WorldWideScience

Sample records for ocean westerlies decouples

  1. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  2. A Southern Ocean trigger for Northwest Pacific ventilation during the Holocene?

    Science.gov (United States)

    Rella, S. F.; Uchida, M.

    2014-02-01

    Holocene ocean circulation is poorly understood due to sparsity of dateable marine archives with submillennial-scale resolution. Here we present a record of mid-depth water radiocarbon contents in the Northwest (NW) Pacific Ocean over the last 12.000 years, which shows remarkable millennial-scale variations relative to changes in atmospheric radiocarbon inventory. Apparent decoupling of these variations from regional ventilation and mixing processes leads us to the suggestion that the mid-depth NW Pacific may have responded to changes in Southern Ocean overturning forced by latitudinal displacements of the southern westerly winds. By inference, a tendency of in-phase related North Atlantic and Southern Ocean overturning would argue against the development of a steady bipolar seesaw regime during the Holocene.

  3. The Southern Westerlies during the last glacial maximum in PMIP2 simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Maisa [University of Chile Blanco Encalada, Department of Geophysics, Santiago (Chile); Institute of Ecology and Biodiversity, Santiago (Chile); Moreno, Patricio [Institute of Ecology and Biodiversity, Santiago (Chile); University of Chile, Department of Ecological Sciences, Santiago (Chile); Kageyama, Masa [UMR CEA-CNRS-UVSQ 1572, CE Saclay, LSCE/IPSL, Gif-sur-Yvette Cedex (France); Crucifix, Michel [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique G. Lemaitre, Louvain-la-Neuve (Belgium); Hewitt, Chris [Met Office, Exeter, Devon (United Kingdom); Abe-Ouchi, Ayako [The University of Tokyo, Center for Climate System Research, Kashiwa (Japan); Ohgaito, Rumi [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change, Yokohama, Kanagawa (Japan); Brady, Esther C. [Climate Change Research National Center for Atmospheric Research, 1850 Table Mesa Drive, P.O. Box 3000, Boulder, CO (United States); Hope, Pandora [Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne, VIC (Australia)

    2009-03-15

    The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO{sub 2}. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40 S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia. (orig.)

  4. Impact of East Asian Winter and Australian Summer Monsoons on the Enhanced Surface Westerlies over the Western Tropical Pacific Ocean Preceding the El Niño Onset

    Science.gov (United States)

    Zheng, Y.; Zhang, R.; Bourassa, M. A.

    2014-12-01

    Composite analysis from NCEP-NCAR reanalysis datasets over the period 1948-2007 indicates that stronger East Asian winter monsoons (EAWM) and stronger Australian summer monsoons (ASM) generally co-exist in boreal winters preceding the onset of El Niño, although the EAWM tend to be weak after 1990, probably because of the decadal shift of EAWM and the change in El Niño events from cold-tongue type to warm-pool type. The anomalous EAWM and ASM enhance surface westerlies over the western tropical Pacific Ocean (WTP). It is proposed that the enhanced surface westerlies over the WTP prior to El Niño onset are generally associated with the concurrent anomalous EAWM and ASM. A simple analytical atmospheric model is constructed to test the hypothesis that the emergence of enhanced surface westerlies over the WTP can be linked to concurrent EAWM and ASM anomalies. Model results indicate that when anomalous northerlies from the EAWM converge with anomalous southerlies from the ASM, westerly anomalies over the WTP are enhanced. This result provides a possible explanation of the co-impact of the EAWM and the ASM on the onset of El Niño through enhancing the surface westerly over the WTP.

  5. Centennial-Scale Relationship Between the Southern Hemisphere Westerly Winds and Temperature

    Science.gov (United States)

    Hodgson, D. A.; Perren, B.; Roberts, S. J.; Sime, L. C.; Verleyen, E.; Van Nieuwenhuyze, W.; Vyverman, W.

    2017-12-01

    Recent changes in the intensity and position of the Southern Hemisphere Westerly Winds (SHW) have been implicated in a number of important physical changes in the Southern High Latitudes. These include changes in the efficiency of the Southern Ocean CO2 sink through alterations in ocean circulation, the loss of Antarctic ice shelves through enhanced basal melting, changes in Antarctic sea ice extent, and warming of the Antarctic Peninsula. Many of these changes have far-reaching implications for global climate and sea level rise. Despite the importance of the SHW in global climate, our current understanding of the past and future behaviour of the westerly winds is limited by relatively few reconstructions and measurements of the SHW in their core belt over the Antarctic Circumpolar Current; the region most relevant to Southern Ocean air-sea gas exchange. The aim of this study was to reconstruct changes in the relative strength of the SHW at Marion Island, one of a small number of sub-Antarctic islands that lie in the core of the SHWs. We applied independent diatom- and geochemistry- based methods to track past changes in relative wind intensity. This mutiproxy approach provides a validation that the proxies are responding to the external forcing (the SHW) rather than local (e.g. precipitation ) or internal dynamics. Results show that that the strength of the SHW are intrinsically linked to extratropical temperatures over centennial timescales, with warmer temperatures driving stronger winds. Our findings also suggest that large variations in the path and intensity of the westerly winds are driven by relatively small variations in temperature over these timescales. This means that with continued climate warming, even in the absence of anthropogenic ozone-depletion, we should anticipate large shifts in the SHW, causing stronger, more poleward-intensified winds in the decades and centuries to come, with attendant impacts on ocean circulation, ice shelf stability, and

  6. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand

    OpenAIRE

    I. M. Browne; I. M. Browne; C. M. Moy; C. R. Riesselman; C. R. Riesselman; H. L. Neil; L. G. Curtin; L. G. Curtin; A. R. Gorman; G. S. Wilson; G. S. Wilson; G. S. Wilson

    2017-01-01

    The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial–interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcit...

  7. Effects of air-sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ailan [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); Li, Tim [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); University of Hawaii, IPRC, Honolulu, Hawaii (United States); University of Hawaii, Department of Meteorology, Honolulu, Hawaii (United States); Fu, Xiouhua [University of Hawaii, IPRC, Honolulu, Hawaii (United States); Luo, Jing-Jia; Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2011-12-15

    The effects of air-sea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air-sea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air-sea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air-sea interaction effect. Air-sea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air-sea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air-sea coupling enhances the northward propagation under all

  8. Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies

    Directory of Open Access Journals (Sweden)

    J. C. Stager

    2012-05-01

    Full Text Available The austral westerlies strongly influence precipitation and ocean circulation in the southern temperate zone, with important consequences for cultures and ecosystems. Global climate models anticipate poleward retreat of the austral westerlies with future warming, but the available paleoclimate records that might test these models have been limited to South America and New Zealand, are not fully consistent with each other and may be complicated by influences from other climatic factors. Here we present the first high-resolution diatom and sedimentological records from the winter rainfall region of South Africa, representing precipitation in the equatorward margin of the westerly wind belt during the last 1400 yr. Inferred rainfall was relatively high ∼1400–1200 cal yr BP, decreased until ∼950 cal yr BP, and rose notably through the Little Ice Age with pulses centred on ∼600, 530, 470, 330, 200, 90, and 20 cal yr BP. Synchronous fluctuations in Antarctic ice core chemistry strongly suggest that these variations were linked to changes in the westerlies. Equatorward drift of the westerlies during the wet periods may have influenced Atlantic meridional overturning circulation by restricting marine flow around the tip of Africa. Apparent inconsistencies among some aspects of records from South America, New Zealand and South Africa warn against the simplistic application of single records to the Southern Hemisphere as a whole. Nonetheless, these findings in general do support model projections of increasing aridity in the austral winter rainfall zones with future warming.

  9. The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986

    Science.gov (United States)

    McPhaden, Michael J.; Freitag, H. Paul; Hayes, Stanley P.; Taft, Bruce A.; Chen, Zeshi; Wyrtki, Klaus

    1988-09-01

    Western Pacific westerly wind bursts of 1- to 3-week duration are potentially important in triggering and sustaining El Niño-Southern Oscillation events. One such burst of 10-day duration and maximum speeds of greater than 10 m s-1 occurred in May 1986 west of the date line. The response to this westerly wind burst is documented from equatorial current meter moorings, thermistor chain moorings, and sea level and hydrographic data. At 0°, 165°E in the western Pacific the thermocline was depressed by 25 m, sea surface temperature dropped by 0.3°-0.4°C, and sea level rose by 10-15 cm a few days after the maximum in westerly wind speed. Likewise, the South Equatorial Current rapidly accelerated eastward and attained speeds in excess of 100 cm s-1. Vertical shear in an approximately 100 m deep surface layer reversed within a few days of the winds, consistent with a simple model of equatorial mixed layer dynamics in which vertical eddy viscosities are inferred to be O(100 cm2 s-1). A sharp Kelvin wavelike pulse in sea level propagated out of the directly forced region into the central and eastern Pacific. The pulse took 45 days to travel from Tarawa (1°N, 173°E) to La Libertad (2°S, 81°W) on the South American coast, at an average phase speed of about 300 cm s-1. This is of the same order of magnitude as, but significantly higher than, the phase speed of a first baroclinic mode Kelvin wave and is probably the result of Doppler shifting by the Equatorial Undercurrent. A rise in sea surface temperature of about 1°C in 2 days occurred at 0°N, 110°W with the passage of the pulse. However, coincidental meridional advection of a sharp sea surface temperature front, rather than zonal advection of downwelling associated with the pulse, appears to be responsible for this warming. The relevance of this wind-forced pulse to the subsequent evolution of the 1986-1987 El Niño-Southern Oscillation event is discussed in the light of these observations.

  10. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  11. A Multiproxy Reconstruction of Holocene Southern Westerlies from the Auckland Islands

    Science.gov (United States)

    Nichols, J. E.; Moy, C. M.; Peteet, D. M.; Weiss, A.; Curtin, L. G.

    2015-12-01

    The strength and position of the Southern Hemisphere Westerly Wind belt plays an important role in our understanding of the global carbon cycle and glacial-interglacial climate change. We present a paleoclimate record that is primarily influenced by the strength and latitudinal position of the Southern Hemisphere Westerly Winds from a late Holocene lake sediment core and a peat core that spans the last 13,000 years, both obtained from New Zealand's subantarctic Auckland Islands (50°S, 166°E). Several proxy indicators contribute to our reconstruction. Hydrogen isotope ratios of specific organic molecules allow us to reconstruct the hydrogen isotope ratios of precipitation. Using macrofossil counts and the abundances of leaf wax biomarkers, we are able to estimate the moisture balance at our sites. Model simulations of the Westerlies and the rate and isotope ratios of precipitation allow us to interpret our proxy data as changes in the strength and position of the Westerly Winds. In our lacustrine sediment, we found that the Westerlies have been shifting southward since the Little Ice Age, consistent with modern observations of a southward shift. In the peatland sediment, we found a multi-millennial northward shift in the Westerlies during the middle Holocene. We will present further ongoing work that strengthens the chronology of Auckland Islands environmental change and integrates these results with vegetation shifts identified in pollen and macrofossil data.

  12. Westerly Wind Bursts: a Synoptic-Dynamic Study

    Science.gov (United States)

    Hartten, Leslie Marie

    This research examines the synoptic and climatological settings of westerly wind bursts (WWBs) during the 1980s and the dynamical processes active during them. Probabilities of strong westerly and easterly 1000 mb winds over the western equatorial Pacific are presented. Westerlies exhibit a clear annual cycle, appearing in the north in July, moving southeastward as the year progresses, and disappearing by June. Conditional probabilities, dependent on the value of the SOI, show that strong westerlies are more likely and more geographically extensive when the SOI is low, especially from July through January. A newly developed two-dimensional classification scheme qualitatively describes the near-surface synoptic flow of almost 90% of the 131 WWBs identified during the decade. Only 8% of the WWBs are described by the pattern involving twin cyclonic circulations straddling the equator. The trades, tropical cyclones, and the southeast Asian monsoon are all at times linked to WWBs, and the synoptic patterns often contain a significant barotropic component. Breaks in WWB activity are well correlated with a cooler than normal western Pacific warm pool. However, near-equatorial WWBs do not show a good correlation with the Madden-Julian Oscillation. Four near-equatorial WWBs are examined in detail. All are associated with broad cross-equatorial flow; two also have a cyclonic circulation poleward of the westerlies. Anticyclonic relative vorticity equatorward of the burst displaces the zero line of absolute vorticity, eta, into the burst hemisphere. In the three Southern Hemisphere cases, horizontal advection in a region extending from north of New Guinea east-southeast toward the dateline is crucial to the generation and maintenance of the eta pattern. Vorticity stretching associated with convection helps maintain a tight gradient of eta near and poleward of the burst, but also drives the eta = 0 line back towards the equator as the burst ends. In the Northern Hemisphere case

  13. Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect

    Science.gov (United States)

    Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Zeng, Ti; Zhao, Jian-xin

    2017-02-01

    Many factors influence the seasonal changes in δ13C levels in coral skeletons; consequently, the climatic and environmental significance of such changes is complicated and controversial. However, it is widely accepted that the secular declining trend of coral δ13C over the past 200 years reflects the changes in the additional flux of anthropogenic CO2 from the atmosphere into the surface oceans. Even so, the centennial-scale variations, and their significance, of coral δ13C before the Industrial Revolution remain unclear. Based on an annually resolved coral δ13C record from the northern South China Sea, the centennial-scale variations of coral δ13C over the past millennium were studied. The coral δ13C and total solar irradiance (TSI) have a significant positive Pearson correlation and coupled variation during the Medieval Warm Period and Little Ice Age, when natural forcing controlled the climate and environment. This covariation suggests that TSI controls coral δ13C by affecting the photosynthetic activity of the endosymbiotic zooxanthellae over centennial timescales. However, there was a decoupling of the coral skeletal δ13C and TSI during the Current Warm Period, the period in which the climate and environment became linked to anthropogenic factors. Instead, coral δ13C levels have a significant Pearson correlation with both the atmospheric CO2 concentration and δ13C levels in atmospheric CO2. The correlation between coral δ13C and atmospheric CO2 suggests that the oceanic 13C Suess effect, caused by the addition of increasing amounts of anthropogenic 12CO2 to the surface ocean, has led to the decoupling of coral δ13C and TSI at the centennial scale.

  14. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  15. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  16. Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii

    Science.gov (United States)

    Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.

    2004-01-01

    We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.

  17. Calculation studies of a multi-layer decoupler system for a decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Ooi, M.; Kiyanagi, Y.

    2001-01-01

    We proposed a multi-layer decoupler as a method to improve pulse characteristics of emitted neutrons from a decoupled hydrogen moderator. Pulse shapes from a moderator with the multi layer-decoupler were compared with those with a traditional single layer decoupler. It was found that the multi-layer decoupler system gave better pulse characteristic with less decrease of peak intensity. (author)

  18. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  19. Role of tropical Indian and Atlantic Oceans variability on ENSO

    Science.gov (United States)

    Prodhomme, Chloé; Terray, Pascal; Masson, Sebastien; Boschat, Ghyslaine

    2014-05-01

    There are strong evidences of an interaction between tropical Indian, Atlantic and Pacific Oceans. Nevertheless, these interactions remain deeply controversial. While some authors claim the tropical Indian and Atlantic oceans only play a passive role with respect to ENSO, others suggest a driving role for these two basins on ENSO. The mecanisms underlying these relations are not fully understood and, in the Indian Ocean, the possible role of both modes of tropical variability (the Indian Ocean Dipole (IOD) and the Indian Ocean Basin mode (IOB)) remain unclear. To better quantify and understand how the variability of the tropical Indian and Atlantic Oceans impact ENSO variability, we performed two sensitivity experiments using the SINTEX-F2 coupled model. For each experiment, we suppressed the variability of SST and the air-sea coupling in either the tropical Indian Ocean or tropical Atlantic Ocean by applying a strong nudging of the SST to the observed SST climatology. In both experiments, the ENSO periodicity increases. In the Atlantic experiment, our understanding of this increased periodicity is drastically limited by the strongly biased mean state in this region. Conversely, in the Indian Ocean experiment, the increase of ENSO periodicity is related to the absence of the IOB following the El Niño peak, which leads to a decrease of westerly winds in the western Pacific during late winter and spring after the peak. These weaker westerlies hinders the transition to a La Niña phase and thus increase the duration and periodicity of the event.

  20. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  1. Dynamical decoupling of unbounded Hamiltonians

    Science.gov (United States)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  2. Decoupling structure and metallogenesis

    International Nuclear Information System (INIS)

    Tong Hangshou

    1993-01-01

    The decoupling structure is, at present, a hot spot for the study in geoscience. A study on the decoupling structure is not only of great theoretical significance, but also of more economic importance. The author briefly discusses the study of the decoupling structure in terms of its present status, implication, characteristics, formation mechanism and theoretical significance, in addition, with emphasis on the expounding of the decoupling structure over endogenic metallic deposits such as oil and gas, coal, gold, silver, copper, lead, zinc and iron etc. At last reconsideration is made on the ore control theory of the decoupling structure to the ore control structure in the uranium ore field in South China. The author proposes a superficial idea in order to provide a basis of geological structures for expanding old mining areas, opening up new areas(bases), and prospecting for large and rich uranium deposits

  3. Decoupled Modulation Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaobu; Huang, Renke; Huang, Zhenyu; Diao, Ruisheng

    2016-06-03

    The objective of this research work is to develop decoupled modulation control methods for damping inter-area oscillations with low frequencies, so the damping control can be more effective and easier to design with less interference among different oscillation modes in the power system. A signal-decoupling algorithm was developed that can enable separation of multiple oscillation frequency contents and extraction of a “pure” oscillation frequency mode that are fed into Power System Stabilizers (PSSs) as the modulation input signals. As a result, instead of introducing interferences between different oscillation modes from the traditional approaches, the output of the new PSS modulation control signal mainly affects only one oscillation mode of interest. The new decoupled modulation damping control algorithm has been successfully developed and tested on the standard IEEE 4-machine 2-area test system and a minniWECC system. The results are compared against traditional modulation controls, which demonstrates the validity and effectiveness of the newly-developed decoupled modulation damping control algorithm.

  4. Glacial History of Southernmost South America and Implications for Movement of the Westerlies and Antarctic Frontal Zone

    Science.gov (United States)

    Kaplan, M. R.; Fogwill, C. J.; Hulton, N. R.; Sugden, D. E.; Peter, K. W.

    2004-12-01

    The ~1 Myr glacial geologic record in southern South American is one of the few available terrestrial paleoclimate proxies at orbital and suborbital time scales in the middle latitudes of the Southern Hemisphere. Presently, southernmost Patagonia lies about 3\\deg north of the Antarctic frontal zone and within the middle latitude westerlies and the climate is controlled by the surrounding maritime conditions. Thus, the long-term glacial record provides insight into the history of climatic boundaries over the middle and high latitude southern ocean, including the upwind SE Pacific Ocean, tectonic-glacial evolution of the Andes, and global climate. To date, cosmogenic nuclide and 14C dating have focused on glacial fluctuations between 51 and 53\\deg S (Torres del Paine to northern Tierra del Fuego) during the last glacial cycle, including the late glacial period. At least 4 advances occurred between ca. 25 and 17 ka, with the maximum expansion of ice ca. 25-24 ka. Major deglaciation commenced after ca. 17.5 ka, which was interrupted by a major glacial-climate event ca. 14-12 ka. Modelling experiments suggest that the ice mass needed to form the glacial maximum moraines required about a 6\\deg cooling and a slight drying relative to the present. Such a fundamental temperature reduction, despite high summer isolation, strongly suggests northward movement of the westerlies and the polar front on millennial timescales. The Patagonian record also indicates that on orbital timescales equatorward movement of climate boundaries and glacial growth was in phase with major Northern Hemisphere ice volume change, despite high local summer insolation. At suborbital timescales, the picture is more complex. While major facets of the last glacial maximum appear to be in phase between the hemispheres, at least some late glacial events may be in step with Antarctic climate change. Present and future research will further constrain the timing of glacial events over the last 1 Myr and

  5. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    NARCIS (Netherlands)

    Thomas, H.; Schiettecatte, L.-S.; Suykens, K.; Koné, Y.J.M.; Shadwick, E.H.; Prowe, A.E.F.; Bozec, Y.; Baar, H.J.W. de; Borges, A.V.; Slomp, C.

    2009-01-01

    The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr) in the open oceans. Despite

  6. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  7. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes.

    Science.gov (United States)

    Purich, Ariaan; Cai, Wenju; England, Matthew H; Cowan, Tim

    2016-02-04

    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.

  8. Recent changes in the ventilation of the southern oceans.

    Science.gov (United States)

    Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.

  9. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand

    Science.gov (United States)

    Browne, Imogen M.; Moy, Christopher M.; Riesselman, Christina R.; Neil, Helen L.; Curtin, Lorelei G.; Gorman, Andrew R.; Wilson, Gary S.

    2017-10-01

    The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C / N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ˜ 1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after ˜ 1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either

  10. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    2015-01-01

    This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit to responsi......This article examines under what conditions business schools may decouple the structural effects of their engagement in responsible management education from actual organizational practices. We argue that schools may be unable to match rising institutional pressures to publicly commit...... to responsible management education with their limited internal capacity for change. Our analysis proposes that decoupling is likely if schools (a) are exposed to resource stringency, (b) face overt or covert resistance against change processes, (c) are confronted with competing institutional pressures, and (d......) perceive institutional demands as ambiguous. We discuss two implications of this proposition. On one hand, decoupling can cause dissonant legitimacy perceptions, leading to cynicism around responsible management education within business schools. On the other hand, a temporary inconsistency between talk...

  11. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  12. Seasonal cycle of cross-equatorial flow in the central Indian Ocean

    Science.gov (United States)

    Wang, Yi; McPhaden, Michael J.

    2017-05-01

    This study investigates the seasonal cycle of meridional currents in the upper layers of central equatorial Indian Ocean using acoustic Doppler current profiler (ADCP) and other data over the period 2004-2013. The ADCP data set collected along 80.5°E is the most comprehensive collection of direct velocity measurements in the central Indian Ocean to date, providing new insights into the meridional circulation in this region. We find that mean volume transport is southward across the equator in the central Indian Ocean in approximate Sverdrup balance with the wind stress curl. In addition, mean westerly wind stress near the equator drives convergent Ekman flow in the surface layer and subsurface divergent geostrophic flow in the thermocline at 50-150 m depths. In response to a mean northward component of the surface wind stress, the maximum surface layer convergence is shifted off the equator to between 0.5° and 1°N. Evidence is also presented for the existence of a shallow equatorial roll consisting of a northward wind-driven surface drift overlaying the southward directed subsurface Sverdrup transport. Seasonal variations are characterized by cross-equatorial transports flowing from the summer to the winter hemisphere in quasi-steady Sverdrup balance with the wind stress curl. In addition, semiannually varying westerly monsoon transition winds lead to semiannual enhancements of surface layer Ekman convergence and geostrophic divergence in the thermocline. These results quantify expectations from ocean circulation theories for equatorial Indian Ocean meridional circulation patterns with a high degree of confidence given the length of the data records.

  13. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  14. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S, New Zealand

    Directory of Open Access Journals (Sweden)

    I. M. Browne

    2017-10-01

    Full Text Available The Southern Hemisphere westerly winds (SHWWs play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW and outgassing of CO2 in the Southern Ocean, on interannual to glacial–interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E, located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS and bulk organic δ13C and atomic C ∕ N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from  ∼  1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after  ∼  1600 yr BP that appears to be broadly symmetrical across the Pacific Basin

  15. Decoupling

    NARCIS (Netherlands)

    Fletcher, Robert; Rammelt, Crelis

    2017-01-01

    Central to the United Nations’ post-2015 development agenda grounded in the Sustainable Development Goals is the notion of ‘decoupling’: the need to divorce economic growth from its ecological impact. For proponents, decoupling entails increasing the efficiency with which value is derived from

  16. Selective Regulator Decoupling and Organizations' Strategic Responses

    NARCIS (Netherlands)

    Heese, Jonas; Krishnan, Ranjani; Moers, Frank

    2016-01-01

    Organizations often respond to institutional pressures by symbolically adopting policies and procedures but decoupling them from actual practice. Literature has examined why organizations decouple from regulatory pressures. In this study, we argue that decoupling occurs within regulatory agencies

  17. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  18. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Wolf-Georg

    Negative risk-decoupling, otherwise known as empty voting, is a popular strategy amongst hedge funds and other activist investors. In short, it is the attempt to decouple the economic risk from the share’s ownership position, retaining in particular the voting right without risk. This paper uses ...

  19. Decoupling theorem in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Leon, J; Perez-Mercader, J; Sanchez, M F

    1988-07-21

    We introduce a superfield extension of Weisberger's method for decoupling calculations in multiscale field theories and generalize our previous method which does not require the computation of any Feynman diagram. We illustrate this for the two-scale Wess-Zumino model, showing explicitly how the decoupling takes place.

  20. Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean

    Science.gov (United States)

    Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.

    2012-01-01

    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.

  1. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  2. Decadal Patterns of Westerly Winds, Temperatures, Ocean Gyre Circulations and Fish Abundance: A Review

    Directory of Open Access Journals (Sweden)

    Candace Oviatt

    2015-10-01

    Full Text Available The purpose of this review is to describe the global scope of the multidecadal climate oscillations that go back at least, through several hundred years. Literature, historic data, satellite data and global circulation model output have been used to provide evidence for the zonal and meridional jet stream patterns. These patterns were predominantly zonal from the 1970s to 1990s and switched since the 1990s to a meridional wind phase, with weakening jet streams forming Rossby waves in the northern and southern hemispheres. A weakened northern jet stream has allowed northerly winds to flow down over the continents in the northern hemisphere during the winter period, causing some harsh winters and slowing anthropogenic climate warming regionally. Wind oscillations impact ocean gyre circulation affecting upwelling strength and pelagic fish abundance with synchronous behavior in sub Arctic gyres during phases of the oscillation and asynchronous behavior in subtropical gyres between the Atlantic and Pacific oceans.

  3. Decoupling Revenue from Energy Sales

    International Nuclear Information System (INIS)

    Potocnik, V.

    2011-01-01

    Energy sector based on the fossil fuels combustion has the largest greenhouse gases emissions, causing the actual climate change with numerous negative impacts. Therefore, different measures for the climate change mitigation are performed, mostly by increasing ENEF-energy efficiency (saving), and by substituting fossil fuels with renewable energy (RE), mainly with limited results. One of the most serious obstacles for implementation of these measures is an opposition of the energy utilities (power and natural gas), whose energy sales, revenue and profit are thus reduced. Consequently, new solutions are asked to decouple utilities revenues from energy sales. Decoupling has started in the US, where most states have at least one utility with some decoupling experience. California has pioneering role since 1982., with impressive results. (author)

  4. Disturbance Decoupling of Switched Linear Systems

    NARCIS (Netherlands)

    Yurtseven, E.; Heemels, W.P.M.H.; Camlibel, M.K.

    2010-01-01

    In this paper we consider disturbance decoupling problems for switched linear systems. We will provide necessary and sufficient conditions for three different versions of disturbance decoupling, which differ based on which signals are considered to be the disturbance. In the first version the

  5. How East Asian westerly jet's meridional position affects the summer rainfall in Yangtze-Huaihe River Valley?

    Science.gov (United States)

    Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha

    2017-03-01

    Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.

  6. Decoupling, situated cognition and immersion in art.

    Science.gov (United States)

    Reboul, Anne

    2015-09-01

    Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.

  7. Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters

    Science.gov (United States)

    Bougeois, Laurie; Dupont-Nivet, Guillaume; de Rafélis, Marc; Tindall, Julia C.; Proust, Jean-Noël; Reichart, Gert-Jan; de Nooijer, Lennart J.; Guo, Zhaojie; Ormukov, Cholponbelk

    2018-03-01

    Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.

  8. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  9. Inventory classification based on decoupling points

    Directory of Open Access Journals (Sweden)

    Joakim Wikner

    2015-01-01

    Full Text Available The ideal state of continuous one-piece flow may never be achieved. Still the logistics manager can improve the flow by carefully positioning inventory to buffer against variations. Strategies such as lean, postponement, mass customization, and outsourcing all rely on strategic positioning of decoupling points to separate forecast-driven from customer-order-driven flows. Planning and scheduling of the flow are also based on classification of decoupling points as master scheduled or not. A comprehensive classification scheme for these types of decoupling points is introduced. The approach rests on identification of flows as being either demand based or supply based. The demand or supply is then combined with exogenous factors, classified as independent, or endogenous factors, classified as dependent. As a result, eight types of strategic as well as tactical decoupling points are identified resulting in a process-based framework for inventory classification that can be used for flow design.

  10. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kong Ooi; Meier, Beat H., E-mail: beme@ethz.ch, E-mail: maer@ethz.ch; Ernst, Matthias, E-mail: beme@ethz.ch, E-mail: maer@ethz.ch [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Agarwal, Vipin [Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsinghi, Hyderabad 500 075 (India)

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  11. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-07

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  12. Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO

    Science.gov (United States)

    Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su

    2018-03-01

    This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.

  13. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  14. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  15. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  16. Is Decoupling GDP Growth from Environmental Impact Possible?

    Science.gov (United States)

    Ward, James D; Sutton, Paul C; Werner, Adrian D; Costanza, Robert; Mohr, Steve H; Simmons, Craig T

    2016-01-01

    The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.

  17. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  18. Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies

    NARCIS (Netherlands)

    Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.

    An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the

  19. Postglacial Records of Southern Hemisphere Westerly Wind Variability From the New Zealand Subantarctic Auckland Islands

    Science.gov (United States)

    Moy, C. M.; Vandergoes, M.; Gilmer, G. J.; Nichols, J. E.; Dagg, B. J.; Wilson, G. S.; Browne, I. M.; Curtin, L. G.; Aebig, C.; McGlone, M.

    2015-12-01

    The strength and latitudinal position of the Southern Hemisphere westerly winds (SHWW) play a fundamental role in influencing mid latitude climate and carbon dioxide exchange between the Southern Ocean and the atmosphere. Despite their importance, our understanding of past changes in the SHWW is limited by few paleoclimate records from the modern wind maximum that are often not in agreement. The New Zealand subantarctic Auckland Islands are located within the core of the modern wind belt (50°S) where the ocean-atmospheric linkages between the Antarctic and middle latitudes are strong. In contrast to other subantarctic islands on the Campbell Plateau, the Auckland Islands have protected fjord sub-basins, deep lakes, and peatlands that are advantageous for the development of high-resolution paleoclimate records. We will present ongoing work towards the establishment of multi-proxy and multi-site reconstructions of past SHWW variability from the Auckland Islands. Modern process and paleoclimate results from two research cruises in 2014 and 2015 suggest that in lacustrine and fjord settings, the degree of water column mixing, the stable isotopic composition of n-alkanes and benthic foraminifera, the influx of terrestrial organic matter are good indicators of wind-induced mixing of the water column or precipitation-driven erosion within catchments. In ombrotrophic peatlands, hydrogen isotope ratios of specific organic molecules allow reconstructions of the hydrogen isotope ratios of precipitation, which is related to precipitation source area and the latitudinal position of the SHWW. Using macrofossil counts paired with abundances of leaf wax biomarkers, we are able to estimate the moisture balance at peatland coring sites. Early results indicate an overall strengthening of the SHWW at the Auckland Islands through the Holocene. We will discuss these results within the context of complimentary records developed from New Zealand and southern South America to ultimately

  20. Equatorial Indian Ocean productivity during the last 33 kyr and possible linkage to Westerly Jet variability

    Digital Repository Service at National Institute of Oceanography (India)

    Punyu, V.R.; Banakar, V.K.; Garg, A.

    The top 1 m radiocarbon dated section of a 5.6 m long sediment core retrieved from the Equatorial Indian Ocean is studied for productivity changes in response to climate variability that have taken place during the last ~33 kyr. The robust...

  1. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  2. Dynamic decoupling of secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Tembulkar, J.M.

    1984-01-01

    The dynamic analysis of primary systems must often be performed decoupled from the secondary system. In doing so, one should assure that the decoupling does not significantly affect the frequencies and the response of the primary systems. The practice consists of heuristic algorithms intended to limit changes in the frequencies. The change in response is not considered. In this paper, changes in both the frequencies and the response are considered. Rational, but simple algorithms are derived to make accurate predictions. Material up to MDOF primary-SDOF secondary system is presented in this paper. MDOF-MDOF systems are treated in a companion paper. (orig.)

  3. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang

    Science.gov (United States)

    Zhao, Yong; Wang, MinZhong; Huang, AnNing; Li, HongJun; Huo, Wen; Yang, Qing

    2014-05-01

    The relation between the spatial and temporal variations of the West Asian subtropical westerly jet (WASWJ) and the summer precipitation in northern Xinjiang has been explored using the NCEP/NCAR reanalysis data and the summer precipitation data at 43 stations in northern Xinjiang during 1961 to 2007. Results show that the position of the WASWJ is more important than its strength in influencing the summer precipitation in northern Xinjiang. When the jet position is further south, the anomalous southwesterly flow crossing the Indian subcontinent along the southern foothill of the Tibetan Plateau is favorable for the southwestward warm and wet air penetrating from low latitudes into Central Asia and northern Xinjiang and more rainfall formation. Further analysis shows that the interannual variations of the jet position are well correlated with the Arctic Oscillation (AO). In the weak AO years, the middle to upper troposphere becomes colder than normal and results in an anomalous cyclonic circulation at 200 hPa over Western and Central Asia, which enhances the westerly wind over middle and low latitudes and leads to the WASWJ located further south.

  4. Structural Decoupling and Disturbance Rejection in a Distillation Column

    DEFF Research Database (Denmark)

    Bahar, Mehrdad; Jantzen, Jan; Commault, C.

    1996-01-01

    Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references.......Introduction, distillation column model, input-output decoupling, disturbance rejection, concluding remarks, references....

  5. Premoderator optimization of decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Harada, Masahide; Teshigawara, Makoto; Kai, Tetsuya; Sakata, Hideaki; Watanabe, Noboru; Ikeda, Yujiro

    2001-03-01

    An optimization study on the premoderator, the reflector material choice and a length of the linear is carried out for the design of high performance decoupled hydrogen moderator. NMTC/JAM and MCNP-4C are used for the neutronics calculation. The result indicates that, assuming premoderator dimensions and decoupling energy is controlled, the decoupled hydrogen moderator with a premoderator can provide better pulse characteristics than that without the premoderator for a Be reflector. On the selection of the reflector material, it is clearly shown that Pb and Hg reflectors give merits in using the premoderator for higher intensity and reduction of energy deposition in moderator. It is also shown that a H 2 O premoderator provides a short tail while a D 2 O premoderator provides the high peak intensity. Minimum liner length is evaluated to be 20 cm from the viewpoint of neutronics. (author)

  6. Studies of spatial decoupling in heterogeneous LMFBR critical assemblies

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Goin, R.W.; Carpenter, S.G.

    1984-01-01

    Recent measurements at the Zero Power Plutonium Reactor have studied the spatial decoupling in large, heterogeneous assemblies. These assemblies exhibited a significantly greater degree of decoupling than previous homogeneous assemblies of similar size. The flux distributions in these heterogeneous assemblies were very sensitive reactivity perturbations, and perturbed flux distributions were achieved relatively slowly. Decoupling was investigated using rod-drop, boron-oscillator and noise-coherence techniques which emphasized different times following the perturbations. Reactivity changes could be measured by analyzing the power history from a single detector using inverse kinetics methods with the assumption of an instantaneous efficiency change for the detector. For assemblies more decoupled than ZPPR-13, the instantaneous efficiency change assumption begins to be invalid

  7. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    Hoerling, M.; Eischeid, J.; Hurrel, J.

    2006-01-01

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  8. Self-consistent collective-coordinate method for ''maximally-decoupled'' collective subspace and its boson mapping: Quantum theory of ''maximally-decoupled'' collective motion

    International Nuclear Information System (INIS)

    Marumori, T.; Sakata, F.; Maskawa, T.; Une, T.; Hashimoto, Y.

    1983-01-01

    The main purpose of this paper is to develop a full quantum theory, which is capable by itself of determining a ''maximally-decoupled'' collective motion. The paper is divided into two parts. In the first part, the motivation and basic idea of the theory are explained, and the ''maximal-decoupling condition'' on the collective motion is formulated within the framework of the time-dependent Hartree-Fock theory, in a general form called the invariance principle of the (time-dependent) Schrodinger equation. In the second part, it is shown that when the author positively utilize the invariance principle, we can construct a full quantum theory of the ''maximally-decoupled'' collective motion. This quantum theory is shown to be a generalization of the kinematical boson-mapping theories so far developed, in such a way that the dynamical ''maximal-decoupling condition'' on the collective motion is automatically satisfied

  9. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations

    Science.gov (United States)

    Rohr, Tyler; Long, Matthew C.; Kavanaugh, Maria T.; Lindsay, Keith; Doney, Scott C.

    2017-05-01

    A coupled global numerical simulation (conducted with the Community Earth System Model) is used in conjunction with satellite remote sensing observations to examine the role of top-down (grazing pressure) and bottom-up (light, nutrients) controls on marine phytoplankton bloom dynamics in the Southern Ocean. Phytoplankton seasonal phenology is evaluated in the context of the recently proposed "disturbance-recovery" hypothesis relative to more traditional, exclusively "bottom-up" frameworks. All blooms occur when phytoplankton division rates exceed loss rates to permit sustained net population growth; however, the nature of this decoupling period varies regionally in Community Earth System Model. Regional case studies illustrate how unique pathways allow blooms to emerge despite very poor division rates or very strong grazing rates. In the Subantarctic, southeast Pacific small spring blooms initiate early cooccurring with deep mixing and low division rates, consistent with the disturbance-recovery hypothesis. Similar systematics are present in the Subantarctic, southwest Atlantic during the spring but are eclipsed by a subsequent, larger summer bloom that is coincident with shallow mixing and the annual maximum in division rates, consistent with a bottom-up, light limited framework. In the model simulation, increased iron stress prevents a similar summer bloom in the southeast Pacific. In the simulated Antarctic zone (70°S-65°S) seasonal sea ice acts as a dominant phytoplankton-zooplankton decoupling agent, triggering a delayed but substantial bloom as ice recedes. Satellite ocean color remote sensing and ocean physical reanalysis products do not precisely match model-predicted phenology, but observed patterns do indicate regional variability in mechanism across the Atlantic and Pacific.

  10. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Science.gov (United States)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  11. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2011-02-01

    Full Text Available The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  12. Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    International Nuclear Information System (INIS)

    Wocjan, Pawel

    2006-01-01

    The task of decoupling, i.e., removing unwanted internal couplings of a quantum system and its couplings to an environment, plays an important role in quantum control theory. There are many efficient decoupling schemes based on combinatorial concepts such as orthogonal arrays, difference schemes, and Hadamard matrices. So far these combinatorial decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control, Viola and Knill proposed a method called 'Eulerian decoupling' that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the local structure of internal couplings and couplings to an environment that typically occur in multipartite quantum systems. In this paper we define a combinatorial structure called Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be used to remove both internal couplings and couplings to an environment of a multipartite quantum system. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes

  13. Development and test of decoupler for ICRF antenna in EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gen, E-mail: chengen@ipp.ac.cn; Mao, Yuzhou; Zhao, Yanping; Yuan, Shuai; Zhang, Xinjun; Qing, Chengming

    2016-06-15

    Highlights: • The mechanism of decoupler for ICRF antenna is proposed. • Three candidate assembly positions for the decouper can be used. • The performance relies on the ohmic dissipation and the assembly position of decoupler. - Abstract: Ion Cyclotron Range of Frequency (ICRF) heating has been adopted in EAST tokamak as one of main auxiliary heating methods. The ICRF antenna usually consists of multiple launching elements because of limited port and space of tokamak device. Mutual coupling between straps has been observed in previous EAST ICRF current drive experiments. Due to adverse effects of such mutual coupling, many issues induced by cross power cannot be ignored, such as power imbalance in feed lines, high voltage standing wave ratio (VSWR), and etc. To restrain such mutual coupling, A device named decoupler was developed and tested in EAST ICRF system. According to the admittance matrix of load, three assembly positions (oscillation position, optimum position, and smooth position) along transmission line for the decoupler were taken into account and tested. The test results showed that ohmic dissipation in decoupler could not be neglected, which partly influenced the decoupling performance. The oscillation position and optimum position could restrain such adverse effects of ohmic dissipation and showed good decoupling performance. However, they cannot ensure the steady operation during H-mod due to the load variation. Finally, the smooth position has been adopted for EAST I port antenna because of steady decoupling performance comprised with engineering error and load resilience, which sincerely enhance the capability of system operation.

  14. Decoupling Responsible Management Education

    DEFF Research Database (Denmark)

    Rasche, Andreas; Gilbert, Dirk Ulrich

    Business schools increasingly aim to embed corporate responsibility, sustainability, and ethics into their curricular and extracurricular activities. This paper examines under what conditions business schools may decouple the structural effects of their engagement in responsible management educat...

  15. Shear Wave Generation by Decoupled and Partially Coupled Explosions

    National Research Council Canada - National Science Library

    Stevens, Jeffry L; Xu, Heming; Baker, G. E

    2008-01-01

    The objective of this project is to investigate the sources of shear wave generation by decoupled and partially coupled explosions, and the differences in shear wave generation between tamped and decoupled explosions...

  16. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  17. Optimal Temporal Decoupling in Task Scheduling with Preferences

    NARCIS (Netherlands)

    Endhoven, L.; Klos, T.B.; Witteveen, C.

    2011-01-01

    Multi-agent planning and scheduling concerns finding a joint plan to achieve some set of common goals with several independent agents each aiming to find a plan or schedule for their part of the goals. To avoid conflicts in these individual plans or schedules decoupling is used. Such a decoupling

  18. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  19. DECOUPLER DESIGN FOR AN INTERACTING TANKS SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available The mathematical model forthe two interacting tanks system was derived and the dynamic behavior of thissystem was studied by introducing a step change in inlet flow rate. In thispaper, the analysis of the interaction loops between the controlled variable(liquid level and manipulated variable (inlet flow rate was carried out usingthe relative gain array. Also decoupling technique is applied to eliminate theeffect this interaction by design suitable decouplers for the system. Theresults show that the gain of each loop is cut in half when the opposite loopis closed and the gain of other loop changes sign when the opposite loop isclosed. The decoupling method show that the liquid level of tank one isconstant when the second inlet flow changes and to keep the liquid level oftank two constant the first inlet flow must be changed.

  20. Decoupled Scheme for Time-Dependent Natural Convection Problem II: Time Semidiscreteness

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    stability and the corresponding optimal error estimates are presented. Furthermore, a decoupled numerical scheme is proposed by decoupling the nonlinear terms via temporal extrapolation; optimal error estimates are established. Finally, some numerical results are provided to verify the performances of the developed algorithms. Compared with the coupled numerical scheme, the decoupled algorithm not only keeps good accuracy but also saves a lot of computational cost. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of the decoupled method for time-dependent natural convection problem.

  1. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    Science.gov (United States)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  2. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-07-01

    Full Text Available We focused this research on the composition of the organic aerosols transported in the two main airflows of the subtropical North Atlantic free troposphere: (i the Saharan Air Layer – the warm, dry and dusty airstream that expands from North Africa to the Americas at subtropical and tropical latitudes – and (ii the westerlies, which flow from North America over the North Atlantic at mid- and subtropical latitudes. We determined the inorganic compounds (secondary inorganic species and elemental composition, elemental carbon and the organic fraction (bulk organic carbon and organic speciation present in the aerosol collected at Izaña Observatory,  ∼  2400 m a.s.l. on the island of Tenerife. The concentrations of all inorganic and almost all organic compounds were higher in the Saharan Air Layer than in the westerlies, with bulk organic matter concentrations within the range 0.02–4.0 µg m−3. In the Saharan Air Layer, the total aerosol population was by far dominated by dust (93 % of bulk mass, which was mixed with secondary inorganic pollutants ( <  5 % and organic matter ( ∼  1.5 %. The chemical speciation of the organic aerosols (levoglucosan, dicarboxylic acids, saccharides, n-alkanes, hopanes, polycyclic aromatic hydrocarbons and those formed after oxidation of α-pinene and isoprene, determined by gas chromatography coupled with mass spectrometry accounted for 15 % of the bulk organic matter (determined by the thermo-optical transmission technique; the most abundant organic compounds were saccharides (associated with surface soils, secondary organic aerosols linked to oxidation of biogenic isoprene (SOA ISO and dicarboxylic acids (linked to several primary sources and SOA. When the Saharan Air Layer shifted southward, Izaña was within the westerlies stream and organic matter accounted for  ∼  28 % of the bulk mass of aerosols. In the westerlies, the organic aerosol species determined

  3. Adaptive decoupled power control method for inverter connected DG

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Tian, Yanjun; Chen, Zhe

    2014-01-01

    an adaptive droop control method based on online evaluation of power decouple matrix for inverter connected distributed generations in distribution system. Traditional decoupled power control is simply based on line impedance parameter, but the load characteristics also cause the power coupling, and alter...

  4. Are CAP Decoupling Policies Really Production Neutral?

    OpenAIRE

    Katranidis, Stelios D.; Kotakou, Christina A.

    2008-01-01

    This paper examines the effects of decoupling policies on Greek cotton production. We estimate a system of cotton supply and input derived demand functions under the hypothesis that producers face uncertainty about prices. Using our estimation results we simulate the effects on cotton production under four alternative policy scenarios: the ‘Old’ CAP regime (i.e. the policy practiced until 2005), the Mid Term Review regime, a fully decoupled policy regime and a free trade-no policy scenario. O...

  5. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  6. Optimal decoupling controllers revisited

    Czech Academy of Sciences Publication Activity Database

    Kučera, Vladimír

    2013-01-01

    Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory

  7. Effects of stochastic noise on dynamical decoupling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Jozsef Zsolt; Frydrych, Holger; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2013-07-01

    Dynamical decoupling is a well-established technique to protect quantum systems from unwanted influences of their environment by exercising active control. It has been used experimentally to drastically increase the lifetime of qubit states in various implementations. The efficiency of different dynamical decoupling schemes defines the lifetime. However, errors in control operations always limit this efficiency. We propose a stochastic model as a possible description of imperfect control pulses and discuss the impact of this kind of error on different decoupling schemes. In the limit of continuous control, i.e. if the number of pulses N → ∞, we derive a stochastic differential equation for the evolution of the density operator of the controlled system and its environment. In the context of this modified time evolution we discuss possibilities of protecting qubit states against environmental noise.

  8. Introduction to geometric nonlinear control; Linearization, observability, decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)

    2002-07-15

    These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)

  9. 'Glocalization' versus Notions of Decoupling

    DEFF Research Database (Denmark)

    Jakobsen, Michael

    2011-01-01

    Discussing modes of political and/or economic decoupling in an era of economic globalization seems almost contradictory as the dominating keywords in the latter are increasing integration, interdependency and harmonization. For example, when looking towards the political realm it seems problemati...

  10. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    Science.gov (United States)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2017-08-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  11. Efficiency of Decoupled Farm Programs under Distortionary Taxation

    OpenAIRE

    GianCarlo Moschini; Paolo Sckokai

    1994-01-01

    When lump-sum taxation is not feasible, decoupled transfers to farmers (which require raising government revenue) will entail welfare loss somewhere in the economy. Assuming the government's objective is to assure a given welfare level for farmers, we show that when decoupling is possible, free trade is always superior to some tariff protection for a small country, even under Distortionary taxation. As expected, for a large country there is scope for an optimal tariff policy that improves the...

  12. Evaluating Decoupling Process in OECD Countries: Case Study of Turkey

    Science.gov (United States)

    An, Nazan; Şengün Ucal, Meltem; Kurnaz, M. Levent

    2017-04-01

    Climate change is at the top of the present and future problems facing humanity. Climate change is now largely attributed to human activities and economic activities are the source of human activities that cause climate change by creating pressure on the environment. Providing the sustainability of resources for the future seems possible by reducing the pressure of these economic activities on the environment. Given the increasing population pressure and growth-focused economies, it is possible to say that achieving decoupling is not so easy on a global basis. It is known that there are some problems in developing countries especially in terms of accessing reliable data in transition and implementation process of decoupling. Developed countries' decoupling practices and proper calculation methods can also be a guide for developing countries. In this study, we tried to calculate the comparative decoupling index for OECD countries and Turkey in terms of data suitability, and we showed the differences between them. We tried to indicate the level of decoupling (weak, stable, strong) for each country. We think that the comparison of Turkey can be an example in terms of developing countries. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.

  13. Decoupling mechanisms-paying for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P.S.

    1993-07-15

    In 1988, the National Association of Regulatory Utility Commissioners issued a policy statement that said [open quotes]ratemaking practices should align utilities' pursuit of profit with least-cost planning.[close quotes] This policy coincided with then-current thinkingg at a number of state commissions about the much-touted goal of encouraging utilities to invest in conservation, or demand-side management (DSM) programs, rather than in generating resources to meet system load requirements. Besides utility concerns about recovering conservation program investments, regulators also notices a built-in [open quotes]disincentive[close quotes] to investment in the traditional ratemaking format: If profit is tied to sales, then utilities will always shy away from aggressively promoting conservation. Or so the thinkin went. [open quotes]Decoupling mechanisms[close quotes] were born to remove this disincentive. A number of states have implemented these mechanisms, while several others are investigating the issue. One chief drawback of the mechanisms is that if sales go down, rates go up to cover the shortfall. (Of course, rates go down if sales exceed forecasted levels.) A major problem has been that rate increases have occurred at exactly the wrong time, during economic slowdowns when utilities are struggling to retain price-sensitive customers and residential ratepayers are least likely to bear with quiet stoicism the burden placed on family budgets. Decoupling is seen by some as a step backwards in the move to competitive regulatory reforms that seek to encourage utilities to behave like free-market companies. Indeed, the newest decoupling mechanisms face serious challenge.

  14. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  15. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  16. PIXE analysis of marine environmental samples from the Pacific Ocean

    International Nuclear Information System (INIS)

    Miyake, Hiroshi; Matsuda, Yasuhiro; Shitashima, Kiminori; Tsubota, Hiroyuki.

    1990-01-01

    Aerosol samples from the western North Pacific Ocean are collected during a cruise of R/V Hakuhomaru from Japan to Hawaii and they are analyzed by PIXE (particle induced X-ray emission). Concentrations of radon daughters are measured with CR-39 track detectors mounted on the impactor to estimate the transport time of air mass from the Asian Continent. Distributions of particulate element concentrations clearly demonstrate the influence of the westerlies. Strong correlations are observed between fine sulphur concentrations and those of heavy metals such as Fe and Zn. Vertical profiles of heavy metal elements contained in marine particulates are also investigated at a trench in the Pacific Ocean and basins in the Japan Sea. Particulate element concentrations determined by PIXE agree well with those determined by chemical analysis of filtered/total water. Remarkable changes in depth profiles of particulate manganese are observed at the trench, which suggest horizontal transport of marine particulates from the trench wall. (N.K.)

  17. Decoupling as a mechanism of change in mindfulness and acceptance: a literature review.

    Science.gov (United States)

    Levin, Michael E; Luoma, Jason B; Haeger, Jack A

    2015-11-01

    A growing body of research within the acceptance and mindfulness-based therapies suggests that these treatments may function in part by reducing or eliminating (i.e., decoupling) the normative relationships between internal experiences and other internal/overt behavior. Examples of decoupling effects found in this review include reduced relationships between urges to smoke and smoking behavior, between dysphoric mood and depressive cognitions, and between pain intensity and persistence in a painful task. A literature review identified 44 studies on acceptance and mindfulness that demonstrated decoupling effects. Overall, preliminary evidence for decoupling effects were found across a broad range of problem areas, including substance abuse, depression, eating disorders, overeating, chronic pain, anxiety, relationships, anger, avoidance behavior, and self-harm, with the strongest evidence currently available in the area of substance abuse. However, the review also notes a general lack of replication studies on decoupling effects and the need for more well-powered and controlled research testing specific decoupling hypotheses. © The Author(s) 2015.

  18. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  19. State policy change: Revenue decoupling in the electricity market

    Science.gov (United States)

    McNeil, Kytson L.

    The study seeks to answer the question, why are states adopting revenue decoupling in the electricity market, by investigating the relationship between policy adoption and attributes of the electricity market, the structure of the state utility commissions, and the political climate of the state. The study examines the period 1978-2008. Two econometric models, the marginal risk set model and the conditional risk set model, are estimated to predict the influence of covariates on the probability of the state adopting revenue decoupling in the electricity market. The models are both variants of the Cox proportional hazard model and use different underlying assumptions about the nature of adoption of revenue decoupling and when the states are considered to be at risk of adoption. Results suggest that market attributes, such as the source of electricity generation in the state, state energy intensity, and the distribution of non-public and public utilities, significantly influence the adoption of the policy. Also, the method of selecting commissioners and the party affiliation of elected officials in the state are important factors. The study concludes by suggestions to improve the implementation and evaluation of revenue decoupling in the electricity markets.

  20. Optimally combining dynamical decoupling and quantum error correction.

    Science.gov (United States)

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  1. FAST AUTOMATED DECOUPLING AT RHIC

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated coupling correction application iDQmini has been developed for RHIC routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program iDQmini provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (phase lock loop), the high frequency Schottky system and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the coupling correction application iDQmini, and discuss the operational protections incorporated in the program

  2. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5 th -generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  3. Quantifying the ice-albedo feedback through decoupling

    Science.gov (United States)

    Kravitz, B.; Rasch, P. J.

    2017-12-01

    The ice-albedo feedback involves numerous individual components, whereby warming induces sea ice melt, inducing reduced surface albedo, inducing increased surface shortwave absorption, causing further warming. Here we attempt to quantify the sea ice albedo feedback using an analogue of the "partial radiative perturbation" method, but where the governing mechanisms are directly decoupled in a climate model. As an example, we can isolate the insulating effects of sea ice on surface energy and moisture fluxes by allowing sea ice thickness to change but fixing Arctic surface albedo, or vice versa. Here we present results from such idealized simulations using the Community Earth System Model in which individual components are successively fixed, effectively decoupling the ice-albedo feedback loop. We isolate the different components of this feedback, including temperature change, sea ice extent/thickness, and air-sea exchange of heat and moisture. We explore the interactions between these different components, as well as the strengths of the total feedback in the decoupled feedback loop, to quantify contributions from individual pieces. We also quantify the non-additivity of the effects of the components as a means of investigating the dominant sources of nonlinearity in the ice-albedo feedback.

  4. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  5. Decoupling - past trends and prospects for the future[Decoupling of economic growth and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Christian; Holmberg, John; Karlsson, Sten [Chalmers Univ. of Tech., Goeteborg (SE). Physical Resource Theory] [and others

    2002-05-01

    There are widespread demands in society for a dematerialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO{sub 2} have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO{sub 2} concentrations, CO{sub 2} emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO{sub 2} emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO{sub 2} intensity has been prompted by some decoupling of energy from GDP and CO{sub 2} from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil

  6. A closer look at non-decoupling D-Terms

    CERN Document Server

    Staub, Florian

    2016-01-01

    Non-Decoupling D-Terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i) the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii) the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  7. Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model

    Directory of Open Access Journals (Sweden)

    Jianbo Hu

    2017-05-01

    Full Text Available This paper uses the non-competitive I-O model and the Tapio decoupling model to comprehensively analyze the decoupling relationship between the output of the product sector in China and its embodied carbon emissions under trade openness. For this purpose, the Chinese input and output data in 2002, 2005, 2007, 2010, and 2012 are used. This approach is beneficial to identify the direct mechanism for the increased carbon emission in China from a micro perspective and provides a new perspective for the subsequent study about low-carbon economy. The obtained empirical results are as follows: (1 From overall perspective, the decoupling elasticity between the output of the product sector and its embodied carbon emissions decreased. Output and embodied carbon emissions showed a growth link from 2002 to 2005 and a weak decoupling relationship for the rest of the study period. (2 Among the 28 industries in the product sector, the increased growth rate of output in more and more product sectors was no longer accompanied by large CO2 emissions. The number of industries with strong decoupling relationships between output and embodied carbon emissions increased. (3 From the perspective of three industries, the output and embodied carbon emissions in the second and third industries exhibited a growth link only from 2002 to 2005; the three industries presented weak or strong decoupling for the rest of the study period. Through empirical analysis, this paper mainly through the construction of ecological and environmental protection of low carbon agriculture, low carbon cycle industrial system, as well as intensive and efficient service industry to reduce the carbon emissions of China’s product sector.

  8. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  9. Li-air batteries: Decouple to stabilize

    Science.gov (United States)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  10. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  11. A closer look at non-decoupling D-terms

    Directory of Open Access Journals (Sweden)

    Florian Staub

    2016-07-01

    Full Text Available Non-decoupling D-terms are an attractive possibility to enhance the tree-level mass of the standard model like Higgs boson in supersymmetric models. We discuss here for the case of a new Abelian gauge group two effects usually neglected in literature: (i the size of the additional radiative corrections to the Higgs mass due to the presence of the new gauge coupling, and (ii the impact of gauge kinetic mixing. It is shown that both effects reduce to some extent the positive effect of the non-decoupling D-terms on the Higgs mass.

  12. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  13. Have Market-oriented Reforms Decoupled China’s CO2 Emissions from Total Electricity Generation? An Empirical Analysis

    Directory of Open Access Journals (Sweden)

    Wei Shang

    2016-05-01

    Full Text Available Achieving the decoupling of electric CO2 emissions from total electricity generation is important in ensuring the sustainable socioeconomic development of China. To realize this, China implemented market-oriented reforms to its electric power industry at the beginning of 2003. This study used the Tapio decoupling index, the Laspeyres decomposition algorithm, and decoupling-related data from 1993 to 2012 to evaluate the effect of these reforms. Several conclusions can be drawn based on the empirical analysis. (1 The reforms changed the developmental trend of the decoupling index and facilitated its progress towards strong decoupling. (2 The results forecasted through fitting the curve to the decoupling index indicate that strong decoupling would be realized by 2030. (3 Limiting the manufacturing development and upgrading the generation equipment of the thermal power plants are essential for China to achieve strong decoupling at an early date. (4 China should enhance regulatory pressures and guidance for appropriate investment in thermal power plants to ensure the stable development of the decoupling index. (5 Transactions between multiple participants and electricity price bidding play active roles in the stable development of the decoupling index.

  14. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  15. Brain Emotional Learning Based Intelligent Decoupler for Nonlinear Multi-Input Multi-Output Distillation Columns

    Directory of Open Access Journals (Sweden)

    M. H. El-Saify

    2017-01-01

    Full Text Available The distillation process is vital in many fields of chemical industries, such as the two-coupled distillation columns that are usually highly nonlinear Multi-Input Multi-Output (MIMO coupled processes. The control of MIMO process is usually implemented via a decentralized approach using a set of Single-Input Single-Output (SISO loop controllers. Decoupling the MIMO process into group of single loops requires proper input-output pairing and development of decoupling compensator unit. This paper proposes a novel intelligent decoupling approach for MIMO processes based on new MIMO brain emotional learning architecture. A MIMO architecture of Brain Emotional Learning Based Intelligent Controller (BELBIC is developed and applied as a decoupler for 4 input/4 output highly nonlinear coupled distillation columns process. Moreover, the performance of the proposed Brain Emotional Learning Based Intelligent Decoupler (BELBID is enhanced using Particle Swarm Optimization (PSO technique. The performance is compared with the PSO optimized steady state decoupling compensation matrix. Mathematical models of the distillation columns and the decouplers are built and tested in simulation environment by applying the same inputs. The results prove remarkable success of the BELBID in minimizing the loops interactions without degrading the output that every input has been paired with.

  16. The westward drift of the lithosphere: A tidal ratchet?

    Directory of Open Access Journals (Sweden)

    A. Carcaterra

    2018-03-01

    Full Text Available Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the ‘westerly’ decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer (LVZ atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.

  17. Southern Ocean Control of Glacial AMOC Stability and Dansgaard-Oeschger Interstadial Duration

    Science.gov (United States)

    Buizert, C.; Schmittner, A.

    2016-12-01

    Glacial periods exhibit abrupt Dansgaard-Oeschger (DO) climatic oscillations that are thought to be linked to instabilities in the Atlantic meridional overturning circulation (AMOC). Great uncertainty remains regarding the dynamics of the DO cycle, as well as controls on the timing and duration of individual events. Using ice core data we show that the duration of warm (interstadial) periods is strongly correlated with Antarctic climate, and presumably with Southern Ocean (SO) temperature and the position of the Southern Hemisphere (SH) westerlies. We propose a SO control on AMOC stability and interstadial duration via the rate of Antarctic bottom water formation, meridional density/pressure gradients, Agulhas Leakage, and SO adiabatic upwelling. This hypothesis is supported by climate model experiments that demonstrate SO warming leads to a stronger AMOC that is less susceptible to freshwater perturbations. In the AMOC stability diagram, SO warming and strengthening of the SH westerlies both shift the vigorous AMOC branch toward higher freshwater values, thus raising the threshold for AMOC collapse. The proposed mechanism could provide a consistent explanation for several diverse observations, including maximum DO activity during intermediate ice volume/SH temperature, and successively shorter DO durations within each Bond cycle. It may further have implications for the fate of the AMOC under future global warming.

  18. Differences in coastal and oceanic SST trends north of Yucatan Peninsula

    Science.gov (United States)

    Varela, R.; Costoya, X.; Enriquez, C.; Santos, F.; Gómez-Gesteira, M.

    2018-06-01

    The coastal area north of Yucatan has experienced a cooling SST trend from 1982 to 2015 during the upwelling season (May-September) that contrasts with the warming observed at the adjacent ocean area. Different drivers were analyzed to identify the possible causes of that unusual coastal cooling. Changes in coastal upwelling and in sea-atmosphere heat fluxes are not consistent with the observed coastal cooling. The eastward shift of the Yucatan Current observed over the last decades is hypothesized as the most probable cause of coastal cooling. This shift enhances the vertical transport of cold deeper water to the continental shelf from where it is pumped to the surface by upwelling favorable westerly winds.

  19. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  20. Robust dynamical decoupling for quantum computing and quantum memory.

    Science.gov (United States)

    Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter

    2011-06-17

    Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.

  1. Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima

    International Nuclear Information System (INIS)

    Hernández-Ceballos, M.A.; Hong, G.H.; Lozano, R.L.; Kim, Y.I.; Lee, H.M.; Kim, S.H.; Yeh, S.-W.; Bolívar, J.P.; Baskaran, M.

    2012-01-01

    Massive amounts of anthropogenic radionuclides were released from the nuclear reactors located in Fukushima (northeastern Japan) between 12 and 16 March 2011 following the earthquake and tsunami. Ground level air radioactivity was monitored around the globe immediately after the Fukushima accident. This global effort provided a unique opportunity to trace the surface air mass movement at different sites in the Northern Hemisphere. Based on surface air radioactivity measurements around the globe and the air mass backward trajectory analysis of the Fukushima radioactive plume at various places in the Northern Hemisphere by employing the Hybrid Single-Particle Lagrangian Integrated Trajectory model, we show for the first time, that the uninterrupted complete revolution of the mid-latitude Surface Westerlies took place in less than 21 days, with an average zonal velocity of > 60 km/h. The position and circulation time scale of Surface Westerlies are of wide interest to a large number of global researchers including meteorologists, atmospheric researchers and global climate modellers. -- Highlights: ► Evidence of the South Korea contamination with released radiocesium from Fukushima. ► Field samples and air mass analysis were utilized to elucidate the transport of those radionuclides. ► Characterization of the air mass movements at different sites at the Earth's surface. ► Verification of the uninterrupted complete revolution of the artificial radionuclides released in Fukushima. ► Quantification of the velocity of the artificial radionuclides released in Fukushima.

  2. Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ceballos, M.A. [Department of Applied Physics, University of Huelva, Huelva (Spain); Hong, G.H. [Korea Ocean Research and Development Institute, Ansan 426-744 (Korea, Republic of); Lozano, R.L. [Department of Applied Physics, University of Huelva, Huelva (Spain); Kim, Y.I. [Korea Ocean Research and Development Institute, Uljin 767-813 (Korea, Republic of); Lee, H.M.; Kim, S.H. [Korea Ocean Research and Development Institute, Ansan 426-744 (Korea, Republic of); Yeh, S.-W. [Department of Environmental Marine Science, Hanyang University, Ansan, 426-791 (Korea, Republic of); Bolivar, J.P., E-mail: bolivar@uhu.es [Department of Applied Physics, University of Huelva, Huelva (Spain); Baskaran, M. [Department of Geology, Wayne State University, Detroit, Michigan (United States)

    2012-11-01

    Massive amounts of anthropogenic radionuclides were released from the nuclear reactors located in Fukushima (northeastern Japan) between 12 and 16 March 2011 following the earthquake and tsunami. Ground level air radioactivity was monitored around the globe immediately after the Fukushima accident. This global effort provided a unique opportunity to trace the surface air mass movement at different sites in the Northern Hemisphere. Based on surface air radioactivity measurements around the globe and the air mass backward trajectory analysis of the Fukushima radioactive plume at various places in the Northern Hemisphere by employing the Hybrid Single-Particle Lagrangian Integrated Trajectory model, we show for the first time, that the uninterrupted complete revolution of the mid-latitude Surface Westerlies took place in less than 21 days, with an average zonal velocity of > 60 km/h. The position and circulation time scale of Surface Westerlies are of wide interest to a large number of global researchers including meteorologists, atmospheric researchers and global climate modellers. -- Highlights: Black-Right-Pointing-Pointer Evidence of the South Korea contamination with released radiocesium from Fukushima. Black-Right-Pointing-Pointer Field samples and air mass analysis were utilized to elucidate the transport of those radionuclides. Black-Right-Pointing-Pointer Characterization of the air mass movements at different sites at the Earth's surface. Black-Right-Pointing-Pointer Verification of the uninterrupted complete revolution of the artificial radionuclides released in Fukushima. Black-Right-Pointing-Pointer Quantification of the velocity of the artificial radionuclides released in Fukushima.

  3. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    International Nuclear Information System (INIS)

    Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya; Ikeda, Yujiro

    2005-01-01

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator

  4. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Directory of Open Access Journals (Sweden)

    Hendrik Monsees

    Full Text Available In classical aquaponics (coupled aquaponic systems, 1-loop systems the production of fish in recirculating aquaculture systems (RAS and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH. Recently presented decoupled aquaponics (2-loop systems have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+, elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C, abiotic factors (temperature, pH, oxygen, and conductivity, fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  5. Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.

    Science.gov (United States)

    Monsees, Hendrik; Kloas, Werner; Wuertz, Sven

    2017-01-01

    In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

  6. Interannual to Decadal SST Variability in the Tropical Indian Ocean

    Science.gov (United States)

    Wang, G.; Newman, M.; Han, W.

    2017-12-01

    The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.

  7. Late kinetic decoupling of light magnetic dipole dark matter

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Kadota, Kenji

    2016-01-01

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10 −6 solar masses.

  8. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  9. Unmasking decoupling: Redefining the Resource Intensity of the Economy.

    Science.gov (United States)

    Bithas, Kostas; Kalimeris, Panos

    2018-04-01

    Interest in investigating the complex link between resources and developments has revived recently following studies which support striking "dematerialized" growth over the last hundred years or so. This so-called decoupling effect is defined as the declining quantity of resources required for producing one unit of GDP. Decoupling studies adopt aggregate GDP as the measure of the outcome of the economy. However, this outcome is contributed by the total population which differs over time and between countries. A valid comparison should use a comparable, standardized indicator that adjusts for population size. GDP per capita, the income index, defines in monetary terms the ultimate outcome of the economy and is adopted by international organizations as the standard index for comparing economies. The income index approximates, in monetary terms, the welfare produced by the economic system and enjoyed by individuals. Recently developed alternative indexes of welfare lack broad data coverage and have limited empirical application as yet. For this reason and for ensuring direct comparison with the standard decoupling estimates, our study remains within the monetary context. The present paper re-evaluates the resources-economy link from the perspective of "the resources required for the production of one unit of GDP per capita (Income)" and hence evaluates the efficiency of turning resources into the actual outcome of the economic system. Our estimates suggest that the dependence of global economic growth on natural resources has increased by over 60% in the last 110years (1900-2009), contrasting with the prevailing decoupling estimates which suggest a reduction by 63%. We find that the actual decoupling, which began in the mid-1970s in post-industrial economies, is counterbalanced by the intensified resource intensity of several developing economies. Accordingly, in the pursuit of sustainability, the dematerialization target needs to be more clearly incorporated into

  10. A critical overview of industrial energy decoupling programs in six developing countries in Asia

    International Nuclear Information System (INIS)

    Luken, Ralph A.; Piras, Stefano

    2011-01-01

    In reviewing the journal literature on the decoupling of energy use and industrial output in the Asian region, particularly with respect to developing countries, we found little information about most country programs other than for China and India and only one article that compared the programs of these two countries. For this reason, we used diverse sources to identify the key programmatic features that have contributed, but clearly are not totally responsible for, decoupling achievements of two countries ( China and Thailand) and then, on the basis of these findings, reviewed emerging industrial energy decoupling programs in four other countries (India, Indonesia, Malaysia and Vietnam). We found that the design of the two successful on-going decoupling programs have common features, which are setting an explicit target for decoupling of energy use and industrial output, a government program that offers financial incentives and imposes specific auditing and reporting requirements and involvement of the manufacturing sector in designing and implementing targets as they apply to individual enterprises. We also found that the emerging programs in the other four countries lack some or all of these essential programmatic features. - Highlights: → We reviewed two on-going and four emerging industrial energy decoupling programs. → These six Asian developing countries have very different rates of decoupling. → The two successful on-going programs share three common features. → These are quantitative targets, supportive programs and industry involvement. → The four emerging programs lack some or all of these features.

  11. Analysis of near-field data from a Soviet decoupling experiment

    International Nuclear Information System (INIS)

    Saikia, C.K.; McLaren, J.P.; Helmberger, D.V.

    1993-01-01

    Recently Adushkin et al. (1992a) presented some results on a decoupling experiment performed in a salt dome in Azghir near the Caspian Sea. A large coupled shot (64 kT) was followed five years later by a decoupled shot (8 kT) fired in the cavity formed by the earlier event. Both events were recorded locally and this data has been provided by the Soviet scientists in a cooperative effort to better understand the seismic coupling problem. This data, in conjunction with WWSSN observations, is analyzed in an effort to determine the RDP's and an estimate of t. Our preliminary results suggest that RDP appropriate for the large event is quite similar to that of LONGSHOT (80 kT event). Their teleseismic observations are difficult to distinguish in waveshape. The M s for LONGSHOT is 3.9 while that for the coupled Russian event is 3.3. The m b for the LONGSHOT (5.8) is slightly smaller than for the Russian event (m b = 6.0, ISC). This comparison of m b :M s appears to be common to most Azghir events as compared to the US experience. The t* appropriate for Amchitka (t* = 0.9) was established by near-field and teleseismic modeling of waveform data similar to this study where we obtain a t* = 0.5 to 0.6. The RDP for the small event is less well resolved but appears to be only partially decoupled. Prior estimates of decoupling factors range from 30 (based on this data by Adushkin) to 70 (for the Sterling/Salmon experiment). Our analysis produces a decoupling factor of about 15 using near-field data which is similar to the teleseismic modeling result

  12. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2012-01-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  13. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  14. Decoupling limit and throat geometry of non-susy D3 brane

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in

    2017-03-10

    Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.

  15. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  16. Tourism-Related CO2 Emission and Its Decoupling Effects in China: A Spatiotemporal Perspective

    Directory of Open Access Journals (Sweden)

    Zi Tang

    2018-01-01

    Full Text Available The rapid development of the tourism industry has been accompanied by an increase in CO2 emissions and has a certain degree of impact on climate change. This study adopted the bottom-up approach to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000–2015. In addition, the decoupling index was applied to analyze the decoupling effects between tourism-related CO2 emissions and tourism economy from 2000 to 2015. The results showed that the total CO2 emissions of the tourism industry rose from 37.95 Mt in 2000 to 100.98 Mt in 2015 with an average annual growth rate of 7.1%. The highest CO2 emissions from the tourism industry occurred in eastern coastal China, whereas the least CO2 emissions were in the west of China. Additionally, the decoupling of CO2 emissions from economic growth in China’s tourism industry had mainly gone through the alternations of negative decoupling and weak decoupling. The decoupling states in most of the Chinese provinces were desirable during the study period. This study may serve as a scientific reference regarding decision-making in the sustainable development of the tourism industry in China.

  17. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    Science.gov (United States)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  18. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  19. Modelling ocean-colour-derived chlorophyll a

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2018-01-01

    Full Text Available This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper. We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter. The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation

  20. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    International Nuclear Information System (INIS)

    Huang Ling-Zhi; Xiao Yong; Wen Ji-Hong; Yang Hai-Bin; Wen Xi-Sen

    2016-01-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. (paper)

  1. Decoupling Suspension Controller Based on Magnetic Flux Feedback

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available The suspension module control system model has been established based on MIMO (multiple input and multiple output state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module’s antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  2. Decoupling suspension controller based on magnetic flux feedback.

    Science.gov (United States)

    Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng

    2013-01-01

    The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced.

  3. Non-decoupling of heavy scalars in cosmology

    NARCIS (Netherlands)

    Hardeman, Sjoerd Reimer

    2012-01-01

    The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology

  4. K/sub Ic/ and J/sub Ic/ of Westerly granite: effects of thickness and in-plane dimensions

    International Nuclear Information System (INIS)

    Schmidt, R.A.; Lutz, T.J.

    1978-01-01

    An investigation is described in which tensile properties, fracture toughness, and critical J integral are measured for Westerly granite, a rock that is widely used in rock mechanics studies. This was primarily a parameter sensitivity study in which the effects of specimen dimensions and testing techniques were assessed. It is hoped that this study will aid in establishing tentative standards and guidelines for fracture toughness testing of rock as well as indicate the feasibility of using a J integral fracture criterion for this material. ASTM standard specimen configurations of the compact and bend types were tested with compact specimens ranging in width from W = 25.4 mm to W = 406.4 mm (0.5T to 8T) and with thickness ranging from 13 mm to 100 mm. A series of 4T compact specimens were tested to assess the effects of thickness and fatigue precracking. Techniques are described that enable several values of K/sub Ic/, a complete J vs crack growth curve, and a J/sub Ic/ value to be obtained from each sample. Direct-pull tension tests on shaped specimens of Westerly granite are described which indicate a high degree of nonlinear, inelastic behavior. This fact raises questions about the use of LEFM, but the J/sub Ic/ data presented appear to validate the K/sub Ic/ measurements

  5. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    OpenAIRE

    A. Gnanadesikan; I. Marinov

    2010-01-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By ...

  6. Coupling Mechanism and Decoupled Suspension Control Model of a Half Car

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-01-01

    Full Text Available A structure decoupling control strategy of half-car suspension is proposed to fully decouple the system into independent front and rear quarter-car suspensions in this paper. The coupling mechanism of half-car suspension is firstly revealed and formulated with coupled damping force (CDF in a linear function. Moreover, a novel dual dampers-based controllable quarter-car suspension structure is proposed to realize the independent control of pitch and vertical motions of the half car, in which a newly added controllable damper is suggested to be installed between the lower control arm and connection rod in conventional quarter-car suspension structure. The suggested damper constantly regulates the half-car pitch motion posture in a smooth and steady operation condition meantime achieving the expected completely structure decoupled control of the half-car suspension, by compensating the evolved CDF.

  7. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  8. Subantarctic peatlands and their potential as palaeoenvironmental and palaeoclimatic archives

    NARCIS (Netherlands)

    Van der Putten, N.; Mauquoy, D.; Verbruggen, C.; Björck, S.

    2012-01-01

    Subantarctic islands are located within the Antarctic Circumpolar Current and the southern westerly wind belt, the latter called Southern Westerlies, making them unique terrestrial archives to investigate past changes in oceanic and atmospheric circulation patterns in the southern mid-latitudes. The

  9. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  10. Decoupling economic growth from CO2 emissions: A decomposition analysis of China's household energy consumption

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2016-09-01

    Full Text Available This paper analyzes Chinese household CO2 emissions in 1994–2012 based on the Logarithmic Mean Divisia Index (LMDI structure decomposition model, and discusses the relationship between household CO2 emissions and economic growth based on a decoupling indicator. The results show that in 1994–2012, household CO2 emissions grew in general and displayed an accelerated growth trend during the early 21st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO2 emission growth (an increase of 1.078 Gt CO2 with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO2 emission growth inhibition (0.723 Gt CO2 emission reduction with cumulative contribution rate of 38.27%. Meanwhile, household CO2 emissions are in a weak state of decoupling in general. The change in CO2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure fluctuates between a weak and a strong decoupling state.

  11. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    a pair of residuals generated by Compact Disc Player. However, these residuals depend on the performance of position servos in the Compact Disc Player. In other publications of the same authors a pair of decoupled residuals is derived. However, the computation of these alternative residuals has been...

  12. Principle of Global Decoupling with Coupling Angle Modulation

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). A new scheme coupling phase modulation is found. It introduces a rotating extra coupling into the coupled machine to detect the residual coupling. The eigentune responses are measured with a high resolution phase lock loop (PLL) system. From the minimum and maximum tune splits, the correction strengths are given. The time period occupied by one coupling phase modulation is less than 10 seconds. So it is a very promising solution for the global decoupling on the ramp. In this article the principle of the coupling phase modulation is given. The simulation with the smooth accelerator model is also done. The practical issues concerning its applications are discussed.

  13. Decomposing the Decoupling of Water Consumption and Economic Growth in China’s Textile Industry

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-03-01

    Full Text Available Unprecedented economic achievement in China’s textile industry (TI has occurred along with rising water consumption. The goal of industrial sustainable development requires the decoupling of economic growth from resource consumption. This paper examines the relationship between water consumption and economic growth, and the internal influence mechanism of China’s TI and its three sub-sectors: the manufacture of textiles (MT sector, the Manufacture of Textile Wearing Apparel, Footwear, and Caps (MTWA sector, and the manufacture of chemical fibers (MCF sector. A decoupling analysis was performed and the Laspeyres decomposition method was applied to the period from 2001 to 2014. We showed that six of the fourteen years analyzed (2003, 2006, 2008, 2009, 2011, and 2013 exhibited a strong decoupling effect and three of the fourteen years (2005, 2007, and 2010 exhibited a weak decoupling effect. Overall, China’s TI experienced a good decoupling between economic growth and water consumption from 2002 to 2014. For the three sub-sectors, the MTWA sector experienced a more significant positive decoupling than the MT and MCF sectors. The decomposition results confirm that the industrial scale factor is the most important driving force of China’s TI water consumption increase, while the water efficiency factor is the most important inhibiting force. The industrial structure adjustment does not significantly affect water consumption. The industrial scale and water use efficiency factors are also the main determinants of change in water consumption for the three sub-sectors.

  14. Decoupling, re-engaging

    DEFF Research Database (Denmark)

    Rose, Jeremy; Schlichter, Bjarne Rerup

    2013-01-01

    the life of a major project and the complex demands of managing those fluctuations. We investigate evolving trust relationships in a longitudinal case analysis of a large integrated hospital system implementation for the Faroe Islands. Trust relationships suffered various breakdowns, but the project...... was able to recover and eventually meet its goals. Based on concepts from Giddens’ later work on modernity, we develop two approaches for managing dynamic trust relationships in implementation projects: decoupling and re-engaging....... in the project is contingent upon many factors, is likely to vary over time and should not be taken for granted. Previous studies have identified the relationship between trust and project outcomes and suggested trust-building strategies but have largely ignored the dynamic quality of trust relations through...

  15. A 27 ka paleoenvironmental lake sediment record from Taro Co, central Tibetan Plateau: implications for the interplay between monsoon and the Westerlies

    Science.gov (United States)

    Wang, J.; Ma, Q.; Huang, L.; Ju, J.; Guo, Y.; Lin, X.; Li, Y.; Zhu, L.

    2017-12-01

    The climate of Tibetan Plateau (TP) is mainly influenced by the Indian Ocean Summer Monsoon (IOSM) and the Westerlies. The interaction of these two air masses is therefore a crucial scientific issue to understand how they impact the climate in this area, especially in the geological times. However, constrained by the available archives, researches on this topic are still very few in the hinterland of the TP, especially covering the Last Glacial Maximum (LGM) period. Here we present a new lake sediment record retrieved from Taro Co covering the last 27 ka to elucidate how the IOSM and the Westerlies interact and the possible mechanisms. Taro Co (486 km2, Dmax: 132m, 4565 m a.s.l., currently closed), located on the central TP, is a fresh lake with the major supply from glaciers. Two parallel piston cores as well as several gravity cores were retrieved from the deepest parts. These cores were correlated based on high resolution XRF scanning and a continuous 1069 cm-long core was finally integrated. Chronology was determined by 210Pb, 137Cs and AMS 14C measurements. Multidiscipline analyses including grain size, total organic carbon (TOC), total nitrogen, diatom, ostracod, pollen and n-alkanes were accomplished to reconstruct paleoenvironmental changes. The lake level of Taro Co was low since 27 cal ka BP indicated by very coarse materials and diatom assemblages with gradually increased temperature and salinity (TOC and carbonate getting higher). The terrestrial water input decreased continuously reflected by such elements as Si, Ti, Fe, K. It is likely that there was a sedimentation gap between 961-954cm, corresponding to 23.4 to 18.6 cal ka BP probably demonstrated Taro Co was very shallow at that period. The first prominent abrupt change of most proxies was observed at 14.7 cal ka BP showing a great lake deepening which likely indicated an enhancement of IOSM. There were several spells with abrupt changes of cold/warm stages before the Holocene and the Younger Dryas

  16. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.

    Science.gov (United States)

    Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter

    2014-02-07

    Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.

  17. Natural relations and Appelquist-Carazzone decoupling theorem

    International Nuclear Information System (INIS)

    Grzadkowski, B.; Krawczyk, P.; Pokorski, S.

    1984-01-01

    It is pointed out that in some cases violation of the Appelquist-Carazzone decoupling theorem in spontaneously broken gauge theories is related to the presence in such theories of the so-called natural zeroth-order relations. In this context heavy-fermion effects in the Glashow-Salam-Weinberg model are discussed

  18. Decoupled simulations of offshore wind turbines with reduced rotor loads and aerodynamic damping

    Directory of Open Access Journals (Sweden)

    S. Schafhirt

    2018-02-01

    Full Text Available Decoupled load simulations are a computationally efficient method to perform a dynamic analysis of an offshore wind turbine. Modelling the dynamic interactions between rotor and support structure, especially the damping caused by the rotating rotor, is of importance, since it influences the structural response significantly and has a major impact on estimating fatigue lifetime. Linear damping is usually used for this purpose, but experimentally and analytically derived formulas to calculate an aerodynamic damping ratio often show discrepancies to measurement and simulation data. In this study decoupled simulation methods with reduced and full rotor loads are compared to an integrated simulation. The accuracy of decoupled methods is evaluated and an optimization is performed to obtain aerodynamic damping ratios for different wind speeds that provide the best results with respect to variance and equivalent fatigue loads at distinct output locations. Results show that aerodynamic damping is not linear, but it is possible to match desired output using decoupled models. Moreover, damping ratios obtained from the empirical study suggest that aerodynamic damping increases for higher wind speeds.

  19. Power corrections from decoupling of the charm quark

    Science.gov (United States)

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham; Alpha Collaboration

    2017-11-01

    Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm quark mass M starting at M-2. Ratios of hadronic scales are equal to their value in the pure gauge theory up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson flow, that these corrections are very small and that they can be described by a term proportional to M-2 down to masses in the region of the charm quark mass.

  20. Improved Decoupling for 13C coil Arrays Using Non-Conventional Matching and Preamplifier Impedance

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Johansen, Daniel Højrup; Hansen, Rie Beck

    In this study, we describe a method to obtain improved preamplifier decoupling for receive-only coils. The method relies on the better decoupling obtained when coils are matched to an impedance higher than 50 . Preamplifiers with inductive imaginary impedance and low real impedance, increase...

  1. Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2016-01-01

    efficiency and high power density is identified and comprehensively studied, and the commercially available film capacitors, the circuit topologies, and the control strategies adopted for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed...... to further improve the performance of dc decoupling in terms of efficiency and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the simulation and experimental......This paper presents the benchmark study of ac and dc active power decoupling circuits for second order harmonic mitigation in kW scale single-phase inverters. First of all, a brief comparison of recently reported active power decoupling circuits is given, and the best solution that can achieve high...

  2. The North Atlantic Oscillation: variability and interactions with the North Atlantic ocean and Artic sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T

    2000-07-01

    The North Atlantic oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region and describes the strengthening and weakening of the midlatitude westerlies. In this study, variability of the NAO during wintertime and its relationship to the North Atlantic ocean and Arctic sea ice is investigated. For this purpose, observational data are analyzed along with integrations of models for the Atlantic ocean, Arctic sea ice, and the coupled global climate system. From a statistical point of view, the observed NAO index shows unusually high variance on interdecadal time scales during the 20th century. Variability on other time scales is consistent with realizations of random processes (''white noise''). Recurrence of wintertime NAO anomalies from winter-to-winter with missing signals during the inbetween nonwinter seasons is primarily associated with interdecadal variability of the NAO. This recurrence indicates that low-frequency changes of the NAO during the 20th century were in part externally forced. (orig.)

  3. The North Atlantic Oscillation: variability and interactions with the North Atlantic ocean and Artic sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T.

    2000-07-01

    The North Atlantic oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region and describes the strengthening and weakening of the midlatitude westerlies. In this study, variability of the NAO during wintertime and its relationship to the North Atlantic ocean and Arctic sea ice is investigated. For this purpose, observational data are analyzed along with integrations of models for the Atlantic ocean, Arctic sea ice, and the coupled global climate system. From a statistical point of view, the observed NAO index shows unusually high variance on interdecadal time scales during the 20th century. Variability on other time scales is consistent with realizations of random processes (''white noise''). Recurrence of wintertime NAO anomalies from winter-to-winter with missing signals during the inbetween nonwinter seasons is primarily associated with interdecadal variability of the NAO. This recurrence indicates that low-frequency changes of the NAO during the 20th century were in part externally forced. (orig.)

  4. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  5. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  6. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  7. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  8. De-coupling interannual variations of vertical dust extinction over the Taklimakan Desert during 2007-2016 using CALIOP.

    Science.gov (United States)

    Nan, Yang; Wang, Yuxuan

    2018-03-26

    During the springtime, mineral dust from the Taklimakan Desert (TD) is lifted up to high altitudes and transported long distances by the westerlies. The vertical distributions of Taklimakan dust are important for both long-range transport and climate effects. In this study, we use CALIOP Level 3 dust extinction to describe interannual variation of dust extinction in TD aggregated at each 1km interval (1-2km, 2-3km, 3-4km, 4-5km and 5-6km) above mean sea level during springtime from 2007 to 2016. 87% of dust extinction over TD is concentrated at 1-4km taking a major composition of dust aerosol optical depth (AOD) and only 8.1% dust AOD is at 4-6km. Interannual variation of seasonal and monthly dust extinction at 1-4km is almost as same as dust AOD (R>0.99) but different from that at 4-6km (R are around 0.42). Our analysis provides observational evidence from CALIOP that vertical dust extinction over TD has distinctively different variability below and above 4km altitude and this threshold divides dust transport in TD into two systems. Taklimakan dust aerosols are more related to dust transport at high altitudes (4-10km) than low altitudes (0-4km) over downwind regions. High dust extinction below 4km over TD is necessary but not sufficient conditions to ensure dust transport easterly, while high dust extinction levels at 4-6km over TD are both necessary and sufficient conditions; such contrast leads to the de-coupled interannual variability seen by CALIOP. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Seasonal variation of marine organic aerosols in the North Pacific Ocean

    Science.gov (United States)

    Fu, P.; Kawamura, K.

    2017-12-01

    Atmospheric aerosols were collected in the marine boundary layer during five marine cruises in the northern Pacific Ocean from October 1996 to July 1997. Organic molecular compositions of the marine aerosols were measured using gas chromatography/mass spectrometry (GC/MS). Higher concentrations of levoglucosan and its isomers, the biomass-burning tracers, were observed in the coastal regions than those in the central north Pacific. Seasonal trends of biomass burning tracers were found to be higher in fall-winter-spring than in summer, suggesting an enhanced influence of continental aerosols to the marine atmosphere during cold seasons when the westerlies prevail. However, the atmospheric levels of secondary organic aerosol (SOA) tracers from the photooxidation of isoprene and monoterpenes were higher in warm seasons than cold seasons, which are in accordance with the enhanced emissions of biogenic volatile organic compounds (BVOCs) in summer. Stable C isotope ratios of total carbon (δ13CTC) in the marine aerosols ranged from -28.5‰ to -23.6‰ (mean -26.4‰), suggesting an important input of terrestrial/continental aerosol particles. Stable N isotope ratios (2.6‰ to 12.9‰, mean 7.1‰) were found to be higher in the coastal regions than those in the open oceans, suggesting an enhanced emission of marine aerosols in the open oceans. The fluorescence properties of the water-soluble organic carbon (WSOC) in the marine aerosols conform the importance of marine emitted organics in the open ocean, especially during the high biological activity periods.

  10. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    Science.gov (United States)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2017-01-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  11. Oblique-wing research airplane motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  12. Multiple estimation channel decoupling and optimization method based on inverse system

    Science.gov (United States)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  13. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments

    Directory of Open Access Journals (Sweden)

    H. Thomas

    2009-02-01

    Full Text Available The coastal ocean is a crucial link between land, the open ocean and the atmosphere. The shallowness of the water column permits close interactions between the sedimentary, aquatic and atmospheric compartments, which otherwise are decoupled at long time scales (≅ 1000 yr in the open oceans. Despite the prominent role of the coastal oceans in absorbing atmospheric CO2 and transferring it into the deep oceans via the continental shelf pump, the underlying mechanisms remain only partly understood. Evaluating observations from the North Sea, a NW European shelf sea, we provide evidence that anaerobic degradation of organic matter, fuelled from land and ocean, generates total alkalinity (AT and increases the CO2 buffer capacity of seawater. At both the basin wide and annual scales anaerobic AT generation in the North Sea's tidal mud flat area irreversibly facilitates 7–10%, or taking into consideration benthic denitrification in the North Sea, 20–25% of the North Sea's overall CO2 uptake. At the global scale, anaerobic AT generation could be accountable for as much as 60% of the uptake of CO2 in shelf and marginal seas, making this process, the anaerobic pump, a key player in the biological carbon pump. Under future high CO2 conditions oceanic CO2 storage via the anaerobic pump may even gain further relevance because of stimulated ocean productivity.

  14. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  15. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  16. Signature of Europa's Ocean Density on Gravity Data

    Science.gov (United States)

    Castillo, J. C.; Rambaux, N.

    2015-12-01

    Observations by the Galileo mission at Europa and Cassini-Huygens mission at Europa, Ganymede, Callisto, Enceladus, and Titan have found deep oceans at these objects with evidence for the presence of salts. Salt compounds are the products of aqueous alteration of the rock phase under hydrothermal conditions and have been predicted theoretically for these objects per analogy with carbonaceous chondrite parent bodies. Evidence for salt enrichment comes from magnetometer measurements (Galilean satellites), direct detection in the case of Enceladus, and inversion of the gravity data obtained at Titan. While there is direct detection for the presence of chlorides in icy grains ejected from Enceladus, the chemistry of the oceans detected so far, or even their densities, remain mostly unconstrained. However the increased ocean density impacts the interpretation of the tidal Love number k2and this may introduce confusion in the inference of the icy shell thickness from that parameter. We will present estimates of k2for a range of assumptions on Europa's hydrospheric structure that build on geophysical observations obtained by the Galileo mission combined with new models of Europa's interior. These models keep track of the compositions of the hydrated core and oceanic composition in a self-consistent manner. We will also estimate the electrical conductivity corresponding to the modeled oceanic composition. Finally we will explore how combining electromagnetic, topographic, and gravity data can decouple the signatures of the shell thickness and ocean composition on these geophysical observations. Acknowledgement: This work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.

  17. Decoupling Identification for Serial Two-Link Two-Inertia System

    Science.gov (United States)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  18. The Southern Ocean as a driver of centennial to millenial timescale radiocarbon variations

    Science.gov (United States)

    Rodgers, K. B.; Bianchi, D.; Galbraith, E.; Gnanadesikan, A.; Iudicone, D.; Mikaloff Fletcher, S.; Sarmiento, J. L.; Slater, R. D.

    2009-04-01

    Paleo-proxy records reveal large delta-c14 variations for both the atmosphere and the ocean on centennial to millenial timescales. One of the most pronounced examples is the onset phase of the Younger Dryas, when atmospheric delta-c14 rose by 70 per mil in only 200 years. Another is the most recent deglaciation (and the associated "Mystery Interval"). Many of the significant centennial to millenial transients in atmospheric delta-c14 are reflected in ocean interior delta-c14 at intermediate depths in the Pacific over the last 50kyrs. An ocean model has been used to test the idea that only modest perturbations to Southern Ocean winds provides a means to link the oceanic and atmospheric delta-c14 variations. Perturbations to the winds over the Southern Ocean are able to drive sizable decoupling of the fluxes of 14CO2 and 12CO2 over the Southern Ocean, thus modifying atmospheric delta-c14. These same perturbations are able to perturb rapidly the depth of intermediate water horizons in the North Pacific through the passage of baroclinic planetary (Rossby) waves. This sensitivity is significantly stronger than what previous studies have found for perturbations to the Meridional Overturning Circulation (MOC) in the North Atlantic. It is suggested that delta-c14 may provide a powerful tracer for understanding past variations in the climate system.

  19. Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2015-01-01

    studied, where the commercially available film capacitors, circuit topologies, and control strategies for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed to further improve the performance of dc decoupling in terms of efficiency...... and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the experimental results obtained on a 2 kW single-phase inverter.......This paper presents the benchmark study of ac and dc active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters. First of all, the best solutions of active power decoupling to achieve high efficiency and power density are identified and comprehensively...

  20. 1+1+2 gravitational perturbations on LRS class II spacetimes: decoupling gravito-electromagnetic tensor harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the first in a series of papers which considers gauge-invariant and covariant gravitational perturbations on arbitrary vacuum locally rotationally symmetric (LRS) class II spacetimes. Ultimately, we derive four decoupled equations governing four specific combinations of the gravito-electromagnetic (GEM) 2-tensor harmonic amplitudes. We use the gauge-invariant and covariant 1+1+2 formalism which Clarkson and Barrett (2003 Class. Quantum Grav. 20 3855) developed for analysis of vacuum Schwarzschild perturbations. In particular we focus on the first-order 1+1+2 GEM system and use linear algebra techniques suitable for exploiting its structure. Consequently, we express the GEM system new 1+1+2 complex form by choosing new complex GEM tensors, which is conducive to decoupling. We then show how to derive a gauge-invariant and covariant decoupled equation governing a newly defined complex GEM 2-tensor. Finally, the GEM 2-tensor is expanded in terms of arbitrary tensor harmonics and linear algebra is used once again to decouple the system further into four real decoupled equations

  1. Reliability-based optimal structural design by the decoupling approach

    International Nuclear Information System (INIS)

    Royset, J.O.; Der Kiureghian, A.; Polak, E.

    2001-01-01

    A decoupling approach for solving optimal structural design problems involving reliability terms in the objective function, the constraint set or both is discussed and extended. The approach employs a reformulation of each problem, in which reliability terms are replaced by deterministic functions. The reformulated problems can be solved by existing semi-infinite optimization algorithms and computational reliability methods. It is shown that the reformulated problems produce solutions that are identical to those of the original problems when the limit-state functions defining the reliability problem are affine. For nonaffine limit-state functions, approximate solutions are obtained by solving series of reformulated problems. An important advantage of the approach is that the required reliability and optimization calculations are completely decoupled, thus allowing flexibility in the choice of the optimization algorithm and the reliability computation method

  2. Cladding technique for development of Ag-In-Cd decoupler

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Kikuchi, K.; Kogawa, H.; Ikeda, Y.; Kawai, M.; Kurishita, H.; Konashi, K.

    2005-01-01

    To develop a Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between two plates of the Al alloy (A6061-T6). We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 1 h, respectively, for small test pieces (φ 22 mm in diam. x 5 mm in height). Especially, a sandwich case (a Ag-In plate with thickness of 0.5 mm between two Ag-Cd plates with thickness of 1.25 mm) gave easier (or better) bonding results. Though a hardened layer is found in the bonding layer, the rupture strength of the bonding layer is more than 30 MPa, which is higher than the design stress in our application

  3. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-09-15

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

  4. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F. J., E-mail: wangfujun@tju.edu.cn; Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W. [Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhang, H. J. [Tianjin Key Laboratory of Modern Mechatronics Equipment Technology, School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  5. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    Science.gov (United States)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  6. East Asia in World Trade: The Decoupling Fallacy, Crisis and Policy Challenges

    OpenAIRE

    Prema-chandra Athukorala; Archanun Kohpaiboon

    2010-01-01

    This paper examines the export experience of China and other East Asian economies in the aftermaths of the global financial crisis against the backdrop of pre-crisis trade patterns. The analysis is motivated by the ‘decoupling' thesis, which was a popular theme in the Asian policy circles in the lead-up to the onset of the recent financial crisis, and aims to probe three key issues: Was the East Asian trade integration story that underpinned the decoupling thesis simply a statistical artifact...

  7. One-Shot Decoupling and Page Curves from a Dynamical Model for Black Hole Evaporation.

    Science.gov (United States)

    Brádler, Kamil; Adami, Christoph

    2016-03-11

    One-shot decoupling is a powerful primitive in quantum information theory and was hypothesized to play a role in the black hole information paradox. We study black hole dynamics modeled by a trilinear Hamiltonian whose semiclassical limit gives rise to Hawking radiation. An explicit numerical calculation of the discretized path integral of the S matrix shows that decoupling is exact in the continuous limit, implying that quantum information is perfectly transferred from the black hole to radiation. A striking consequence of decoupling is the emergence of an output radiation entropy profile that follows Page's prediction. We argue that information transfer and the emergence of Page curves is a robust feature of any multilinear interaction Hamiltonian with a bounded spectrum.

  8. General decoupling procedure for expectation values of four-operator products in electron–phonon quantum kinetics

    International Nuclear Information System (INIS)

    Teeny, Nicolas; Fähnle, Manfred

    2013-01-01

    In the density-matrix formalism of electron–phonon quantum kinetics, the hierarchy of infinitely many coupled equations of motion for the expectation values of products of electron and phonon creation and annihilation operators of arbitrary order is usually terminated on the level of the equations of motion for the expectation values of three-operator products by using decoupling procedures for the four-operator products occurring in these equations. In the literature, decoupling procedures are discussed for special types of electron and phonon states. In the present paper, generalized decoupling procedures are derived for arbitrary electron and phonon states. (paper)

  9. Decoupling - past trends and prospects for the future

    International Nuclear Information System (INIS)

    Azar, Christian; Holmberg, John; Karlsson, Sten

    2002-05-01

    There are widespread demands in society for a de materialization or decoupling of economic growth from environmental impact. Calls are being made for eco-efficiency and/or an improvement of resource efficiency by a factor of 10. At the same time, some analysts claim there is an environmental Kuznet's curve that supposedly implies a fall in environmental pressure, as we get richer. An improvement in the environmental situation has already been observed in many cases, but there are also many areas where the situation is deteriorating. The purpose of this report is to summarize some key trends of energy and material use over time in both developing and developed countries. We have focused on Sweden, the EU, Japan and the USA as well as China, India and Brazil. The main findings in this paper can be summarized as follows: Absolute emissions of CO 2 have been increasing in most countries and periods studied. Some countries have experienced periods with constant or even falling emissions, but this is the exception rather than the rule, and it has been triggered by oil crises or economic recessions. In order to stabilize atmospheric CO 2 concentrations, CO 2 emissions have to be decoupled much more rapidly than has been the case in the past, and it is extremely unlikely that this will happen by itself. There was some decoupling of CO 2 emissions from GDP in the major economies of the world from 1970 to 1998 in the EU, Japan and the US as well as in some major developing countries such as China, although India actually increased its emissions over GDP by 1.4 per cent/yr over this period. The drop in CO 2 intensity has been prompted by some decoupling of energy from GDP and CO 2 from energy, the latter being a consequence of an increased use of natural gas and nuclear power. In the South, fossil CO 2 per energy tends to increase from rather low levels. With industrialization, the proportion of biomass drops and the proportion of fossil energy rises in the energy supply mix

  10. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  11. The Circuit-Level Decoupling Modulation Strategy for Three-Level Neutral-Point-Clamped (TL-NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2011-01-01

    In this paper, a circuit-level decoupling modulation strategy is proposed for the three-level (TL) neutral-point-clamped (NPC) inverters. With the proposed modulation scheme, the TL-NPC inverter can be decoupled into two three-level Buck converters in each defined operating section, which makes...

  12. Decoupling of charm beyond leading order

    OpenAIRE

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham

    2017-01-01

    We study the effective theory of decoupling of a charm quark at low energies. We do this by simulating a model, QCD with two mass-degenerate charm quarks. At leading order the effective theory is a pure gauge theory. By computing ratios of hadronic scales we have direct access to the power corrections in the effective theory. We show that these corrections follow the expected leading behavior, which is quadratic in the inverse charm quark mass.

  13. Empirical research on decoupling relationship between energy-related carbon emission and economic growth in Guangdong province based on extended Kaya identity.

    Science.gov (United States)

    Wang, Wenxiu; Kuang, Yaoqiu; Huang, Ningsheng; Zhao, Daiqing

    2014-01-01

    The decoupling elasticity decomposition quantitative model of energy-related carbon emission in Guangdong is established based on the extended Kaya identity and Tapio decoupling model for the first time, to explore the decoupling relationship and its internal mechanism between energy-related carbon emission and economic growth in Guangdong. Main results are as follows. (1) Total production energy-related carbon emissions in Guangdong increase from 4128 × 10⁴ tC in 1995 to 14396 × 10⁴ tC in 2011. Decoupling elasticity values of energy-related carbon emission and economic growth increase from 0.53 in 1996 to 0.85 in 2011, and its decoupling state turns from weak decoupling in 1996-2004 to expansive coupling in 2005-2011. (2) Land economic output and energy intensity are the first inhibiting factor and the first promoting factor to energy-related carbon emission decoupling from economic growth, respectively. The development speeds of land urbanization and population urbanization, especially land urbanization, play decisive roles in the change of total decoupling elasticity values. (3) Guangdong can realize decoupling of energy-related carbon emission from economic growth effectively by adjusting the energy mix and industrial structure, coordinating the development speed of land urbanization and population urbanization effectively, and strengthening the construction of carbon sink.

  14. A Decoupling Control Method for Shunt Hybrid Active Power Filter Based on Generalized Inverse System

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-01-01

    Full Text Available In this paper, a novel decoupling control method based on generalized inverse system is presented to solve the problem of SHAPF (Shunt Hybrid Active Power Filter possessing the characteristics of 2-input-2-output nonlinearity and strong coupling. Based on the analysis of operation principle, the mathematical model of SHAPF is firstly built, which is verified to be invertible using interactor algorithm; then the generalized inverse system of SHAPF is obtained to connect in series with the original system so that the composite system is decoupled under the generalized inverse system theory. The PI additional controller is finally designed to control the decoupled 1-order pseudolinear system to make it possible to adjust the performance of the subsystem. The simulation results demonstrated by MATLAB show that the presented generalized inverse system strategy can realise the dynamic decoupling of SHAPF. And the control system has fine dynamic and static performance.

  15. Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available China has overtaken the United States as the world’s largest producer of carbon dioxide, with industrial carbon emissions (ICE accounting for approximately 65% of the country’s total emissions. Understanding the ICE decoupling patterns and factors influencing the decoupling status is a prerequisite for balancing economic growth and carbon emissions. This paper provides an overview of ICE based on decoupling elasticity and the Tapio decoupling model. Furthermore, the study identifies the factors contributing to ICE changes in China, using the Kaya identity and Log Mean Divisia Index (LMDI techniques. Based on the effects and contributions of ICE, we close with a number of recommendations. The results revealed a significant upward trend of ICE during the study period 1994 to 2013, with a total amount of 11,147 million tons. Analyzing the decoupling relationship indicates that “weak decoupling” and “expansive decoupling” were the main states during the study period. The decomposition analysis showed that per capita wealth associated with industrial outputs and energy intensity are the main driving force of ICE, while energy intensity of industrial output and energy structure are major determinants for ICE reduction. The largest contributing cumulative effect to ICE is per capita wealth, at 1.23 in 2013. This factor is followed by energy intensity, with a contributing cumulative effect of −0.32. The cumulative effects of energy structure and population are relatively small, at 0.01 and 0.08, respectively.

  16. Dynamic ocean-tide effects on Earth's rotation

    Science.gov (United States)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  17. Flatfish recruitment response to decadal climatic variability and ocean conditions in the eastern Bering Sea

    Science.gov (United States)

    Wilderbuer, T. K.; Hollowed, A. B.; Ingraham, W. J.; Spencer, P. D.; Conners, M. E.; Bond, N. A.; Walters, G. E.

    2002-10-01

    This paper provides a retrospective analysis of the relationship of physical oceanography and biology and recruitment of three Eastern Bering Sea flatfish stocks: flathead sole ( Hippoglossoides elassodon), northern rock sole ( Lepidopsetta polyxystra), and arrowtooth flounder ( Atheresthes stomias) for the period 1978-1996. Temporal trends in flatfish production in the Eastern Bering Sea are consistent with the hypothesis that decadal scale climate variability influences marine survival during the early life history period. Density-dependence (spawning stock size) is statistically significant in a Ricker model of flatfish recruitment, which includes environmental terms. Wind-driven advection of flatfish larvae to favorable nursery grounds was also found to coincide with years of above-average recruitment through the use of an ocean surface current simulation model (OSCURS). Ocean forcing of Bristol Bay surface waters during springtime was mostly shoreward (eastward) during the 1980s and seaward (westerly) during the 1990s, corresponding with periods of good and poor recruitment. Distance from shore and water depth at the endpoint of 90-day drift periods (estimated time of settlement) were also found to correspond with flatfish productivity.

  18. Decoupled Multicamera Sensing for Flexible View Generation

    Directory of Open Access Journals (Sweden)

    Vivek K. Singh

    2016-01-01

    Full Text Available Any sensing paradigm has three important components, namely, the actor, the sensor, and the environment. Traditionally, the sensors have been attached to either the actor or the environment. This restricts the kind of sensing that can be undertaken. We study a newer decoupled sensing paradigm, which separates the sensors from both the actor and the environment and tremendously increases the flexibility with which the scenes can be viewed. For example, instead of showing just one view, “how the environment sees the actor” or “how the actor sees the environment,” a viewer can choose to see either one or both of these views and even choose to see the scene from any desired position in any desired direction. We describe a methodology using mobile autonomous sensors to undertake such decoupled sensing and study the feasible number as well as the placement of such sensors. Also, we describe how the sensors can coordinate their movements around a moving actor so as to continue capturing the required views with minimum overall cost. The practical results obtained demonstrate the viability of the proposed approach.

  19. Power decoupling method for single phase differential buck converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Tang, Yi; Zhang, Xiaobin

    2015-01-01

    inverter to improve the dc link power quality, and an improved active power decoupling method is proposed to achieve ripple power reduction for both AC-DC and DC-AC conversions. The ripple energy storage is realized by the filter capacitors, which are connected between the output terminal and the negative...... generation technique is proposed to provide accurate ripple power compensation, and closed-loop controllers are also designed based on small signal models. The effectiveness of this power decoupling method is verified by detailed simulation studies as well as laboratory prototype experimental results....... dc bus. By properly controlling the differential mode voltage of the capacitors, it is possible to transfer desired energy between the DC port and AC port. The common mode voltage is controlled in such a way that the ripple power on the dc side will be reduced. Furthermore, an autonomous reference...

  20. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    International Nuclear Information System (INIS)

    Potts, Matthew D; Kelley, Lisa C; Doll, Hannah M

    2013-01-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach. (letter)

  1. Maximizing biodiversity co-benefits under REDD+: a decoupled approach

    Science.gov (United States)

    Potts, Matthew D.; Kelley, Lisa C.; Doll, Hannah M.

    2013-06-01

    Current debates on biodiversity co-benefits under REDD+ are marked by considerable ambiguity and contention. Nevertheless, REDD+ continues to represent one of the most important opportunities for global biodiversity conservation, and the question of how best to achieve biodiversity co-benefits remains an important one. Thus far, most biodiversity conservation in the context of REDD+ is predicated on the notion that services are co-located on a landscape. In contrast, this letter argues that decoupling biodiversity and carbon services on a landscape through national-level planning is a better approach to biodiversity conservation under REDD+. We discuss the fundamental ecological differences between the two services and use principles of resource economics to demonstrate that a decoupled approach will be more efficient, more flexible, and better able to mobilize sufficient finance for biodiversity conservation than a coupled approach.

  2. Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China

    Science.gov (United States)

    Ding, Feng; Li, Chun

    2017-07-01

    Using observed daily precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data, what induced winter large spatial persistent heavy rainfall (PHR) events in south China was examined, based on composite analyses of 30 large spatial PHR events during 1951-2015. The results showed that wave trains within North Africa-Asia (NAA) westerly jet existed in upper troposphere during these PHR processes. The wave trains shared the characteristic of a Rossby wave. The Rossby wave originated from northwest Europe, entered into the NAA jet through strong cold air advection to form convergence over the Mediterranean, and then propagated eastward along subtropical NAA jet. The Rossby wave propagated toward Southeast Asia and caused strong divergence in the upper troposphere. The strong divergence in the upper troposphere induced vertical convection and favored large spatial PHR events in south China. In addition, the enhanced India-Burma trough and subtropical high in the northwestern Pacific supplied enough water vapor transportation. This mechanism would be useful to the medium-range forecast of such winter rainfall processes over south China.

  3. Cross-modal decoupling in temporal attention.

    Science.gov (United States)

    Mühlberg, Stefanie; Oriolo, Giovanni; Soto-Faraco, Salvador

    2014-06-01

    Prior studies have repeatedly reported behavioural benefits to events occurring at attended, compared to unattended, points in time. It has been suggested that, as for spatial orienting, temporal orienting of attention spreads across sensory modalities in a synergistic fashion. However, the consequences of cross-modal temporal orienting of attention remain poorly understood. One challenge is that the passage of time leads to an increase in event predictability throughout a trial, thus making it difficult to interpret possible effects (or lack thereof). Here we used a design that avoids complete temporal predictability to investigate whether attending to a sensory modality (vision or touch) at a point in time confers beneficial access to events in the other, non-attended, sensory modality (touch or vision, respectively). In contrast to previous studies and to what happens with spatial attention, we found that events in one (unattended) modality do not automatically benefit from happening at the time point when another modality is expected. Instead, it seems that attention can be deployed in time with relative independence for different sensory modalities. Based on these findings, we argue that temporal orienting of attention can be cross-modally decoupled in order to flexibly react according to the environmental demands, and that the efficiency of this selective decoupling unfolds in time. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  5. Delayed Antiwindup Control Using a Decoupling Structure

    Directory of Open Access Journals (Sweden)

    Huawei Zhu

    2013-01-01

    Full Text Available This paper investigates the antiwindup (AW control problem for plants with input saturation. The AW compensator is not activated as soon as input saturation occurs as usual. A delayed decoupling structure is first proposed. Then, appropriate linear matrix inequalities (LMIs are developed to determine a plant-order AW compensator. Effectiveness of the presented AW technique is illustrated by a fighter aircraft model.

  6. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  7. Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Oliver

    2009-05-25

    The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called

  8. Randomized dynamical decoupling strategies and improved one-way key rates for quantum cryptography

    International Nuclear Information System (INIS)

    Kern, Oliver

    2009-01-01

    The present thesis deals with various methods of quantum error correction. It is divided into two parts. In the first part, dynamical decoupling methods are considered which have the task of suppressing the influence of residual imperfections in a quantum memory. Such imperfections might be given by couplings between the finite dimensional quantum systems (qudits) constituting the quantum memory, for instance. The suppression is achieved by altering the dynamics of an imperfect quantum memory with the help of a sequence of local unitary operations applied to the qudits. Whereas up to now the operations of such decoupling sequences have been constructed in a deterministic fashion, strategies are developed in this thesis which construct the operations by random selection from a suitable set. Formulas are derived which estimate the average performance of such strategies. As it turns out, randomized decoupling strategies offer advantages and disadvantages over deterministic ones. It is possible to benefit from the advantages of both kind of strategies by designing combined strategies. Furthermore, it is investigated if and how the discussed decoupling strategies can be employed to protect a quantum computation running on the quantum memory. It is shown that a purely randomized decoupling strategy may be used by applying the decoupling operations and adjusted gates of the quantum algorithm in an alternating fashion. Again this method can be enhanced by the means of deterministic methods in order to obtain a combined decoupling method for quantum computations analogously to the combining strategies for quantum memories. The second part of the thesis deals with quantum error-correcting codes and protocols for quantum key distribution. The focus is on the BB84 and the 6-state protocol making use of only one-way communication during the error correction and privacy amplification steps. It is shown that by adding additional errors to the preliminary key (a process called

  9. Highly efficient F-19 heteronuclear decoupling in solid-state NMR spectroscopy using supercycled refocused-CW irradiation

    DEFF Research Database (Denmark)

    Equbal, Asif; Basse, Kristoffer; Nielsen, Niels Christian

    2016-01-01

    We present heteronuclear F-19 refocused CW (rCW) decoupling pulse sequences for solid-state magic-angle- spinning NMR applications. The decoupling sequences have been designed specifically to ensure suppression of the pertinent C-13-F-19 dipolar coupling interactions while simultaneously suppress...

  10. Decoupling interrelated parameters for designing high performance thermoelectric materials.

    Science.gov (United States)

    Xiao, Chong; Li, Zhou; Li, Kun; Huang, Pengcheng; Xie, Yi

    2014-04-15

    The world's supply of fossil fuels is quickly being exhausted, and the impact of their overuse is contributing to both climate change and global political unrest. In order to help solve these escalating problems, scientists must find a way to either replace combustion engines or reduce their use. Thermoelectric materials have attracted widespread research interest because of their potential applications as clean and renewable energy sources. They are reliable, lightweight, robust, and environmentally friendly and can reversibly convert between heat and electricity. However, after decades of development, the energy conversion efficiency of thermoelectric devices has been hovering around 10%. This is far below the theoretical predictions, mainly due to the interdependence and coupling between electrical and thermal parameters, which are strongly interrelated through the electronic structure of the materials. Therefore, any strategy that balances or decouples these parameters, in addition to optimizing the materials' intrinsic electronic structure, should be critical to the development of thermoelectric technology. In this Account, we discuss our recently developed strategies to decouple thermoelectric parameters for the synergistic optimization of electrical and thermal transport. We first highlight the phase transition, which is accompanied by an abrupt change of electrical transport, such as with a metal-insulator and semiconductor-superionic conductor transition. This should be a universal and effective strategy to optimize the thermoelectric performance, which takes advantage of modulated electronic structure and critical scattering across phase transitions to decouple the power factor and thermal conductivity. We propose that solid-solution homojunction nanoplates with disordered lattices are promising thermoelectric materials to meet the "phonon glass electron crystal" approach. The formation of a solid solution, coupled with homojunctions, allows for

  11. Decoupled numerical simulation of a solid fuel fired retort boiler

    International Nuclear Information System (INIS)

    Ryfa, Arkadiusz; Buczynski, Rafal; Chabinski, Michal; Szlek, Andrzej; Bialecki, Ryszard A.

    2014-01-01

    The paper deals with numerical simulation of the retort boiler fired with solid fuel. Such constructions are very popular for heating systems and their development is mostly based on the designer experience. The simulations have been done in ANSYS/Fluent package and involved two numerical models. The former deals with a fixed-bed combustion of the solid fuel and free-board gas combustion. Solid fuel combustion is based on the coal kinetic parameters. This model encompasses chemical reactions, radiative heat transfer and turbulence. Coal properties have been defined with user defined functions. The latter model describes flow of water inside a water jacked that surrounds the combustion chamber and flue gas ducts. The novelty of the proposed approach is separating of the combustion simulation from the water flow. Such approach allows for reducing the number of degrees of freedom and thus lowering the necessary numerical effort. Decoupling combustion from water flow requires defining interface boundary condition. As this boundary condition is unknown it is adjusted iteratively. The results of the numerical simulation have been successfully validated against measurement data. - Highlights: • New decoupled modelling of small scale boiler is proposed. • Fixed-bed combustion model based on kinetic parameters is introduced. • Decoupling reduced the complexity of the model and computational time. • Simple and computationally inexpensive coupling algorithm is proposed. • Model is successfully validated against measurements

  12. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  13. Modeling of tamped and decoupled explosions in salt (simulation is easy. Prediction is difficult exclamation point)

    International Nuclear Information System (INIS)

    Goldstein, P.; Glenn, L.A.

    1993-01-01

    We compare predictions of the strain hardening model of Glenn (1990), with and without damage, to free field and seismic observations of SALMON, STERLING, and 64 kt (tamped) and 8 kt (decoupled) explosions in an Azgir salt dome in the former Soviet Union (FSU). We find good agreement between the model (without damage) and observations of both SALMON and STERLING. In contrast, the average spectral ratio of the tamped to decoupled Azgir explosions is systematically smaller than predicted by the strain hardening model without damage. Much better agreement is obtained when damage is included in the model of the decoupled Azgir explosion

  14. Modeling of tamped and decoupled explosions in salt (Simulation is easy. Prediction is difficult exclamation point)

    International Nuclear Information System (INIS)

    Goldstein, P.; Glenn, L.A.

    1993-05-01

    We compare predictions of the strain hardening model of Glenn (1990), with and without damage, to free field and seismic observations of SALMON, STERLING, and 64 kt (tamped) and 8 kt (decoupled) explosions in an Azgir salt dome in the former Soviet Union (FSU). We find good agreement between the model (without damage) and observations of both SALMON and STERLING. In contrast, the average spectral ratio of the tamped to decoupled Azgir explosions is systematically smaller than predicted by the strain hardening model without damage. Much better agreement is obtained when damage is included in the model of the decoupled Azgir explosion

  15. Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali UAV Quadcopter

    Directory of Open Access Journals (Sweden)

    Muhammad Jadid Anggarjito

    2013-09-01

    Full Text Available Quadcopter merupakan salah salah satu jenis rotorcraft yang memiliki 4 buah rotor yang harus dikendalikan masing-masing rotornya untuk dapat menggerakkan quadcopter. Gerak lateral merupakan gerak quadcopter secara horizontal pada ketinggian atau gerak translasi, gerakan ini sangat vital untuk memenuhi kebutuhan quadcopter dalam mencapai way-to-way point yang telah ditentukan. Pada tugas akhir ini untuk mengatur gerakan lateral dari quadcopter digunakan sistem kendali PID dengan Decoupling Nonlinear. Ada 2 buah kontroler individual yang digunakan yaitu kontroler PID dengan Nonlinear Decoupling untuk mengatur pitch dan roll gerak rotasi, serta kontroler PD untuk mengatur translasi sumbu X dan sumbu Y. Perancangan sistem kontrol PID Decoupling Nonlinear pada simulasi yang digunakan untuk mempertahankan gerak lateral quadcopter dalam mencapai way-to-way point yang ditentukan. Nilai parameter yang didapatkan dari hasil tuning terstruktur pada simulasi adalah pada kontroler PID dengan Nonlinear Decoupling pitch dan roll Kp=5 Ki=0,01 Kd=10 sedangkan pada kontroler PD sumbu X dan sumbu Y Kp=0,05 Kd=0,2. Respon hasil implementasi pada quadcopter belum sesuai pada hasil simulasi. Pada hasil simulasi masih terdapat koreksi pada translasi sumbu X dan sumbu Y masih terdapat kesalahan sebesar ± 0,02 cm, sedangkan pada implementasi gerak lateral menggunakan remote control sistem dapat bergerak stabil menuju way-to-way point yang ditentukan.

  16. Decoupling from international food safety standards

    DEFF Research Database (Denmark)

    Mercado, Geovana; Hjortsø, Carsten Nico; Honig, Benson

    2018-01-01

    rural producers who, grounded in culturally-embedded food safety conceptions, face difficulties in complying. We address this gap here through a multiple case study involving four public school feeding programs that source meals from local rural providers in the Bolivian Altiplan. Institutional logics...... in the market. These include: (1) partial adoption of formal rules; (2) selective adoption of convenient rules; and (3) ceremonial adoption to avoid compliance. Decoupling strategies allow local actors to largely disregard the formal food safety regulations while accommodating traditional cultural practices...

  17. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  18. Neutronic performance of decoupled poisoned and unpoisoned composite moderators for high resolution experiments

    International Nuclear Information System (INIS)

    Kai, Tetsuya; Harada, Masahide; Watanabe, Noboru; Teshigawara, Makoto; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    We studied decoupled poisoned and un-poisoned composite moderators consisting of 20 mm thick hydrogen and 30 mm thick light water. The neutron pulses from un-poisoned one were much broader with longer decay times than a simple decoupled hydrogen moderator in 50 mm thickness. It was also found that the poisoned composite moderator provides higher pulse peak intensities relative to the hydrogen moderator (poisoned at 20 mm) below several tens meV with no penalty of pulse width. (author)

  19. Research on Inverse Kinematics Program Optimization of 6R Decoupled Robot

    Directory of Open Access Journals (Sweden)

    Daode ZHANG

    2014-02-01

    Full Text Available According to complex analytic formula for the six degrees of freedom decoupled robot, a detailed analysis of the six degrees of freedom decoupled robot analytic formula of export process, as well the causes of multiple solutions. The method of increasing the local variables to avoid processor running the same statement repeatedly is proposed. The method to find the most frequency formula appeared in analytic solution replaced with local variables facilitate the use of loop to reduce the amount of code. It effectively reduces the computation time, optimize the computing process. Finally, taking PUMA560-like robot as an example, the calculation result is verified and simulated in Robotics Toolbox of MATLAB.

  20. Discontinuous PWM Modulation Strategy with Circuit-Level Decoupling Concept of Three-Level Neutral-Point Clamped (NPC) Inverter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    inverters, but also reduces the switching loss of the inverter along with an inherent neutral point (NP) voltage control. Based on a circuit-level decoupling concept, the NPC inverter can be decoupled into two three-level Buck converters in every defined operating section, and thereby the controller design...... can be reduced by one third. In order to explain the operation of this topology properly, the decoupling principle including the driving signal synthesis and the NP potential variation are analyzed in detail in this paper. Finally the viability and performance of the proposed modulation scheme...

  1. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  2. Direct AC–AC grid interface converter for ocean wave energy system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes

  3. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  4. Visualizing decoupling in nanocrystalline alloys: A FORC-temperature analysis

    Science.gov (United States)

    Rivas, M.; Martínez-García, J. C.; Gorria, P.

    2016-02-01

    Devitrifying ferromagnetic amorphous precursors in the adequate conditions may give rise to disordered assemblies of densely packed nanocrystals with extraordinary magnetic softness well explained by the exchange coupling among multiple crystallites. Whether the magnetic exchange interaction is produced by direct contact or mediated by the intergranular amorphous matrix has a strong influence on the behaviour of the system above room temperature. Multi-phase amorphous-nanocrystalline systems dramatically harden when approaching the amorphous Curie temperature (TC) due to the hard grains decoupling. The study of the thermally induced decoupling of nanosized crystallites embedded in an amorphous matrix has been performed in this work by the first-order reversal curves (FORCs) analysis. We selected a Fe-rich amorphous alloy with TC = 330 K, in order to follow the evolution of the FORC diagrams obtained below and above such temperature in samples with different percentages of nanocrystalline phase. The existence of up to four regions exhibiting unlike magnetic behaviours is unambiguously determined from the temperature evolution of the FORC.

  5. A Fully Symmetric and Completely Decoupled MEMS-SOI Gyroscope

    Directory of Open Access Journals (Sweden)

    Abdelhameed SHARAF

    2011-04-01

    Full Text Available This paper introduces a novel MEMS gyroscope that is capable of exciting the drive mode differentially. The structure also decouples the drive and sense modes via an intermediate mass and decoupling beams. Both drive and sense modes are fully differential enabling control over the zero-rate-output for the former and maximizing output sensitivity using a bridge circuit for the latter. Further, the structure is fully symmetric about the x- and y- axes which results in minimizing the temperature sensitivity problem. Complete analytical analysis based on the equations of motion was performed and verified using two commercially available finite element software packages. Results from both methods are in good agreement. The analysis of the sensor shows an electrical sensitivity of 1.14 (mV/(º/s. The gyroscope was fabricated using single mask and deep reactive ion etching. The measurement of the resonance frequency performed showing a good agreement with the analytical and numerical analysis.

  6. Global Decoupling on the RHIC Ramp

    CERN Document Server

    Luo, Yun; Della Penna, Al; Fischer, Wolfram; Laster, Jonathan S; Marusic, Al; Pilat, Fulvia Caterina; Roser, Thomas; Trbojevic, Dejan

    2005-01-01

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC). In the polarized proton run, the betatron tunes are required to keep almost constant on the ramp to avoid spin resonance line crossing and the beam polarization loss. Some possible correction schemes on the ramp, like three-ramp correction, the coupling amplitude modulation and the coupling phase modulaxtion, have been found. The principles of these schemes are shortly reviewed and compared. Operational results of their applications on the RHIC ramps are given.

  7. Decoupled Access-Execute on ARM big.LITTLE

    OpenAIRE

    Weber, Anton

    2016-01-01

    Decoupled Access-Execute (DAE) presents a novel approach to improve power efficiency with a combination of compile-time transformations and Dynamic Voltage Frequency Scaling (DVFS). DAE splits regions of the program into two distinct phases: a memory-bound access phase and a compute-bound execute phase. DVFS is used to run the phases at different frequencies, thus conserving energy while caching data from main memory and performing computations at maximum performance. This project analyses th...

  8. Asia’s decoupling: fact, forecast or fiction?

    OpenAIRE

    Lillie Lam; James Yetman

    2013-01-01

    Standard measures of real economic co-movement between Asia-Pacific economies and those elsewhere had been observed to follow a downward trend, leading some commentators to suggest that the region was decoupling. However, this process reversed in response to the International Financial Crisis, and co-movement increased to historically high levels for some economies. We examine co-movement patterns and show that these are very sensitive to changes in macroeconomic volatility over time. Control...

  9. Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    approach may inevitably lead to low power density and limited system lifetime. An alternative approach is to use active power decoupling so that the ripple power can be diverted into other energy storage devices to gain an improved system performance. Nevertheless, all existing active methods have...... power decoupling method, and both the input current and output voltage of the converter can be well regulated even when very small dc-link capacitors are employed....

  10. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani

    2017-01-01

    decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed

  11. Utilization of Spent Resources in Support of Eco-Economic Decoupling in Central Java

    Directory of Open Access Journals (Sweden)

    Nuril Fikri Aulia

    2015-09-01

    Full Text Available Implementation of the development is often cause adverse environmental impacts. Adverse effects are environmental degradation and decreasing availability of resources. To overcome this, it is necessary that the development can still continue, the environment is not damaged, and the availability of resources is maintained. One effort is through eco - economic decoupling activities with the use of spent resources. The aim of study to determine the potential of spent resources in Central Java, knows the problems in the utilization of spent resources in Central Java, and to determine the impact of the utilization of spent resources in Central Java by a qualitative descriptive method. The results show that in the study have the potential of eco-economic decoupling indicated by the availability of spent resources and had done utilization of spent resources. However, this potential has not been optimally developed, because there are still some problems in its utilization. Problems in the use of spent resources are the lack of knowledge about eco-economic decoupling and spent resources among stakeholder, there is no specific policy on eco - economic decoupling, the lack of Local Government 's role in the utilization of spent resource, and the lack of synergy programs and activities in supporting the utilization of spent resources. Utilization of spent resources have positive impact to reduce pressure on the environment and natural resources, create a new job, and increase incomes for society.

  12. Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Xingpeng Chen

    2014-12-01

    Full Text Available As the largest solid waste (SW generator in the world, China is facing serious pollution issues induced by increasing quantities of SW. The sustainability assessment of SW management is very important for designing relevant policy for further improving the overall efficiency of solid waste management (SWM. By focusing on industrial solid waste (ISW and municipal solid waste (MSW, the paper investigated the sustainability performance of SWM by applying decoupling analysis, and further identified the main drivers of SW change in China by adopting Logarithmic Mean Divisia Index (LMDI model. The results indicate that China has made a great achievement in SWM which was specifically expressed as the increase of ISW utilized amount and harmless disposal ratio of MSW, decrease of industrial solid waste discharged (ISWD, and absolute decoupling of ISWD from economic growth as well. However, China has a long way to go to achieve the goal of sustainable management of SW. The weak decoupling, even expansive negative decoupling of ISW generation and MSW disposal suggests that China needs timely technology innovation and rational institutional arrangement to reduce SW intensity from the source and promote classification and recycling. The factors of investment efficiency and technology are the main determinants of the decrease in SW, inversely, economic growth has increased SW discharge. The effects of investment intensity showed a volatile trend over time but eventually decreased SW discharged. Moreover, the factors of population and industrial structure slightly increased SW.

  13. The MSSM with large tan(beta) beyond the decoupling limit

    International Nuclear Information System (INIS)

    Hofer, L.; Scherer, D.; Nierste, U.

    2009-01-01

    If the parameter tan(beta) of the MSSM is large, enhanced loop corrections must be resumed to all orders in perturbation theory. We perform this resummation for flavour-diagonal and flavour-violating tan-beta-enhanced corrections without resorting to the decoupling limit, in which the MSSM is reduced to an effective 2HDM. Our results enable us to clarify the dependence of the resumed expressions on the renormalization scheme and to cover two new classes of processes with supersymmetric particles, which are both intractable with the conventional effective-2HDM method: The first class are collider processes with external supersymmetric particles; the second class are loop processes which vanish in the decoupling limit of supersymmetry. Applying the resummation formulae to FCNC processes in B physics, we find an interesting new effect in observables in which the chromomagnetic effective operator is important. (author)

  14. Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model

    Directory of Open Access Journals (Sweden)

    T. Arsouze

    2009-12-01

    Full Text Available The decoupled behaviour observed between Nd isotopic composition (Nd IC, also referred as εNd and Nd concentration cycles has led to the notion of a "Nd paradox". While εNd behaves in a quasi-conservative way in the open ocean, leading to its broad use as a water-mass tracer, Nd concentration displays vertical profiles that increase with depth, together with a deep-water enrichment along the global thermohaline circulation. This non-conservative behaviour is typical of nutrients affected by scavenging in surface waters and remineralisation at depth. In addition, recent studies suggest the only way to reconcile both concentration and Nd IC oceanic budgets, is to invoke a "Boundary Exchange" process (BE, defined as the co-occurrence of transfer of elements from the margin to the sea with removal of elements from the sea by Boundary Scavenging as a source-sink term. However, these studies do not simulate the input/output fluxes of Nd to the ocean, and therefore prevents from crucial information that limits our understanding of Nd decoupling. To investigate this paradox on a global scale, this study uses for the first time a fully prognostic coupled dynamical/biogeochemical model with an explicit representation of Nd sources and sinks to simulate the Nd oceanic cycle. Sources considered include dissolved river fluxes, atmospheric dusts and margin sediment re-dissolution. Sinks are scavenging by settling particles. This model simulates the global features of the Nd oceanic cycle well, and produces a realistic distribution of Nd concentration (correct order of magnitude, increase with depth and along the conveyor belt, 65% of the simulated values fit in the ±10 pmol/kg envelop when compared to the data and isotopic composition (inter-basin gradient, characterization of the main water-masses, more than 70% of the simulated values fit in the ±3 εNd envelop when compared to the data, though a slight overestimation of

  15. Private quantum decoupling and secure disposal of information

    International Nuclear Information System (INIS)

    Buscemi, Francesco

    2009-01-01

    Given a bipartite system, correlations between its subsystems can be understood as the information that each one carries about the other. In order to give a model-independent description of secure information disposal, we propose the paradigm of private quantum decoupling, corresponding to locally reducing correlations in a given bipartite quantum state without transferring them to the environment. In this framework, the concept of private local randomness naturally arises as a resource, and total correlations are divided into eliminable and ineliminable ones. We prove upper and lower bounds on the quantity of ineliminable correlations present in an arbitrary bipartite state, and show that, in tripartite pure states, ineliminable correlations satisfy a monogamy constraint, making apparent their quantum nature. A relation with entanglement theory is provided by showing that ineliminable correlations constitute an entanglement parameter. In the limit of infinitely many copies of the initial state provided, we compute the regularized ineliminable correlations to be measured by the coherent information, which is thus equipped with a new operational interpretation. In particular, our results imply that two subsystems can be privately decoupled if their joint state is separable.

  16. Ocean-Atmosphere Interaction in Climate Changes

    Science.gov (United States)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  17. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  18. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  19. Feedforward control strategy for the state-decoupling Stand-alone UPS with LC output filter

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    . In order to further increase the load current disturbance rejection capability of the state-decoupling in UPS system, a feedforward control strategy is proposed. In addition, the design principle for the current and voltage regulators are discussed. Simulation and experimental results are provided......In this paper, the disturbance rejection performance of the cascaded control strategy for UPS system is investigated. The comparison of closed loop system performance between conventional cascaded control (CCC) strategy and state-decoupling cascaded control (SDCC) strategy are further explored...

  20. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  1. Decoupling among CSR policies, programs, and impacts : An empirical study

    NARCIS (Netherlands)

    Graafland, Johan; Smid, Hugo

    2016-01-01

    There are relatively few empirical studies on the impacts of corporate social responsibility (CSR) policies and programs. This article addresses the research gap by analyzing the incidence of, and the conditions that affect, decoupling (defined as divergence) among CSR policies, implementation of

  2. Decoupling Design and Verification of a Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-12-01

    Full Text Available This paper proposes a decoupling design approach for a free-piston linear generator (FPLG constituted of three key components, including a combustion chamber, a linear generator and a gas spring serving as rebounding device. The approach is based on the distribution of the system power and efficiency, which provides a theoretical design method from the viewpoint of the overall power and efficiency demands. The energy flow and conversion processes of the FPLG are analyzed, and the power and efficiency demands of the thermal-mechanical and mechanical-electrical energy conversion are confirmed. The energy and efficiency distributions of the expansion and compression strokes within a single stable operation cycle are analyzed and determined. Detailed design methodologies of crucial geometric dimensions and operational parameters of each key component are described. The feasibility of the proposed decoupling design approach is validated through several design examples with different output power.

  3. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  4. Multiple Antenna Systems with Inherently Decoupled Radiators

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund

    2012-01-01

    In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...

  5. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  6. Decoupled Sliding Mode Control for a Novel 3-DOF Parallel Manipulator with Actuation Redundancy

    Directory of Open Access Journals (Sweden)

    Niu Xuemei

    2015-05-01

    Full Text Available This paper presents a decoupled nonsingular terminal sliding mode controller (DNTSMC for a novel 3-DOF parallel manipulator with actuation redundancy. According to kinematic analysis, the inverse dynamic model for a novel 3-DOF redundantly actuated parallel manipulator is formulated in the task space using Lagrangian formalism and decoupled into three entirely independent subsystems under generalized coordinates to significantly reduce system complexity. Based on the dynamic model, a decoupled sliding mode control strategy is proposed for the parallel manipulator; the idea behind this strategy is to design a nonsingular terminal sliding mode controller for each subsystem, which can drive states of three subsystems to the original equilibrium points simultaneously by two intermediate variables. Additionally, a RBF neural network is used to compensate the cross-coupling force and gravity to enhance the control precision. Simulation and experimental results show that the proposed DNTSMC can achieve better control performances compared with the conventional sliding mode controller (SMC and the DNTSMC without compensator.

  7. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  8. Automated smoother for the numerical decoupling of dynamics models.

    Science.gov (United States)

    Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S

    2007-08-21

    Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental

  9. Vortex-strings in N=2 SQCD and bulk-string decoupling

    Science.gov (United States)

    Gerchkovitz, Efrat; Karasik, Avner

    2018-02-01

    We study vortex-strings in four-dimensional N=2 supersymmetric SU( N c ) × U(1) gauge theories with N f hypermultiplets in the fundamental representation of SU( N c ) and general U(1) charges. If N f > N c , the vacuum is not gapped and the low-energy theory contains both the vacuum massless excitations and the string zero-modes. The question we address in this work is whether the vacuum and the string moduli decouple at low energies, allowing a description of the low-energy dynamics in terms of a two-dimensional theory on the string worldsheet. We find a simple condition controlling the bulk-string coupling: if there exist two flavors such that the product of their U(1) charge difference with the magnetic flux carried by the string configuration is not an integer multiple of 2 π, the string has zero-modes that decay slower than 1 /r, where r is the radial distance from the string core. These modes are coupled to the vacuum massless excitations even at low energies. If, however, all such products are integer multiples of 2 π, long-range modes of this type do not exist and the string moduli decouple from the bulk at low energies. This condition turns out to coincide with the condition of trivial Aharonov-Bohm phases for the particles in the spectrum. In addition to a derivation of the bulk-string decoupling criterion using classical analysis of the string zero-modes, we provide a non-perturbative derivation of the criterion, which uses supersymmetric localization techniques.

  10. Decoupling Water Consumption and Environmental Impact on Textile Industry by Using Water Footprint Method: A Case Study in China

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-02-01

    Full Text Available The rapid development of China’s textile industry has led to consumption and pollution of large volumes of water. Therefore, the textile industry has been the focus of water conservation and waste reduction in China’s 13th Five-Year Plan (2016–2020. The premise of sustainable development is to achieve decoupling of economic growth from water consumption and wastewater discharge. In this work, changes in the blue water footprint, grey water footprint, and the total water footprint of the textile industry from 2001 to 2014 were calculated. The relationship between water footprint and economic growth was then examined using the Tapio decoupling model. Furthermore, factors influencing water footprint were determined through logarithmic mean Divisia index (LMDI method. Results show that the water footprint of China’s textile industry has strongly decoupled for five years (2003, 2006, 2008, 2011, and 2013 and weakly decoupled for four years (2005, 2007, 2009, and 2010. A decoupling trend occurred during 2001–2014, but a steady stage of decoupling had not been achieved yet. Based on the decomposition analysis, the total water footprint mainly increased along with the production scale. On the contrary, technical level is the most important factor in inhibiting the water footprint. In addition, the effect of industrial structure adjustment is relatively weak.

  11. Accuracy of dynamical-decoupling-based spectroscopy of Gaussian noise

    Science.gov (United States)

    Szańkowski, Piotr; Cywiński, Łukasz

    2018-03-01

    The fundamental assumption of dynamical-decoupling-based noise spectroscopy is that the coherence decay rate of qubit (or qubits) driven with a sequence of many pulses, is well approximated by the environmental noise spectrum spanned on frequency comb defined by the sequence. Here we investigate the precise conditions under which this commonly used spectroscopic approach is quantitatively correct. To this end we focus on two representative examples of spectral densities: the long-tailed Lorentzian, and finite-ranged Gaussian—both expected to be encountered when using the qubit for nanoscale nuclear resonance imaging. We have found that, in contrast to Lorentz spectrum, for which the corrections to the standard spectroscopic formulas can easily be made negligible, the spectra with finite range are more challenging to reconstruct accurately. For Gaussian line shape of environmental spectral density, direct application of the standard dynamical-decoupling-based spectroscopy leads to erroneous attribution of long-tail behavior to the reconstructed spectrum. Fortunately, artifacts such as this, can be completely avoided with the simple extension to standard reconstruction method.

  12. The influence of nitrogen inputs on biomass and trophic structure of ocean plankton: a study using biomass and stable isotope size-spectra

    KAUST Repository

    Mompeán, Carmen

    2016-08-18

    Large scale patterns in planktonic food web structure were studied by applying continuous size-scaled models of biomass and δ15N to plankton samples, collected at 145 stations during the Malaspina-2010 Expedition across three ocean basins and including major biomes. Carbon biomass and δ15N were determined in size-fractionated samples (40 to 5000 μm) collected by vertical hauls (0–200 m). Biomass-normalized size-spectra were constructed to summarize food web structure and spatial patterns in spectral parameters were analyzed using geographically-weighted regression analysis. Except in the northwestern Atlantic, size-spectra showed low variability, reflecting a homogeneity in nitrogen sources and food web structure for the central oceans. Estimated predator-to-prey mass ratios <104 and mean trophic transfer efficiency values between 16% (coastal biome) and >20% (Trades and Westerlies biomes) suggested that oceanic plankton food webs may support a larger number of trophic levels than current estimates based on high efficiency values. The largest changes in spectral parameters and nitrogen sources were related to inputs of atmospheric nitrogen, either from diazotrophic organisms or dust deposition. These results suggest geographic homogeneity in the net transfer of nitrogen up the food web.

  13. Do 'green' taxes work? Decoupling environmental pressures and economic growth

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2005-01-01

    This essay intends to shed light on whether environmental taxation can help to decouple environmental pressures from economic growth, a policy outcome widely desired and particularly pressing in the context of climate change where radical measures are needed to curb CO2 build up....

  14. Customer Order Decoupling Point Selection Model in Mass Customization Based on MAS

    Institute of Scientific and Technical Information of China (English)

    XU Xuanguo; LI Xiangyang

    2006-01-01

    Mass customization relates to the ability of providing individually designed products or services to customer with high process flexibility or integration. Literatures on mass customization have been focused on mechanism of MC, but little on customer order decoupling point selection. The aim of this paper is to present a model for customer order decoupling point selection of domain knowledge interactions between enterprises and customers in mass customization. Based on the analysis of other researchers' achievements combining the demand problems of customer and enterprise, a model of group decision for customer order decoupling point selection is constructed based on quality function deployment and multi-agent system. Considering relatively the decision makers of independent functional departments as independent decision agents, a decision agent set is added as the third dimensionality to house of quality, the cubic quality function deployment is formed. The decision-making can be consisted of two procedures: the first one is to build each plane house of quality in various functional departments to express each opinions; the other is to evaluate and gather the foregoing sub-decisions by a new plane quality function deployment. Thus, department decision-making can well use its domain knowledge by ontology, and total decision-making can keep simple by avoiding too many customer requirements.

  15. Near extremal intersecting giants and new decoupled sectors in N = 4 SYM

    International Nuclear Information System (INIS)

    Fareghbal, R.; Gowdigere, C.N.; Mosaffa, A.E.; Sheikh-Jabbari, M. M.

    2008-01-01

    We study near-horizon limits of near-extremal charged black hole solutions to five-dimensional U(1) 3 gauged supergravity carrying two charges, extending the recent work of Balasubramanian et al. We show that there are two near-horizon decoupling limits for the near-extremal black holes, one corresponding to the near-BPS case and the other for the far from BPS case. Both of these limits are only defined on the 10d IIB uplift of the 5d black holes, resulting in a decoupled geometry with a six-dimensional part (conformal to) a rotating BTZ x S 3 . We study various aspects of these decoupling limits both from the gravity side and the dual field theory side. For the latter we argue that there should be two different, but equivalent, dual gauge theory descriptions, one in terms of the 2d CFT's dual to the rotating BTZ and the other as certain large R-charge sectors of d = 4, N = 4 U(N) SYM theory. We discuss new BMN-type sectors of the N = 4 SYM in the N → ∞ limit in which the engineering dimensions scale as N 3/2 (for the near-BPS case) and as N 2 (for the far from BPS case). (author)

  16. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Amanda E Nelson

    Full Text Available Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  17. Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myung-Sook; Elsberry, Russell L. [Naval Postgraduate School, Department of Meteorology, Monterey, CA (United States); Ho, Chang-Hoi [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Kim, Jinwon [University of California in Los Angeles, Department of Meteorology, Berkeley, CA (United States)

    2011-10-15

    The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17-27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. (orig.)

  18. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  19. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

    Science.gov (United States)

    Phillips, R.L.; Grantz, A.

    2001-01-01

    The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during

  20. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    Science.gov (United States)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  1. Performance improvement of VAV air conditioning system through feedforward compensation decoupling and genetic algorithm

    International Nuclear Information System (INIS)

    Wang Jun; Wang Yan

    2008-01-01

    VAV (variable air volume) control system has the feature of multi-control loops. While all the control loops are working together, they interfere and influence each other. This paper designs the decoupling compensation unit in VAV system in the method of feedforward compensation. This paper also designs the controller parameters of VAV system by means of inverse deducing and the genetic algorithm. Experimental results demonstrate that the combination of the feedforward compensation decoupling and the controller optimization by genetic algorithm can improve the performance of the VAV control system

  2. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    Science.gov (United States)

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    Science.gov (United States)

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. A critical realist perspective on decoupling negative environmental impacts from housing sector growth and economic growth

    DEFF Research Database (Denmark)

    Xue, Jin

    2012-01-01

    The question that motivates this article has been a matter of dispute: Is it possible to combine perpetual economic growth and longterm environmental sustainability based on the premise that economic growth can be fully decoupled from negative environmental impacts? The article addresses...... this question from the position of critical realism. An empirical study focusing on the housing sector is conducted, indicating that housing stock growth and economic growth have been, at best, weakly decoupled from environmental impacts. In the long run, it seems implausible that the degree of decoupling can...... be increased at a rate sufficient to compensate for continual growth in the volume of housing stock. A further elaboration of the topic at an ontological level leads to the conclusion that continual economic growth and long-term environmental sustainability can hardly be combined....

  5. Coupling and decoupling

    International Nuclear Information System (INIS)

    Ravenal, E.C.

    1988-01-01

    This paper reports on the prospects of coupling and decoupling for extended deterrence. Thirty-eight years after the foundation of NATO, the defence of Western Europe still rests on the proposition that an American president will invite the destruction of US cities and the incineration of 100 million of its citizens to repel a Soviet incursion or resist a Soviet ultimatum in Western Europe. On its face, America's war plan---never denied by any president from Truman to Reagan, or by any Secretary of State from George Marshall to George Shultz---is the first use of nuclear weapons, if necessary, to defend Europe. Thus America threatens to turn local defeat into global holocaust. But under the surface, America's nuclear commitment to Europe is not so sure. The word that encapsulates this problem is coupling. Not the title of an Updike novel or an anthropological treatise by Margaret Mead, coupling is a term of art used by strategic analysts to connote the integrity of the chain of escalation, from conventional war in Europe, to theatre nuclear weapons, to the final use of America's ultimate strategic weapon

  6. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which...

  7. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Digital Repository Service at National Institute of Oceanography (India)

    Assmy, P.; Smetacek, V.; Montresor, M.; Klaas, C.; Henjes, J.; Strass, V.H.; Arrieta, J.M.; Bathmann, U.; Berg, G.M.; Breitbarth, E.; Cisewski, B.; Friedrichs, L.; Fuchs, N.; Herndl, G.J.; Jansen, S.; Kragefsky, S.; Latasa, M.; Peeken, I.; Rottgers, R.; Scharek, R.; Schuller, S.E.; Steigenberger, S.; Webb, A.; Wolf-Gladrow, D.

    Trans A Math Phys Eng Sci 366(1882):3947–3967. 35. Smetacek V, et al. (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487(7407):313–319. 36. Assmy P, Henjes J, Klaas C, Smetacek V (2007) Mechanisms determining species...

  8. Functions and requirements document, WESF decoupling project, low-level liquid waste system

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.H., Fluor Daniel Hanford

    1997-02-27

    The Waste Encapsulation and Storage Facility (WESF) was constructed in 1974 to encapsulate and store cesium and strontium which were isolated at B Plant from underground storage tank waste. The WESF, Building 225-B, is attached physically to the west end of B Plant, Building 221-B, 200 East area. The WESF currently utilizes B Plant facilities for disposing liquid and solid waste streams. With the deactivation of B Plant, the WESF Decoupling Project will provide replacement systems allowing WESF to continue operations independently from B Plant. Four major systems have been identified to be replaced by the WESF Decoupling Project, including the following: Low Level Liquid Waste System, Solid Waste Handling System, Liquid Effluent Control System, and Deionized Water System.

  9. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    Science.gov (United States)

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  10. Embriogénesis somática de Citrus macrophylla Wester con el empleo del Pectimorf® y análogos de brasinoesteroides

    OpenAIRE

    Lourdes Bao Fundora; Reina M. Hernández Ortiz; Esther Diosdado Salces; María Isabel Román; Clara González Arencibia; Alejandro Rojas Álvarez; Alianny Rodríguez Valdés

    2013-01-01

    Título en ingles: Somatic embryogenesis of Citrus macrophylla Wester using Pectimorf® and analogues of brassinosteroids Resumen Los cítricos son frutales muy utilizados como patrones de injerto. Para incrementar la cantidad de estos cultivos en las plantaciones citrícolas, se pueden usar técnicas de propagación in vitro como la embriogénesis somática, que requiere medios de cultivos artificiales y fitohormonas. Debido a los altos costos de las fitohormonas, una alternativa cubana es e...

  11. Use of UPFC device controlled by fuzzy logic controllers for decoupled power flow control

    Directory of Open Access Journals (Sweden)

    Ivković Sanja

    2014-01-01

    Full Text Available This paper investigates the possibility of decoupled active and reactive power flow control in a power system using a UPFC device controlled by fuzzy logic controllers. A Brief theoretical review of the operation principles and applications of UPFC devices and design principles of the fuzzy logic controller used are given. A Matlab/Simulink model of the system with UPFC, the fuzzy controller setup, and graphs of the results are presented. Conclusions are drawn regarding the possibility of using this system for decoupled control of the power flow in power systems based on analysis of these graphs.

  12. Note on the chemical potential of decoupled matter in the Universe

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Pombo, C.

    2011-01-01

    Textbooks on cosmology exhibit a thermodynamic inconsistency for free streaming, decoupled matter. It is connected here to the chemical potential, which deviates from its equilibrium value μ = @kBT , where @ is the usual parameter of the Fermi-Dirac or Bose-Einstein distribution function.

  13. A disturbance decoupling nonlinear control law for variable speed wind turbines

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Poulsen, Niels Kjølstad

    2007-01-01

    This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...

  14. Spin-chirality decoupling in Heisenberg spin glasses and related systems

    OpenAIRE

    Kawamura, Hikaru

    2006-01-01

    Recent studies on the spin and the chirality orderings of the three-dimensional Heisenberg spin glass and related systems are reviewed with particular emphasis on the possible spin-chirality decoupling phenomena. Chirality scenario of real spin-glass transition and its experimental consequence on the ordering of Heisenberg-like spin glasses are discussed.

  15. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels J.; Christensen, Soren J.; Lisbjerg, Kristian

    2018-01-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt...... that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect...... of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system....

  16. Filter-design perspective applied to dynamical decoupling of a multi-qubit system

    International Nuclear Information System (INIS)

    Su Zhikun; Jiang Shaoji

    2012-01-01

    We employ the filter-design perspective and derive the filter functions according to nested Uhrig dynamical decoupling (NUDD) and symmetric dynamical decoupling (SDD) in the pure-dephasing spin-boson model with N qubits. The performances of NUDD and SDD are discussed in detail for a two-qubit system. The analysis shows that (i) SDD outperforms NUDD for the bath with a soft cutoff while NUDD approaches SDD as the cutoff becomes harder; (ii) if the qubits are coupled to a common reservoir, SDD helps to protect the decoherence-free subspace while NUDD destroys it; (iii) when the imperfect control pulses with finite width are considered, NUDD is affected in both the high-fidelity regime and coherence time regime while SDD is affected in the coherence time regime only. (paper)

  17. Anthropocene Dialogues: Decoupling Economic Prosperity from Carbon Emissions

    Science.gov (United States)

    Tewksbury, J.; Kohm, K.

    2017-12-01

    Anthropocene magazine is a new science magazine produced by Future Earth. Its mission is to bring together the world's leading scientists, technologists, and creatives to explore on-the-ground stories of sustainability science in action. For AGU 2017, Anthropocene magazine will stage an "Anthropocene Dialogue" based on its July 2017 issue. Anthropocene Dialogues are panel discussions about the successes and challenges of transformative science-policy collaborations by leading science journalists, researchers, and practitioners. The focus of this dialogue is: What are the scientific and technological innovations that drive the decarbonization of economies—from plugging artificial intelligence into electrical grids to new experiments in solar geoengineering. Panelist include: Robert Jackson of the Global Carbon Project discussing the historic decoupling of carbon emissions from GDP, Oliver Morton of The Economist speaking on how geoengineering can be a key element of a decoupling process; Robinson Meyer of The Atlantic outlining a coal "retirement plan" based on supply side economics; Wayt Gibbs of Scientific American tackling the quintessential question, How much energy will the world need? and Mark Harris of IEEE Spectrum looking at new experiments in artificial intelligence that could pull fossil fuels out of electrical grids, factories, data centers, and transit systems. For more information on these stories, visit: anthropocenemagazine.org/in-print/. Free sample copies of the magazine will be available at the session.

  18. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath

    International Nuclear Information System (INIS)

    Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter

    2011-01-01

    Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are 13 C nuclear spins and the environment consists of a 1 H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.

  19. Simple-decoupling treatment of high-Tc superconductors

    International Nuclear Information System (INIS)

    Misawa, S.

    1992-01-01

    The t-J model is examined within the framework of the Hubbard-I-type decoupling method of the Green's functions and by using the Fukuyama's expression for Hall coefficient R H . The superconducting transition temperature T c and the normal-state R H at finite temperature are calculated as functions of doping-fraction δ. The obtained results are symmetrical with respect to hole- and electron-doping. In the small hole-doping case, the extended s-wave state is favorable, and the behaviors of T c and R H as functions of δ are qualitatively in agreement with the experimental results. (orig.)

  20. Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields

    OpenAIRE

    Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy

    1984-01-01

    A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.

  1. High scale impact in alignment and decoupling in two-Higgs-doublet models

    Science.gov (United States)

    Basler, Philipp; Ferreira, Pedro M.; Mühlleitner, Margarete; Santos, Rui

    2018-05-01

    The two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes it to have a scalar with properties very similar to those of the SM—which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with B -physics bounds, forces the model to be naturally decoupled. As a consequence, any nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that the 2HDM is stable up to the Planck scale independently of which of the C P -even scalars is the discovered 125 GeV Higgs boson.

  2. U(1) decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relations in N=4 super Yang-Mills

    International Nuclear Information System (INIS)

    Jia Yin; Huang Rijun; Liu Changyong

    2010-01-01

    By using the Britto-Cachazo-Feng-Witten recursion relation of N=4 super Yang-Mills theory, we proved the color reflection, U(1) decoupling, Kleiss-Kuijf and Bern-Carrasco-Johansson relations for color-ordered amplitudes of N=4 super Yang-Mills theory. This proof verified the conjectured Bern-Carrasco-Johansson relations of matter fields. The proof depended only on general properties of superamplitudes. We showed also that the color reflection relation and U(1)-decoupling relation are special cases of Kleiss-Kuijf relations.

  3. Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry

    Directory of Open Access Journals (Sweden)

    Lin Boqiang

    2017-07-01

    Full Text Available China is facing huge pressure on CO2 emissions reduction. The heavy industry accounts for over 60% of China’s total energy consumption, and thus leads to a large number of energy-related carbon emissions. This paper adopts the Log Mean Divisia Index (LMDI method based on the extended Kaya identity to explore the influencing factors of CO2 emissions from China’s heavy industry; we calculate the trend of decoupling by presenting a theoretical framework for decoupling. The results show that labor productivity, energy intensity, and industry scale are the main factors affecting CO2 emissions in the heavy industry. The improvement of labor productivity is the main cause of the increase in CO2 emissions, while the decline in energy intensity leads to CO2 emissions reduction, and the industry scale has different effects in different periods. Results from the decoupling analysis show that efforts made on carbon emission reduction, to a certain extent, achieved the desired outcome but still need to be strengthened.

  4. Decoupling and Sources of Structural Transformation of East Asian Economies: An International Input-Output Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Ko

    2014-03-01

    Full Text Available This study aims to answer two questions using input-output decomposition analysis: 1 Have emerging Asian economies decoupled? 2 What are the sources of structural changes in gross outputs and value-added of emerging Asian economies related to the first question? The main findings of the study are as follows: First, since 1990, there has been a trend of increasing dependence on exports to extra-regions such as G3 and the ROW, indicating no sign of "decoupling", but rather an increasing integration of emerging Asian countries into global trade. Second, there is a contrasting feature in the sources of structural changes between non-China emerging Asia and China. Dependence of non-China emerging Asia on intra-regional trade has increased in line with strengthening economic integration in East Asia, whereas China has disintegrated from the region. Therefore, it can be said that China has contributed to no sign of decoupling of emerging Asia as a whole.

  5. Curvature perturbations from dimensional decoupling

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.

  6. On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities.

    Science.gov (United States)

    Ueno, Kazuhide; Angell, C Austen

    2011-12-08

    To support a new interpretation of the origin of the dynamic heterogeneity observed pervasively in fragile liquids as they approach their glass transition temperatures T(g), we demonstrate that the introduction of ~2 nm structural inhomogeneities into a homogeneous glass former leads to a decoupling of diffusion from viscosity similar to that observed during the cooling of orthoterphenyl (OTP) below T(A,) where Arrhenius behavior is lost. Further, the decoupling effect grows stronger as temperature decreases (and viscosity increases). The liquid is cresol, and the ~2 nm inhomogeneities are cresol-soluble asymmetric derivatized tetrasiloxy-based (polyhedral oligomeric silsesquioxane (POSS)) molecules. The decoupling is the phenomenon predicted by Onsager in discussing the approach to a liquid-liquid phase separation with decreasing temperature. In the present case the observations support the notion of a polyamorphic transition in fragile liquids that is hidden below the glass transition. A similar decoupling can be expected as a globular protein is dissolved in dilute aqueous solutions or in protic ionic liquids. © 2011 American Chemical Society

  7. 1+1+2 gravitational perturbations on LRS class II spacetimes: II. Decoupling gravito-electromagnetic 2-vector and scalar harmonic amplitudes

    International Nuclear Information System (INIS)

    Burston, R B

    2008-01-01

    This is the second paper in a series that considers first-order, gauge-invariant and covariant, gravitational perturbations to locally rotationally symmetric (LRS) class II vacuum spacetimes. Focusing on the 1+1+2 gravito-electromagnetic (GEM) formalism, the first paper used linear algebra techniques to derive four decoupled equations that govern four specific combinations of the GEM 2-tensor harmonic amplitudes. This paper completes the decoupling of the 1+1+2 GEM system by showing how to derive seven new decoupled quantities. Four of these arise when considering the GEM 2-vector harmonic amplitudes and it is found that decoupling is achieved by combining these with the (2/3-sheet) shear 2-tensor harmonic amplitudes. The remaining three arise from the 1+1+2 GEM scalars. Two of which concern the 2-gradient of the gravito-electric scalar that must also be combined with shear 2-tensor amplitudes, whereas the other involves the gravito-magnetic scalar only

  8. The RITMARE Ocean Observing System for the Italian Seas

    Science.gov (United States)

    Crise, A.

    2016-02-01

    Among its objectives, the Italian RITMARE Flagship Programme has the aim to produce a prototype of the RITMARE Ocean observing system explicitelly designed to provide a powerful infrastructure to the Italian marine science community, to help implement national and Europen environmental regulations and to contribute to the future European Ocean Observing System. The projects takes advantage of the existing platforms (fixed-point moorings, HF and X-band radars, gliders, satellite products), that constitute the basic components of the system. The structure of the RITMARE Ocean observing system is composed by a permanent component (mooring network, satellite images, HF radars) and relocatable component (gliders, drifters, relocatable infrastructures). The increasing number of available relocatable/expandable platforms allow a much larger flexibility in term of allocation of observations but requires an sampling strategy the can be modified according the scientific and socio-economic priorities. As an example, RITMARE focus is set on an experiment on the South Adriatic Pit convective area and its dynamic interactions with the adjacent Bari Canyon cascading site. (Central Mediterranean Sea). Additional effort is paid to support innovation for sensors (e.g. ship-borne LIDAR, stereo-optic directional wave detection, X-band radar innovative products), operational employment of gliders (e.g. Wave Glider) and new class of operational models. The integration can be obtained at different level: the is expected to be achieved at ICT level by defining standard interfaces (NedCDF, SOS) and catalogs in order to facilitate the discovery, viewing and downloading services of data and products. The implementation of a distributed platform-oriented RT repositories adopt a number of THREDDS web servers that act as endpoints for the RITMARE portal. The final aim is to decouple the platforms from the observations, moving from a set of observation to a suite of Essential Ocean Variables by

  9. SKATE: a docking program that decouples systematic sampling from scoring.

    Science.gov (United States)

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  10. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2010-01-01

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F s (x,Q 2 )=F s (F s0 (x),G 0 (x)), G(x,Q 2 )=G(F s0 (x), G 0 (x)). F s , G are known NLO functions and F s0 (x)≡F s (x,Q 0 2 ), G 0 (x)≡G(x,Q 0 2 ) are starting functions for evolution beginning at Q 2 =Q 0 2 . We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  11. Hedge Funds and Risk-Decoupling

    DEFF Research Database (Denmark)

    Ringe, Georg

    2013-01-01

    The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional cate...... to the traditional market expectations of shareholders. Based on the insight developed from these policy perspectives, this article develops regulatory reform proposals, particularly with regard to the EU context.......The law must remain adaptive and responsive to the constantly changing challenges of our society and our business life. One of the most pressing challenges of the past years is the emergence of alternative investment funds, in particular hedge funds, which masterfully exploit the traditional...... theoretical perspectives are used as an analytical framework to examine the vast challenges of risk-decoupling: (1) a classical agency costs approach; (2) an information costs perspective; and (3) a view from corporate finance. This Article argues that shareholders with hedged risk exposure do not correspond...

  12. New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts

    Science.gov (United States)

    van de Flierdt, T.; Frank, M.; Lee, D.-C.; Halliday, A.N.; Reynolds, B.C.; Hein, J.R.

    2004-01-01

    The behavior of dissolved Hf in the marine environment is not well understood due to the lack of direct seawater measurements of Hf isotopes and the limited number of Hf isotope time-series obtained from ferromanganese crusts. In order to place better constraints on input sources and develop further applications, a combined Nd-Hf isotope time-series study of five Pacific ferromanganese crusts was carried out. The samples cover the past 38 Myr and their locations range from sites at the margin of the ocean to remote areas, sites from previously unstudied North and South Pacific areas, and water depths corresponding to deep and bottom waters. For most of the samples a broad coupling of Nd and Hf isotopes is observed. In the Equatorial Pacific ENd and EHf both decrease with water depth. Similarly, ENd and EHf both increase from the South to the North Pacific. These data indicate that the Hf isotopic composition is, in general terms, a suitable tracer for ocean circulation, since inflow and progressive admixture of bottom water is clearly identifiable. The time-series data indicate that inputs and outputs have been balanced throughout much of the late Cenozoic. A simple box model can constrain the relative importance of potential input sources to the North Pacific. Assuming steady state, the model implies significant contributions of radiogenic Nd and Hf from young circum-Pacific arcs and a subordinate role of dust inputs from the Asian continent for the dissolved Nd and Hf budget of the North Pacific. Some changes in ocean circulation that are clearly recognizable in Nd isotopes do not appear to be reflected by Hf isotopic compositions. At two locations within the Pacific Ocean a decoupling of Nd and Hf isotopes is found, indicating limited potential for Hf isotopes as a stand-alone oceanographic tracer and providing evidence of additional local processes that govern the Hf isotopic composition of deep water masses. In the case of the Southwest Pacific there is

  13. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....

  14. Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?

    Science.gov (United States)

    Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.

    2017-12-01

    A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").

  15. Power decoupling techniques for single-phase power electronics systems — An overview

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede

    2015-01-01

    . In this paper, recently proposed state-of-the-art power decoupling techniques for ripple power reduction in these systems are presented and classified into different groups for performance comparison. The pros and cons of these techniques are discussed and identified, and the conclusions drawn will be useful...

  16. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  17. Magnitudes and sources of precipitation and dry deposition fluxes of industrial and natural leads to the North Pacific at Enewetak

    International Nuclear Information System (INIS)

    Settle, D.M.; Patterson, C.C.

    1982-01-01

    A total atmospheric PB input flux of 7 ng Pb cm - 2 yr - 1 was measured in the North Pacific Easterlies at Enewetak. Parameters used to measure this flux were ratio of dry deposition flux to precipitation flux; Pb/ 210 Pb in precipitation and seawater; 210 Pb flux; washout factor; and Pb concentrations in air, rain, and dry deposition deposits. Relations among these parameters estabilished at Enewetak were used to recompute and comfirm previous estimates of lead fluxes to the oceans (ng Pb cm - 2 yr - 1 ) at the following locations: North Altantic Westerlies, 170; North Pacific Westerlies, 50; and South Pacific Easterlies, 3. Prehistoric lead output fluxes to sediments (ng Pb cm - 2 yr - 1 ) at these locations have been previously measured and were 4 (Enewetak); 30 North Atlantic Westerlies; 3 North Pacific Westerlies; 4 South Pacific Easterlies. These data show that the rates of atmospheric imputs of lead to the oceans vary directly with variations in rates of upwind emission of industrial lead from urban complexes on land. In the North Pacific and North Atlantic, present rates of atmospheric lead inputs are 10-fold greater than prehistoric outputs. In equatorial regions, present inputs and past outputs are more nearly equal. These observations disclose the effects of intense industrial atmospheric emissions of lead in the northern hemisphere westerlies which have overwhelmed prehistoric natural fluxes of lead to the oceans. The average concentration of lead in marine air at Enewetak is 170n pg m - 3 and varies less than a factor of 2 from that mean. One to 15% of this lead comes from seaspray, while the remainder comes from sources on land. About 90% of the seaspray lead is industrial, while 80 to 99% of that originating from land sources is industrial. Concentrations of lead in rain at Enewetak range from 6 to 63 pg/g with a mean value of 28

  18. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  19. Procedure to decouple reflectance and down-shifting effects in luminescent down-shifting enhanced photovoltaics.

    Science.gov (United States)

    Gabr, Ahmed M; Walker, Alexandre W; Wilkins, Matthew M; Kleiman, Rafael; Hinzer, Karin

    2017-06-12

    The down-shifting (DS) process is a purely optical approach used to improve the short-wavelength response of a solar cell by shifting high-energy photons to the visible range, which can be more efficiently absorbed by the solar cell. In addition to the DS effect, coupling a DS layer to the top surface of a solar cell results in a change in surface reflectance. The two effects are intermixed and therefore, usually reported as a single effect. Here we propose a procedure to decouple the two effects. Analytical equations are derived to decouple the two effects, that consider the experimentally measured quantum efficiency of the solar cell with and without the DS layer, in addition to transfer matrix simulations of the parasitic absorption in the device structure. In this work, an overall degradation of 0.46 mA/cm 2 is observed when adding a DS layer composed of silicon nanocrystals embedded in a quartz matrix to a silicon solar cell of 11% baseline efficiency. To fully understand the contribution from each effect, the surface reflectance and DS effects are decoupled and quantified using the described procedure. We observe an enhancement of 0.27 mA/cm 2 in short-circuit current density due to the DS effect, while the surface reflectance effect leads to a degradation of 0.73 mA/cm 2 in short-circuit current density.

  20. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  1. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  2. Decoupling in an expanding universe boundary RG-flow affects initial conditions for inflation

    CERN Document Server

    Schalm, K; Van der Schaar, J P; Schalm, Koenraad; Shiu, Gary; Schaar, Jan Pieter van der

    2004-01-01

    We study decoupling in FRW spacetimes, emphasizing a Lagrangian description throughout. To account for the vacuum choice ambiguity in cosmological settings, we introduce an arbitrary boundary action representing the initial conditions. RG flow in these spacetimes naturally affects the boundary interactions. As a consequence the boundary conditions are sensitive to high-energy physics through irrelevant terms in the boundary action. Using scalar field theory as an example, we derive the leading dimension four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control. All, moreover, will generically feel the influence of high-energy physics through irrelevant (dimension four) boundary corrections. Having established a coherent effective field theory framework ...

  3. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China

    International Nuclear Information System (INIS)

    Lu, Qinli; Yang, Hong; Huang, Xianjin; Chuai, Xiaowei; Wu, Changyan

    2015-01-01

    ICE (Industrial carbon emission) is one of most important sources of anthropogenic carbon emissions. To reduce the carbon emissions, many countries, particularly China, have adjusted their industrial structures and improved energy efficiency. The complete decomposition technique and decoupling method were used to investigate and quantitatively analyze the main factors influencing the energy-related ICE in Jiangsu, the Chinese province with the largest energy consumption and carbon emissions. The importance of the sectoral dimension was taken into account by dividing the industry into three main departments consisting of 38 sub-sectors. The results indicated that the industry of Jiangsu was in a weak decoupling state from 2005 to 2012. The industrial output growth was the biggest driver of the increase in ICE, while energy efficiency advancement was the main cause for the reduction, in a weakening trend. The year of 2008 was an important breaking point when the optimization of industry structure came into play and global financial crisis took place. The biggest dilemma in Jiangsu is heavy industry is still dominant, especially the five sectors of them made the biggest contribution (88.2%) to ICE. Thankfully, there were five manufacturing industries had achieved low carbon economy at various degrees. - Highlights: • Multi-sectoral decomposition and decoupling were conducted to evaluate the ICE. • The industry of Jiangsu was in a weak decoupling state with an increasing trend. • The industrial output growth was the biggest driver for ICE from 2005 to 2012. • The optimization of industry structure came into play for the reduction since 2008. • Five backward and advanced industries were identified

  4. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  5. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2017-09-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  6. The Hagedorn temperature in a decoupled sector of AdS/CFT

    International Nuclear Information System (INIS)

    Harmark, T.; Kristjansson, K.; Orselli, M.

    2007-01-01

    We match the Hagedorn/deconfinement temperature of planar N=4 super Yang-Mills (SYM) on R x S 3 to the Hagedorn temperature of string theory on Ads 5 x S 5 . The match is done in a near-critical region where both gauge theory and string theory are weakly coupled. On the gauge theory side we are taking a decoupling limit in which the physics of planar N=4 SYM is given exactly by the ferromagnetic XXX 1/2 Heisenberg spin chain. We find moreover a general relation between the Hagedorn/deconfinement temperature and the thermodynamics of the Heisenberg spin chain. On the string theory side, we identify the dual limit which is taken of string theory on a maximally symmetric pp-wave background with a flat direction, obtained from a Penrose limit of Ads 5 x S 5 . We compute the Hagedorn temperature of the string theory and find agreement with the Hagedorn/deconfinement temperature computed on the gauge theory side. Finally, we discuss a modified decoupling limit in which planar N=4 SYM reduces to the XXX 1/2 Heisenberg spin chain with an external magnetic field. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. DECOUPLING CONTROL OF TITO SYSTEM SUPPORTED BY DOMINANT POLE PLACEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Novak N. Nedić

    2017-08-01

    Full Text Available Appropriate approach to the nature of systems is a significant precondition for its successful control. An always actual issue of its mutual coupling is considered in this paper. A multivariable system with two-inputs and two-outputs (TITO is in the focus here. The dominant pole placement method is used in trying to tune the PID controllers that should support the decoupling control. The aim is to determine parameters of the PID controllers which, in combination with decoupler, can obtain a good dynamical behavior of the system. Therefore, this kind of the centralized analytically obtained controller is used for object control. Another goal is to simplify the tuning procedure of PID controllers and enlarge the possibility for introducing the given approach into practice. But the research results indicate that the proposed procedure leads to the usage of P controllers because they enable the best performances for the considered object. Also, it is noticed that some differences from the usual rules in selection of the dominant poles gives better results. The research is supported by simulations and, therefore, the proposed method effectiveness, regarding the system behavior quality, is presented on several examples.

  8. Real-space decoupling transformation for quantum many-body systems.

    Science.gov (United States)

    Evenbly, G; Vidal, G

    2014-06-06

    We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).

  9. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinyu, E-mail: xyuwei@mail.xjtu.edu.cn; Wang, Pengfei, E-mail: pengfeixiaoli@yahoo.cn; Zhao, Fuyu, E-mail: fuyuzhao_xj@163.com

    2016-08-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  10. Design of a decoupled AP1000 reactor core control system using digital proportional–integral–derivative (PID) control based on a quasi-diagonal recurrent neural network (QDRNN)

    International Nuclear Information System (INIS)

    Wei, Xinyu; Wang, Pengfei; Zhao, Fuyu

    2016-01-01

    Highlights: • We establish a disperse dynamic model for AP1000 reactor core. • A digital PID control based on QDRNN is used to design a decoupling control system. • The decoupling performance is verified and discussed. • The decoupling control system is simulated under the load following operation. - Abstract: The control system of the AP1000 reactor core uses the mechanical shim (MSHIM) strategy, which includes a power control subsystem and an axial power distribution control subsystem. To address the strong coupling between the two subsystems, an interlock between the two subsystems is used, which can only alleviate but not eliminate the coupling. Therefore, sometimes the axial offset (AO) cannot be controlled tightly, and the flexibility of load-following operation is limited. Thus, the decoupling of the original AP1000 reactor core control system is the focus of this paper. First, a two-node disperse dynamic model is established for the AP1000 reactor core to use PID control. Then, a digital PID control system based on a quasi-diagonal recurrent neural network (QDRNN) is designed to decouple the original system. Finally, the decoupling of the control system is verified by the step signal and load-following condition. The results show that the designed control system can decouple the original system as expected and the AO can be controlled much more tightly. Moreover, the flexibility of the load following is increased.

  11. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  12. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The Energy Footprint of China’s Textile Industry: Perspectives from Decoupling and Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Laili Wang

    2017-09-01

    Full Text Available Energy is the essential input for operations along the industrial manufacturing chain of textiles. China’s textile industry is facing great pressure on energy consumption reduction. This paper presents an analysis of the energy footprint (EFP of China’s textile industry from 1991 to 2015. The relationship between EFP and economic growth in the textile industry was investigated with a decoupling index approach. The logarithmic mean Divisia index approach was applied for decomposition analysis on how changes in key factors influenced the EFP of China’s textile industry. Results showed that the EFP of China’s textile industry increased from 41.1 Mt in 1991 to 99.6 Mt in 2015. EFP increased fastest in the period of 1996–2007, with an average annual increasing rate of 7.7 percent, especially from 2001 to 2007 (8.5 percent. Manufacture of textile sector consumed most (from 58 percent to 76 percent of the energy among the three sub-sectors, as it has lots of energy-intensive procedures. EFP and economic growth were in a relative decoupling state for most years of the researched period. Their relationship showed a clear tendency toward decoupling. Industrial scale was the most important factor that led to the increase of EFP, while decreasing energy intensity contributed significantly to reducing the EFP. The promoting effect of the factors was larger than the inhibiting effect on EFP in most years from 1991 to 2015.

  14. Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. R. Liberato

    2013-09-01

    Full Text Available In winter of 2009–2010 south-western Europe was hit by several destructive windstorms. The most important was Xynthia (26–28 February 2010, which caused 64 reported casualties and was classified as the 2nd most expensive natural hazard event for 2010 in terms of economic losses. In this work we assess the synoptic evolution, dynamical characteristics and the main impacts of storm Xynthia, whose genesis, development and path were very uncommon. Wind speed gusts observed at more than 500 stations across Europe are evaluated as well as the wind gust field obtained with a regional climate model simulation for the entire North Atlantic and European area. Storm Xynthia was first identified on 25 February around 30° N, 50° W over the subtropical North Atlantic Ocean. Its genesis occurred on a region characterized by warm and moist air under the influence of a strong upper level wave embedded in the westerlies. Xynthia followed an unusual SW–NE path towards Iberia, France and central Europe. The role of moist air masses on the explosive development of Xynthia is analysed by considering the evaporative sources. A lagrangian model is used to identify the moisture sources, sinks and moisture transport associated with the cyclone during its development phase. The main supply of moisture is located over an elongated region of the subtropical North Atlantic Ocean with anomalously high SST, confirming that the explosive development of storm Xynthia had a significant contribution from the subtropics.

  15. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    International Nuclear Information System (INIS)

    Divani, Nazila; Firoozabadi, Mohammad M.; Bayat, Esmail

    2014-01-01

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors

  16. Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD

    Energy Technology Data Exchange (ETDEWEB)

    Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States); Ha, Phuoc [Towson University, Department of Physics, Astronomy and Geosciences, Towson, MD (United States); McKay, Douglas W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States)

    2010-10-15

    Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F{sub s}(x,Q{sup 2})=F{sub s}(F{sub s0}(x),G{sub 0}(x)), G(x,Q{sup 2})=G(F{sub s0}(x), G{sub 0}(x)). F{sub s}, G are known NLO functions and F{sub s0}(x){identical_to}F{sub s}(x,Q{sub 0}{sup 2}), G{sub 0}(x){identical_to}G(x,Q{sub 0}{sup 2}) are starting functions for evolution beginning at Q{sup 2}=Q{sub 0}{sup 2}. We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)

  17. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  18. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  19. A simple climatology of westerly jet streams in global reanalysis datasets part 1: mid-latitude upper tropospheric jets

    Science.gov (United States)

    Rikus, Lawrie

    2018-04-01

    A simple closed contour object identification scheme has been applied to the zonal mean monthly mean zonal wind fields from nine global reanalysis data sets for 31 years of the satellite era (1979-2009) to identify objects corresponding to westerly jet streams. The results cluster naturally into six individual jet streams but only the mid-latitude upper-tropospheric jets are considered here. The time series of the jet properties from all reanalyses are decomposed into seasonal means and anomalies, and correlations between variables are evaluated, with the aim of identifying robust features which can form the basis of evaluation metrics for climate model simulations of the twentieth century. There is substantial agreement between all the reanalyses for all jet properties although there are some systematic differences with particular data sets. Some of the results from the object identification applied to the reanalyses are used in a simple example of a model evaluation score for the zonal mean jet seasonal cycle.

  20. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  1. Experimental and Theoretical Analysis for a Fluid-Loaded, Simply Supported Plate Covered by a Damping and Decoupling Composite Acoustic Coating

    Directory of Open Access Journals (Sweden)

    Baihua Yuan

    2017-01-01

    Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.

  2. Systematic Design Method and Experimental Validation of a 2-DOF Compliant Parallel Mechanism with Excellent Input and Output Decoupling Performances

    Directory of Open Access Journals (Sweden)

    Yao Jiang

    2017-06-01

    Full Text Available The output and input coupling characteristics of the compliant parallel mechanism (CPM bring difficulty in the motion control and challenge its high performance and operational safety. This paper presents a systematic design method for a 2-degrees-of-freedom (DOFs CPM with excellent decoupling performance. A symmetric kinematic structure can guarantee a CPM with a complete output decoupling characteristic; input coupling is reduced by resorting to a flexure-based decoupler. This work discusses the stiffness design requirement of the decoupler and proposes a compound flexure hinge as its basic structure. Analytical methods have been derived to assess the mechanical performances of the CPM in terms of input and output stiffness, motion stroke, input coupling degree, and natural frequency. The CPM’s geometric parameters were optimized to minimize the input coupling while ensuring key performance indicators at the same time. The optimized CPM’s performances were then evaluated by using a finite element analysis. Finally, a prototype was constructed and experimental validations were carried out to test the performance of the CPM and verify the effectiveness of the design method. The design procedure proposed in this paper is systematic and can be extended to design the CPMs with other types of motion.

  3. Decoupled deblurring filter and its application to elastic migration and inversion

    KAUST Repository

    Feng, Zongcai

    2017-08-17

    We present a decoupled deblurring filter that approximates the multiparameter Hessian inverse by using local filters to approximate its submatrices for the same and different parameter classes. Numerical tests show that the filter not only reduces the footprint noise, balances the amplitudes and increases the resolution of the elastic migration images, but also mitigates the crosstalk artifacts. When used as a preconditioner, it accelerates the convergence rate for elastic inversion.

  4. Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Science.gov (United States)

    Kunz, Barbara E.; Regis, Daniele; Engi, Martin

    2018-03-01

    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U-Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P-T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U-Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure.

  5. Pseudo-spin flip in doubly decoupled structures and identical bands

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Cardona, M.A.; Somacal, H.; Debray, M.E.; Hojman, D.; Davidson, J.; Davidson, M.; De Acuna, D.; Napoli, D.R.; Rico, J.; Bazzacco, D.; Burch, R.; Lenzi, S.M.; Rossi Alvarez, C.; Blasi, N.; Lo Bianco, G.

    1995-01-01

    Unfavored components of doubly decoupled bands are reported for the first time. They can be interpreted as having the pseudo-spin flipped relative to the orientation in the favored components, i.e. antialigned with respect to the rotation axis. In addition, the differences in consecutive transition energies along the favored and unfavored sequences are strikingly similar among them up to I π =15 + and 14 + respectively. This feature arises from a cancellation of differences in alignments and moments of inertia. ((orig.))

  6. Dynamic Modeling and Fuzzy Self-Tuning Disturbance Decoupling Control for a 3-DOF Serial-Parallel Hybrid Humanoid Arm

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2013-01-01

    Full Text Available A unique fuzzy self-tuning disturbance decoupling controller (FSDDC is designed for a serial-parallel hybrid humanoid arm (HHA to implement the throwing trajectory-tracking mission. Firstly, the dynamic model of the HHA is established and the input signal of the throwing process is obtained by studying the throwing process of human's arm. Secondly, the FSDDC, incorporating the disturbance decoupling controller (DDC and the fuzzy logic controller (FLC, is designed to ensure trajectory tracking of the HHA in the presence of uncertainties and disturbances. With the FSDDC method, the HHA system can be decoupled by actively estimating and rejecting the effects of both the internal plant dynamics and external disturbances. The self-tuning parameters are adapted online to improve the performance of the FSDDC; thus, it does not require detailed system parameters of the presented FSDDC. Finally, the controller introduced is compared with a PD controller which is commonly used for the robot manipulators control in industry. The effectiveness of the designed FSDDC is illustrated by simulations.

  7. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  8. Equicontrollability and its application to model-following and decoupling.

    Science.gov (United States)

    Curran, R. T.

    1971-01-01

    Discussion of 'model following,' a term used to describe a class of problems characterized by having two dynamic systems, generically known as the 'plant' and the 'model,' it being required to find a controller to attach to the plant so as to make the resultant compensated system behave, in an input/output sense, in the same way as the model. The approach presented to the problem takes a structural point of view. The result is a complex but informative definition which solves the problem as posed. The application of both the algorithm and its basis, equicontrollability, to the decoupling problem is considered.

  9. A Fracture Decoupling Experiment

    Science.gov (United States)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  10. Influence of the plasma profile and the antenna geometry on the matching and current distribution control of the ITER ICRF antenna array. Optimization of the decoupling-matching system

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States); Vervier, M.; Dumortier, P.; Durodié, F.; Grine, D. [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium)

    2013-10-15

    Highlights: ► Analysis of the matching-decoupling system of the ICRF antenna array of ITER. ► Control of the array phasing by the decouplers for the same power of power sources. ► Computation for the 2012 design status of the antenna plug. ► 7 decouplers needed but 10 can be used to decrease the ratings of components. ► Effects of plasma profile and antenna geometry. -- Abstract: The eight triplets of straps of the ITER ICRF antenna array are fed through 8 matching circuits and 4 hybrids to ensure load resilience. Decouplers are used to mitigate the effects of triplet mutual coupling. They also control the array phasing. The electrical constraints on the decouplers for different layouts with heating (H) or current drive (CD) phasing are compared starting from the TOPICA matrix computed for the last antenna plug design and the reference (most pessimistic) plasma profile “2010low” provided by IO. It is shown that this last profile provides a significant decrease of plasma coupling and increase of mutual coupling with respect to the previous reference profile “Sc2short17”. This results in a larger range of decoupler reactance X{sub dec} and voltage V{sub Xdec} needed. This range can be reduced when using 10 decouplers instead of the 7 needed for the same forward power P{sub Gk+} of the 4 power sources. For H phasing only 4 decouplers could be used but with different P{sub Gk+} (P{sub Gk+} ratio up to 1.5–2.5). For CD phasing and same plasma profile the power capability P{sub tot} is increased by 25% with a decoupler layout allowing much smaller poloidal phasing than the 90° provided by the hybrids. A decrease of the distance antenna-plasma profile reduces the normalized decoupler voltage V{sub Xdec}/√P{sub tot} with no significant change of the X{sub dec} range. The recess of the vertical septa between the strap boxes increases the plasma coupling but has the drawback of also increasing the mutual coupling between triplets: the needed range of X

  11. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability

    Science.gov (United States)

    Shao, Shubao; Tian, Zheng; Song, Siyang; Xu, Minglong

    2018-05-01

    Because mechanical cross coupling between its axes would lead to degradation of the scanning precision of a piezo-driven fast steering mirror (PFSM), a two-degrees-of-freedom (2-DoF) PFSM with a cross-axis decoupling capability, in which 2-DoF flexure hinges are used, is proposed in this work. The overall structure of the proposed PFSM is first introduced and then both static and dynamic models are established analytically; in addition, the decoupling mechanism is described in detail and the low dynamic cross coupling ratios that occur between the two DoFs are shown. Because of the decoupling property of the PFSM, the 2-DoF motion is treated as a combination of two independent one-degree-of-freedom (1-DoF) motions and two independent proportional-integral-derivative controllers are thus used separately in the control of the two DoFs. Based on this control strategy, experiments involving both 1-DoF trajectory tracking and 2-DoF trajectory tracking are implemented. The test results show that the proposed PFSM can achieve the tilt range of ±7 mrad for both axes with the low coupling ratios that are less than 2% (-34 dB), and the bandwidths of both axes are higher than 810 Hz; in addition, the maximal tracking full scale range errors for 1-DoF trajectory tracking and 2-DoF trajectory tracking are less than 0.2% and 1%, respectively, where the larger error of 2-DoF trajectory tracking is mainly caused by the remaining cross coupling between axes.

  12. The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    Science.gov (United States)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-01-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  13. The role of the Indian Ocean sector for prediction of the coupled Indo-Pacific system: Impact of atmospheric coupling

    Science.gov (United States)

    Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.

    2017-04-01

    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.

  14. Compactness of the difference between the porous thermoelastic semigroup and its decoupled semigroup

    Directory of Open Access Journals (Sweden)

    El Mustapha Ait Benhassi

    2015-06-01

    Full Text Available Under suitable assumptions, we prove the compactness of the difference between the porous thermoelastic semigroup and its decoupled one. This will be achieved by proving the norm continuity of this difference and the compactness of the difference between the resolvents of their generators. Applications to porous thermoelastic systems are given.

  15. Synthesis of Zinc Diethyldithiocarbamate (ZDEC) and Structure Characterization using Decoupling 1H NMR

    International Nuclear Information System (INIS)

    Sujarit, Jenjira; Phutdhawong, Weerachai

    2003-10-01

    A synthesis of zinc diethyldithiocarbamate (ZDEC) has been studied. The optimization mole ratio of the synthetic process was 2: 2: 2: 1 of diethylamine, carbondisulfide, sodium hydroxide, and zinc chloride. Characterization was carried out mainly by analyzing its spectroscopic properties especially decoupling 1 H NMR technique. ZDEC was obtained in 48.5% yield

  16. Rapid Holocene glacier fluctuations in arctic Norway in concert with the strength and spatial pattern of the westerlies

    Science.gov (United States)

    Bakke, J.; Dahl, S.

    2011-12-01

    latitudes during the Holocene. Superimposed on the gradual increase in glacier-covered areas, the four largest glacier advances are bracketed between 7400-7000, 1400-1200, 900-700 and 300-150 years before AD 2000. In contrast to most reconstructed glaciers in Scandinavia, we found that the largest glacier advance at Okstindan was not associated with the "Little Ice Age", but rather to an earlier period centered about AD 700. Periods with glacier advances are all associated with periods of increased winter precipitation along the coast of Norway and hence a stronger effect of the westerlies, where differences in the distribution of precipitation are assumed to reflect changes in the position of the westerlies.

  17. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...

  18. Quantifying export production in the Southern Ocean: Implications for the Baxs proxy

    Science.gov (United States)

    Hernandez-Sanchez, Maria T.; Mills, Rachel A.; Planquette, HéLèNe; Pancost, Richard D.; Hepburn, Laura; Salter, Ian; Fitzgeorge-Balfour, Tania

    2011-12-01

    The water column and sedimentary Baxs distribution around the Crozet Plateau is used to decipher the controls and timing of barite formation and to evaluate how export production signals are recorded in sediments underlying a region of natural Fe fertilization within the Fe limited Southern Ocean. Export production estimated from preserved, vertical sedimentary Baxs accumulation rates are compared with published export fluxes assessed from an integrated study of the biological carbon pump to determine the validity of Baxs as a quantitative proxy under different Fe supply conditions typical of the Southern Ocean. Detailed assessment of the geochemical partitioning of Ba in sediments and the lithogenic end-member allows appropriate correction of the bulk Ba content and determination of the Baxs content of sediments and suspended particles. The upper water column distribution of Baxs is extremely heterogeneous spatially and temporally. Organic carbon/Baxs ratios in deep traps from the Fe fertilized region are similar to other oceanic settings allowing quantification of the inferred carbon export based on established algorithms. There appears to be some decoupling of POC and Ba export in the Fe limited region south of the Plateau. The export production across the Crozet Plateau inferred from the Baxs sedimentary proxy indicates that the Fe fertilized area to the north of the Plateau experiences enhanced export relative to equivalent Southern Ocean settings throughout the Holocene and that this influence may also have impacted the site to the south for significant periods. This interpretation is corroborated by alternative productivity proxies (opal accumulation, 231Paxs/230Thxs). Baxs can be used to quantify export production in complex settings such as naturally Fe-fertilized (volcanoclastic) areas, providing appropriate lithogenic correction is undertaken, and sediment focusing is corrected for along with evaluation of barite preservation.

  19. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    Science.gov (United States)

    Thompson, B.D.; Young, R.P.; Lockner, David A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  20. Determining decoupling points in a supply chain networks using NSGA II algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimiarjestan, M.; Wang, G.

    2017-07-01

    Purpose: In the model, we used the concepts of Lee and Amaral (2002) and Tang and Zhou (2009) and offer a multi-criteria decision-making model that identify the decoupling points to aim to minimize production costs, minimize the product delivery time to customer and maximize their satisfaction. Design/methodology/approach: We encounter with a triple-objective model that meta-heuristic method (NSGA II) is used to solve the model and to identify the Pareto optimal points. The max (min) method was used. Findings: Our results of using NSGA II to find Pareto optimal solutions demonstrate good performance of NSGA II to extract Pareto solutions in proposed model that considers determining of decoupling point in a supply network. Originality/value: So far, several approaches to model the future have been proposed, of course, each of them modeled a part of this concept. This concept has been considered more general in the model that defined in follow. In this model, we face with a multi-criteria decision problem that includes minimization of the production costs and product delivery time to customers as well as customer consistency maximization.

  1. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Decoupling between policy and practice through the lens of sensemaking and sensegiving

    Directory of Open Access Journals (Sweden)

    Austen Agata

    2016-05-01

    Full Text Available Any organizations, pursuing their goals, they should take into account others, as they are compelled to a joint coexistence. In order to grow, they need plans and rules of conduct. But not always what was intended is actually implemented. That discrepancy is called decoupling. This phenomenon may be due to different levels of acceptance and implementation of rules, which is associated with the process of sensemaking and sensegiving. The first phenomenon involves the creation of meaning, where the new rule is not yet fully developed and understood, and so it must be properly interpreted only to implement the action. In this process, people give meaning to their experiences. If the process of creating a sense is successful, occurring practices are accepted by the members of the organization, and finally implemented. Sensegiving is about exerting influence in terms of the proper understanding of the rules, in order to create an appropriate definition of organizational reality. Moral attitude of employees may be important in minimizing the effect of negative attitudes associated with decoupling. Therefore, there is a need for constant training of employees in ethical issues.

  3. Determining decoupling points in a supply chain networks using NSGA II algorithm

    International Nuclear Information System (INIS)

    Ebrahimiarjestan, M.; Wang, G.

    2017-01-01

    Purpose: In the model, we used the concepts of Lee and Amaral (2002) and Tang and Zhou (2009) and offer a multi-criteria decision-making model that identify the decoupling points to aim to minimize production costs, minimize the product delivery time to customer and maximize their satisfaction. Design/methodology/approach: We encounter with a triple-objective model that meta-heuristic method (NSGA II) is used to solve the model and to identify the Pareto optimal points. The max (min) method was used. Findings: Our results of using NSGA II to find Pareto optimal solutions demonstrate good performance of NSGA II to extract Pareto solutions in proposed model that considers determining of decoupling point in a supply network. Originality/value: So far, several approaches to model the future have been proposed, of course, each of them modeled a part of this concept. This concept has been considered more general in the model that defined in follow. In this model, we face with a multi-criteria decision problem that includes minimization of the production costs and product delivery time to customers as well as customer consistency maximization.

  4. Embriogénesis somática de Citrus macrophylla Wester con el empleo del Pectimorf® y análogos de brasinoesteroides

    Directory of Open Access Journals (Sweden)

    Lourdes Bao Fundora

    2013-01-01

    Full Text Available Título en ingles: Somatic embryogenesis of Citrus macrophylla Wester using Pectimorf® and analogues of brassinosteroids Resumen Los cítricos son frutales muy utilizados como patrones de injerto. Para incrementar la cantidad de estos cultivos en las plantaciones citrícolas, se pueden usar técnicas de propagación in vitro como la embriogénesis somática, que requiere medios de cultivos artificiales y fitohormonas. Debido a los altos costos de las fitohormonas, una alternativa cubana es el uso de biorreguladores del crecimiento de producción nacional como: los análogos de brasinoesteroides: 25(R 2α, 3α, dihidroxi 5α espirostan- 6-ona (Biobras-6 y C: 25(R 2α, 3α, 5α, trihidroxiespirostan-6-ona (MH-5 y una mezcla de oligogalacturónido de grado de polimerización entre 10-14 (Pectimorf®.  Estos biorreguladores son efectivos en los procesos morfogenéticos como sustitutos o complemento de las auxinas y citoquininas. El presente trabajo estuvo dirigido a determinar el efecto del Pectimorf® y los brasinoesteroides como sustitutos de las fitohormonas tradicionales en el desarrollo de la embriogénesis somática y en la obtención de una línea celular embriogénica de Citrus macrophylla Wester. Se utilizó el medio de cultivo de Murashige y Skoog (MS (1962, suplementado con los biorreguladores del crecimiento MH-5, Biobras-6 y Pectimorf®. Mediante la embriogénesis somática se obtuvieron embriones, raíces y plántulas, en todos los tratamientos. En la formación de plántulas estos biorreguladores fueron muy efectivos. Palabras clave: cultivo in vitro; Citrus; biorreguladores del crecimiento. Abstract Citrus fruits are widely used as rootstock. To increase the amount of these crops in plantations, in vitro propagation techniques such as somatic embryogenesis can be used, which requires artificial culture media and plant hormones. Due to the high cost of the plant hormone, a Cuban alternative is the use of cuban bioregulators growth

  5. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima

    2016-12-01

    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  6. Policy Mixes to Achieve Absolute Decoupling: A Case Study of Municipal Waste Management

    Directory of Open Access Journals (Sweden)

    Francesca Montevecchi

    2016-05-01

    Full Text Available Studying the effectiveness of environmental policies is of primary importance to address the unsustainable use of resources that threatens the entire society. Thus, the aim of this paper is to investigate on the effectiveness of environmental policy instruments to decouple waste generation and landfilling from economic growth. In order to do so, the paper analyzes the case study of the Slovakian municipality of Palarikovo, which has drastically improved its waste management system between 2000 and 2012, through the utilization of differentiated waste taxes and awareness-raising and education campaigns, as well as targeting increased recycling and municipal composting. We find evidence of absolute decoupling for landfilled waste and waste generation, the latter being more limited in time and magnitude. These policy instruments could therefore play an important role in municipalities that are still lagging behind in waste management. More specifically, this policy mix was effective in moving away from landfilling, initiating recycling systems, and to some extent decreasing waste generation. Yet, a more explicit focus on waste prevention will be needed to address the entirety of the problem effectively.

  7. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  8. Development of aluminum (Al5083)-clad ternary Ag-In-Cd alloy for JSNS decoupled moderator

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-01-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces (φ22 mm in dia. x 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 x 200 x 30 mm 3 ), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength

  9. Means-ends decoupling and academic identities in Ukrainian university after the Revolution of Dignity

    NARCIS (Netherlands)

    Hladchenko, Myroslava; Westerheijden, Don F.

    2018-01-01

    This article aims to explore the academic identities under the conditions of means-ends decoupling at the nation-state level. For empirical evidence we choose Ukraine. In 2014, after the Revolution of Dignity despite the adoption of the policies aimed to construct academic identities like in the

  10. How decoupled is the Single Farm Payment and does it matter for international trade?

    DEFF Research Database (Denmark)

    Urban, Kirsten; Jensen, Hans Grinsted; Brockmeier, Martina

    2016-01-01

    a comprehensive representation of domestic support. By considering and modeling a range of different assumptions regarding the SFP’s degree of decoupling, we investigate the SFP’s effect on the model’s results. The results of our analysis reveal substantially different effects that depend on the degree...

  11. A Fast-Processing Modulation Strategy for Three-Phase Four-Leg Neutral-Point-Clamped Inverter Based on the Circuit-Level Decoupling Concept

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Zhang, Zhe; Thomsen, Ole Cornelius

    2012-01-01

    In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying the propo......In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying...... the proposed modulation strategy, the four-leg NPC inverter can be decoupled into three three-level Buck converters in each defined operating section. This makes the controller design much simpler compared to the conventional four-leg NPC inverter controllers. Also, this technique can be implemented...

  12. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  13. Fully Decoupled Compliant Parallel Mechanism: a New Solution for the Design of Multidimensional Accelerometer

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-08-01

    Full Text Available In this paper, a novel multidimensional accelerometer is proposed based on fully decoupled compliant parallel mechanism. Three separated chains, which are served as the elastic body, are perpendicular to each other for sensing the kinetic information in different directions without decoupling process. As the crucial part of the whole sensor structure, the revolute and prismatic joints in three pairwise orthogonal branches of the parallel mechanism are manufactured with the alloy aluminium as flexure hinge-based compliant joints. The structure development is first introduced, followed by the comprehensive finite-element analysis including the strain of the sensitive legs, modal analysis for total deformation under different frequency, and the performance of harmonic response. Then, the shape optimization is conducted to reduce the unnecessary parts. Compliance optimization with particle swarm algorithm is implemented to redesign the dimension of the sensitive legs. The research supplies a new viewpoint for the mechanical design of physical sensor, especially acceleration sensor.

  14. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    Science.gov (United States)

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  15. Decoupling the short- and long-term behavior of stochastic volatility

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Lunde, Asger; Pakkanen, Mikko

    behavior) from long memory and persistence (long-term behavior) in a simple and parsimonious way, which allows us to successfully model volatility at all intraday time scales. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties...... measures of close to two thousand individual US equities, we find that both roughness and persistence appear to be universal properties of volatility. Inspired by the empirical findings, we introduce a new class of continuous-time stochastic volatility models, capable of decoupling roughness (short-term...

  16. Voltage Management in Unbalanced Low Voltage Networks Using a Decoupled Phase-Tap-Changer Transformer

    DEFF Research Database (Denmark)

    Coppo, Massimiliano; Turri, Roberto; Marinelli, Mattia

    2014-01-01

    The paper studies a medium voltage-low voltage transformer with a decoupled on load tap changer capability on each phase. The overall objective is the evaluation of the potential benefits on a low voltage network of such possibility. A realistic Danish low voltage network is used for the analysis...

  17. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  18. Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-12-01

    Full Text Available Aiming to relieve the large amount of wind power curtailment during the heating period in the North China region, a thermal-electric decoupling (TED approach is proposed to both bring down the constraint of forced power output of combined heat and power plants and increase the electric load level during valley load times that assist the power grid in consuming more wind power. The operating principles of the thermal-electric decoupling approach is described, the mathematical model of its profits is developed, the constraint conditions of its operation are listed, also, an improved parallel conjugate gradient is utilized to bypass the saddle problem and accelerate the optimal speed. Numerical simulations are implemented and reveal an optimal allocation of TED which with a rated power of 280 MW and 185 MWh heat storage capacity are possible. This allocation of TED could bring approximately 16.9 billion Yuan of economic profit and consume more than 80% of the surplus wind energy which would be curtailed without the participation of TED. The results in this article verify the effectiveness of this method that could provide a referential guidance for thermal-electric decoupling system allocation in practice.

  19. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  20. Equatorial jet - a case study

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    analysis of hydrographic data of 1964 is also carried out to understand the response signature of water column to prevailing westerlies. A jet forms in the Central Indian Ocean which gathers momentum as it advances eastward. Sinking of the thermocline...

  1. Between green growth and degrowth: Decoupling, rebound effects and the politics for long-term sustainability

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen; Xue, Jin

    2016-01-01

    Taking the simple equation: I(impact) = P(population) A(affluence) T(technology) as the point of departure, this chapter discusses the delusion of decoupling economic activities from environmental impacts by resorting to reduce eco-intensities through technological advancement alone. It is argued...

  2. Decoupled Implementation of New-Wave Land Reforms

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Hundsbæk

    2012-01-01

    Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case stu...... the local level as a part of the land administration structure.......Decentralisation is a key element in the new wave of land reforms that have been introduced in sub-Saharan Africa. However, not much research has been carried out into their implementation at the local level. Consequently, reforms are described in old-fashioned terms. Through comparative case...... studies in Tanzania, this article unpacks implementation as a process consisting of multiple administrative layers and potential actors. It concludes that implementation is slow and uneven due to the decoupling of layers within the formal land administration. Greater attention should be directed towards...

  3. Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, P. [International Institute for Applied Systems Analysis, Laxenburg (Austria); De Groot, H.L.F. [Faculty of Economics and Business Administration, Vrije Universiteit, Amsterdam (Netherlands)

    2004-07-01

    This paper provides an empirical analysis of decoupling economic growth and energy use and its various determinants by exploring trends in energy- and labour productivity across 10 manufacturing sectors and 14 OECD countries for the period 1970-1997. We explicitly aim to trace back aggregate developments in the manufacturing sector to developments at the level of individual subsectors. A cross-country decomposition analysis reveals that in some countries structural changes contributed considerably to aggregate manufacturing energy-productivity growth and, hence, to decoupling, while in other countries they partly offset energy-efficiency improvements. In contrast, structural changes only play a minor role in explaining aggregate manufacturing labour-productivity developments. Furthermore, we find labour-productivity growth to be higher on average than energy-productivity growth. Over time, this bias towards labour-productivity growth is increasing in the aggregate manufacturing sector, while it is decreasing in most manufacturing subsectors.

  4. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  5. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  6. The impact of perceived similarity on tacit coordination: propensity for matching and aversion to decoupling choices.

    Science.gov (United States)

    Chierchia, Gabriele; Coricelli, Giorgio

    2015-01-01

    Homophily, or "love for similar others," has been shown to play a fundamental role in the formation of interpersonal ties and social networks. Yet no study has investigated whether perceived similarities can affect tacit coordination. We had 68 participants attempt to maximize real monetary earnings by choosing between a safe but low paying option (that could be obtained with certainty) and a potentially higher paying but "risky" one, which depended on the choice of a matched counterpart. While making their choices participants were mutually informed of whether their counterparts similarly or dissimilarly identified with three person-descriptive words as themselves. We found that similarity increased the rate of "risky" choices only when the game required counterparts to match their choices (stag hunt games). Conversely, similarity led to decreased risk rates when they were to tacitly decouple their choices (entry games). Notably, though similarity increased coordination in the matching environment, it did not did not increase it in the decoupling game. In spite of this, similarity increased (expected) payoffs across both coordination environments. This could shed light on why homophily is so successful as a social attractor. Finally, this propensity for matching and aversion to decoupling choices was not observed when participants "liked" their counterparts but were dissimilar to them. We thus conclude that the impact of similarity of coordination should not be reduced to "liking" others (i.e., social preferences) but it is also about predicting them.

  7. The impact of perceived similarity on tacit coordination: propensity for matching and aversion to decoupling choices

    Directory of Open Access Journals (Sweden)

    Gabriele eChierchia

    2015-07-01

    Full Text Available Homophily, or love for similar others, has been shown to play a fundamental role in the formation of interpersonal ties and social networks. Yet no study has investigated whether perceived similarities can affect tacit coordination. We had 68 participants attempt to maximize real monetary earnings by choosing between a safe but low paying option (that could be obtained with certainty and a potentially higher paying but risky one, which depended on the choice of a matched counterpart. While making their choices participants were mutually informed of whether their counterparts similarly or dissimilarly identified with 3 person-descriptive words as themselves. We found that similarity increased the rate of risky choices only when the game required counterparts to match their choices (stag hunt games. Conversely, similarity led to decreased risk rates when they were to tacitly decouple their choices (entry games. Notably, though similarity increased coordination in the matching environment, it did not did not increase it in the decoupling game. In spite of this, similarity increased (expected payoffs across both coordination environments. This could shed light on why homophily is so successful as a social attractor. Finally, this propensity for matching and aversion to decoupling choices was not observed when participants liked their counterparts but were dissimilar to them. We thus conclude that the impact of similarity of coordination should not be reduced to liking others (i.e. social preferences but it is also about predicting them.

  8. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Directory of Open Access Journals (Sweden)

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  9. Decoupling, re-Engaging: managing trust relationships in implementation projects

    DEFF Research Database (Denmark)

    Rose, Jeremy; Schlichter, Bjarne Rerup

    2012-01-01

    , and the complex demands of managing those fluctuations. We investigate evolving trust relationships in a longitudinal case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered various breakdowns, but the project was able to recover and eventually meet...... its goals. Based on concepts from Giddens’ later work on modernity, we develop two approaches for managing dynamic trust relationships in implementation projects: decoupling and re-engaging.......An important aspect of the successful implementation of large information systems (such as ERP systems) is trust. These implementations impact the legitimate interests of many groups of stakeholders, and trust is a critical factor for success. Trust in the project is contingent upon many factors...

  10. Looking good or doing better? Patterns of decoupling in the implementation of clinical directorates.

    Science.gov (United States)

    Mascia, Daniele; Morandi, Federica; Cicchetti, Americo

    2014-01-01

    The interest toward hospital restructuring has risen significantly in recent years. In spite of its potential benefits, often organizational restructuring in health care produces unexpected consequences. Extant research suggests that institutional theory provides a powerful theoretical lens through which hospital restructuring can be described and explained. According to this perspective, the effectiveness of change is strongly related to the extent to which innovative arrangements, tools, or practices are adopted and implemented within hospitals. Whenever these new arrangements require a substantial modification of internal processes and practices, resistance to implementation emerges and organizational change is likely to become neutralized. This study analyzes how hospital organizations engage in decoupling by adopting but not implementing a new organizational model named clinical directorate. We collected primary data on the diffusion of the clinical directorate model, which was mandated by law in the Italian National Health Service to improve hospital services. We surveyed the adoption and implementation of the clinical directorate model by monitoring the presence of clinical governance tools (measures for the quality improvement of hospital services) within single directorates. In particular, we compared hospitals that adopted the model before (early adopters) or after (later adopters) the mandate was introduced. Hospitals were engaged in decoupling by adopting the new arrangement but not implementing internal practices and tools for quality improvement. The introduction of the law significantly affected the decoupling, with late-adopter hospitals being less likely to implement the adopted model. The present research shows that changes in quality improvement processes may vary in relation to policy makers' interventions aimed at boosting the adoption of new hospital arrangements. Hospital administrators need to be aware and identify the institutional changes

  11. Economy-wide material flow indicators in the Czech Republic: trends, decoupling analysis and uncertainties

    Czech Academy of Sciences Publication Activity Database

    Kovanda, J.; Hák, T.; Janáček, Jiří

    2008-01-01

    Roč. 35, č. 1 (2008), s. 25-41 ISSN 0957-4352 Grant - others:GA ČR(CZ) GA205/04/0582; GA MŽP(CZ) SM/320/2/03 Institutional research plan: CEZ:AV0Z50110509 Keywords : material flow indicators * trends * decoupling analysis Subject RIV: AH - Economics Impact factor: 0.568, year: 2008

  12. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    Science.gov (United States)

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gauge hierarchy, decoupling, and heavy particle effects

    International Nuclear Information System (INIS)

    Yao, York-Peng

    1981-01-01

    This chapter examines the problems of a large gauge hierarchy and decoupling in theories with spontaneously broken symmetry. Attempts to show, with regard to all orders in the loop expansion, that: once a proper identification is made of the light particles and of the heavy particles at the tree level, then such a division will be maintained order by order in the loop expansion without the necessity of fine tuning; there is a local renormalizable effective Lagrangian, composed of light fields only, which can be used to reproduce all the one light particle irreducible Green's functions; and a set of renormalization group equations can be written down, wherein one stays in the lower energy region to correlate the two sets of parameters in the full and the effective light theories. The appendix gives an algebraic rearrangement method which can be efficiently used to calculate the muon effects on the electron anomalous magnetic moment

  14. Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshmukh, Prashant D., E-mail: Prashant.D.Sardeshmukh@noaa.gov [CIRES, University of Colorado, Boulder, Colorado 80309 (United States); NOAA/Earth System Research Laboratory, Boulder, Colorado 80305 (United States); Penland, Cécile [NOAA/Earth System Research Laboratory, Boulder, Colorado 80305 (United States)

    2015-03-15

    The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework.

  15. Voltage and Current Regulators Design of Power Converters in Islanded Microgrids based on State Feedback Decoupling

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2016-01-01

    In stand-alone microgrids based on voltage source inverters state feedback coupling between the capacitor voltage and inductor current degrades significantly the dynamics performance of voltage and current regulators. The decoupling of the controlled states is proposed, considering the limitations...

  16. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China

    Science.gov (United States)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.

    2017-12-01

    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  17. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.

    Science.gov (United States)

    Li, Hao; Chen, Guang; Das, Siddhartha

    2016-11-01

    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    Science.gov (United States)

    2010-04-13

    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  19. Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)

    Science.gov (United States)

    Cooper, R. F.

    2010-12-01

    Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics

  20. Combining dynamical decoupling with fault-tolerant quantum computation

    International Nuclear Information System (INIS)

    Ng, Hui Khoon; Preskill, John; Lidar, Daniel A.

    2011-01-01

    We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer and can be expressed either in terms of the operator norm of the bath's Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.

  1. ECONOMIC GROWTH AND AIR POLLUTION IN THECZECHREPUBLIC: DECOUPLING CURVES

    Directory of Open Access Journals (Sweden)

    Petr Šauer

    2012-07-01

    Full Text Available The decoupling curve, together with the Environmental Kuznets Curve, has beenrecognized as one of the important indicators showing relations betweeneconomic growth and environmental degradation/pollution. Many boththeoreticaland empirical studies have been published on it. Our paper brings models whichinvestigate relations between the economic growth per capita and selectedindicators of air pollution in theCzechRepublic. The analysis tried to go beforethe year 1990, despite the difficulties when dealing with different macroeconomicindicators published during the socialist period and those introduced after thetransition to a market economy. The results might be somehow surprising forthose dealing only with data generated after the year 1990: it is possible todiscover the turning points for some of the airborne pollutants already in the1980s.

  2. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  3. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    International Nuclear Information System (INIS)

    Reiher, Markus; Wolf, Alexander

    2004-01-01

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented

  4. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    Science.gov (United States)

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  5. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  6. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?

    Directory of Open Access Journals (Sweden)

    Andreas eKnoblauch

    2012-08-01

    Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.

  7. Options for decoupling economic growth from water use and water pollution: A report of the Water Working Group of the International Resource Panel Options for decoupling economic growth from water use and water pollution

    Science.gov (United States)

    Global trends have pointed to a relative decoupling of water – that is, the rate of water resource use is increasing at a rate slower than that of economic growth. Despite this progress at the global level, it is projected that by 2030 there will be a 40% gap between water supply and water demand if...

  8. Track prediction of very severe cyclone 'Nargis' using high resolution ...

    Indian Academy of Sciences (India)

    tides (surges) as they cross the coast of India,. Bangladesh and other coasts. Strong winds, heavy and torrential rains and the cumulative effect of storm surges and astronomical tides are the three major elements of tropical cyclone ... Ocean move predominantly along westerly/ northwesterly direction. However, some ...

  9. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers.

    Science.gov (United States)

    Koslowski, Sebastian; Rosenblatt, Daniel; Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus; Schlickum, Uta

    2017-01-01

    With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.

  10. Optimal auxiliary Hamiltonians for truncated boson-space calculations by means of a maximal-decoupling variational principle

    International Nuclear Information System (INIS)

    Li, C.

    1991-01-01

    A new method based on a maximal-decoupling variational principle is proposed to treat the Pauli-principle constraints for calculations of nuclear collective motion in a truncated boson space. The viability of the method is demonstrated through an application to the multipole form of boson Hamiltonians for the single-j and nondegenerate multi-j pairing interactions. While these boson Hamiltonians are Hermitian and contain only one- and two-boson terms, they are also the worst case for truncated boson-space calculations because they are not amenable to any boson truncations at all. By using auxiliary Hamiltonians optimally determined by the maximal-decoupling variational principle, however, truncations in the boson space become feasible and even yield reasonably accurate results. The method proposed here may thus be useful for doing realistic calculations of nuclear collective motion as well as for obtaining a viable interacting-boson-model type of boson Hamiltonian from the shell model

  11. Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: Special emphasis on decay phase of El Niño

    Science.gov (United States)

    Chowdary, J. S.; Parekh, Anant; Gnanaseelan, C.; Sreenivas, P.

    2014-01-01

    Inter-decadal modulation of El Niño-Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) is investigated in the coupled general circulation model Climate Forecast System (CFS) using a hundred year integration. The model is able to capture the periodicity of El Niño variability, which is similar to that of the observations. The maximum TIO/north Indian Ocean (NIO) SST warming (during spring following the decay phase of El Niño) associated with El Niño is well captured by the model. Detailed analysis reveals that the surface heat flux variations mainly contribute to the El Niño forced TIO SST variations both in observations and model. However, spring warming is nearly stationary throughout the model integration period, indicating poor inter-decadal El Niño teleconnections. The observations on the other hand displayed maximum SST warming with strong seasonality from epoch to epoch. The model El Niño decay delayed by more than two seasons, results in persistent TIO/NIO SST warming through the following December unlike in the observations. The ocean wave adjustments and persistent westerly wind anomalies over the equatorial Pacific are responsible for late decay of El Niño in the model. Consistent late decay of El Niño, throughout the model integration period (low variance), is mainly responsible for the poor inter-decadal ENSO teleconnections to TIO/NIO. This study deciphers that the model needs to produce El Niño decay phase variability correctly to obtain decadal-modulations in ENSO teleconnection.

  12. Decoupled Simulation Method For Incremental Sheet Metal Forming

    International Nuclear Information System (INIS)

    Sebastiani, G.; Brosius, A.; Tekkaya, A. E.; Homberg, W.; Kleiner, M.

    2007-01-01

    Within the scope of this article a decoupling algorithm to reduce computing time in Finite Element Analyses of incremental forming processes will be investigated. Based on the given position of the small forming zone, the presented algorithm aims at separating a Finite Element Model in an elastic and an elasto-plastic deformation zone. Including the elastic response of the structure by means of model simplifications, the costly iteration in the elasto-plastic zone can be restricted to the small forming zone and to few supporting elements in order to reduce computation time. Since the forming zone moves along the specimen, an update of both, forming zone with elastic boundary and supporting structure, is needed after several increments.The presented paper discusses the algorithmic implementation of the approach and introduces several strategies to implement the denoted elastic boundary condition at the boundary of the plastic forming zone

  13. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  15. Antiresonance and decoupling in electronic transport through parallel-coupled quantum-dot structures with laterally-coupled Majorana zero modes

    Science.gov (United States)

    Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang

    2018-02-01

    We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.

  16. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    Science.gov (United States)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal

  17. Decoupling of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernreuther, W.

    1983-01-01

    Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme

  18. Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion

    Directory of Open Access Journals (Sweden)

    A. Solomon

    2011-10-01

    Full Text Available Observations suggest that processes maintaining subtropical and Arctic stratocumulus differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height are frequently observed to occur near cloud top coincident with temperature inversions in the Arctic, while they do not occur in the subtropics. In this study we use nested LES simulations of decoupled Arctic Mixed-Phase Stratocumulus (AMPS clouds observed during the DOE Atmospheric Radiation Measurement Program's Indirect and SemiDirect Aerosol Campaign (ISDAC to analyze budgets of water components, potential temperature, and turbulent kinetic energy. These analyses quantify the processes that maintain decoupled AMPS, including the role of humidity inversions. Key structural features include a shallow upper entrainment zone at cloud top that is located within the temperature and humidity inversions, a mixed layer driven by cloud-top cooling that extends from the base of the upper entrainment zone to below cloud base, and a lower entrainment zone at the base of the mixed layer. The surface layer below the lower entrainment zone is decoupled from the cloud mixed-layer system. Budget results show that cloud liquid water is maintained in the upper entrainment zone near cloud top (within a temperature and humidity inversion due to a down gradient transport of water vapor by turbulent fluxes into the cloud layer from above and direct condensation forced by radiative cooling. Liquid water is generated in the updraft portions of the mixed-layer eddies below cloud top by buoyant destabilization. These processes cause at least 20% of the cloud liquid water to extend into the inversion. The redistribution of water vapor from the top of the humidity inversion to its base maintains the cloud layer, while the mixed layer-entrainment zone system is continually losing total water. In this decoupled system, the humidity inversion is

  19. A decoupled power flow algorithm using particle swarm optimization technique

    International Nuclear Information System (INIS)

    Acharjee, P.; Goswami, S.K.

    2009-01-01

    A robust, nondivergent power flow method has been developed using the particle swarm optimization (PSO) technique. The decoupling properties between the power system quantities have been exploited in developing the power flow algorithm. The speed of the power flow algorithm has been improved using a simple perturbation technique. The basic power flow algorithm and the improvement scheme have been designed to retain the simplicity of the evolutionary approach. The power flow is rugged, can determine the critical loading conditions and also can handle the flexible alternating current transmission system (FACTS) devices efficiently. Test results on standard test systems show that the proposed method can find the solution when the standard power flows fail.

  20. Supercritical water gasification with decoupled pressure and heat transfer modules

    KAUST Repository

    Dibble, Robert

    2017-09-14

    The present invention discloses a system and method for supercritical water gasification (SCWG) of biomass materials wherein the system includes a SCWG reactor and a plurality of heat exchangers located within a shared pressurized vessel, which decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed and fabricated in manner that would support commercial scaled-up SCWG operations. By using heat exchangers coupled to the reactor in a series configuration, significant efficiencies are achieved by the present invention SCWG system over prior known SCWG systems.

  1. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing

    2018-02-01

    Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.

  2. After an initial, localized decline in rock lobster Jasus lalandii growth ...

    African Journals Online (AJOL)

    spamer

    Pacific Ocean. In the southern Benguela, the most obvious signature of this ENSO was the reduced fre- quency and intensity of southerly, upwelling-inducing winds, with a concomitant increase in westerly winds. This study attempts to relate the reduction in lobster growth and productivity to environmental factors which.

  3. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    Nelson, C.S.; Cooke, P.J.

    2001-01-01

    subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO. (author). 104 refs., 9 figs., 3 tabs

  4. Use of bias sputtering to enhance decoupling in oxide composite perpendicular recording media

    International Nuclear Information System (INIS)

    Lee, Hwan-Soo; Bain, James A.; Laughlin, David E.

    2007-01-01

    The effects of substrate bias on two types of oxide composite perpendicular recording media CoCrPt-SiO 2 and FePt-MgO were investigated. The use of substrate bias greatly modified the thin film microstructure and resulted in the enhanced grain decoupling in the films. The growth characteristics due to preferential resputtering were interpreted to arise mainly from weak surface bonding to the growing films for nontextured growth, combined with strong cohesion for the textured growth

  5. Geochemistry of coral from Papua New Guinea as a proxy for ENSO ocean-atmosphere interactions in the Pacific Warm Pool

    Science.gov (United States)

    Ayliffe, Linda K.; Bird, Michael I.; Gagan, Michael K.; Isdale, Peter J.; Scott-Gagan, Heather; Parker, Bruce; Griffin, David; Nongkas, Michael; McCulloch, Malcolm T.

    2004-12-01

    A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977-1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5-1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño - Southern Oscillation (ENSO) events of 1982-1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean-atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian-Australian monsoon cycle. Sudden cooling of SSTs by ˜1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.

  6. State Feedback Decoupling with In-Loop Lead Compensator in Stand-Alone VSIs

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; de Sousa Ribeiro, Luiz Antonio

    2016-01-01

    The performance of current and voltage regulators during transients and steady-state is of primary concern for power converters intended for stand-alone applications. Dynamics performance and command tracking capability are enhanced by actively decoupling the controlled states variables. To further...... widen the current loop bandwidth while still preserving a well-damped system a lead compensator structure on the forward loop is proposed. A 3 kHz bandwidth with 0.707 damping factor is achieved for the inner current controller. Accordingly, also the voltage regulator bandwidth can be widen, thus...

  7. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  8. Two- and four-quasiparticle states in the interacting boson model: Strong-coupling and decoupled band patterns in the SU(3) limit

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.

    1990-01-01

    An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital

  9. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H.

    Science.gov (United States)

    Cvitaš, Marko T; Althorpe, Stuart C

    2013-08-14

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  10. Decoupling Research on Flexible Tactile Sensors Interfered by White Gaussian Noise Using Improved Radical Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Feilu Wang

    2014-04-01

    Full Text Available Research on tactile sensors to enhance their flexibility and ability of multi- dimensional information detection is a key issue to develop humanoid robots. In view of that the tactile sensor is often affected by noise, this paper adds different white Gaussian noises (WGN into the ideal model of flexible tactile sensors based on conductive rubber purposely, then improves the standard radial basis function neural network (RNFNN to deal with the noises. The modified RBFNN is applied to approximate and decouple the mapping relationship between row-column resistance with WGNs and three-dimensional deformation. Numerical experiments demonstrate that the decoupling result of the deformation for the sensor is quite good. The results show that the improved RBFNN which doesn’t rely on the mathematical model of the system has good anti-noise ability and robustness.

  11. Resonances in molecular collisions: Importance of mode decoupling in the exit channel of attractive potentials

    International Nuclear Information System (INIS)

    Kulander, K.C.

    1983-01-01

    Two model, collinear triatomic systems are investigated in which the intrafragment vibrational modes are decoupled from the interfragment bond distance in the dissociation channel. Resonances are found in both systems whose amplitudes are predominately outside the interaction region. The consequences of the existence of such resonances on reaction probabilities, dissociation rates, and absorption properties of states near the dissociation limit are discussed

  12. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    Directory of Open Access Journals (Sweden)

    Sebastian Koslowski

    2017-07-01

    Full Text Available With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111 and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111 results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111, as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS and their shapes can be resolved by spectroscopic mapping.

  13. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  14. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  15. Magnetic decoupling of ferromagnetic metals through a graphene spacer

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, I.; Papagno, M. [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Ferrari, L. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Roma I-00133 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Sheverdyaeva, P.M.; Mahatha, S.K. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Pacilé, D., E-mail: daniela.pacile@fis.unical.it [Dipartimento di Fisica, Universitá della Calabria, Arcavacata di Rende (CS), 87036 (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy); Carbone, C. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Trieste (Italy)

    2017-03-15

    We study the magnetic coupling between different ferromagnetic metals (FMs) across a graphene (G) layer, and the role of graphene as a thin covalent spacer. Starting with G grown on a FM substrate (Ni or Co), we deposited on top at room temperature several FM metals (Fe, Ni, Co). By measuring the dichroic effect of 3p photoemission lines we detect the magnetization of the substrate and the sign of the exchange coupling in FM overlayer at room temperature. We show that the G layer magnetically decouples the FM metals. - Highlights: • The magnetic coupling between ferromagnets mediated by graphene is studied. • To this end, the linear dichroic effect in 3p photoemission lines is employed. • For selected junctions no magnetic coupling is attained through graphene. • Graphene inhibits the magnetic alignment that normally occurs between ferromagnets.

  16. Synthesis and operation of an FFT-decoupled fixed-order reversed-field pinch plasma control system based on identification data

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, K Erik J; Brunsell, Per R; Drake, James R [School of Electrical Engineering, Royal Institute of Technology (KTH), Association EURATOM-VR, Stockholm (Sweden); Witrant, Emmanuel, E-mail: erik.olofsson@ee.kth.s [Control Systems Department, UJF/GIPSA-lab, INPG/UJF Grenoble University (France)

    2010-10-15

    Recent developments and applications of system identification methods for the reversed-field pinch (RFP) machine EXTRAP T2R have yielded plasma response parameters for decoupled dynamics. These data sets are fundamental for a real-time implementable fast Fourier transform (FFT) decoupled discrete-time fixed-order strongly stabilizing synthesis as described in this work. Robustness is assessed over the data set by bootstrap calculation of the sensitivity transfer function worst-case H{sub {infinity}}-gain distribution. Output tracking and magnetohydrodynamic mode m = 1 tracking are considered in the same framework simply as two distinct weighted traces of a performance channel output-covariance matrix as derived from the closed-loop discrete-time Lyapunov equation. The behaviour of the resulting multivariable controller is investigated with dedicated T2R experiments.

  17. The impact of two-loop effects on the scenario of MSSM Higgs alignment without decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Howard E.; Stefaniak, Tim [University of California, Santa Cruz Institute for Particle Physics (SCIPP) and Department of Physics, Santa Cruz, CA (United States); Heinemeyer, Sven [Campus of International Excellence UAM+CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, (UAM/CSIC), Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain)

    2017-11-15

    In multi-Higgs models, the properties of one neutral scalar state approximate those of the Standard Model (SM) Higgs boson in a limit where the corresponding scalar field is roughly aligned in field space with the scalar doublet vacuum expectation value. In a scenario of alignment without decoupling, a SM-like Higgs boson can be accompanied by additional scalar states whose masses are of a similar order of magnitude. In the Minimal Supersymmetric Standard Model (MSSM), alignment without decoupling can be achieved due to an accidental cancellation of tree-level and radiative loop-level effects. In this paper we assess the impact of the leading two-loop O(α{sub s}h{sub t}{sup 2}) corrections on the Higgs alignment condition in the MSSM. These corrections are sizable and important in the relevant regions of parameter space and furthermore give rise to solutions of the alignment condition that are not present in the approximate one-loop description. We provide a comprehensive numerical comparison of the alignment condition obtained in the approximate one-loop and two-loop approximations, and discuss its implications for phenomenologically viable regions of the MSSM parameter space. (orig.)

  18. Atmospheric circulation characteristics associated with the onset of Asian summer monsoon

    Science.gov (United States)

    Li, Chongyin; Pan, Jing

    2006-12-01

    The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer monsoon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25° 28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500 200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.

  19. Signature inversion of the semi-decoupled band in the odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Yang Chunxiang; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2001-01-01

    The high-spin states of the odd-odd nucleus 170 Ta have been studied by the 155 Gd( 19 F, 4n) 170 Ta reaction at the beam energy of 97 MeV. The α = 1 sequence of the semi-decoupled band has been pushed to higher-spin states and the signature inversion point was observed at 19.5 ℎ. the results are compared with those of the neighbouring odd-odd nuclei

  20. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    converter topology based on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling...... is therefore very sensitive to step load changes. Comprehensive simulation results and experimental results are presented to show the effectiveness of the proposed circuit and control algorithm....

  1. Watermass structure and current system in the equatorial western Indian Ocean during August, 1985

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Reddy, G.V.; Pankajakshan, T.

    . At the equator, currents were computed using Montgomery's method. Westerly flows near Equator and easterly flows on either side of the equator are deduced. The presence of the Arabian Sea surface water, the Red Sea water, and Pacific low salinity water is noticed...

  2. Dynamical-Decoupling-Based Quantum Sensing: Floquet Spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Lang

    2015-10-01

    Full Text Available Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multipulse decoupling sequence. However, it remains challenging to robustly infer underlying atomic-scale structure from decoherence traces in all but the simplest cases. We introduce Floquet spectroscopy as a versatile paradigm for analysis of these experiments and argue that it offers a number of general advantages. In particular, this technique generalizes to more complex situations, offering physical insight in regimes of many-body dynamics, strong coupling, and pulses of finite duration. As there is no requirement for resonant driving, the proposed spectroscopic approach permits physical interpretation of striking, but overlooked, coherence decay features in terms of the form of the avoided crossings of the underlying quasienergy eigenspectrum. This is exemplified by a set of “diamond-shaped” features arising for transverse-field scans in the case of single-spin sensing by nitrogen-vacancy centers in diamond. We also investigate applications for donors in silicon, showing that the resulting tunable interaction strengths offer highly promising future sensors.

  3. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE)

    Science.gov (United States)

    Greely, T. M.; Lodge, A.

    2009-12-01

    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  4. 50 CFR 17.95 - Critical habitat-fish and wildlife. (Continued)

    Science.gov (United States)

    2010-10-01

    ...; thence southwestward along a line following the shores of the Atlantic Ocean side of Old Rhodes Key, Palo... right-of-way line and the boundary line of the Myles Standish State Forest; thence southerly and westerly, along the boundary line of the Myles Standish State Forest, crossing and re-crossing Snake Hill...

  5. Power Loss Analysis and Comparision of DC and AC Side Decoupling Module in a H-bridge Inverter

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Zhu, Guorong

    2016-01-01

    perspective. The analytical power loss models are derived based on the operation principles of the active power decoupling methods. A comparative study is performed based on a 500 W single-phase H-bridge inverter study case with 400 V DC-link voltage level. The results provide a guideline to justify whether...

  6. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  7. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    Science.gov (United States)

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  8. The effective gravitational decoupling between dark matter and the CMB

    CERN Document Server

    Voruz, Luc; Tram, Thomas

    2014-01-01

    We present a detailed and self-contained analytical derivation of the evolution of sub-horizon cosmological perturbations before decoupling, based on previous work by S. Weinberg. These solutions are valid in the minimal LCDM scenario, to first order in perturbation theory, in the tight-coupling limit and neglecting neutrino shear stress. We compare them to exact numerical solutions computed by a Boltzmann code, and we find the two to be in very good agreement. The analytic solutions show explicitly that CDM and the baryon-photon fluid effectively behave as separate self-gravitating fluids until the epoch of baryon drag. This in turn leads to the surprising conclusion that the CMB is much less sensitive to the clustering properties of minimally coupled Dark Matter models than what would be naively expected.

  9. Evaporation/SST Sensitivity Over the Tropical Oceans During ENSO Events as Estimated from the da Silva, Young, Levitus Surface Marine Data Set

    Science.gov (United States)

    Robertson, F. R.; Fitzjarrald, D. E.; Sohn, B.-J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The da Silva, Young and Levitus Surface Marine Atlas, based on observations from the Comprehensive Ocean Atmosphere Data Set (COADS) Release 1, has been used to investigate the relationship between evaporation and sea-surface temperature (SST) over the global oceans. For the period 1950 to 1987 SST, surface latent heat flux, and other related variables have been filtered to minimize data uncertainties and to focus upon interannual variations associated with warm (El Nino) and cold (La Nina) ENSO events. Compositing procedures have enabled identification of systematic variations in latent heat fluxes accompanying these events and the relationship to spatial anomalies in ocean surface wind speed and humidity. The evaporation response associated with ENSO sea surface temperature (SST) variability is systematic in nature and composed of offsetting contributions from the surface wind and humidity variations. During warm events exceeding 1.0 S.D. delta SST, increases in the surface humidity deficit, delta(qs-qa), between the surface and 2m height dominate regions of positive SST anomalies and lead to increases in evaporation of almost 2 Wm (exp -2) at deltaSST = 0.23 K. Despite the increases in specific humidity, relative humidity decreases slightly in regions of elevated SSTs. For the most part, variations in wind speed are consistent with previous investigations. Weakening of the equatorial easterlies (and generation of westerlies) between 160 degrees E and 140 degrees W dominates during the early phases of warm events. Elevated wind speeds in adjacent subtropical regions and in the eastern equatorial Pacific subsequently develop too. The net contribution of these winds, which reflect adjustments in Hadley and Walker circulation components is toward reduced evaporation. Results for cold periods are approximately similar, but opposite in sign to warm events, though evidence of different temporal evolution is noted.

  10. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  11. On the dynamics of an extreme rainfall event in northern India in 2013

    Indian Academy of Sciences (India)

    Anu Xavier

    2018-03-08

    Mar 8, 2018 ... the cold air to move southward. During the event, as the cold air moved south, it pushed the mid-latitude westerlies south of its normal position during summer monsoon and created a ... gradient between southern Asia and the Indian. Ocean develops due to increased solar heating over the Indian land area ...

  12. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    Science.gov (United States)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    The tectonic contact separating continental and oceanic units is preserved at outcrop in many locations within the Western Alps. The contact has experienced prolonged and progressive deformation during Oligocene collision and subsequent 'extrusive' contraction which is approximately westerly-directed (Dumont et al., 2012). Despite variable metamorphic grade, this tectonic contact displays a relative consistency of tectonostratigraphic and structural characteristics. Removal of the Oligocene and younger deformation is a critical requirement to allow assessment of the kinematic evolution during the Eocene continental subduction phase. The best preserved relationships are observed near the base of the Helminthoid Flysch nappes, in the footwall of the Penninic thrust, or in the external part of the Briançonnais zone. Here, the oceanic units are composed of detached Cretaceous sediments, but they are underlain locally by an olistostrome containing basaltic clasts. Further to the east, the internal boundary of the Briançonnais zone s.l. (including the 'Prepiedmont units'), is frequently marked by breccia or megabreccia, but is strongly affected by blueschist-facies metamorphism and by approximately easterly directed backfolding and backthrusting. At one locality, there is compelling evidence that the oceanic and continental units were already tectonically stacked and metamorphosed (together) 32Ma ago. Some megabreccias of mixed continental/oceanic provenance can be interpreted as a metamorphic equivalent of the external olistostrome, products of the initial pulses of tectonic stacking. The overlying units are composed dominantly of metasediments, containing distributed ophiolitic megaboudins (Tricart & Schwartz, 2006). Further east again, the tectonic contact separates the Dora-Maira continental basement from the Mt. Viso units which are predominantly composed of oceanic lithosphere. Both the Dora-Maira and Mt. Viso units are eclogitic, but the HP peak is apparently

  13. COMPARATIVE STUDY OF THREE LINEAR SYSTEM SOLVER APPLIED TO FAST DECOUPLED LOAD FLOW METHOD FOR CONTINGENCY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syafii

    2017-03-01

    Full Text Available This paper presents the assessment of fast decoupled load flow computation using three linear system solver scheme. The full matrix version of the fast decoupled load flow based on XB methods used in this study. The numerical investigations are carried out on the small and large test systems. The execution time of small system such as IEEE 14, 30, and 57 are very fast, therefore the computation time can not be compared for these cases. Another cases IEEE 118, 300 and TNB 664 produced significant execution speedup. The superLU factorization sparse matrix solver has best performance and speedup of load flow solution as well as in contigency analysis. The invers full matrix solver can solved only for IEEE 118 bus test system in 3.715 second and for another cases take too long time. However for superLU factorization linear solver can solved all of test system in 7.832 second for a largest of test system. Therefore the superLU factorization linear solver can be a viable alternative applied in contingency analysis.

  14. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  15. Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators.

    Science.gov (United States)

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2017-10-01

    Specialized organisms are useful for exploring the combined effects of selection of functional traits and developmental constraints on patterns of phenotypic integration. Sabretooth predators are one of the most interesting examples of specialization among mammals. Their hypertrophied, sabre-shaped upper canines and their powerfully built forelimbs have been interpreted as adaptations to a highly specialized predatory behaviour. Given that the elongated and laterally compressed canines of sabretooths were more vulnerable to fracture than the shorter canines of conical-tooth cats, it has been long hypothesized that the heavily muscled forelimbs of sabretooths were used for immobilizing prey before developing a quick and precise killing bite. However, the effect of this unique adaptation on the covariation between the fore- and the hindlimb has not been explored in a quantitative fashion. In this paper, we investigate if the specialization of sabretooth predators decoupled the morphological variation of their forelimb with respect to their hindlimb or, in contrast, both limbs vary in the same fashion as in conical-tooth cats, which do not show such extreme adaptations in their forelimb. We use 3D geometric morphometrics and different morphological indices to compare the fore- and hindlimb of conical- and sabretooth predators. Our results indicate that the limb bones of sabretooth predators covary following the same trend of conical-tooth cats. Therefore, we show that the predatory specialization of sabretooth predators did not result in a decoupling of the morphological evolution of their fore- and hindlimbs. The role of developmental constraints and natural selection on this coordinate variation between the fore- and the hindlimb is discussed in the light of this new evidence. © 2017 Anatomical Society.

  16. Response of zooplankton to physical changes in the environment: coastal upwelling along central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Nair, S.R.S.; Haridas, P.; Padmavati, G.

    .U. Haq and J.D. Milliman, (Eds.), Marine Geology and Oceanography ofArabian Sea and Coastal Pakistan. New York: Reinhold, pp. 339-350. PAFFENHOFER, G-A.; WESTER, B.T. and NICHO· LAS, W.O., 1984. Zooplankton abundance in rela- Journal of Coastal Research... Ocean. Proceedings of the Indian Academy of Sciences, 94, 129-137. SMITH, S.L., 1982. The northwest Indian Ocean dur ing the monsoons of 1979: distribution, abundance and feeding of zooplankton. Deep-Sea Research, 29, 1331-1353. SMITH, S.L.; BOYQ, C...

  17. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  18. Violation of the Appelquist-Carazzone decoupling in a nonsupersymmetric grand unified theory

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Wagner, Jakub

    2008-01-01

    We point out that in nonsupersymmetric grand unified theories, in which the SU(5) gauge symmetry is broken down to the standard model gauge group by a 24 Higgs multiplet the Appelquist-Carazzone decoupling is violated. This is because the SU(2) L Higgs triplet contained in the 24 acquires a dimension-full coupling to the SU(2) L Higgs doublets which is proportional to the grand unified symmetry breaking vacuum expectation value. As a result, at one-loop heavy gauge and Higgs fields contribution to tadpoles generates a vacuum expectation value of the triplet which is not suppressed for V→∞ and violates the custodial symmetry

  19. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  20. TALE proteins search DNA using a rotationally decoupled mechanism.

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M

    2016-10-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins used extensively for gene editing. Despite recent progress, however, little is known about their sequence search mechanism. Here, we use single-molecule experiments to study TALE search along DNA. Our results show that TALEs utilize a rotationally decoupled mechanism for nonspecific search, despite remaining associated with DNA templates during the search process. Our results suggest that the protein helical structure enables TALEs to adopt a loosely wrapped conformation around DNA templates during nonspecific search, facilitating rapid one-dimensional (1D) diffusion under a range of solution conditions. Furthermore, this model is consistent with a previously reported two-state mechanism for TALE search that allows these proteins to overcome the search speed-stability paradox. Taken together, our results suggest that TALE search is unique among the broad class of sequence-specific DNA-binding proteins and supports efficient 1D search along DNA.

  1. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  2. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  3. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El- Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, ...

  5. Decoupling factors on the energy-output linkage: The Spanish case

    International Nuclear Information System (INIS)

    Climent, Francisco; Pardo, Angel

    2007-01-01

    The recent increase of energy intensity in Spain and the ratification of the Kyoto protocol call for the implementation of energy policies in Spain. In this paper, we investigate the relationship between Gross Domestic Product (GDP) and Energy Consumption (EC) by taking into account several decoupling factors that can affect this linkage. Specifically, we have considered the temporal aggregation of data and its seasonal adjustments, the multivariate methodology, the substitution between EC and other inputs and the technological changes. Empirical tests reveal a long-run relationship between EC and GDP that can only be established in a complete way with a multivariate cointegration analysis. Furthermore, a short-run unidirectional causality from EC to economic growth is found. Therefore, primary EC plays an important role as a limiting factor for economic growth in Spain in the short-run

  6. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  7. Lead isotopes in deep-sea coral skeletons: Ground-truthing and a first deglacial Southern Ocean record

    Science.gov (United States)

    Wilson, David J.; van de Flierdt, Tina; Adkins, Jess F.

    2017-05-01

    a persistence of the same Pb sources through time, although we cannot rule out a minor influence from recent anthropogenic Pb. Whereas neodymium (Nd) isotopes in the Southern Ocean respond to global ocean circulation changes between glacial and interglacial periods, Pb isotopes record more localised mixing within the Antarctic Circumpolar Current, potentially further modulated by climate through changing terrestrial inputs from southern Africa or Australia. Such decoupling between Pb and Nd isotopes in the Southern Ocean highlights their potential to provide complementary insights into past oceanographic variability. Keywords: Southern Ocean; Tasmania; Deglaciation; Climate change; Ocean circulation; Weathering; Isotope tracers; Pb isotopes; Deep-sea corals

  8. Modeling study on nuclide transport in ocean - an ocean compartment method

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Suh, Kyung Suk; Han, Kyoung Won

    1991-01-01

    An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and interaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean method. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves. (Author)

  9. Okavango: a river supporting its people, environment and economic development

    CSIR Research Space (South Africa)

    Kgathi, DL

    2006-04-01

    Full Text Available % of the rain- fall in the summer, from October to March (Tyson and Pres- ton-Whyte, 1998). The summer climate of the region results from the complex interplay of the converging airstreams of the north-east airflow from the East African monsoon which crosses... the equator and moves into eastern Africa and southwards; tropical easterlies from the Indian Ocean and low level recurved westerlies that enter southern Africa from the Atlantic Ocean at about 12C176S(Hudson and Jones, 2002). The dynamic convergence zones...

  10. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  11. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing

    Science.gov (United States)

    Priede, Imants G.

    2014-06-01

    The development of knowledge of global biogeography of the oceans from sixteenthcentury European voyages of exploration to present-day use of satellite remote sensing is reviewed in three parts; the pre-satellite era (1513-1977), the satellite era leading to a first global synthesis (1978-1998), and more recent studies since 1998. The Gulf Stream was first identified as a strong open-ocean feature in 1513 and by the eighteenth century, regular transatlantic voyages by sailing ships had established the general patterns of winds and circulation, enabling optimisation of passage times. Differences in water temperature, water colour and species of animals were recognised as important cues for navigation. Systematic collection of information from ships' logs enabled Maury (The Physical Geography of the Sea Harper and Bros. New York 1855) to produce a chart of prevailing winds across the entire world's oceans, and by the early twentieth century the global surface ocean circulation that defines the major biogeographic regions was well-known. This information was further supplemented by data from large-scale plankton surveys. The launch of the Coastal Zone Color Scanner, specifically designed to study living marine resources on board the Nimbus 7 polar orbiting satellite in 1978, marked the advent of the satellite era. Over subsequent decades, correlation of satellite-derived sea surface temperature and chlorophyll data with in situ measurements enabled Longhurst (Ecological Geography of the Sea. Academic Press, New York 1998) to divide the global ocean into 51 ecological provinces with Polar, Westerly Wind, Trade Wind and Coastal Biomes clearly recognisable from earlier subdivisions of the oceans. Satellite imagery with semi-synoptic images of large areas of the oceans greatly aided definition of boundaries between provinces. However, ocean boundaries are dynamic, varying from season to season and year to year. More recent work has focused on the study of variability of

  13. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  14. Enhanced coupling and decoupling of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-09-04

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/.

  15. Enhanced coupling and decoupling of underground nuclear explosions

    International Nuclear Information System (INIS)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-01-01

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/

  16. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  17. Decoupling emissions of greenhouse gas, urbanization, energy and income: analysis from the economy of China.

    Science.gov (United States)

    Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang

    2018-05-08

    The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.

  18. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  19. Low-Noise Active Decoupling Circuit and its Application to 13C Cryogenic RF Coils at 3T

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    2017-01-01

    We analyze the loss contributions in a small, 50-mm-diameter receive-only coil for carbon-13 (13C) magnetic resonance imaging at 3 T for 3 different circuits, which, including active decoupling, are compared in terms of their Q-factors and signal-to-noise ratio (SNR). The results show that a circ......We analyze the loss contributions in a small, 50-mm-diameter receive-only coil for carbon-13 (13C) magnetic resonance imaging at 3 T for 3 different circuits, which, including active decoupling, are compared in terms of their Q-factors and signal-to-noise ratio (SNR). The results show...... that a circuit using unsegmented tuning and split matching capacitors can provide 20% SNR enhancement at room temperature compared with that using more traditional designs. The performance of the proposed circuit was also measured when cryogenically cooled to 105 K, and an additional 1.6-fold SNR enhancement...... was achieved on a phantom. The enhanced circuit performance is based on the low capacitance needed to match to 50 when coil losses are low, which significantly reduces the proportion of the current flowing through the matching network and therefore minimizes this loss contribution. This effect makes...

  20. What if energy decoupling of emerging economies were not so spontaneous? an illustrative example on India

    International Nuclear Information System (INIS)

    Mathy, S.; Guivarch, C.

    2009-02-01

    Reference GHG emissions scenarios are critical for estimates of the costs of stabilization and for climate policy recommendations. But recently, existing reference scenarios, notably the SRES, have been the target of criticisms that question their relevance in the light of current emissions trends, dispute the suitability, for developing countries, of the modeling methodologies used and suggest they convey too optimistic views on spontaneous energy decoupling of emerging countries economies. This article focuses on an illustrative example on India. It proposes an alternative reference scenario built with a modeling framework representing as realistically as possible the processes driving energy intensity and carbon intensity changes, in particular accounting for the interactions between energy systems and economic constraints and capturing the sub-optimalities of the energy sector. The mechanisms leading to moderate energy decoupling in this alternative scenario are analysed. From a methodological point of view, our results call for the improvement of the realism of modeling tools for scenarios elaboration. From a mitigation point of view, it appears that the challenge for climate policies to lift the barriers to the diffusion of energy efficiency improvement in India is considerable, but we identify a potential for synergies between development policies and climate policies. (authors)

  1. Exploring the Dynamics of Decoupling and Recoupling in Corporate Responsibility Standardization

    DEFF Research Database (Denmark)

    Haack, Patrick; Martignoni, Dirk; Schoeneborn, Dennis

    by the difficulty or impossibility of evaluation) stabilizes ceremonial adoption and thus impedes substantive adoption. This paper offers a dynamic view of adoption sequences and re-examines the role of opacity in promoting substantive adoption among multiple organizations within a given industry. Using a three......-state Markov chain model, we explore the boundary conditions under which initial opacity paired with an endogenous change towards transparency (characterized by the relative ease or possibility of evaluation) maximizes the overall number of substantive adoptions. We show that the hypocritical adoption...... of formal policies might prove instable and yield long-term institutional consequences, not only because of instability of decoupling within a single organization, but also because of sequence and endogeneity effects at the institutional field level. We illustrate our arguments by drawing on the case...

  2. Joint interference management and resource allocation for device-to-device (D2D) communications underlying downlink/uplink decoupled (DUDe) heterogeneous networks

    KAUST Repository

    Celik, Abdulkadir; Radaydeh, Redha Mahmoud Mesleh; Al-Qahtani, Fawaz S.; Alouini, Mohamed-Slim

    2017-01-01

    known as downlink (DL)/UL decoupling (DUDe). Subject to quality of service (QoS) requirements and power constraints, we formulate a joint SB assignment and resource block (RB) allocation optimization as a mixed integer non-linear programming (MINLP

  3. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system.

    Science.gov (United States)

    Aachmann-Andersen, Niels J; Christensen, Soren J; Lisbjerg, Kristian; Oturai, Peter; Johansson, Pär I; Holstein-Rathlou, Niels-Henrik; Olsen, Niels V

    2018-03-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt intake, according to instructions from a dietitian. Renal clearance studies were done for measurements of renal plasma flow, glomerular filtration rate (GFR) and the segmentel tubular handling of sodium and water (lithium clearance). rhEPO increased arterial blood pressure, total peripheral resistance, and renal vascular resistance, and decreased renal plasma flow in the high-dose rhEPO intervention and tended to decrease GFR. In spite of the decrease in renal perfusion, rhEPO tended to decrease reabsorption of sodium and water in the proximal tubule and induced a prompt decrease in circulating levels of renin and aldosterone, independent of changes in red blood cell mass, blood volumes, and blood pressure. We also found changes in biomarkers showing evidence that rhEPO induced a prothrombotic state. Our results suggest that rhEPO causes a direct downregulation in proximal tubular reabsorption that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Using Food Flow Data to Assess Sustainability: Land Use Displacement and Regional Decoupling in Quintana Roo, Mexico

    Directory of Open Access Journals (Sweden)

    Marco Millones

    2016-11-01

    Full Text Available Food flow data provide unique insights into the debates surrounding the sustainability of land based production and consumption at multiple scales. Trade flows disguise the spatial correspondence of production and consumption and make their connection to land difficult. Two key components of this spatial disjuncture are land use displacement and economic regional decoupling. By displacing the environmental impact associated with food production from one region to another, environmental trajectories can falsely appear to be sustainable at a particular site or scale. When regional coupling is strong, peripheral areas where land based production occurs are strongly linked and proximate to consumption centers, and the environmental impact of production activities is visible. When food flows occur over longer distances, regional coupling weakens, and environmental impact is frequently overlooked. In this study, we present an analysis of a locally collected food flow dataset containing agricultural and livestock products transported to and from counties in Quintana Roo (QRoo. QRoo is an extensively forested border state in southeast Mexico, which was fully colonized by the state and non-native settlers only in the last century and now is home to some of the major tourist destinations. To approximate land displacement and regional decoupling, we decompose flows to and from QRoo by (1 direction; (2 product types and; (3 scale. Results indicate that QRoo is predominantly a consumer state: incoming flows outnumber outgoing flows by a factor of six, while exports are few, specialized, and with varied geographic reach (Yucatan, south and central Mexico, USA. Imports come predominantly from central Mexico. Local production in QRoo accounts for a small portion of its total consumption. In combining both subsets of agricultural and livestock products, we found that in most years, land consumption requirements were above 100% of the available land not under

  5. Ocean One: A Robotic Avatar for Oceanic Discovery

    KAUST Repository

    Khatib, Oussama; Yeh, Xiyang; Brantner, Gerald; Soe, Brian; Kim, Boyeon; Ganguly, Shameek; Stuart, Hannah; Wang, Shiquan; Cutkosky, Mark; Edsinger, Aaron; Mullins, Phillip; Barham, Mitchell; Voolstra, Christian R.; Salama, Khaled N.; L'Hour, Michel; Creuze, Vincent

    2016-01-01

    The promise of oceanic discovery has long intrigued scientists and explorers, whether with the idea of studying underwater ecology and climate change or with the hope of uncovering natural resources and historic secrets buried deep in archaeological sites. This quest to explore the oceans requires skilled human access, yet much of the oceans are inaccessible to human divers; nearly ninetenths of the ocean floor is at 1 km or deeper [1]. Accessing these depths is imperative since factors such as pollution and deep-sea trawling threaten ecology and archaeological sites. While remotely operated vehicles (ROVs) are inadequate for the task, a robotic avatar could go where humans cannot and still embody human intelligence and intentions through immersive interfaces.

  6. Ocean One: A Robotic Avatar for Oceanic Discovery

    KAUST Repository

    Khatib, Oussama

    2016-11-11

    The promise of oceanic discovery has long intrigued scientists and explorers, whether with the idea of studying underwater ecology and climate change or with the hope of uncovering natural resources and historic secrets buried deep in archaeological sites. This quest to explore the oceans requires skilled human access, yet much of the oceans are inaccessible to human divers; nearly ninetenths of the ocean floor is at 1 km or deeper [1]. Accessing these depths is imperative since factors such as pollution and deep-sea trawling threaten ecology and archaeological sites. While remotely operated vehicles (ROVs) are inadequate for the task, a robotic avatar could go where humans cannot and still embody human intelligence and intentions through immersive interfaces.

  7. Equilibrium thermodynamics and neutrino decoupling in quasi-metric cosmology

    Science.gov (United States)

    Østvang, Dag

    2018-05-01

    The laws of thermodynamics in the expanding universe are formulated within the quasi-metric framework. The quasi-metric cosmic expansion does not directly influence momenta of material particles, so the expansion directly cools null particles only (e.g., photons). Therefore, said laws differ substantially from their counterparts in standard cosmology. Consequently, all non-null neutrino mass eigenstates are predicted to have the same energy today as they had just after neutrino decoupling in the early universe. This indicates that the predicted relic neutrino background is strongly inconsistent with detection rates measured in solar neutrino detectors (Borexino in particular). Thus quasi-metric cosmology is in violent conflict with experiment unless some exotic property of neutrinos makes the relic neutrino background essentially undetectable (e.g., if all massive mass eigenstates decay into "invisible" particles over cosmic time scales). But in absence of hard evidence in favour of the necessary exotic neutrino physics needed to resolve said conflict, the current status of quasi-metric relativity has been changed to non-viable.

  8. OceanSITES format and Ocean Observatory Output harmonisation: past, present and future

    Science.gov (United States)

    Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard

    2015-04-01

    The Global Ocean Observing System (GOOS) initiative was launched in 1991, and was the first step in creating a global view of ocean observations. In 1999 oceanographers at the OceanObs conference envisioned a 'global system of eulerian observatories' which evolved into the OceanSITES project. OceanSITES has been generously supported by individual oceanographic institutes and agencies across the globe, as well as by the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (under JCOMMOPS). The project is directed by the needs of research scientists, but has a strong data management component, with an international team developing content standards, metadata specifications, and NetCDF templates for many types of in situ oceanographic data. The OceanSITES NetCDF format specification is intended as a robust data exchange and archive format specifically for time-series observatory data from the deep ocean. First released in February 2006, it has evolved to build on and extend internationally recognised standards such as the Climate and Forecast (CF) standard, BODC vocabularies, ISO formats and vocabularies, and in version 1.3, released in 2014, ACDD (Attribute Convention for Dataset Discovery). The success of the OceanSITES format has inspired other observational groups, such as autonomous vehicles and ships of opportunity, to also use the format and today it is fulfilling the original concept of providing a coherent set of data from eurerian observatories. Data in the OceanSITES format is served by 2 Global Data Assembly Centres (GDACs), one at Coriolis, in France, at ftp://ftp.ifremer.fr/ifremer/oceansites/ and one at the US NDBC, at ftp://data.ndbc.noaa.gov/data/oceansites/. These two centres serve over 26,800 OceanSITES format data files from 93 moorings. The use of standardised and controlled features enables the files held at the OceanSITES GDACs to be electronically discoverable and ensures the widest access to the data. The Ocean

  9. The effect of sea-ice on the transient atmospheric eddies of the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, C.G. [Centro de Investigaciones del Mar y la Atmosfera/CONICET-UBA, Buenos Aires (Argentina); Serafini, V.; Le Treut, H. [Laboratoire de Meteorologie Dynamique/CNRS, Universite P. et M. Curie, Tour 15-25, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    1999-09-01

    Two 10 y simulations with a full seasonal cycle and 96 x 72 x 19 resolution were carried out with a version of the LMD GCM to diagnose the role of sea-ice on the extratropical climatology of the Southern Hemisphere. The control integration used the usual observed sea-ice distribution, while the anomaly simulation imposed a scenario in which all sea-ice was entirely replaced by open ocean. The simulated control climate was compared with available observational-based analyses. Relevant diagnostics of the time mean and indicators of the transient eddy activity have been evaluated for both integrations. The impact was shown throughout the troposphere and was larger and more organised in winter. We found reduced westerly flow and both falls and rises in sea level pressure in the region from which sea-ice was removed. The removal of ice in the Southern Ocean affects the baroclinic structure of the atmosphere. Changes in baroclinicity and eddy activity are consistent with changes in the mean climate. In general, the meridional wind variance, the poleward transient temperature flux and the eddy flux convergence of westerly momentum were weaker over the Southern Ocean. However, a strengthening of the variance downstream of the subtropical jet was found. The position of the main storm track tends to be slightly displaced equatorward in the anomaly case. (orig.) With 15 figs., 53 refs.

  10. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  11. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  12. Blue ocean strategy.

    Science.gov (United States)

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  13. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages.

    Science.gov (United States)

    Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events

  14. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages

    Directory of Open Access Journals (Sweden)

    María F. Sánchez Goñi

    2018-01-01

    Full Text Available Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth’s other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs, ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials and cold phases (Greenland stadials. The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold

  15. Organophosphorus esters in the oceans and possible relation with ocean gyres

    International Nuclear Information System (INIS)

    Cheng, Wenhan; Xie, Zhouqing; Blais, Jules M.; Zhang, Pengfei; Li, Ming; Yang, Chengyun; Huang, Wen; Ding, Rui; Sun, Liguang

    2013-01-01

    Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. -- Highlights: •We provide OPE concentrations in aerosols in a circumpolar expedition. •We find strong anthropogenic source of OPE pollution. •We suggest potential relationship between ocean gyres and OPE pollution. -- Our work provides a circumpolar investigation on OPEs in the Southern Ocean and we suggest a possibility that ocean currents and gyres may act as important roles in global transport of OPEs

  16. Mechanical decoupling along a subduction boundary fault: the case of the Tindari-Alfeo Fault System, Calabrian Arc (central Mediterranean Sea)

    Science.gov (United States)

    Maesano, F. E.; Tiberti, M. M.; Basili, R.

    2017-12-01

    In recent years an increasing number of studies have been focused in understanding the lateral terminations of subduction zones. In the Mediterranean region, this topic is of particular interest for the presence of a "land-locked" system of subduction zones interrupted by continental collision and back-arc opening. We present a 3D reconstruction of the area surrounding the Tindari-Alfeo Fault System (TAFS) based on a dense set of deep seismic reflection profiles. This fault system represents a major NNW-SSE trending subduction-transform edge propagator (STEP) that controls the deformation zone bounding the Calabrian subduction zone (central Mediterranean Sea) to the southwest. This 3D model allowed us to characterize the mechanical and kinematic evolution of the TAFS during the Plio-Quaternary. Our study highlights the presence of a mechanical decoupling between the deformation observed in the lower plate, constituted by the Ionian oceanic crust entering the subduction zone, and the upper plate, where a thick accretionary wedge has formed. The lower plate hosts the master faults of the TAFS, whereas the upper plate is affected by secondary deformation (bending-moment faulting, localized subsidence, stepovers, and restraining/releasing bends). The analysis of the syn-tectonic sedimentary basins related to the activity of the TAFS at depth allow us to constrain the propagation rate of the deformation and of the vertical component of the slip-rate. Our findings provide a comprehensive framework of the structural setting that can be expected along a STEP boundary where contractional and transtensional features coexist at close distance from one another.

  17. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  18. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2014-01-01

    on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling of the proposed system...... of voltage control loop because the variation of dc-link voltage should be kept within an acceptable range during load transients. This is particularly important for systems with reduced dc-link capacitance because they are of lower energy capacity and very sensitive to step load changes. Simulation results...

  19. Sensitivities of Prospective Future e+e- Colliders to Decoupled New Physics

    CERN Document Server

    Ellis, John

    2016-01-01

    We explore the indirect sensitivities to decoupled new physics of prospective precision electroweak measurements, triple-gauge-coupling measurements and Higgs physics at future $e^+e^-$ colliders, with emphasis on the ILC250 and FCC-ee. The Standard Model effective field theory (SM EFT) is adopted as a model-independent approach for relating experimental precision projections to the scale of new physics, and we present prospective constraints on the Wilson coefficients of dimension-6 operators. We find that in a marginalised fit ILC250 EWPT measurements may be sensitive to new physics scales $\\Lambda = \\mathcal{O}(10)$~TeV, and FCC-ee EWPT measurements may be sensitive to $\\Lambda = \\mathcal{O}(30)$~TeV. The prospective sensitivities of Higgs and TGC measurements at the ILC250 (FCC-ee) are to $\\Lambda = \\mathcal{O}(1)$~TeV ($\\Lambda = \\mathcal{O}(2)$~TeV).

  20. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    Science.gov (United States)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  1. Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea

    International Nuclear Information System (INIS)

    Lu, I.J.; Lin, Sue J.; Lewis, Charles

    2007-01-01

    We adopted the Divisia index approach to explore the impacts of five factors on the total carbon dioxide emissions from highway vehicles in Germany, Japan, South Korea and Taiwan during 1990-2002. CO 2 emission was decomposed into emission coefficient, vehicle fuel intensity, vehicle ownership, population intensity and economic growth. In addition, the decoupling effects among economic growth, transport energy demand and CO 2 emission were analyzed to better understand the fuel performance and CO 2 mitigation strategies for each country. From our results, we suggest that the rapid growths of economy and vehicle ownership were the most important factors for the increased CO 2 emissions , whereas population intensity contributed significantly to emission decrease. Energy conservation performance and CO 2 mitigation in each country are strongly correlated with environmental pressure and economic driving force, except for Germany in 1993 and Taiwan during 1992-1996. To decouple the economic growth and environmental pressure, proponents of sustainable transport policy in Taiwan should focus on improving the operation and energy use of its highway transportation system by implementing an intelligent transportation system (ITS) with demand management, constructing an integrated feeder system, and encouraging the use of green transport modes

  2. Protection of the lung from blast overpressure by stress wave decouplers, buffer plates or sandwich panels.

    Science.gov (United States)

    Sedman, Andrew; Hepper, A

    2018-03-19

    This paper outlines aspects of UK Ministry of Defence's research and development of blast overpressure protection technologies appropriate for use in body armour, with the aim of both propagating new knowledge and updating existing information. Two simple models are introduced not only to focus the description of the mechanism by which the lungs can be protected, but also to provide a bridge between fields of research that may hold the key to further advances in protection technology and related body armour. Protection can be provided to the lungs by decoupling the stress wave transmission into the thorax by managing the blast energy imparted through the protection system. It is proposed that the utility of the existing 'simple decoupler' blast overpressure protection is reviewed in light of recent developments in the treatment of those sustaining both overpressure and fragment injuries. It is anticipated that further advances in protection technology may be generated by those working in other fields on the analogous technologies of 'buffer plates' and 'sandwich panels'. © Crown copyright (2018), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

  3. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling

    Science.gov (United States)

    Singh, Harpreet; Arvind, Dorai, Kavita

    2018-02-01

    We embarked upon the task of experimental protection of different classes of tripartite entangled states, namely, the maximally entangled Greenberger-Horne-Zeilinger (GHZ) and W states and the tripartite entangled state called the W W ¯ state, using dynamical decoupling. The states were created on a three-qubit NMR quantum information processor and allowed to evolve in the naturally noisy NMR environment. Tripartite entanglement was monitored at each time instant during state evolution, using negativity as an entanglement measure. It was found that the W state is most robust while the GHZ-type states are most fragile against the natural decoherence present in the NMR system. The W W ¯ state, which is in the GHZ class yet stores entanglement in a manner akin to the W state, surprisingly turned out to be more robust than the GHZ state. The experimental data were best modeled by considering the main noise channel to be an uncorrelated phase damping channel acting independently on each qubit, along with a generalized amplitude damping channel. Using dynamical decoupling, we were able to achieve a significant protection of entanglement for GHZ states. There was a marginal improvement in the state fidelity for the W state (which is already robust against natural system decoherence), while the W W ¯ state showed a significant improvement in fidelity and protection against decoherence.

  4. A new nonlinear blind source separation method with chaos indicators for decoupling diagnosis of hybrid failures: A marine propulsion gearbox case with a large speed variation

    International Nuclear Information System (INIS)

    Li, Zhixiong; Peng, Z

    2016-01-01

    The normal operation of propulsion gearboxes ensures the ship safety. Chaos indicators could efficiently indicate the state change of the gearboxes. However, accurate detection of gearbox hybrid faults using Chaos indicators is a challenging task and the detection under speed variation conditions is attracting considerable attentions. Literature review suggests that the gearbox vibration is a kind of nonlinear mixture of variant vibration sources and the blind source separation (BSS) is reported to be a promising technique for fault vibration analysis, but very limited work has addressed the nonlinear BSS approach for hybrid faults decoupling diagnosis. Aiming to enhance the fault detection performance of Chaos indicators, this work presents a new nonlinear BSS algorithm for gearbox hybrid faults detection under a speed variation condition. This new method appropriately introduces the kernel spectral regression (KSR) framework into the morphological component analysis (MCA). The original vibration data are projected into the reproducing kernel Hilbert space (RKHS) where the instinct nonlinear structure in the original data can be linearized by KSR. Thus the MCA is able to deal with nonlinear BSS in the KSR space. Reliable hybrid faults decoupling is then achieved by this new nonlinear MCA (NMCA). Subsequently, by calculating the Chaos indicators of the decoupled fault components and comparing them with benchmarks, the hybrid faults can be precisely identified. Two specially designed case studies were implemented to evaluate the proposed NMCA-Chaos method on hybrid gear faults decoupling diagnosis. The performance of the NMCA-Chaos was compared with state of art techniques. The analysis results show high performance of the proposed method on hybrid faults detection in a marine propulsion gearbox with large speed variations.

  5. Ocean acidification genetics - Genetics and genomics of response to ocean acidification

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are applying a variety of genetic tools to assess the response of our ocean resources to ocean acidification, including gene expression techniques, identification...

  6. 78 FR 32556 - Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD

    Science.gov (United States)

    2013-05-31

    ... FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information The... Atlantic Ocean in Ocean City, MD. In recent years, there have been unfortunate instances of jets and planes...

  7. Active sound transmission control of an experimental double-panel partition using decoupled, dual-channel, analog feedback control

    OpenAIRE

    Sagers, Jason; Blotter, Jonathan

    2008-01-01

    This paper addresses the construction, measurement, and analysis of a double panel active partition (DPAP) and its accompanying analog feedback controllers. The DPAP was constructed by attaching an aluminum cone loudspeaker at each end of a short segment of a circular duct. Two analog feedback controllers were designed and built using the measured frequency response function of each panel. Two independent (decoupled) feedback controllers were then used to minimize the vibration amplitude of e...

  8. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  9. An inventory of Arctic Ocean data in the World Ocean Database

    Science.gov (United States)

    Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.

    2018-03-01

    The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16" target="_blank">https://doi.org/10.7289/V54Q7S16).

  10. Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland

    DEFF Research Database (Denmark)

    Fenty, Ian; Willis, Josh K.; Khazendar, Ala

    2016-01-01

    the continental shelf, and about the extent to which the ocean interacts with glaciers. Early results from NASA's five-year Oceans Melting Greenland (OMG) mission, based on extensive hydrographic and bathymetric surveys, suggest that many glaciers terminate in deep water and are hence vulnerable to increased...... melting due to ocean-ice interaction. OMG will track ocean conditions and ice loss at glaciers around Greenland through the year 2020, providing critical information about ocean-driven Greenland ice mass loss in a warming climate....

  11. Simulating Baltic Sea climate for the period 1902-1998 with the Rossby Centre coupled ice-ocean model

    Energy Technology Data Exchange (ETDEWEB)

    Meier, H.E. Markus [Swedish Meteorological and Hydrological Inst., Rossby Centre, Norrkoeping (Sweden); Kauker, Frank [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)

    2002-12-01

    Hindcast simulations for the period 1902-1998 have been performed using a 3D coupled ice-ocean model for the Baltic Sea. Daily sea level observations in Kattegat, monthly basin-wide discharge data, and reconstructed atmospheric surface data have been used to force the Baltic Sea model. The reconstruction utilizes a statistical model to calculate daily sea level pressure and monthly surface air temperature, dew point temperature, precipitation, and cloud cover fields on a 1 deg x 1 deg regular horizontal grid for the Baltic Sea region. An improved turbulence scheme has been implemented into the Baltic Sea model to simulate saltwater inflows realistically. The results are validated against available observational datasets for sea level, salinity, saltwater inflow, volume transport, and sea ice. In addition, a comparison is performed with simulations for the period 1980-1993 using 3-hourly gridded atmospheric observations from synoptic stations. It is shown that the results of the Baltic Sea model forced with the reconstructed data are satisfactory. Sensitivity experiments have been performed to explore the impact of internal mixing, fresh and saltwater inflows, sea ice, and the sea level in Kattegat on the salinity of the Baltic Sea. It is found that the decadal variability of mean salinity is explained partly by decadal volume variations of the accumulated freshwater inflow from river runoff and net precipitation and partly by decadal variations of the large-scale sea level pressure over Scandinavia. During the last century two exceptionally long stagnation periods are found, the 1920s to the 1930s and the 1980s to the mid 1990s. During these periods precipitation, runoff and westerly winds were stronger than normal. Stronger westerly winds caused increased eastward surface-layer transports. Consequently, the mean eastward lower layer transports through the Stolpe Channel is reduced. The response time scale of the Baltic Sea is of the order of 30-40 years. The large

  12. Projected changes in prevailing winds for transatlantic migratory birds under global warming.

    Science.gov (United States)

    La Sorte, Frank A; Fink, Daniel

    2017-03-01

    A number of terrestrial bird species that breed in North America cross the Atlantic Ocean during autumn migration when travelling to their non-breeding grounds in the Caribbean or South America. When conducting oceanic crossings, migratory birds tend to associate with mild or supportive winds, whose speed and direction may change under global warming. The implications of these changes for transoceanic migratory bird populations have not been addressed. We used occurrence information from eBird (1950-2015) to estimate the geographical location of population centres at a daily temporal resolution across the annual cycle for 10 transatlantic migratory bird species. We used this information to estimate the location and timing of autumn migration within the transatlantic flyway. We estimated how prevailing winds are projected to change within the transatlantic flyway during this time using daily wind speed anomalies (1996-2005 and 2091-2100) from 29 Atmosphere-Ocean General Circulation Models implemented under CMIP5. Autumn transatlantic migrants have the potential to encounter strong westerly crosswinds early in their transatlantic journey at intermediate and especially high migration altitudes, strong headwinds at low and intermediate migration altitudes within the Caribbean that increase in strength as the season progresses, and weak tailwinds at intermediate and high migration altitudes east of the Caribbean. The CMIP5 simulations suggest that, during this century, the likelihood of autumn transatlantic migrants encountering strong westerly crosswinds will diminish. As global warming progresses, the need for species to compensate or drift under the influence of strong westerly crosswinds during the initial phase of their autumn transatlantic journey may be diminished. Existing strategies that promote headwind avoidance and tailwind assistance will likely remain valid. Thus, climate change may reduce time and energy requirements and the chance of mortality or

  13. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  14. Static balancing of a spatial six-degree-of-freedom decoupling parallel mechanism

    International Nuclear Information System (INIS)

    Gao, Taoran Liu; Zhao, Xianchao; Qi, Chenkun

    2014-01-01

    The static balancing of a spatial 6-degree-of-freedom (6-DoF) decoupling parallel mechanism is discussed in this paper. Two traditional approaches (using counterweights and the springs) are used to statically balance the mechanism. Due to the existence of their shortcomings, a hybrid approach is proposed based on the static balancing of the mechanism. The main feature of this mechanism is that the 3-DoF rotating part can be static balancing itself, which means that its mass has no effect on the gravity balancing of the system, for any configuration of the mechanism, so the rotating part can be considered as a whole and the calculation is simplified. Finally, examples and dynamic analysis corresponding to the three balancing methods are given to illustrate the results.

  15. Application of the decoupling scheme on complex neutron-gamma shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S. [Institute of Nuclear Technology, Technical University of Budapest, Budapest (Hungary); Leege, P.F.A. de; Hoogenboom, J.E.; Kloosterman, J.L. [Interfaculty Reactor Institute, Delft University of Technology, Delft (Netherlands)

    2000-03-01

    Coupled neutron-gamma shielding calculations using S{sub n} transport theory can be time consuming, especially for two- and three-dimensional geometries. In general, the CPU time of these calculations increases stronger than linear with increasing number of neutron and gamma energy groups, and depends on the order of Legendre expansion and number of S{sub n} directions used. This fact induced the idea of the decoupling method, which seems applicable to accelerate coupled neutron-gamma shielding calculations. The data included in a combined neutron-gamma library can be readily separated into a library containing neutron data only and another library containing gamma data only. Separate calculations for neutrons and gammas are performed on complex geometries using a different Legendre order expansion for neutrons and gammas. CPU savings of 60 to 85% can be achieved for the two-dimensional DORT and three-dimensional TORT calculations respectively. (author)

  16. Global coupling and decoupling of the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-01-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength

  17. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  18. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  19. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  20. Pb, Nd and Sr isotopes in oceanic ferromanganese deposits and ocean floor basalts

    International Nuclear Information System (INIS)

    O'Nions, R.K.; Carter, S.R.; Cohen, R.S.; Evensen, N.M.; Hamilton, P.J.

    1978-01-01

    The Pb-, Nd-, and Sr-isotope compositions of oceanic ferromanganese deposits, together with the Nd- and Sr-isotope compositions of altered ocean-floor basalts, are here reported. These data are used to evaluate these metals as sources in both the oceans and ocean ferromanganese deposits and the extent to which ocean-floor basalts may be a source of, or a sink for, these metals. (author)