exhibit demonstrates real-time sonar mapping of a cardboard volcano using a toy size research vessel on a programmable 2-dimensional model ship track suspended above a model seafloor. Ship waypoints were wirelessly sent from a Windows Surface tablet to a large-touchscreen PC that controlled the exhibit. Sound wave travel times were recorded using an ultrasonic emitter/receiver attached to an Arduino microcontroller platform and streamed through a USB connection to the control PC running MatLab, where a 3D model was updated as the ship collected data. Our exhibit demonstrates the practical use of complicated concepts, like wave physics, survey design, and data processing in a way that the youngest elementary students are able to understand. It provides an accessible avenue to learn about sonar mapping, and could easily be adapted to talk about bat and marine mammal echolocation by replacing the model ship and volcano. The exhibit received an overwhelmingly positive response from attendees and incited discussions that covered a broad range of earth science topics.

  17. Dive Activities for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Bioluminescence 2009" expedition, July 20 through 31, 2009. Additional information was...

  18. 76 FR 21712 - Meeting of the Ocean Research and Resources Advisory Industry Sub-Panel

    Science.gov (United States)

    2011-04-18

    ... creative problem-solving to overcome impediments to industry progress toward deploying operational projects... held at the Consortium for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor, Washington, DC 20005...

  19. Submersible Data (Dive Trackpoints) for Lophelia II 2008 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the Remotely Operated Vehicle SeaEye Falcon along its track during four dives of the "Lophelia II 2008" expedition sponsored by the...

  20. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

  1. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from WindSat polarimetric radiometer on the Coriolis satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sea surface temperature derived from observations made by the WindSat Polarimetric Radiometer developed by the Naval Research Laboratory (NRL)...

  2. A Shark's Eye View of the Ocean Floor: Integration of Oceanographic Research with Educational Outreach

    Science.gov (United States)

    Moser, K.; Harpp, K. S.; Ketchum, J. T.; Espinoza, E.; Penaherrera, C.; Banks, S.; Fornari, D. J.; Geist, D.; Mittelstaedt, E. L.; R/v Melville Mv1007 Flamingo Cruise Scientific Party

    2010-12-01

    We have developed an interdisciplinary outreach program in which students will use the geological findings of the recent R/V Melville MV1007 Cruise to answer important questions in the Galápagos Archipelago. The cruise surveyed the seafloor between the Galápagos Platform and the Galápagos Spreading Center. Data collected from this cruise include observations using remote mapping instruments (MR1 sidescan sonar, EM122 multibeam bathymetry, and towed digital camera), dredged rock samples, gravity data, and magnetic data. The primary goal of this expedition was to gain a better understanding of the magmatic and volcanic processes that form the Galápagos seamounts and islands as well as provide information about the interaction between mantle plumes and mid-ocean ridges. The designed outreach program is intended to improve the integration of education and research by making our recent research findings understandable to students and others outside the field. The final product is an interdisciplinary, web-based resource accessible to the general public but targeted specifically for high school students enrolled in earth science courses. This resource begins by using a series of hands-on exploratory exercises to teach students about the origin of the geological features in the study area, with a focus on seamounts and submarine volcanism. Fundamental geoscience skills addressed in the curricular materials include using latitude and longitude, reading geologic maps and interpreting images of the seafloor, and calculating seafloor spreading rates, among others. Through a sequence of increasingly sophisticated exercises grounded in Bloom’s Taxonomy of Learning, students practice their skills by interpreting bathymetric maps, exploring the distribution of submarine volcanism in the Galápagos, and investigating plume-ridge interaction. Students use these geological concepts to address important biological questions in the Galápagos, primarily the distribution of

  3. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  4. D.E.E.P. Learning: Promoting Informal STEM Learning through Ocean Research Simulation Games

    Science.gov (United States)

    Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.; Keen, C. S.; Matthews, J.; Nsf Ooi-Ci Education; Public Engagement Team

    2010-12-01

    It is generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). But the research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind the same efforts for games created for the purpose of entertainment. Our group is attempting to capitalize on the facts that games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, by developing effective and engaging simulation games that promote Science, Technology, Engineering and Mathematics (STEM) literacy in informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). In particular, we are developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit, which engage ISEI visitors in the exploration and understanding of the deep-sea environment. Known as Deep-sea Extreme Environment Pilot (D.E.E.P.), the games place players in the role of piloting a remotely-operated vehicle (ROV) to complete science-based objectives associated with the exploration of ocean observing systems and hydrothermal vent environments. In addition to creating a unique educational product, our efforts are intended to identify 1) the key elements of a successful STEM-based simulation game experience in an informal science education institution, and 2) which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment. We will share our progress to date, including formative assessment results from testing the game prototypes at Birch Aquarium at Scripps, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM

  5. Bringing ocean observations to the classroom - integrating research infrastructure into education

    Science.gov (United States)

    Proctor, R.; Hoenner, X.; Mancini, S.; Tattersall, K.; Everett, J. D.; Suthers, I. M.; Steinberg, P.; Doblin, M.; Moltmann, T.

    2016-02-01

    For the past 4 years the Sydney Institute of Marine Science, a partnership of four Australian Universities (Macquarie University, the University of NSW, the University of Sydney and the University of Technology Sydney) has been running a Master's degree course called Topics in Australian Marine Science (TAMS). This course is unique in that the core of the course is built around research infrastructure - the Integrated Marine Observing System (IMOS). IMOS, established in 2007, is collecting unprecedented volumes of multi-disciplinary oceanographic data in the ocean and on the continental shelf which is made freely available across the web; IMOS frequently runs `data user workshops' throughout Australia to introduce scientists and managers to the wealth of observations available at their fingertips. The Masters course gives students an understanding of how different measurement platforms work and they explore the data that these platforms collect. Students combine attending seminars and lectures with hands on practicals and personal assignments, all built around access to IMOS data and the many tools available to visualise and analyse. The course attracts a diverse class with many mature students (i.e. > 25 years old) from a range of backgrounds who find that the ease of discovering and accessing data, coupled with the available tools, enables them to easily study the marine environment without the need for high level computational skills. Since its inception the popularity of the course has increased with 38 students undertaking the subject in 2014. The consensus from students and lecturers is that integrating `real' observations into the classroom is beneficial to all, and IMOS is seeking to extend this approach to other university campuses. The talk will describe the experiences from the TAMS course and highlight the IMOS approach to data discovery, availability and access through course examples.

  6. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  7. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  8. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  9. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    Science.gov (United States)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  10. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  11. Breaking of ocean surface waves

    International Nuclear Information System (INIS)

    Babanin, A.V.

    2009-01-01

    Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)

  12. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    Science.gov (United States)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  13. Results from operation and research of the experimental wind farm of the Dutch electricity generating board

    International Nuclear Information System (INIS)

    Toussaint, P.; Hutting, H.K.; Mortier, M.; Cleijne, J.W.

    1992-01-01

    This combined paper consists of four parts. The order of the above authors corresponds to the order of the parts. The first part deals with the operational experience of the farm. It reports an average capacity factor of 24% and an availability of 90%. The second part reports measured power losses due to wake effects, while the third part shows wind velocity deficits and turbulence characteristics within a wake. In the last part the application of a wind farm controller is demonstrated. (au)

  14. Wind power application research on the fusion of the determination and ensemble prediction

    Science.gov (United States)

    Lan, Shi; Lina, Xu; Yuzhu, Hao

    2017-07-01

    The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.

  15. Ocean-Atmosphere Interaction in Climate Changes

    Science.gov (United States)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  16. Ocean Quality

    OpenAIRE

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  17. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.

    2010-10-26

    The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. The EOS is one of multiple work groups in the federal research, monitoring, and evaluation (RME) effort developed in response to responsibilities arising from the Endangered Species Act as a result of operation of the FCRPS. The EOS is tasked by NOAA Fisheries and the Action Agencies to design and coordinate implementation of the federal RME plan for the lower Columbia River and estuary, including the plume.

  18. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  19. FY 1998 Report on development of large-scale wind power generation systems. Research on the future prospects of wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden system no shorai tenbo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Current status of wind power generation in Japan and situations in foreign countries ahead of Japan are surveyed, in order to clarify the prospects for the future diffusion and expansion of wind power generation systems in Japan. The surveyed trends of wind power generation in Japan include those related to mandatory laws and regulations, e.g., the Electricity Enterprises Act, introductory and operation situations in local autonomies and electric power companies, and R and D efforts by academic and research organizations. The surveyed wind power generation situations in foreign countries include trends of international standardization for wind power generation, and global situations of introducing these systems. The on-the-spot oversea surveys include location/wind conditions in Greece's islands, cyclone-caused damages in India, World Renewable Energy Congress in Perth and advanced technologies in Europe for wind power generation systems, and the survey results are reported in detail. The surveyed R and D projects in Japan include the basic technological R and D plans (draft) for, e.g., wind power generation systems for isolated islands. (NEDO)

  20. Understanding and controlling wind-induced vibrations of bridge cables: Results from the Femern Crossing research project

    DEFF Research Database (Denmark)

    Georgakis, Christos T.; Jakobsen, J. B.; Koss, Holger

    of the project has been the establishment of novel vibration mitigation schemes that could be readily, economically, and effectively implemented on a cable-supported bridge that might form part of the fixed link. In support of the proposed research, Femern A/S commissioned a new climatic wind tunnel, designed......Following the successful completion of the Storebælt and Øresund Crossings, the Danish Ministry of Transport appointed Femern A/S to be in charge of preparation, investigations and planning in relation to the establishment of a fixed link across the Fehmarnbelt. To further investigate the causes...... behind the cable vibrations that were observed on the cable-supported bridges forming part of the aforementioned crossings, Femern A/S commissioned a 5-year international collaborative research project, entitled “Understanding and controlling wind-induced vibrations of bridge cables”. The ultimate goal...

  1. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, Nikola [Department of Civil and Environmental Engineering, University of California, Berkeley, MC 1710, Berkeley, California 94720-1710, USA; Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, PO Box 808, L-103, Livermore, California 94551, USA; Mirocha, Jeffrey D. [Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, PO Box 808, L-103, Livermore, California 94551, USA; Kosović, Branko [Research Applications Laboratory, Weather Systems and Assessment Program, University Corporation for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307, USA; Lundquist, Julie K. [Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Campus Box 311, Boulder, Colorado 80309, USA; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chow, Fotini Katopodes [Department of Civil and Environmental Engineering, University of California, Berkeley, MC 1710, Berkeley, California 94720-1710, USA

    2017-11-01

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

  2. Final Technical Report: Supporting Wind Turbine Research and Testing - Gearbox Durability Study

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Malkin

    2012-04-30

    The combination of premature failure of wind turbine gearboxes and the downtime caused by those failures leads to an increase in the cost of electricity produced by the wind. There is a need for guidance to asset managers regarding how to maximize the longevity of their gearboxes in order to help keep the cost of wind energy as low as possible. A low cost of energy supports the US Department of Energy's goal of achieving 20% of the electricity in the United States produced by wind by the year 2030. DNV KEMA has leveraged our unique position in the industry as an independent third party engineering organization to study the problem of gearbox health management and develop guidance to project operators. This report describes the study. The study was conducted in four tasks. In Task 1, data that may be related to gearbox health and are normally available to wind project operators were collected for analysis. Task 2 took a more in-depth look at a small number of gearboxes to gain insight in to relevant failure modes. Task 3 brought together the previous tasks by evaluating the available data in an effort to identify data that could provide early indications of impending gearbox failure. Last, the observations from the work were collected to develop recommendations regarding gearbox health management.

  3. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    International Nuclear Information System (INIS)

    Cazzaniga, Rodolfo; Valle, N.; D'Urzo, C.

    2005-01-01

    The successful construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this field by ANSALDO Superconduttori and by TPA (as manufacturing tools and equipments supplier) has been acknowledged by CERN with 'The CMS Gold Award' of the Year 2004. The paper describes the main features of the winding lines, the main problems, the technical solutions used for the above mentioned projects and the new ideas for the forthcoming ones

  4. Demonstration of an efficient interpolation technique of inverse time and distance for Oceansat-2 wind measurements at 6-hourly intervals

    Directory of Open Access Journals (Sweden)

    J Swain

    2017-12-01

    Full Text Available Indian Space Research Organization had launched Oceansat-2 on 23 September 2009, and the scatterometer onboard was a space-borne sensor capable of providing ocean surface winds (both speed and direction over the globe for a mission life of 5 years. The observations of ocean surface winds from such a space-borne sensor are the potential source of data covering the global oceans and useful for driving the state-of-the-art numerical models for simulating ocean state if assimilated/blended with weather prediction model products. In this study, an efficient interpolation technique of inverse distance and time is demonstrated using the Oceansat-2 wind measurements alone for a selected month of June 2010 to generate gridded outputs. As the data are available only along the satellite tracks and there are obvious data gaps due to various other reasons, Oceansat-2 winds were subjected to spatio-temporal interpolation, and 6-hour global wind fields for the global oceans were generated over 1 × 1 degree grid resolution. Such interpolated wind fields can be used to drive the state-of-the-art numerical models to predict/hindcast ocean-state so as to experiment and test the utility/performance of satellite measurements alone in the absence of blended fields. The technique can be tested for other satellites, which provide wind speed as well as direction data. However, the accuracy of input winds is obviously expected to have a perceptible influence on the predicted ocean-state parameters. Here, some attempts are also made to compare the interpolated Oceansat-2 winds with available buoy measurements and it was found that they are reasonably in good agreement with a correlation coefficient of R  > 0.8 and mean deviation 1.04 m/s and 25° for wind speed and direction, respectively.

  5. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  6. Fiscal 1999 research report. Support project for formation of the energy and environment technology demonstration project (International joint demonstration research). FS study on construction of wind-farms in Sakhalin and Kurile Islands; 1999 nendo Sakhalin, Chishima retto ni okeru wind farm kensetsu no tame no FS kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For Sakhalin Electric Power's plan for coal fuel saving and stable power supply by introducing wind power generation for Sakhalin island in great difficulty, this research surveys its feasibility from the viewpoint of wind condition estimation, power system and wind turbine facility. The research result showed 3 promising candidate power generation sites with a sufficient profitability in Sakhalin island. In particular, 2 sites among them have excellent conditions from the viewpoint of traffic, transport and construction, and because these sites require only a small investment, earlier start of construction at these sites is expected. Since Kurile Islands and the Far East area also have excellent wind conditions, their wind resources are very promising. For total estimated wind power generation of 56MW, power system interconnection is possible with the existing substation facilities without any technical problem. Protective measures against the cold for wind turbine facilities are also possible by excellent technology of European suppliers. (NEDO)

  7. HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research

    DEFF Research Database (Denmark)

    Glasdam, Jakob; Zeni, Lorenzo; Gryning, Mikkel

    2013-01-01

    This paper presents a state-of-the-art review on grid integration of large offshore wind power plants (OWPPs) using high voltage direct voltage (HVDC) for grid connection. The paper describes in detail selected challenges hereto and presents how DONG Energy Wind Power (DEWP) is addressing...... these challenges through three coordinated PhD projects in close collaboration with leading academia within the field. The overall goal of these projects is to acquire in-depth knowledge of relevant operating phenomena in the offshore OWPP grid, rich with power electronics devices (PEDs) such as the HVDC...... and the PED widely used in the wind turbine generators (WTGs). Challenges hereto include PED control system interaction (from a stability point of view), assessment of the quality of vendor supplied control systems and their robustness against e.g. short circuits and load rejection. Furthermore, the outcome...

  8. Economic effects of ocean acidification: Publication patterns and directions for future research.

    Science.gov (United States)

    Falkenberg, Laura J; Tubb, Adeline

    2017-09-01

    Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.

  9. Insights from action research: implementing the balanced scorecard at a wind-farm company

    NARCIS (Netherlands)

    Schneider, R.; Vieira, R.

    2010-01-01

    Purpose - After a diagnosis of the existing management control systems (MCS) at a wind-farm company, the paper seeks to develop a balanced scorecard (BSC) in order to enable the organization to compress and streamline management decision making and to show what is to be taken into account for a

  10. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  11. Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yan Binghuo [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yanbh1986@163.com; Yu Lei [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yulei301@163.com

    2009-06-15

    Based on the two-phase drift flux model and the multi-pressure nodes matrix solving method, natural circulation thermal hydraulic analysis models for the Nuclear Machinery (NM) under ocean conditions are developed. The neutron physical activities and the responses of the reactivity control systems are described by the two-group, 3-dimensional space and time dependent neutron kinetics model. Reactivity feedback is calculated by coupling the neutron physics and thermal hydraulic codes, and is tested by comparison with experiments. Using the models developed, the natural circulation operating characteristics of NM in rolling and pitching motions and the transitions between forced circulation (FC) to natural circulation (NC) are analyzed. The results show that the influence of the rolling motion increases as the rolling amplitude is increased, and as the rolling period becomes shorter. The results also show that for this NM, with the same rolling period and rolling angle, the influence of pitching motion on natural circulation is greater than that of rolling motion. Furthermore, the oscillation period for pitching motion is the same as the pitching period, while the oscillation period for rolling is one half of the rolling period. In the ocean environment, excessive flow oscillation of the natural circulation may cause the control rods to respond so frequently that the NM would not be able to realize the transition from the FC to NC steadily. However, the influence of ocean environment on the transition from NC to FC is limited.

  12. Regulation of Ocean Iron Fertilization (OIF): a Model for Balancing Research, Environmental and Policy Concerns

    Science.gov (United States)

    Leinen, M.; Lamotte, R.

    2008-12-01

    The potential of enhancing carbon sequestration by the biosphere for climate mitigation often raises questions of offsetting effects. These questions become more important as the scale of the enhancement increases. Ocean iron fertilization is accompanied by additional questions related to use of the ocean commons. The London Convention (LC) and London Protocol (LP), international treaties adopted in 1972 and 1996 respectively, were designed to prevent use of the ocean for disposal of toxic, harmful and radioactive pollutants. Recently the LC/LP has been called upon to decide whether climate mitigation activities, such as subseafloor injection of CO2 and OIF, are legal under the framework and, if so, how they should be regulated. The broad consultation with the science community by the LC/LP in developing their perspective, and the involvement of the NGO community in these deliberations, provides a model for the process that the international policy community can use to develop science-based regulatory guidelines for carbon mitigation projects involving the commons. And the substance of that emerging regulatory framework -- built on a national-level permitting process informed by internationally agreed guidelines and standards -- may also serve as a model for the oversight of other emerging technologies that take place in the global commons.

  13. Geometrical effects on western intensification of wind-driven ocean currents: The rotated-channel Stommel model, coastal orientation, and curvature

    Science.gov (United States)

    Boyd, John P.; Sanjaya, Edwin

    2014-03-01

    We revisit early models of steady western boundary currents [Gulf Stream, Kuroshio, etc.] to explore the role of irregular coastlines on jets, both to advance the research frontier and to illuminate for education. In the framework of a steady-state, quasigeostrophic model with viscosity, bottom friction and nonlinearity, we prove that rotating a straight coastline, initially parallel to the meridians, significantly thickens the western boundary layer. We analyze an infinitely long, straight channel with arbitrary orientation and bottom friction using an exact solution and singular perturbation theory, and show that the model, though simpler than Stommel's, nevertheless captures both the western boundary jet (“Gulf Stream”) and the “orientation effect”. In the rest of the article, we restrict attention to the Stommel flow (that is, linear and inviscid except for bottom friction) and apply matched asymptotic expansions, radial basis function, Fourier-Chebyshev and Chebyshev-Chebyshev pseudospectral methods to explore the effects of coastal geometry in a variety of non-rectangular domains bounded by a circle, parabolas and squircles. Although our oceans are unabashedly idealized, the narrow spikes, broad jets and stationary points vividly illustrate the power and complexity of coastal control of western boundary layers.

  14. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas. Final report of a coordinated research project

    International Nuclear Information System (INIS)

    2005-01-01

    This publication summarizes the results of the Coordinated Research Project (CRP) on Worldwide Marine Radioactivity Studies (WOMARS) carried out by the IAEA's Marine Environment Laboratory in Monaco. It provides the most comprehensive information on levels of anthropogenic radionuclides in the world ocean. Three anthropogenic radionuclides - 90 Sr, 137 Cs and 239,240 Pu - were chosen as the most representative of anthropogenic radioactivity in the marine environment, comprising beta-, gamma- and alpha-emitters which have the highest potential contribution to radiation doses to humans via seafood consumption. Although the ocean contains the majority of the anthropogenic radionuclides released into the environment, the radiological impact of this contamination is low. Radiation doses from naturally-occurring radionuclides in the marine environment (e.g. 210 Po) are on the average two orders of magnitude higher. The results confirm that the dominant source of anthropogenic radionuclides in the marine environment is global fallout. The total 137 Cs input from global fallout was estimated to be 311 PBq for the Pacific Ocean, 201 PBq for the Atlantic Ocean, 84 PBq for the Indian Ocean and 7.4 PBq for the Arctic Ocean. For comparison, about 40 PBq of 137 Cs was released to the marine environment from Sellafield and Cap de la Hague reprocessing plants. The Chernobyl accident contributed about 16 PBq of 137 Cs to the sea, mainly the Baltic and Black Seas, where the present average concentrations of 137 Cs in surface water were estimated to be about 60 and 25 Bq/m 3 , respectively, while the worldwide average concentration due to global fallout is about 2 Bq/m 3 . For the purposes of this study, the world ocean was divided into latitudinal belts for which average radionuclide concentrations were estimated. Further, where available, time trends in radionuclide concentrations in surface water were studied and mean residence times of radionuclides in these areas as well as in

  15. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  16. The Role of Ocean Exploration and Research in the Creation and Management of Marine Protected Areas (MPAs)

    Science.gov (United States)

    Valette-Silver, N. J.; Pomponi, S.; Smith, J. R.; Potter, J.

    2012-12-01

    Over the past decades, the NOAA Office of Ocean Exploration and Research (OER), through its programs (Ocean Exploration Program and National Undersea Research Program), and in collaboration with its federal and academic partners, has contributed to the discovery of new ocean features, species, ecosystems, habitats and processes. These new discoveries have led to the development of new policies and management actions. Exploration, research and technology advancement have contributed to the characterization and the designation of marine sanctuaries, reserves, restricted fishing areas, and monuments in US waters. For example, the collaborative efforts of OER and partners from the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) have resulted in the discovery of new species of deep sea corals on the outer continental shelf and upper slope of the South Atlantic Bight. The species of coral found in these deep sea reefs are growing very slowly and provide habitat for many commercially valuable species of fish and other living resources. It is not yet completely clear how these habitats connect with the shallower reefs and habitats and if they could be playing a role of refugia for shallower species. Unfortunately, signs of fishing destruction on these unique and fragile habitats are obvious (e.g., abandoned nets, completely decimated habitats by trawling). OER funded research on mesophotic and deep-sea Lophelia coral reefs off the southeastern US was instrumental in the designation of the deep-water Coral Habitat Area of Particular Concern (CHAPC) that is now protecting these fragile reefs. Other examples of OER's contribution to discoveries leading to the designation of protected areas include the characterization and boundary determination of new designated Marine National Monuments and Marine Sanctuaries in the Pacific Ocean. After designation of a protected area, it is imperative to monitor the resource, improve understanding of its

  17. Inertial dissipation method applied to derive turbulent fluxes over the ocean during the Surface of the Ocean, Fluxes and Interactions with the Atmosphere/Atlantic Stratocumulus Transition Experiment (SOFIA/ASTEX) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments with low to moderate wind speeds

    Science.gov (United States)

    Dupuis, HéLèNe; Taylor, Peter K.; Weill, Alain; Katsaros, K.

    1997-09-01

    The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence field. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be Cen × 103 = 2.79U10n-1 + 0.66 (U10n < 5.2 m/s), Cen × 103 = Chn × 103 = 1.2 (U10n ≥ 5.2 m/s), and Cdn × 103 = 11.710n-2 + 0.668 (U10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.

  18. Wind Power Now!

    Science.gov (United States)

    Inglis, David Rittenhouse

    1975-01-01

    The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)

  19. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Lottes, S. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division; Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States). Transportation Research and Analysis Computing Center (TRACC) Energy Systems Division

    2017-09-01

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versions of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD

  20. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  1. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  2. Ocean Disposal Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  3. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  4. Mid-Atlantic Wind - Overcoming the Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  5. Feasibility study of offshore wind turbine installation in Iran compared with the world

    Energy Technology Data Exchange (ETDEWEB)

    Mostafaeipour, Ali [Industrial Engineering Department, Yazd University, Yazd (Iran)

    2010-09-15

    Renewable energies have potential for supplying of relatively clean and mostly local energy. Wind energy generation is expected to increase in the near future and has experienced dramatic growth over the past decade in many countries. Offshore winds are generally stronger and more constant than onshore winds in many areas. The economic feasibility for utilization of offshore wind energy depends on the favorable wind conditions in the area. The present paper analyses offshore wind speed in global scale and also studies feasibility of introducing this technology for harnessing wind in Persian Gulf, Caspian Sea, Urmia Lake and Gulf of Oman. Wind speed data were collected from different sources. The ocean surface winds at a 10 m height from satellite passes as processed by NOAA/NESDIS, from near real-time data collected by NASA/JPL's Sea Winds Scatterometer aboard the QuikSCAT. Development of renewable energy is one of priority research goals in Iran. There are many installed wind turbines in suitable regions like Manjil and Binalood, but there has not been any offshore wind installation yet in Iran. It is suggested that policy makers to invest and pay more attentions toward harnessing renewable energy sources like offshore wind in Persian Gulf and Gulf of Oman in southern parts of Iran. (author)

  6. Research of influence of open-winding faults on properties of brushless permanent magnets motor

    Science.gov (United States)

    Bogusz, Piotr; Korkosz, Mariusz; Powrózek, Adam; Prokop, Jan; Wygonik, Piotr

    2017-12-01

    The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.

  7. Research of influence of open-winding faults on properties of brushless permanent magnets motor

    Directory of Open Access Journals (Sweden)

    Bogusz Piotr

    2017-12-01

    Full Text Available The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.

  8. Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY09 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.

    2009-10-22

    This document is the annual report for fiscal year 2009 (FY09) for the project called Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers [Corps or USACE], U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS).

  9. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  10. Temperature profile data collected using BT and XBT casts in the North/South Atlantic Ocean and North/South Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1987-05-20 to 1992-04-19 (NODC Accession 9200105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Atlantic Ocean and North/South...

  11. Temperature profile data from XBT and BT casts in the North/South Pacific Ocean and North/South Atlantic Ocean from NOAA Ship RESEARCHER and other platforms from 1987-04-02 to 1987-11-24 (NODC Accession 8800007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South...

  12. Temperature profile and other data collected using CTD, BT, and XBT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South Atlantic Ocean from 1973-01-13 to 1983-03-14 (NODC Accession 8300091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD, BT, and XBT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and...

  13. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    Science.gov (United States)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  14. Hurricane Wind Vector Estimates from WindSat Polarimetric Radiometer

    National Research Council Canada - National Science Library

    Adams, Ian S; Hennon, Christopther C; Jones, W. L; Ahmad, Khalil

    2005-01-01

    .... In late 2004, the first preliminary oceanic wind vector results were released, and this paper presents the first evaluation of this product for several Atlantic hurricanes during the 2003 season...

  15. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  16. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    Science.gov (United States)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  17. Biological production models as elements of coupled, atmosphere-ocean models for climate research

    Science.gov (United States)

    Platt, Trevor; Sathyendranath, Shubha

    1991-01-01

    Process models of phytoplankton production are discussed with respect to their suitability for incorporation into global-scale numerical ocean circulation models. Exact solutions are given for integrals over the mixed layer and the day of analytic, wavelength-independent models of primary production. Within this class of model, the bias incurred by using a triangular approximation (rather than a sinusoidal one) to the variation of surface irradiance through the day is computed. Efficient computation algorithms are given for the nonspectral models. More exact calculations require a spectrally sensitive treatment. Such models exist but must be integrated numerically over depth and time. For these integrations, resolution in wavelength, depth, and time are considered and recommendations made for efficient computation. The extrapolation of the one-(spatial)-dimension treatment to large horizontal scale is discussed.

  18. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  19. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  20. Accelerating Ocean Energy to the Marketplace - Environmental Research at the U.S. Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    Copping, Andrea E.; Cada, G.F.; Roberts, Jesse; Bevelhimer, Mark

    2010-01-01

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  1. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  2. Towards a Joint Action Plan for Research and Development in the Offshore Wind Service Industry

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Piirainen, Kalle A.; Clausen, Niels-Erik

    2015-01-01

    as their operation and maintenance during their lifetime.Earlier studies have indicated that over the life cycle of an offshore farm OWS can be up to 46% of the life cycle cost of the farm including up-front investment and installation, while the O&M cost is estimated to be of the order of 25-28% of the total...... of an ongoing project ECOWindS, funded by the EU FP7. The overall aim of ECOWindS is to reduce OWS’s contribution to the cost of offshore wind energy production by strengthening the cooperation in the existing regional networks within OWS....

  3. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    Science.gov (United States)

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-19

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.

  4. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  5. NOAA NOS SOS, EXPERIMENTAL - Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have wind data. *These services are for testing and evaluation use only*...

  6. COOP Wind and Radiation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind and radiation data from stations in the National Weather Service Cooperative Observers Network. Some precipitation and pressure forms are mistakenly placed in...

  7. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  8. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  9. Earth, Wind and Fire. Natural air conditioning. Part 1. Research aims and methods; Earth, Wind and Fire. Natuurlijke airconditioning. Deel 1. Onderzoeksdoelen en -methoden

    Energy Technology Data Exchange (ETDEWEB)

    Bronsema, B. [Afdeling Architectural Engineering en Technology, Faculteit Bouwkunde, Technische Universiteit Delft TUD, Delft (Netherlands)

    2013-07-15

    The Earth, Wind and Fire concept transforms a building into a 'climate machine' which is powered by the natural forces and energy of the sun, wind, the mass of the earth and gravity. This concept consists of a Climate Cascade, a solar chimney and a Ventec roof, which have been tested in physical mock-ups. Simulation models have been validated on the basis of real measurements. This work has resulted in the creation of reliable tools for design practice [Dutch] Het Earth, Wind en Fire-concept voor natuurlijke airconditioning biedt meer zekerheid voor het realiseren van energieneutrale kantoorgebouwen dan mogelijk zou zijn door verbetering van bestaande technieken. Het concept maakt gebruik van de omgevingsenergie van aardmassa, wind en zon. Enerzijds wordt deze energie passief gebruikt voor het realiseren van een natuurlijke airconditioning, waarbij de gewenste luchtstromingen tot stand komen onder invloed van thermisch gedreven drukverschillen. Anderzijds worden zon en wind benut voor actieve energieopwekking, waardoor een gebouw in principe energieneutraal kan worden. Een dergelijk gebouw kan worden beschouwd als 'klimaatmachine', geactiveerd door zwaartekracht, wind en zon.

  10. Temperature profile data collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 1981-11-21 to 1981-12-07 (NODC Accession 8200194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 21 November 1981 to 07 December 1981....

  11. Temperature profile and chemical data collected using BT and XBT casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean and Caribbean Sea from 1987-04-07 to 1987-09-30 (NODC Accession 8700382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean and Caribbean Sea from 07...

  12. Temperature profile data collected using BT and XBT casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1984-06-09 to 1984-06-21 (NODC Accession 8700051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 09 June 1984 to 21 June 1984. Data...

  13. Temperature profile data collected using BT and XBT casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1985-10-20 to 1985-12-14 (NODC Accession 8700105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the Gulf of Mexico and TOGA Area - Pacific Ocean from 30 October 1985 to...

  14. Current meter and other data from current meter casts from NOAA Ship RESEARCHER in the North and South Pacific Ocean from 1984-06-28 to 1984-07-01 (NODC Accession 8500226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from NOAA Ship RESEARCHER in the North/South Pacific Ocean from June 28, 1984 to July 1, 1984....

  15. Temperature profile and other data collected using CTD casts in the SE Pacific Ocean from NOAA Ship RESEARCHER from 1984-06-12 to 1984-06-30 (NODC Accession 8500249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the SE Pacific Ocean from 12 June 1984 to 30 June 1984. Data were...

  16. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER and NOAA Ship DISCOVERER in the TOGA Area - Pacific Ocean from 1984-10-10 to 1985-06-19 (NODC Accession 8800073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 10 October 1984 to 19 June 1985. Data...

  17. Temperature profile data collected using XBT and BT casts in the TOGA Area of Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1979-02-28 to 1991-07-27 (NODC Accession 9300170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the TOGA Area of Pacific Ocean from 28 February 1979...

  18. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER in the TOGA Area- Pacific Ocean from 1984-04-11 to 1984-05-05 (NODC Accession 8800211)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 11 April 1984 to 05 May 1984. Data...

  19. Temperature profile and other data from CTD Casts in the Gulf of Mexico and TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1982-03-26 to 1983-11-26 (NODC Accession 8500267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the Gulf of Mexico and TOGA Area - Pacific Ocean...

  20. Temperature profile collected using XBT casts in the North/South Atlantic Ocean from NOAA Ship RESEARCHER from 1977-11-05 to 1979-02-13 (NODC Accession 7900324)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile were collected using BT and XBT casts from NOAA Ship RESEARCHER in North/South Atlantic Ocean from 05 November 1977 to 13 February 1979. Data...

  1. Temperature profile data from XBT and BT casts in the North Atlantic Ocean through NOAA Ship RESEARCHER from 1979-10-25 to 1979-11-06 (NODC Accession 8100575)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 25 October 1979 to 06 November 1979. Data...

  2. Zooplankton data collected from zooplankton net casts from RESEARCHER I and other platforms in TOGA Area of Pacific Ocean; 16 March 1968 to 02 July 1970 (NODC Accession 9500141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton species identities and other data were collected using zooplankton casts in the TOGA Area of Pacific Ocean from RESEARCHER I and other platforms. Data...

  3. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the OCEAN RESEARCHER I in the Philippine Sea from 1991-06-26 to 1991-07-04 (NODC Accession 0115598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115598 includes chemical, discrete sample, physical and profile data collected from OCEAN RESEARCHER I in the Philippine Sea from 1991-06-26 to...

  4. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from OCEAN RESEARCHER I in the Philippine Sea from 1990-10-11 to 1990-10-15 (NODC Accession 0115600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115600 includes chemical, discrete sample, physical and profile data collected from OCEAN RESEARCHER I in the Philippine Sea from 1990-10-11 to...

  5. Temperature profile and other data collected using CTD casts in the TOGA Area - Atlantic Ocean from NOAA Ship RESEARCHER from 1985-04-18 to 1986-11-20 (NODC Accession 8700149)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA Area - Atlantic Ocean from 18 April 1985 to 20 November 1986....

  6. Temperature profile and other data from CTD casts in the South Pacific Ocean from NOAA Ship RESEARCHER from 1982-11-21 to 1983-07-24 (NODC Accession 8400113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the South Pacific Ocean from 21 November 1982 to 24 July 1983. Data...

  7. Temperature profile and chemical data from CTD casts in the North Atlantic Ocean and Gulf of Mexico from NOAA Ship RESEARCHER from 1976-10-08 to 1977-10-30 (NODC Accession 8000168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and chemical data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean and Gulf of Mexico from 08 October 1976 to...

  8. Temperature profile data collected using CTD casts from NOAA Ship RESEARCHER in the TOGA area - Atlantic Ocean from 1980-02-21 to 1980-03-07 (NODC Accession 8200239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA area - Atlantic Ocean from 21 February 1980 to 07 March 1980....

  9. Phytoplankton and other data collected using net and other instruments in the North Atlantic Ocean from NOAA Ship RESEARCHER and other platforms from 1978-02-15 to 1980-05-05 (NODC Accession 9000075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected as part of Joint Global Ocean Flux Study (JGOFS). Ships ENDEAVOR and NOAA Ship RESEARCHER were used by Atlantic...

  10. Temperature profile data collected using XBT and BT casts in the North Atlantic Ocean from NOAA Ship RESEARCHER from 1975-07-09 to 1975-07-28 (NODC Accession 8600278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 09 July 1975 to 28 July 1975. Data were...

  11. Temperature profile and other data collected using CTD casts in the North Atlantic Ocean from NOAA Ship RESEARCHER from 1980-01-22 to 1980-02-03 (NODC Accession 8900302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the North Atlantic Ocean from 22 January 1980 to 03 February 1980....

  12. Temperature profile and other data collected using CTD casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER from 1984-04-09 to 1984-11-05 (NODC Accession 8800072)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER in the TOGA Area - Pacific Ocean from 09 April 1984 to 05 November 1984....

  13. Temperature profile and other data collected using CTD casts in the TOGA Area - Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1984-11-13 to 1986-12-01 (NODC Accession 8700194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from NOAA Ship RESEARCHER and other platforms in the TOGA Area - Pacific Ocean from 13 November...

  14. Wind energy information guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  15. Wind Power Career Chat

    Energy Technology Data Exchange (ETDEWEB)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  16. Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Stein, Detlef; Courtney, Michael

    2013-01-01

    performed excellently, two slightly failed the first criterion and one failed both. The lidars were operated offshore from six months to more than two years and observed in total 107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post deployment with excellent results...

  17. Experimental Research on an Active Sting Damper in a Low Speed Acoustic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Jinjin Chen

    2014-01-01

    Full Text Available Wind tunnels usually use long cantilever stings to support aerodynamic models in order to reduce support system flow interference on experimental data. However, such support systems are a potential source of vibration problems which limit the test envelope and affect data quality due to the inherently low structural damping of the systems. When exposed to tunnel flow, turbulence and model flow separation excite resonant Eigenmodes of a sting structure causing large vibrations due to low damping. This paper details the development and experimental evaluation of an active damping system using piezoelectric devices with balance signal feedback both in a lab and a low speed acoustic wind tunnel and presents the control algorithm verification tests with a simple cantilever beam. It is shown that the active damper, controlled separately by both PID and BP neural network, has effectively attenuated the vibration. For sting mode only, 95% reduction of displacement response under exciter stimulation and 98% energy elimination of sting mode frequency have been achieved.

  18. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  19. Researcher Profile for Ocean Acidification Principal Investigator Workshop at Woods Hole Oceanograpic Institution

    Science.gov (United States)

    Research Interests: The research I conduct at EPA focuses on application of quantitative ecological methods, especially those of theoretical and experimental population ecology, in risk assessment. Much of our recent effort has focused on marine mysids because of their legacy ...

  20. A Research Plan for Assessing the Power and Energy Capability of a River Network Under an Integrated Wind/Hydro-Electric Dispatchable Regime

    Science.gov (United States)

    Banka, John Czeslaw

    The world strives for more clean and renewable energy, but the amount of dispatchable energy in river networks is not accurately known and difficult to assess. When wind is integrated with water, the dispatchable yield can be greatly increased, but the uncertainty of the wind further degrades predictability. This thesis demonstrates how simulating the flows is a river network integrated with wind over a long time domain yields a solution. Time-shifting the freshet and pumped storage will ameliorate the seasonal summer drought; the risk of ice jams and uncontrolled flooding is reduced. An artificial market eliminates the issue of surplus energy from wind at night. Furthermore, this thesis shows how the necessary infrastructure can be built to accomplish the goals of the intended research. While specific to Northern Ontario and sensitive to the lives of the Native peoples living there, it indicates where the research might be applicable elsewhere in the world.

  1. Creating and building an ocean renewable energy cluster for Canada

    International Nuclear Information System (INIS)

    Protter, N.

    2005-01-01

    The Ocean Renewable Energy Group (OREG) is a collaboration between Canadian Industry, academia and government that provides leadership to advocate for and accelerate the development of a Canadian ocean renewable energy sector that can serve domestic needs and reach a global market. Approaches to ocean renewable energy were reviewed in this PowerPoint presentation. It was noted that no market leader in ocean renewable energy has emerged, but that the industry has the potential for a more rapid adoption curve than the wind power industry. The integration of ocean renewable energy with offshore wind power production was discussed, as well as hydrogen production, remote electrification, and the production of potable water through desalination. Various incentives and international demonstration projects were reviewed and the goals of OREG were outlined. The forming of strategic alliances with other global organizations was discussed, as well as OREG's plans to contribute to the education of sources of capital to facilitate the commercialization of Canadian technologies. It was noted that pilot plants are planned with BC Hydro in 2007. Issues concerning environmental assessments were discussed. It was suggested that as the cost of traditional generation rises, investment in ocean energy development may reduce risks to investors and ratepayers. Issues concerning funding were examined and the OREG strategy and action plan was reviewed. Research and development themes were outlined. It was suggested that British Columbia's ocean energy regime provides a unique competitive advantage, as did natural winds for Denmark in the early 1980s. Pioneer sites and the creation of a supportive climate were discussed, as well as issues concerning regulators and grid connection investment. A supply chain was outlined and details of various companies involved in ocean energy development were presented. refs., tabs., figs

  2. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    Science.gov (United States)

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  3. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  4. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2015-01-01

    In this chapter, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine (WT) design, low-noise airfoil and blade design, control device development, wake modelling and wind farm layout optimization....

  5. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  6. Enhancing Graduate Education and Research in Ocean Sciences at the Universidad de Concepcion (UDEC) and in Chile: Cooperation Between UDEC and Woods Hole Oceanographic Institution.

    Science.gov (United States)

    Farrington, J.; Pantoja, S.

    2007-05-01

    The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  8. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  9. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Harley, Christopher D G

    2017-03-01

    Changes in the Earth's environment are now sufficiently complex that our ability to forecast the emergent ecological consequences of ocean acidification (OA) is limited. Such projections are challenging because the effects of OA may be enhanced, reduced or even reversed by other environmental stressors or interactions among species. Despite an increasing emphasis on multifactor and multispecies studies in global change biology, our ability to forecast outcomes at higher levels of organization remains low. Much of our failure lies in a poor mechanistic understanding of nonlinear responses, a lack of specificity regarding the levels of organization at which interactions can arise, and an incomplete appreciation for linkages across these levels. To move forward, we need to fully embrace interactions. Mechanistic studies on physiological processes and individual performance in response to OA must be complemented by work on population and community dynamics. We must also increase our understanding of how linkages and feedback among multiple environmental stressors and levels of organization can generate nonlinear responses to OA. This will not be a simple undertaking, but advances are of the utmost importance as we attempt to mitigate the effects of ongoing global change. © 2017 The Authors.

  10. Being There & Getting Back Again: Half a Century of Deep Ocean Research & Discovery with the Human Occupied Vehicle "Alvin"

    Science.gov (United States)

    German, C. R.; Fornari, D. J.; Fryer, P.; Girguis, P. R.; Humphris, S. E.; Kelley, D. S.; Tivey, M.; Van Dover, C. L.; Von Damm, K.

    2012-12-01

    In 2013, Alvin returns to service after significant observational and operational upgrades supported by the NSF, NAVSEA & NOAA. Here we review highlights of the first half-century of deep submergence science conducted by Alvin, describe some of the most significant improvements for the new submarine and discuss the importance of these new capabilities for 21st century ocean science and education. Alvin has a long history of scientific exploration, discovery and intervention at the deep seafloor: in pursuit of hypothesis-driven research and in response to human impacts. One of Alvin's earliest achievements, at the height of the Cold War, was to help locate & recover an H-bomb in the Mediterranean, while the last dives completed, just ahead of the current refit, were to investigate the impacts of the Deep Water Horizon oil spill. Alvin has excelled in supporting a range of Earth & Life Science programs including, in the late 1970s, first direct observations and sampling of deep-sea hydrothermal vents and the unusual fauna supported by microbial chemosynthesis. The 1980s saw expansion of Alvin's dive areas to newly discovered hot-springs in the Atlantic & NE Pacific, Alvin's first dives to the wreck of RMS Titanic and its longest excursions away from WHOI yet, via Loihi Seamount (Hawaii) to the Mariana Trench. The 1990s saw Alvin's first event-response dives to sites where volcanic eruptions had just occurred at the East Pacific Rise & Juan de Fuca Ridge while the 2000s saw Alvin discover novel off-axis venting at Lost City. Observations from these dives fundamentally changed our views of volcanic and microbial processes within young ocean crust and even the origins of life! In parallel, new deep submergence capabilities, including manipulative experiments & sensor development, relied heavily on testing using Alvin. Recently, new work has focused on ocean margins where fluid flow from the seafloor results in the release of hydrocarbons and other chemical species that

  11. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences

    Science.gov (United States)

    Bruno, B. C.

    2007-05-01

    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  12. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  13. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    Science.gov (United States)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  14. Guideline concerning financial aid by the state to '250 MW wind' wind power plants within the framework of the third programme 'Energy research and energy technologies'

    International Nuclear Information System (INIS)

    1994-01-01

    An industrial-scale wind power experiment will receive financial aid for several years. An installed power of 250 MW is to be reached within a 5-year period if possible. The BMFT will grant financial aid on a per kWh basis up to a maximum sum, or - if desired by certain applicants - in the form of an investment aid, both for a maximum period of 10 years from the start-up of the wind power plant. The BMFT will also finance a scientific programme for measurement and evaluation. (orig.) [de

  15. A 'special effort' to provide improved sounding and cloud-motion wind data for FGGE. [First GARP Global Experiment

    Science.gov (United States)

    Greaves, J. R.; Dimego, G.; Smith, W. L.; Suomi, V. E.

    1979-01-01

    Enhancement and editing of high-density cloud motion wind assessments and research satellite soundings have been necessary to improve the quality of data used in The Global Weather Experiment. Editing operations are conducted by a man-computer interactive data access system. Editing will focus on such inputs as non-US satellite data, NOAA operational sounding and wind data sets, wind data from the Indian Ocean satellite, dropwindsonde data, and tropical mesoscale wind data. Improved techniques for deriving cloud heights and higher resolution sounding in meteorologically active areas are principal parts of the data enhancement program.

  16. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  17. The future of the oceans past: towards a global marine historical research initiative.

    Science.gov (United States)

    Schwerdtner Máñez, Kathleen; Holm, Poul; Blight, Louise; Coll, Marta; MacDiarmid, Alison; Ojaveer, Henn; Poulsen, Bo; Tull, Malcolm

    2014-01-01

    Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the "History of Marine Animal Populations" project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists.

  18. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  19. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  20. Near Surface Ocean Experimental Technology Workshop Proceedings Held at Naval Ocean Research and Development Activity, NSTL Station, Mississippi on 6-8 November 1979,

    Science.gov (United States)

    1980-02-01

    have been made by Sippican Corporation of Marion, Massachusetts. An example of our use was a survey in ,June 1978 around the 2 km high Caryn Seamount ...Sound. McGraw-Hill, New York, 384 pp. 8. Wishner, K. F., 1979, The biomass and ecology of the deep-sea benthopelagic (near-bottom) zooplankton, Ph.D...COMPONENT PART NOTICE THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT: (TITLE): Near Sarface Ocean Experimental Technology Workshop

  1. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  2. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  3. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  4. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  5. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  6. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  7. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  8. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  9. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    Science.gov (United States)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  10. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  11. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  12. Analysis of technological innovation in Danish wind turbine industry - including the Test Station for Windturbines dual roll as research institution and certification authority

    International Nuclear Information System (INIS)

    Dannemand Andersen, P.

    1993-01-01

    The overall aim of this thesis is to examine the interactions between the Danish wind turbine industry and the Test Station for Wind Turbines. Because these interactions are concerning technological innovation, it follows that the innovation processes within the enterprises must be analyzed and modelled. The study is carried out as an iterative model-developing process using case study methods. The findings from some less structured interviews are discussed with literature and forms a basis for models and new interviews. The thesis is based on interviews with 20 R and D engineers in the Danish wind turbine industry, 7 engineers at The Test Station and 7 people involved in wind power abroad (American and British). The theoretical frame for this thesis is sociology/organizational theory and industrial engineering. The thesis consists of five main sections, dealing with technology and knowledge, innovation processes, organizational culture, innovation and interaction between the Test Station's research activities and the companies' innovation processes, and finally interaction through the Test Stations certification activity. First a taxonomy for technology and knowledge is established in order to clarify what kind of technology the interactions are all about, and what kind of knowledge is transferred during the interactions. This part of the thesis also contains an analysis of the patents drawn by the Danish wind turbine industry. The analysis shows that the Danish wind turbine industry do not use patents. Instead the nature of the technology and the speed of innovation are used to protect the industry's knowledge. (EG) (192 refs.)

  13. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  14. Remote sensing for global change, climate change and atmosphere and ocean forecasting. Volume 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in three sessions. First part is on remote sensing for global change (with global modelling, land cover change on global scale, ocean colour studies of marine biosphere, biological and hydrological interactions and large scale experiments). Second part is on remote sensing for climate change (with earth radiation and clouds, sea ice, global climate research programme). Third part is on remote sensing for atmosphere and ocean forecasting (with temperatures and humidity, winds, data assimilation, cloud imagery, sea surface temperature, ocean waves and topography). (A.B.). refs., figs., tabs

  15. Boundary Conditions, Data Assimilation, and Predictability in Coastal Ocean Models

    National Research Council Canada - National Science Library

    Samelson, Roger M; Allen, John S; Egbert, Gary D; Kindle, John C; Snyder, Chris

    2007-01-01

    ...: The specific objectives of this research are to determine the impact on coastal ocean circulation models of open ocean boundary conditions from Global Ocean Data Assimilation Experiment (GODAE...

  16. Offshore wind farm repowering optimization

    DEFF Research Database (Denmark)

    Hou, Peng; Enevoldsen, Peter; Hu, Weihao

    2017-01-01

    is focused on optimization of offshore wind farm repowering, which is one option for the wind farm owner at end of life for the offshore wind farm. The LCoE is used as the evaluation index to identify whether it is economical to invest in such a way. In an optimized repowering strategy, different types...... of wind turbines are selected to replace the original wind turbines to reconstruct the wind farm, which is demonstrated to be better than the refurbishment approach which replaces the old wind turbines with the same type. The simulations performed in this research reveal that the reconstructed wind farm......, which consists of multiple types of wind turbine, has a smaller LCoE (10.43%) than the refurbishment approach, which shows the superiority of the proposed method. This research contributes an optimization tool to the wind industry, which consequently drives down the cost of energy produced by offshore...

  17. Annual cycle of the upper-ocean circulation and properties in the ...

    African Journals Online (AJOL)

    ocean dynamics and its influence on ocean properties in the tropical western Indian Ocean. Surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis forced the model (Model_NCEP) with initial and ...

  18. Numerical studies on the interaction between atmosphere and ocean using different kinds of parallel computers

    International Nuclear Information System (INIS)

    Lee, Soon-Hwan; Chino, Masamichi

    2000-01-01

    The coupling between atmosphere and ocean model has physical and computational difficulties for short-term forecasting of weather and ocean current. In this research, a combination system between high-resolution meso-scale atmospheric model and ocean model has been constructed using a new message-passing library, called Stampi (Seamless Thinking Aid Message Passing Interface), for prediction of particle dispersion at emergency nuclear accident. Stampi, which is based on the MPI (Message Passing Interface) 2 specification, makes us carry out parallel calculations of combination system without parallelization skill to model code. And it realizes dynamic process creation on different machines and communication between spawned one within the scope of MPI semantics. The models included in this combination system are PHYSIC as an atmosphere model, and POM (Princeton Ocean Model) as an ocean model. We applied this combination system to predict sea surface current at Sea of Japan in winter season. Simulation results indicate that the wind stress near the sea surface tends to be a predominant factor to determine surface ocean currents and dispersion of radioactive contamination in the ocean. The surface ocean current is well correspondent with wind direction, induced by high mountains at North Korea. The satellite data of NSCAT (NASA-SCATterometer), which is an image of sea surface current, also agrees well with the results of this system. (author)

  19. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  20. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...