Sample records for ocean wave spectrum

  1. Directional spectrum of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Gouveia, A; Nagarajan, R.

    This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...

  2. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model (United States)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.


    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  3. Wavenumber Spectrum of Intermediate-Scale Ocean Surface Waves

    National Research Council Canada - National Science Library

    Hwang, Paul A


    ... (wavelengths between 0.02 and 6 m) under various sea-state conditions. The main result of the analysis is that the dependence of the dimensionless wave spectrum on the dimensionless wind friction velocity follows a power-law function...

  4. Retrieval of the ocean wave spectrum in open and thin ice covered ocean waters from ERS Synthetic Aperture Radar images

    International Nuclear Information System (INIS)

    De Carolis, G.


    This paper concerns with the task of retrieving ocean wave spectra form imagery provided by space-borne SAR systems such as that on board ERS satellite. SAR imagery of surface wave fields travelling into open ocean and into thin sea ice covers composed of frazil and pancake icefields is considered. The major purpose is to gain insight on how the spectral changes can be related to sea ice properties of geophysical interest such as the thickness. Starting from SAR image cross spectra computed from Single Look Complex (SLC) SAR images, the ocean wave spectrum is retrieved using an inversion procedure based on the gradient descent algorithm. The capability of this method when applied to satellite SAR sensors is investigated. Interest in the SAR image cross spectrum exploitation is twofold: first, the directional properties of the ocean wave spectra are retained; second, external wave information needed to initialize the inversion procedure may be greatly reduced using only information included in the SAR image cross spectrum itself. The main drawback is that the wind waves spectrum could be partly lost and its spectral peak wave number underestimated. An ERS-SAR SLC image acquired on April 10, 1993 over the Greenland Sea was selected as test image. A pair of windows that include open-sea only and sea ice cover, respectively, were selected. The inversions were carried out using different guess wave spectra taken from SAR image cross spectra. Moreover, care was taken to properly handle negative values eventually occurring during the inversion runs. This results in a modification of the gradient descending the technique that is required if a non-negative solution of the wave spectrum is searched for. Results are discussed in view of the possibility of SAR data to detect ocean wave dispersion as a means for the retrieval of ice thickness

  5. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean (United States)

    Eriksen, Charles C.


    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m

  6. Study of the directional spectrum of ocean waves using array, buoy and radar measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.

    Phase/time/path difference (PTPD) methods of Esteva [1977] and Borgman [1974] with two modifications, viz., true phase and coherence proposed in this thesis, have for the first time been successfully used for computing wave direction as a function...

  7. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...

  8. Power from Ocean Waves. (United States)

    Newman, J. N.


    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  9. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E


    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  10. Riding the ocean waves

    International Nuclear Information System (INIS)

    Yemm, Richard


    It is claimed that important developments over the past five years mean that there will be a range of competing pre-commercial wave-energy systems by 2002. The generation costs should be on a par with biomass schemes and offshore wind systems. The environmental advantages of wave energy are extolled. Ocean Power Delivery (OPD) have produced a set of criteria to be satisfied for a successful wave power scheme and these are listed. OPD is responsible for the snake-like Pelamis device which is a semi-submerged articulated series of cylindrical sections connected through hinged joints. How the wave-induced movement of the hinges is used to generate electricity is explained. The system is easily installed and can be completely removed at the end of its life

  11. ONR Ocean Wave Dynamics Workshop (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  12. Ocean waves monitor system by inland microseisms (United States)

    Lin, L. C.; Bouchette, F.; Chang, E. T. Y.


    Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website ( Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.

  13. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer (United States)

    Jackson, Frederick C.


    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  14. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  15. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  16. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  17. The Global Signature of Ocean Wave Spectra (United States)

    Portilla-Yandún, Jesús


    A global atlas of ocean wave spectra is developed and presented. The development is based on a new technique for deriving wave spectral statistics, which is applied to the extensive ERA-Interim database from European Centre of Medium-Range Weather Forecasts. Spectral statistics is based on the idea of long-term wave systems, which are unique and distinct at every geographical point. The identification of those wave systems allows their separation from the overall spectrum using the partition technique. Their further characterization is made using standard integrated parameters, which turn out much more meaningful when applied to the individual components than to the total spectrum. The parameters developed include the density distribution of spectral partitions, which is the main descriptor; the identified wave systems; the individual distribution of the characteristic frequencies, directions, wave height, wave age, seasonal variability of wind and waves; return periods derived from extreme value analysis; and crossing-sea probabilities. This information is made available in web format for public use at It is found that wave spectral statistics offers the possibility to synthesize data while providing a direct and comprehensive view of the local and regional wave conditions.

  18. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    The measurement of ocean waves has been of particular interest, as wave data and understanding of wave phenomena are essential to ocean engineering, coastal engineering and to many marine operations. The National Institute of Oceanography, Goa...

  19. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter


    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  20. Breaking of ocean surface waves

    International Nuclear Information System (INIS)

    Babanin, A.V.


    Wind-generated waves are the most prominent feature of the ocean surface, and so are breaking waves manifested by the appearance of sporadic whitecaps. Such breaking represents one of the most interesting and most challenging problems for both fluid mechanics and physical oceanography. It is an intermittent random process, very fast by comparison with other processes in the wave breaking on the water surface is not continuous, but its role in maintaining the energy balance within the continuous wind-wave field is critical. Ocean wave breaking also plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and maritime engineering, navigation and other practical applications. Understanding the wave breaking its occurrence, the breaking rates and even ability to describe its onset has been hindered for decades by the strong non-linearity of the process, together with its irregular and ferocious nature. Recently, this knowledge has significantly advanced, and the review paper is an attempt to summarise the facts into a consistent, albeit still incomplete picture of the phenomenon. In the paper, variety of definitions related to the were breaking are discussed and formulated and methods for breaking detection and measurements are examined. Most of attention is dedicated to the research of wave breaking probability and severity. Experimental, observational, numerical and statistical approaches and their outcomes are reviewed. Present state of the wave-breaking research and knowledge is analysed and main outstanding problems are outlined (Authors)

  1. Internal Ocean Waves (United States)


    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  2. Book review: Extreme ocean waves (United States)

    Geist, Eric L.


    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  3. Directional Ocean Wave Spectra (United States)


    thle The basin is also equipped with a 50-rn-wide hydraulic Wasesc~an-menasured spec\\trum., Pitch ndroll motions AA C D Figure 5. Results of Tydeman...LDescnption and Mfodetling of IVieraonal Seas. Danish Hydraulic Institute rnd Danish Maritime Institute. Copenhagen, pp. 0-5-1 V-5-17 (1984). ACKNOWLEDGMENTS...iins oý 1 eak k II V. I" a t’A1101` icnt the large circles with inrscribed crssesý. lihe grL)wrd fracks Radar (kcaiw VOac~eoicc s.ha~k,,in, this on

  4. The Interaction of Ocean Waves and Wind (United States)

    Janssen, Peter


    Describing in detail the two-way interaction between wind and ocean waves, this book discusses ocean wave evolution in accordance with the energy balance equation. An extensive overview of nonlinear transfer is given, and the role of four-wave interactions in the generation of extreme events as well as the effects on ocean circulation is included. The volume will interest ocean wave modellers, physicists, applied mathematicians, and engineers.

  5. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.


    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  6. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens


    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  7. Rogue Waves in the Ocean (United States)

    Waseda, Takuji


    Giant episodic ocean waves that suddenly soar like a wall of water out of an otherwise calm sea are not just a legend. Such waves—which in the past have been called “abnormal,” “exceptional,” “extreme,” and even “vicious killer” waves—are now commonly known as “rogue waves” or “freak waves.” These waves have sunk or severely damaged 22 supercarriers in the world and caused the loss of more than 500 lives in the past 40 years. The largest wave registered by reliable instruments reached 30 meters in height, and the largest wave recorded by visual observation reached about 34 meters, equivalent to the height of an eight-story building. Tales of seafarers from Christopher Columbus to the passengers of luxury cruise ships had long been undervalued by scientists, but in the past 10 or so years, those historical notes and modern testimonies have been scientifically dissected to reveal the nature of these monster waves.

  8. A wave parameters and directional spectrum analysis for extreme winds


    Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier


    In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...

  9. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  10. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  11. Millimeter wave spectrum of nitromethane (United States)

    Ilyushin, Vadim


    A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.

  12. Ocean floor mounting of wave energy converters (United States)

    Siegel, Stefan G


    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  13. Book review: Rogue waves in the ocean (United States)

    Geist, Eric L.


    Rogue Waves in the Ocean (2009) is a follow-on text to Extreme Ocean Waves (2008) edited by Pelinovsky and Kharif, both published by Springer. Unlike the earlier text, which is a compilation of papers on a variety of extreme waves that was the subject of a scientific conference in 2007, Rogues Waves in the Ocean is written, rather than edited, by Kharif, Pelinovsky, and Slunyaev and is focused on rogue waves in particular. The book consists of six chapters covering 216 pages. As the subject matter of each chapter is distinct, references appear at the end of each chapter rather than at the end of the book. The preface shows how each of the chapters relates to the larger study of rogue waves. The result is a book with a nice mix of eyewitness observations, physical theory, and statistics.

  14. Spectrum pooling in MnWave Networks

    DEFF Research Database (Denmark)

    Boccardi, Federico; Shokri-Ghadikolaei, Hossein; Fodor, Gabor


    Motivated by the specific characteristics of mmWave technologies, we discuss the possibility of an authorization regime that allows spectrum sharing between multiple operators, also referred to as spectrum pooling. In particular, considering user rate as the performance measure, we assess...

  15. The spectrum of axisymmetric torsional Alfven waves

    International Nuclear Information System (INIS)

    Sy, W.N.


    The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)

  16. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng


    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  17. Monstrous ocean waves during typhoon Krosa

    Directory of Open Access Journals (Sweden)

    P. C. Liu


    Full Text Available This paper presents a set of ocean wave time series data recorded from a discus buoy deployed near northeast Taiwan in western Pacific that was operating during the passage of Typhoon Krosa on 6 October 2007. The maximum trough-to-crest wave height was measured to be 32.3 m, which could be the largest Hmax ever recorded.

  18. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)


    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  19. Ocean wave-radar modulation transfer functions from the West Coast experiment (United States)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.


    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  20. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.


    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  1. Seismic Wave Propagation in Icy Ocean Worlds (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon


    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  2. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  3. Breaking Waves on the Ocean Surface (United States)

    Schwendeman, Michael S.

    In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momentum, and mass between the atmosphere and the ocean. Despite much study, fundamental questions about wave breaking, such as what determines whether a wave will break, remain unresolved. Measurements of oceanic breakers, or "whitecaps," are often used to validate the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-world measurements are also used to improve the parameterizations of wave-breaking in large global models, such as those forecasting climate change. Here, measurements of whitecaps are presented using ship-based cameras, from two experiments in the North Pacific Ocean. First, a method for georectifying the camera imagery is described using the distant horizon, without additional instrumentation. Over the course of the experiment, this algorithm correctly identifies the horizon in 92% of images in which it is visible. In such cases, the calculation of camera pitch and roll is accurate to within 1 degree. The main sources of error in the final georectification are from mislabeled horizons due to clouds, rain, or poor lighting, and from vertical "heave" motions of the camera, which cannot be calculated with the horizon method. This method is used for correcting the imagery from the first experiment, and synchronizing the imagery from the second experiment to an onboard inertial motion package. Next, measurements of the whitecap coverage, W, are shown from both experiments. Although W is often used in models to represent whitecapping, large uncertainty remains in the existing parameterizations. The data show good agreement with recent measurements using the wind speed. Although wave steepness and dissipation are hypothesized to be more robust predictors of W, this is shown to not always be the case. Wave steepness shows comparable success to the wind parameterizations only when using a mean-square slope variable calculated over the

  4. Nonlinear wave forces on large ocean structures (United States)

    Huang, Erick T.


    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  5. The viscous lee wave problem and its implications for ocean modelling (United States)

    Shakespeare, Callum J.; Hogg, Andrew McC.


    Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.

  6. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations (United States)

    Chen, Shuyi S.; Curcic, Milan


    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  7. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes (United States)

    Zhang, Ting; Song, Jinbao


    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  8. Evidence for infragravity wave-tide resonance in deep oceans. (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko


    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  9. Ocean wave generation by collapsing ice shelves (United States)

    Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.


    The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the

  10. Width of electromagnetic wave instability spectrum in tungsten plate

    International Nuclear Information System (INIS)

    Rinkevich, A.B.


    Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs

  11. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus


    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  12. Near-inertial waves and deep ocean mixing (United States)

    Shrira, V. I.; Townsend, W. A.


    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  13. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A


    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  14. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien


    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  15. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Lindroth, Simon


    On March 13th, 2006, the Div. of Electricity at Uppsala Univ. deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that

  16. Small-scale open ocean currents have large effects on wind wave heights (United States)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen


    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.

  17. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  18. Wave directional spectrum from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Sarma, Y; Menon, H.B.

    Using the method of Esteva (1976, 1977), whcih assumes that at the frequency band the waves approach from just a single "mean" wave direction, wave direction has been consistently, accurately and unambiguously evaluated as a function of frequency...

  19. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer (United States)

    Weissman, D. E.; Johnson, J. W.


    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  20. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer (United States)

    Weissman, D. E.; Johnson, J. W.


    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  1. The role of the generalized Phillips' spectrum in wave turbulence

    International Nuclear Information System (INIS)

    Newell, A.C.; Zakharov, V.E.


    We suggest the generalized Phillips' spectrum, which we define as that spectrum for which the statistical properties of wave turbulence inherit the symmetries of the original governing equations, is, in many circumstances, the spectrum which obtains in those regions of wavenumber space in which the Kolmogorov-Zakharov (KZ) spectra are no longer valid. This spectrum has many very special properties. We discuss its connection with the singularities which are associated with the whitecap events observed in windblown seas

  2. Rogue waves in the ocean - review and progress (United States)

    Pelinovsky, Efim; Kharif, Christian; Slunyaev, Alexey


    Rogue waves in the ocean and physical mechanisms of their appearance are discussed. Theyse waves are among waves naturally observed by people on the sea surface that represent inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger and disappear at once. They may occur at the surface of a relatively calm sea, reach not very high amplitudes, but be fatal for ships and crew due to their unexpectedness and abnormal features. The billows appear suddenly exceeding the surrounding waves twice and more, and obtained many names: abnormal, exceptional, extreme, giant, huge, sudden, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves; cape rollers, holes in the sea, walls of water, three sisters… Freak monsters, though living for seconds, were able to arouse superstitious fear of the crew, cause damage, death of heedless sailors or the whole ship. All these epithets are full of human fear and feebleness. The serious studies of the phenomenon started about 20-30 years ago and have been intensified during the recent decade. The research is being conducted in different fields: in physics (search of physical mechanisms and adequate models of wave enhancement and statistics), in geoscience (determining the regions and weather conditions when rogue waves are most probable), and in ocean and coastal engineering (estimations of the wave loads on fixed and drifting floating structures). Thus, scientists and engineers specializing in different subject areas are involved in the solution of the problem. The state-of-art of the rogue wave study is summarized in our book [Kharif, Ch., Pelinovsky, E., and Slunyaev, A. Rogue Waves in the Ocean. Springer, 2009] and presented in given review. Firstly, we start with a brief introduction to the problem of freak waves aiming at formulating what is understood as rogue or freak waves, what consequences their existence imply in our life, why people are so worried about them. Then we discuss existing

  3. Understanding Rossby wave trains forced by the Indian Ocean Dipole (United States)

    McIntosh, Peter C.; Hendon, Harry H.


    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  4. An Arctic Ice/Ocean Coupled Model with Wave Interactions (United States)


    discussed by DRI participants may aid our understanding as well, e.g. those conducted in the Hamburg Ship Model Basin. Our theoretical advances benefit...the project are – continued modifications to the Arctic wide WIM code in association with advances relating to a new ice/ocean model known as... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of

  5. A Wave Glider for Studies of Biofouling and Ocean Productivity (United States)


    Report: A Wave Glider for Studies of Biofouling and Ocean Productivity The views, opinions and/or findings contained in this report are those of the...Biofouling and Ocean Productivity Report Term: 0-Other Email: Distribution Statement: 1-Approved for public release; distribution is...sensors, and engineered test surfaces was procured to study controls on ocean productivity , plankton distribution, larval settling, and biofouling. We

  6. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli


    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  7. Spin wave spectrum of magnetic nanotubes

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Landeros, P.; Nunez, Alvaro S.


    We investigate the spin wave spectra associated to a vortex domain wall confined within a ferromagnetic nanotube. Basing our study upon a simple model for the energy functional we obtain the dispersion relation, the density of states and dissipation induced life-times of the spin wave excitations in presence of a magnetic domain wall. Our aim is to capture the basics spin wave physics behind the geometrical confinement of nobel magnetic textures.

  8. Effect of discrete RF spectrum on fast wave current drive

    International Nuclear Information System (INIS)

    Okazaki, Takashi; Yoshioka, Ken; Sugihara, Masayoshi


    Effect of discrete RF spectrum has been studied for the fast wave current drive with the ion cyclotron range of frequency. Driven current and power densities decrease in this spectrum than in the continuous spectrum. However, there is a possibility to have the mechanism which allows electrons outside the resonance region to interact with the fast wave, taking into account the electron trapping by discrete RF spectrum. In the case of neglecting the electron trapping effect, driven current and power densities decrease up to 0.6 - 0.8 of those which are obtained for the continuous spectrum for the FER (Fusion Experimental Reactor). However, their driven current and power densities can be almost doubled in their magnitude for the discrete spectrum by taking into account the trapping effect. (author)

  9. Optimal spatial filtering and transfer function for SAR ocean wave spectra (United States)

    Beal, R. C.; Tilley, D. G.


    The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.

  10. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution (United States)

    Montiel, F.; Squire, V. A.


    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  11. Developing Malaysian Ocean Wave Database Using Satellite

    National Research Council Canada - National Science Library

    Yaakob, Omar; Zainudin, Norazimar; Samian, Yahya; Malik, Adi M; Palaraman, Robiahtul A


    Correct wave data is a very important input to predict the performances of the marine vehicles and structures at preliminary design stages particularly regarding safety effectiveness and comfort of passengers and crews...

  12. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.


    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  13. Two new ways of mapping sea ice thickness using ocean waves (United States)

    Wadhams, P.


    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  14. Coupling atmospheric and ocean wave models for storm simulation

    DEFF Research Database (Denmark)

    Du, Jianting

    the atmosphere must, by conservation, result in the generation of the surface waves and currents. The physics-based methods are sensitive to the choice of wind-input source function (Sin), parameterization of high-frequency wave spectra tail, and numerical cut-off frequencies. Unfortunately, literature survey......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... shows that in most wind-wave coupling systems, either the Sin in the wave model is different from the one used for the momentum flux estimation in the atmospheric model, or the methods are too sensitive to the parameterization of high-frequency spectra tail and numerical cut-off frequencies. To confront...

  15. Spectrum of classes of point emitters of electromagnetic wave fields. (United States)

    Castañeda, Román


    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  16. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones (United States)

    Atkinson, D. E.


    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  17. Ocean wave parameters estimation using backpropagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SubbaRao; Raju, D.H.

    : the RPROP algorithm. San Francisco: ICNN; 1993. p. 586–591. [15] Demuth H, Beale M. Neural network toolbox for use with MATLAB, user guide. USA: The Math Works Inc.; 2000 ( [16] Baba M, Dattatri J. Ocean wave spectra off cochin...

  18. Analytic moment method calculations of the drift wave spectrum

    International Nuclear Information System (INIS)

    Thayer, D.R.; Molvig, K.


    A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA

  19. Forecasting ocean wave energy: A Comparison of the ECMWF wave model with time series methods

    DEFF Research Database (Denmark)

    Reikard, Gordon; Pinson, Pierre; Bidlot, Jean


    Recently, the technology has been developed to make wave farms commercially viable. Since electricity is perishable, utilities will be interested in forecasting ocean wave energy. The horizons involved in short-term management of power grids range from as little as a few hours to as long as several...... days. In selecting a method, the forecaster has a choice between physics-based models and statistical techniques. A further idea is to combine both types of models. This paper analyzes the forecasting properties of a well-known physics-based model, the European Center for Medium-Range Weather Forecasts...... (ECMWF) Wave Model, and two statistical techniques, time-varying parameter regressions and neural networks. Thirteen data sets at locations in the Atlantic and Pacific Oceans and the Gulf of Mexico are tested. The quantities to be predicted are the significant wave height, the wave period, and the wave...

  20. Millimetre Wave Rotational Spectrum of Glycolic Acid (United States)

    Kisiel, Zbigniew; Pszczolkowski, Lech; Bialkowska-Jaworska, Ewa; Charnley, Steven B.


    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm(exp -1) have been measured and their analysis is reported. The data sets for the ground state, v21 = 1, and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the v21 mode is close to 100 cm(exp -1). The existence of the less stable AAT conformer in the near 50 C sample used in our experiment was also confirmed and additional transitions have been measured.

  1. Simulating Freak Waves in the Ocean with CFD Modeling (United States)

    Manolidis, M.; Orzech, M.; Simeonov, J.


    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  2. Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM (United States)

    Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand


    Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.

  3. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking (United States)

    Resch, F.; Avellan, F.


    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  4. On the interaction between ocean surface waves and seamounts (United States)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús


    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  5. Indian Ocean dipole modulated wave climate of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.; Glejin, J.; Amrutha, M.M.

    –378, 2016 doi:10.5194/os-12-369-2016 © Author(s) 2016. CC Attribution 3.0 License. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea T. R. Anoop1, V. Sanil Kumar1, P. R. Shanas1,2, J. Glejin1, and M. M. Amrutha1... are available on the website of the Japanese Agency of Marine–Earth Science and Technology ( The tropical IO displays strong inter-annual climate vari- ability associated with the El Niño–Southern Oscillation (ENSO) and the IOD (Murtugudde et...

  6. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific


    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime


    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  7. Wave hindcast experiments in the Indian Ocean using MIKE 21 SW ...

    Indian Academy of Sciences (India)

    Wave prediction and hindcast studies are important in ocean engineering, coastal ... wave data can be used for the assessment of wave climate in offshore and coastal areas. In the .... for the change in performance during SW monsoon.

  8. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares


    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  9. Modeling internal wave generation by seamounts in oceans (United States)

    Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.


    Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.

  10. The gravitational wave spectrum from cosmological B-L breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.


    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying Ω GW h 2 ∝10 -13 -10 -8 , much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  11. The gravitational wave spectrum from cosmological B-L breaking

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU (WPI)


    Cosmological B-L breaking is a natural and testable mechanism to generate the initial conditions of the hot early universe. If B-L is broken at the grand unification scale, the false vacuum phase drives hybrid inflation, ending in tachyonic preheating. The decays of heavy B-L Higgs bosons and heavy neutrinos generate entropy, baryon asymmetry and dark matter and also control the reheating temperature. The different phases in the transition from inflation to the radiation dominated phase produce a characteristic spectrum of gravitational waves. We calculate the complete gravitational wave spectrum due to inflation, preheating and cosmic strings, which turns out to have several features. The production of gravitational waves from cosmic strings has large uncertainties, with lower and upper bounds provided by Abelian Higgs strings and Nambu-Goto strings, implying {Omega}{sub GW}h{sup 2}{proportional_to}10{sup -13}-10{sup -8}, much larger than the spectral amplitude predicted by inflation. Forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO will reach the sensitivity needed to test the predictions from cosmological B-L breaking.

  12. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...

  13. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves (United States)


    USA, 2Naval Research Laboratory, Ocean Dynamics and Prediction Branch, Stennis Space Center, Hancock County, Mississippi, USA, 3Department of Physics ...IO and predominantly located south of the equator. The intraseasonal currents associated with downwelling ER waves act on the temperature gradient to...yield warm anomalies in the western IO, even in the presence of cooling by surface fluxes. The SST gradient is unique to the western IO and likely

  14. A generalized multivariate regression model for modelling ocean wave heights (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.


    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  15. Verification of model wave heights with long-term moored buoy data: Application to wave field over the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Polnikov, V.G.; Vethamony, P.; Rashmi, R.; Pogarskii, F.; Sudheesh, K.

    . Res. 106(C6), 11659-11676 Babanin, A.V., 2011. Breaking and Dissipation of Ocean Surface Waves. Book, Cambridge University Press, 480p Banner, M. L., Gemmrich, J. R., and Farmer, D. M., 2002. Multiscale measurements of ocean wave breaking...

  16. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers. (United States)

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro


    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  17. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)


    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  18. Linking source region and ocean wave parameters with the observed primary microseismic noise (United States)

    Juretzek, C.; Hadziioannou, C.


    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  19. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  20. Reserve Requirement Impacts of Microgrid Integration of Wind, Solar, and Ocean Wave Power Generation


    Ortego Trujillo, Patxi


    The ocean wave energy is a free and abundant resource which has led to exploring new methods to take advantage of the energy in an efficient and profitable way. The wave energy harnessing techniques are not as mature as other renewable energy resources ones such as wind or solar. Nevertheless, in recent years wave energy converters (WECs) have been gaining attention and restoring confidence worldwide in their role to meet the increasing demands and strict environmental standards Ocean wave po...

  1. Microstrip natural wave spectrum mathematical model using partial inversion method

    International Nuclear Information System (INIS)

    Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.


    It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types

  2. On the influence of ocean waves on simulated GNSS-R delay-doppler maps (United States)

    Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.


    Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with

  3. Extraction of coastal ocean wave characteristics using remote sensing and computer vision technologies

    CSIR Research Space (South Africa)

    Johnson, M


    Full Text Available optical imagery from the RapidEye satellite can be used to extract ocean wave characteristics such as wave direction, wavelength, wave period and wave velocity. If successful, the advantage of the proposed remote sensing-based approach would...

  4. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project (United States)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.


    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data

  5. Wave-current interactions at the FloWave Ocean Energy Research Facility (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis


    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  6. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul


    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  7. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model (United States)


    Comparison between vertical shear mixing and surface wave-induced mixing in the extratropical ocean. J. Geophys. Res.-Oceans 117, C00J16. Rosmond, T.E...cycle for the World Ocean based on the 1=10 STORM /NCEP simulation. J. Phys. Oceanogr. 42, 2185–2205. Wallcraft, A.J., Kara, A.B., Hurlburt, H.E., 2005

  8. Surface wave effect on the upper ocean in marine forecast (United States)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang


    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable

  9. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes. (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome


    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  10. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum (United States)

    Yueh, Simon H.


    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  11. Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Horii, T.; Masumoto, Y.; Ueki, I.; PrasannaKumar, S.; Mizuno, K.

    to the theoretical solution of the equatorial waves [Matsuno, 1966] and the phase speed of the baroclinic mode, the wave that has meridional current on the equator with a quasi-biweekly period is the anti-symmetric mixed Rossby-gravity wave. In the wave... and conclusions are given in section 5. 2. Field Experiment, Data, and Methods 2.1. MISMO Ocean Observation [8] The goal of MISMO was to observe atmospheric conditions and variability associated with intraseasonal disturbances and resulting ocean responses...

  12. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)


    Yukihisa, Washio; Japan Marine Science and Technology Center


    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  13. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh


    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  14. Surface wave effects in the NEMO ocean model: Forced and coupled experiments (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.


    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  15. Effect of water depth on wind-wave frequency spectrum I. Spectral form (United States)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo


    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  16. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov


    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  17. The response of the southwest Western Australian wave climate to Indian Ocean climate variability (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.


    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  18. CMIP5-based global wave climate projections including the entire Arctic Ocean (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.


    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  19. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    of sinusoidal component waves; a consequent idea arising out of Fourier analysis. It is hypothesised that a sea state which is always nonlinear to various degrees is a result of interaction, both linear and nonlinear, between nonlinear component waves...

  20. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy (United States)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan


    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  1. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    International Nuclear Information System (INIS)

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun


    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide

  2. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves. (United States)

    Samaitis, Vykintas; Mažeika, Liudas


    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  3. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng


    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  4. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system. (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng


    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  5. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic atlantic ocean

    KAUST Repository

    Moreno-Ostos, Enrique


    Modelling the size-abundance spectrum of phytoplankton has proven to be a very useful tool for the analysis of physical-biological coupling and the vertical flux of carbon in oceanic ecosystems at different scales. A frequent observation relates high phytoplankton biovolume in productive regions with flatter spectrum slope and the opposite in oligotrophic ecosystems. Rather than this, the relationship between high biovolume phytoplankton assemblages and flatter size-abundance spectra does not correspond with measurements of the phytoplankton community in the Atlantic Ocean open waters. As part of the Malaspina Circunnavegation Expedition, sixty seven sampling stations within the Atlantic Ocean covering six oceanographic provinces, at different seasons, produced a complete set of phytoplankton size-spectra whose slope and biovolume did not show any obvious interrelation. In these oligotrophic sites, small (procaryotes) and medium-size (nanoplankton) cells are responsible for the most part of biovolume, and their response to environmental conditions does not apply to changes in the size-abundance spectrum slope as expected in richer, large-cell dominated ecosystems.

  6. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)


    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  7. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin


    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  8. WAVE DIRECTION and Other Data from FIXED PLATFORM From North Pacific Ocean and Others from 19810817 to 19940323 (NODC Accession 9400105) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains Wave Energy (wave height and wave period) Data from Hawaiian coast collected over 13 years in North Pacific Ocean, NE Pacific (limit-180)....

  9. Electrical design for ocean wave and tidal energy systems

    CERN Document Server

    Alcorn, Raymond


    Provides an electrical engineering perspective on offshore power stations and their integration to the grid. With contributions from a panel of leading international experts, this book is essential reading for those working in ocean energy development and renewable energy.

  10. Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model

    Directory of Open Access Journals (Sweden)

    Yichao Liu


    Full Text Available Along with the commercialization of offshore wind energy in China, the South China Sea has been identified as ideal for constructing offshore wind farms, especially for farms consisting of floating wind turbines over deep waters. Since the wind profiles and wave spectra are somewhat primitive for the design of an offshore wind turbine, engineering models describing the wind and wave characteristics in the South China Sea area are necessary for the offshore wind energy exploitation given the meteorological, hydrological, and geographical differences between the South China Sea and the North/Norwegian Sea, where the commonly used wind profile and wave spectrum models were designated. In the present study; a series of numerical simulations were conducted to reveal the wave characteristics in the South China Sea under both typhoon and non-typhoon conditions. By analyzing the simulation results; the applicability of the Joint North Sea Wave Project (JONSWAP spectrum model; in terms of characterizing the wind-induced wave fields in the South China Sea; was discussed. In detail; the key parameters of the JONSWAP spectrum model; such as the Phillips constant; spectral width parameter; peak-enhancement factor, and high frequency tail decay; were investigated in the context of finding suitable values.

  11. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves (United States)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.


    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  12. Wave-Breaking Turbulence in the Ocean Surface Layer (United States)


    2004) used direct numerical simulation ( DNS ) to show that a single breaking wave can energize the surface layer for more than 50 wave periods, and...1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSR, 30, 301–305. Kukulka, T., and K. Brunner, 2015: Passive

  13. Ocean and laboratory observations on waves over topography

    NARCIS (Netherlands)

    Lam, F.P. A.


    This thesis addresses the observation, analysis and dynamics of waves as being trapped, generated and focused by sloping topography. ---Shelf waves with diurnal tidal frequency off Greenland--- Tidal analysis has been carried out on current measurements at a “cross-shelf” transect off Greenland at

  14. The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean (United States)

    Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.


    This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.

  15. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.


    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  16. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.


    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  17. Yanai waves in the western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, A.; Shankar, D.; McCreary, J.P.; Vinayachandran, P.N.

    ; interference between the interior and boundary responses results in a complex surface pattern that propagates eastward and has nodes. Yanai waves are also forced by instabilities primarily during June/July in a region offshore from the western boundary (52...

  18. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya


    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  19. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition (United States)


    Golinval, 2002, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal of Sound and Vibration, 249...complex and contain contributions from the environment (e.g., wind, waves, currents) as well as artifacts associated with electromagnetic (EM) (wave...Although there is no physical basis/ interpretation inherent to the method because it is purely a mathematical tool, there has been an increasing

  20. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting (United States)

    Whitford, Dennis J.


    Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.

  1. Ocean Wave Parameters Retrieval from Sentinel-1 SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao


    Full Text Available In this paper, a semi-empirical algorithm for significant wave height (Hs and mean wave period (Tmw retrieval from C-band VV-polarization Sentinel-1 synthetic aperture radar (SAR imagery is presented. We develop a semi-empirical function for Hs retrieval, which describes the relation between Hs and cutoff wavelength, radar incidence angle, and wave propagation direction relative to radar look direction. Additionally, Tmw can be also calculated through Hs and cutoff wavelength by using another empirical function. We collected 106 C-band stripmap mode Sentinel-1 SAR images in VV-polarization and wave measurements from in situ buoys. There are a total of 150 matchup points. We used 93 matchups to tune the coefficients of the semi-empirical algorithm and the rest 57 matchups for validation. The comparison shows a 0.69 m root mean square error (RMSE of Hs with a 18.6% of scatter index (SI and 1.98 s RMSE of Tmw with a 24.8% of SI. Results indicate that the algorithm is suitable for wave parameters retrieval from Sentinel-1 SAR data.

  2. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.


    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  3. The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m (United States)

    Beal, R. C.


    A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.

  4. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific (United States)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.


    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  5. An Arctic Ice/Ocean Coupled Model with Wave Interactions (United States)


    for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, AI on the current project, with remuneration that takes his salary to 1 FTE. SWARP will develop downstream services for sea ice and waves

  6. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.


    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  7. The 17/5 spectrum of the Kelvin-wave cascade


    Kozik, Evgeny; Svistunov, Boris


    Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.

  8. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail:, E-mail:, E-mail: [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)


    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  9. Introduction to PDEs and waves for the atmosphere and ocean

    CERN Document Server

    Majda, Andrew


    The goals of these lecture notes, based on courses presented by the author at the Courant Institute of Mathematical Sciences, are to introduce mathematicians to the fascinating and important area of atmosphere/ocean science (AOS) and, conversely, to develop a mathematical viewpoint on basic topics in AOS of interest to the disciplinary AOS community, ranging from graduate students to researchers. The lecture notes emphasize the serendipitous connections between applied mathematics and geophysical flows in the style of modern applied mathematics, where rigorous mathematical analysis as well as

  10. Acoustic-gravity waves in atmospheric and oceanic waveguides. (United States)

    Godin, Oleg A


    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  11. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.


    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter

  12. Revenue maximisation and storage utilisation for the Ocean Grazer wave energy converter : A sensitivity analysis

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Dijkstra, H.T.; Wei, Yanji; van Rooij, Marijn; Meijer, Harmen; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu


    This paper presents a revenue maximisation strategy for market integration of a novel wave energy converter (WEC), part of the Ocean Grazer platform. In particular, we evaluate and validate the aforementioned revenue maximisation model predictive control (MPC) strategy through extensive simulations

  13. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves (United States)


    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  14. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim


    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  15. Evolution of ocean wave statistics in shallow water : Refraction and diffraction over seafloor topography

    NARCIS (Netherlands)

    Janssen, T.T.; Herbers, T.H.C.; Battjes, J.A.


    We present a stochastic model for the evolution of random ocean surface waves in coastal waters with complex seafloor topography. First, we derive a deterministic coupled-mode model based on a forward scattering approximation of the nonlinear mild slope equation; this model describes the evolution

  16. Influence of Complete Coriolis Force on the Dispersion Relation of Ocean Internal-wave in a Background Currents Field

    Directory of Open Access Journals (Sweden)

    Liu Yongjun


    Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.

  17. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone (United States)

    Filipot, J.-F.; Ardhuin, F.


    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.


    Energy Technology Data Exchange (ETDEWEB)

    Alonso, E. R.; Kolesniková, L.; Cabezas, C.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain); Tercero, B.; Cernicharo, J. [Grupo de Astrofísica Molecular, ICMM-CSIC, C/Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, F-35708 Rennes Cedex 7 (France)


    Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3–88 and K {sub a} = 0–28 were assigned to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.

  19. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.


    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  20. Variation with age of anisotropy under oceans, from great circle surface waves

    International Nuclear Information System (INIS)

    Journet, B.; Jobert, N.


    Global great circle measurements of regionalized mantle Love wave phase velocities are interpreted in terms of regional models. The same study had been made by J. J. Leveque (1980) for Rayleigh waves, and the resulting models for the two oceanic regions of different ages are used as a basis for comparison: the observed Love wave dispersion cannot be explained with these models if isotropic. The models obtained by inversion of Love wave data are compared with the models mentioned; the discrepancy appearing in the 250 km depth range between the velocities β/sub H/ and β/sub V/ of respectively SH and SV waves is indicative of polarization anisotropy. Moreover, we put forward a significant variation from young to old oceans: the difference between β/sub H/, and β/sub V/ is of the order of 1% for the former, compared to 3% for the latter. This variation can bring information about the behaviour of upper mantle materials in connection with the motion of oceanic plates

  1. Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications

    Directory of Open Access Journals (Sweden)

    G. W. Haarlemmer


    Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.

  2. Spin wave spectrum and zero spin fluctuation of antiferromagnetic solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Delrieu, J.M.


    The spin wave spectrum and eigenvectors of the uudd antiferromagnetic phase of solid 3 He are calculated; an optical mode is predicted around 150 - 180 Mc and a zero point spin deviation of 0.74 is obtained in agreement with the antiferromagnetic resonance frequency measured by Osheroff

  3. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko, E-mail:, E-mail:, E-mail:, E-mail: [Department of physics and astrophysics, Nagoya University, Nagoya, 464-8602 (Japan)


    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  4. Improved calculation of the gravitational wave spectrum from kinks on infinite cosmic strings

    International Nuclear Information System (INIS)

    Matsui, Yuka; Horiguchi, Koichiro; Nitta, Daisuke; Kuroyanagi, Sachiko


    Gravitational wave observations provide unique opportunities to search for cosmic strings. One of the strongest sources of gravitational waves is discontinuities of cosmic strings, called kinks, which are generated at points of intersection. Kinks on infinite strings are known to generate a gravitational wave background over a wide range of frequencies. In this paper, we calculate the spectrum of the gravitational wave background by numerically solving the evolution equation for the distribution function of the kink sharpness. We find that the number of kinks for small sharpness is larger than the analytical estimate used in a previous work, which makes a difference in the spectral shape. Our numerical approach enables us to make a more precise prediction on the spectral amplitude for future gravitational wave experiments.

  5. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying


    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  6. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, C.


    The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)

  7. Comparison of Microwave Backscatter Measurements and Small-scale Surface Wave Measurements Made from the Dutch Ocean Research Tower "Noordwijk"

    NARCIS (Netherlands)

    Snoeij, P.; Halsema, D. van; Oost, W.A.; Calkoen, C.J.; Vogelzang, J.; Waas, S.; Jaehne, B.


    To improve the understanding of the interaction between microwaves and water waves the VIERS-l project started in 1986 with the preparation of two wind/wave tank experiments and an ocean tower experiment. In February 1988, combined measurements of microwave backscatter, wind, waves and gas exchange

  8. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting (United States)

    Whitford, Dennis J.


    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  9. Damping of surface waves due to oil emulsions in application to ocean remote sensing (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.


    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  10. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    Directory of Open Access Journals (Sweden)

    G. Jordà


    Full Text Available The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions project. A one way sequential coupling approach is adopted to link the wave model (WAM to the circulation model (SYMPHONIE. The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bottom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean, a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  11. Statistical moments of the angular spectrum of normal waves in a turbulent collisional magnetized plasma

    International Nuclear Information System (INIS)

    Aistov, A.V.; Gavrilenko, V.G.


    The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption

  12. Effect of surface wave propagation in a four-layered oceanic crust model (United States)

    Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu


    Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.

  13. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies (United States)

    Ofman, L.


    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  14. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.


    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  15. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, Ch.


    The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs

  16. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves (United States)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas


    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  17. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)


    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  18. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.


    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  19. Tsunami Waves Extensively Resurfaced the Shorelines of an Early Martian Ocean (United States)

    Rodriguez, J. A. P.; Fairen, A. G.; Linares, R.; Zarroca, M.; Platz, T.; Komatsu, G.; Kargel, J. S.; Gulick, V.; Jianguo, Y.; Higuchi, K.; hide


    Viking image-based mapping of a widespread deposit covering most of the northern low-lands of Mars led to the proposal by Parker et al. that the deposit represents the vestiges of an enormous ocean that existed approx. 3.4 Ga. Later identified as the Vastitas Borealis Formation, the latest geologic map of Mars identifies this deposit as the Late Hesperian lowland unit (lHl). This deposit is typically bounded by raised lobate margins. In addition, some margins have associated rille channels, which could have been produced sub-aerially by the back-wash of high-energy tsunami waves. Radar-sounding data indicate that the deposit is ice-rich. However, until now, the lack of wave-cut shoreline features and the presence of lobate margins have remained an im-pediment to the acceptance of the paleo-ocean hypothesis.

  20. Bound states embedded into continuous spectrum as 'gathered' (compactified) scattering waves

    International Nuclear Information System (INIS)

    Zakhar'ev, B.N.; Chabanov, V.M.


    It is shown that states of continuous spectrum (the half-line case) can be considered as bound states normalized by unity but distributed on the infinite interval with vanishing density. Then the algorithms of shifting the range of primary localization of a chosen bound state in potential well of finite width appear to be applicable to scattering functions. The potential perturbations of the same type (but now on half-axis) concentrate the scattering wave in near vicinity of the origin, which leads to creation of bound state embedded into continuous spectrum. (author). 8 refs., 7 figs

  1. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium. (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu


    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  2. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms (United States)

    Mayor, S. D.


    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  3. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part I: hypothetical boundaries

    Directory of Open Access Journals (Sweden)

    J. Soares


    Full Text Available A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.Key words. Oceanography: general (equatorial oceanography; numerical modeling · Oceanography: physical (eastern boundary currents

  4. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov


    Full Text Available A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002. It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985. Finally, the optimal multiple Discrete Interaction Approximation (DIA to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  5. The Navy’s Coupled Atmosphere-Ocean-Wave Prediction System (United States)


    7300 Security, Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only...Office as both a global model and relocatable regional model. The wave components of the system are run operationally at production centers at both...utilizes meteorological observations including radiosondes, satellite data, ship reports, and ocean observations with time-dependent global

  6. Control of the long period grating spectrum through low frequency flexural acoustic waves

    International Nuclear Information System (INIS)

    Oliveira, Roberson A; Possetti, Gustavo R C; Kamikawachi, Ricardo C; Fabris, José L; Muller, Marcia; Pohl, Alexandre A P; Marques, Carlos A F; Nogueira, Rogério N; Neves, Paulo T Jr; Cook, Kevin; Canning, John; Bavastri, C


    We have shown experimental results of the excitation of long period fiber gratings by means of flexural acoustic waves with a wavelength larger than the grating period, validated by numerical simulations. The effect of the acoustic wave on the grating is modeled with the method of assumed modes, which delivers the strain field inside the grating, then used as the input to the transfer matrix method, needed for calculating the grating spectrum. The experimental and numerical results are found to be in good agreement, even though only the strain-optic effects are taken into account

  7. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media. (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping


    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  8. Investigation of the density wave oscillation in ocean motions with reduced order models

    International Nuclear Information System (INIS)

    Yan, B.H.; Li, R.


    Highlights: •The parameter about the degree of instability is defined. •The results are in satisfactory agreement with experimental results. •The effect of ocean motions on DWO is analyzed quantitatively. •The results are of good universality and generality. -- Abstract: The two phase flow instability is an important phenomenon in nuclear power and thermal systems. In the research and design of small modular reactor, the effect of ocean motions on the two phase flow instability should be evaluated. In this work, the density wave oscillation in a uniformly heated channel in ocean motions is investigated with reduced order model by transforming the partial differential equations to ordinary differential equations. This kind of frequency domain method is complementary to the time domain analysis with system codes, not as alternatives. The parameter about the degree of instability is defined for the quantitative analysis of two phase flow instability. The results are in satisfactory agreement with experimental results. The effect of ocean motions on density wave oscillation in a uniformly heated channel is analyzed quantitatively. The parametric study is also carried out.

  9. Oscillations and waves in a spatially distributed system with a 1/f spectrum (United States)

    Koverda, V. P.; Skokov, V. N.


    A spatially distributed system with a 1/f power spectrum is described by two nonlinear stochastic equations. Conditions for the formation of auto-oscillations have been found using numerical methods. The formation of a 1/f and 1/k spectrum simultaneously with the formation and motion of waves under the action of white noise has been demonstrated. The large extreme fluctuations with 1/f and 1/k spectra correspond to the maximum entropy, which points to the stability of such processes. It is shown that on the background of formation and motion of waves at an external periodic action there appears spatio-temporal stochastic resonance, at which one can observe the expansion of the region of periodic pulsations under the action of white noise.

  10. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe


    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  11. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu


    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  12. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones (United States)

    Curcic, M.; Chen, S. S.


    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  13. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie


    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  14. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward (United States)

    Chen, Shuyi


    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  15. Extreme wind-wave modeling and analysis in the south Atlantic ocean (United States)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.


    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  16. Computational simulations of the interaction of water waves with pitching flap-type ocean wave energy converters (United States)

    Pathak, Ashish; Raessi, Mehdi


    Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.

  17. Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis (United States)

    de Decco, Hatsue Takanaca; Torres Junior, Audalio Rebelo; Pezzi, Luciano Ponzi; Landau, Luiz


    The spatial and temporal variability of energy exchange in Tropical Instability Waves (TIWs) in the Atlantic Ocean were investigated. A spectral analysis was used to filter the 5-day mean results from Simple Ocean Data Assimilation (SODA) reanalysis spanning from 1958 to 2008. TIWs were filtered over periods of 15 to 60 days and between wavelengths of 4 and 20 longitude degrees. The main approach of this study was the use of bidirectionally filtered TIW time series as the perturbation fields, and the difference in these time series from the SODA total results was considered to be the basic state for energetics analysis. The main result was that the annual cycle (period of 360 days) was the main source of variability of the waves, and the semi-annual cycle (period of 180 days) was a secondary variation, which indicated that TIWs occurred throughout the year but with intensity that varies seasonally. In SODA, barotropic instability acts as the mechanism that feeds and extracts energy to/from TIWs at equatorial Atlantic. Baroclinic instability is the main mechanism that extracts energy from TIWs to the equatorial circulation north of the Equator. All TIW patterns of variability were observed western of 10° W. The present study reveals new evidences regarding TIW variability and suggests that future investigations should include a detailed description of TIW dynamics as part of Atlantic Ocean equatorial circulation.

  18. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.


    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  19. Internal wave mode resonant triads in an arbitrarly stratified finite-depth ocean with background rotation (United States)

    Varma, Dheeraj; Mathur, Manikandan


    Internal tides generated by barotropic tides on bottom topography or the spatially compact near-inertial mixed layer currents excited by surface winds can be conveniently represented in the linear regime as a superposition of vertical modes at a given frequency in an arbitrarily stratified ocean of finite depth. Considering modes (m , n) at a frequency ω in the primary wave field, we derive the weakly nonlinear solution, which contains a secondary wave at 2 ω that diverges when it forms a resonant triad with the primary waves. In nonuniform stratifications, resonant triads are shown to occur when the horizontal component of the classical RTI criterion k->1 +k->2 +k->3 = 0 is satisfied along with a non-orthogonality criterion. In nonuniform stratifications with a pycnocline, infinitely more pairs of primary wave modes (m , n) result in RTI when compared to a uniform stratification. Further, two nearby high modes at around the near-inertial frequency often form a resonant triad with a low mode at 2 ω , reminiscent of the features of PSI near the critical latitude. The theoretical framework is then adapted to investigate RTI in two different scenarios: low-mode internal tide scattering over topography, and internal wave beams incident on a pycnocline. The authors thank the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  20. Temperature profile data from STD/CTD casts from the MOANA WAVE from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 22 February to 1975-05-27 (NODC Accession 7800703) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MOANA WAVE in the Pacific Ocean from February 22, 1975 to May 27, 1975. Data were...

  1. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors

    International Nuclear Information System (INIS)

    Lee, C.Y.


    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the very important study of the collective excitations in these systems. One of the problem is still the exact form of the order parameter of unconventional superconductors. Among the possibilities there are extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states. I consider the mixed (1-γ)d x 2 -y 2 +iγd xy state in high temperature superconductors (HTSC) and derive for the first time a full set of equations for collective modes spectrum in mixed d-wave state with arbitrary admixture of d xy state. Obtained results allow to calculate the whole collective mode spectrum, which could be used for interpretation of the sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, they allow to estimate the extent of admixture of d xy state in a possible mixed state

  2. Collective behaviour of linear perturbation waves observed through the energy density spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Scarsoglio, S [Department of Water Engineering, Politecnico di Torino (Italy); De Santi, F; Tordella, D, E-mail: [Department of Aeronautics and Space Engineering, Politecnico di Torino (Italy)


    We consider the collective behaviour of small three-dimensional transient perturbations in sheared flows. In particular, we observe their varied life history through the temporal evolution of the amplification factor. The spectrum of wave vectors considered fills the range from the size of the external flow scale to the size of the very short dissipative waves. We observe that the amplification factor distribution is scale-invariant. In the condition we analyze, the system is subject to all the physical processes included in the linearized Navier-Stokes equations. With the exception of the nonlinear interaction, these features are the same as those characterizing the turbulent state. The linearized perturbative system offers a great variety of different transient behaviours associated to the parameter combination present in the initial conditions. For the energy spectrum computed by freezing each wave at the instant where its asymptotic condition is met, we ask whether this system is able to show a power-law scaling analogous to the Kolmogorov argument. At the moment, for at least two typical shear flows, the bluff-body wake and the plane Poiseuille flow, the answer is yes.

  3. [A quick algorithm of dynamic spectrum photoelectric pulse wave detection based on LabVIEW]. (United States)

    Lin, Ling; Li, Na; Li, Gang


    Dynamic spectrum (DS) detection is attractive among the numerous noninvasive blood component detection methods because of the elimination of the main interference of the individual discrepancy and measure conditions. DS is a kind of spectrum extracted from the photoelectric pulse wave and closely relative to the artery blood. It can be used in a noninvasive blood component concentration examination. The key issues in DS detection are high detection precision and high operation speed. The precision of measure can be advanced by making use of over-sampling and lock-in amplifying on the pick-up of photoelectric pulse wave in DS detection. In the present paper, the theory expression formula of the over-sampling and lock-in amplifying method was deduced firstly. Then in order to overcome the problems of great data and excessive operation brought on by this technology, a quick algorithm based on LabVIEW and a method of using external C code applied in the pick-up of photoelectric pulse wave were presented. Experimental verification was conducted in the environment of LabVIEW. The results show that by the method pres ented, the speed of operation was promoted rapidly and the data memory was reduced largely.

  4. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling (United States)

    Wünnemann, K.; Collins, G. S.; Weiss, R.


    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  5. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A (United States)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.


    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  6. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.


    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  7. Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean (United States)

    Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen


    Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.

  8. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems (United States)

    Tougher, B. B.


    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  9. The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars

    International Nuclear Information System (INIS)

    Broeck, Chris van den


    Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure

  10. Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph


    Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.

  11. Similar Data Retrieval from Enormous Datasets on ELF/VLF Wave Spectrum Observed by Akebono

    Directory of Open Access Journals (Sweden)

    Y Kasahara


    Full Text Available As the total amount of data measured by scientific spacecraft is drastically increasing, it is necessary for researchers to develop new computation methods for efficient analysis of these enormous datasets. In the present study, we propose a new algorithm for similar data retrieval. We first discuss key descriptors that represent characteristics of the VLF/ELF waves observed by the Akebono spacecraft. Second, an algorithm for similar data retrieval is introduced. Finally, we demonstrate that the developed algorithm works well for the retrieval of the VLF spectrum with a small amount of CPU load.

  12. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif


    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  13. Determining Ocean-Bottom Seismometer Orientations from the RHUM-RUM experiment from P-wave and Rayleigh wave polarizations (United States)

    Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Sigloch, Karin


    To image the upper mantle structure beneath La Réunion hotspot, a large-scale seismic network has been deployed on land and at sea in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel). This French-German passive seismic experiment was designed to investigate and image the deep structure beneath La Réunion, from crust to core, to precise the shape and depth origin of a mantle plume, if any, and to precise the horizontal and vertical mantle flow associated to a possible plume upwelling, to its interaction with the overlying plate and with the neighboring Indian ridges. For this purpose, 57 Ocean-Bottom Seismometers (OBS) were installed around La Réunion and along the Central and Southwest Indian ridges. Broad-band instruments were deployed with the French R/V Marion Dufresne in late 2012 (cruise MD192), and recovered 13 months later by the German R/V Meteor (cruise M101). The pool of OBS was complemented by ~60 terrestrial stations, installed on different islands in the western Indian Ocean, such as La Réunion, Madagascar, Mauritius, Seychelles, Mayotte and the Îles Éparses in the Mozambique channel. The OBS installation is a free-fall down to the seafloor, where they landed in an unknown orientation. Since seismologic investigations of crustal and upper mantle structure (e.g., receiver functions) and azimuthal anisotropy (e.g., SKS-splitting and Rayleigh waves) rely on the knowledge of the correct OBS orientation with respect to the geographic reference frame, it is of importance to determine the orientations of the OBS while recording on the seafloor. In an isotropic, horizontally homogeneous and non-dipping layered globe, the misorientation of each station refers to the offset between theoretical and recorded back-azimuth angle of a passive seismic event. Using large earthquakes (MW > 5.0), it is possible to establish multiple successful measurements per station and thus to determine with good confidence the

  14. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair


    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  15. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.


    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  16. Simulated Interannual Modulation of Intraseasonal Kelvin Waves in the Equatorial Indian Ocean

    Directory of Open Access Journals (Sweden)

    Iskhaq Iskandar


    Full Text Available Outputs from a high-resolution ocean general circulation model (OGCM for the period of 1990-2003 indicate an interannual modulation of intraseasonal Kelvin waves along the equatorial Indian Ocean. During normal conditions without IOD event, the first mode explains about 30-40% of the total variance in the western (60-65ºE and central (75-80ºE basin, while the second mode contributes up to 45% to the total variance in the central basin around the longitude of 82ºE. In contrast, during the 1997/98 IOD event, the fourth mode caused about 40% of the total variance in the central and eastern basin. During the 1994 IOD event, the contribution from the fourth baroclinic mode in the eastern basin caused 45% of the total variance. In the central basin, the second and the fourth baroclinic mode caused almost the same variance (~40%. The variations in the characteristics of the intraseasonal Kelvin waves are related to variations in the vertical stratification. During the IOD event, the pycnocline in the eastern basin was raised by about 50 m and the stratification at the upper level is strengthened, while it is weakened at lower levels. These changes lead to an increase in the contribution of higher-order baroclinic modes.

  17. Novel Methods for Optically Measuring Whitecaps Under Natural Wave Breaking Conditions in the Southern Ocean (United States)

    Randolph, K. L.; Dierssen, H. M.; Cifuentes-Lorenzen, A.; Balch, W. M.; Monahan, E. C.; Zappa, C. J.; Drapeau, D.; Bowler, B.


    Breaking waves on the ocean surface mark areas of significant importance to air-sea flux estimates of gas, aerosols, and heat. Traditional methods of measuring whitecap coverage using digital photography can miss features that are small in size or do not show high enough contrast to the background. The geometry of the images collected captures the near surface, bright manifestations of the whitecap feature and miss a portion of the bubble plume that is responsible for the production of sea salt aerosols and the transfer of lower solubility gases. Here, a novel method for accurately measuring both the fractional coverage of whitecaps and the intensity and decay rate of whitecap events using above water radiometry is presented. The methodology was developed using data collected during the austral summer in the Atlantic sector of the Southern Ocean under a large range of wind (speeds of 1 to 15 m s-1) and wave (significant wave heights 2 to 8 m) conditions as part of the Southern Ocean Gas Exchange experiment. Whitecap metrics were retrieved by employing a magnitude threshold based on the interquartile range of the radiance or reflectance signal for a single channel (411 nm) after a baseline removal, determined using a moving minimum/maximum filter. Breaking intensity and decay rate metrics were produced from the integration of, and the exponential fit to, radiance or reflectance over the lifetime of the whitecap. When compared to fractional whitecap coverage measurements obtained from high resolution digital images, radiometric estimates were consistently higher because they capture more of the decaying bubble plume area that is difficult to detect with photography. Radiometrically-retrieved whitecap measurements are presented in the context of concurrently measured meteorological (e.g., wind speed) and oceanographic (e.g., wave) data. The optimal fit of the radiometrically estimated whitecap coverage to the instantaneous wind speed, determined using ordinary least

  18. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation (United States)

    Garfinkel, C. I.; Oman, L. D.


    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  19. Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters (United States)

    Rosenberg, Brian; Mundon, Timothy


    Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.

  20. Feasibility study of tuned liquid column damper for ocean wave energy extraction (United States)

    Wong, Yihong; King, Yeong-Jin; Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han


    Intermittent nature and low efficiency are the major issues in renewable energy supply. To overcome these issues, one of the possible methods is through a hybrid system where multiple sources of renewable energy are combined to compensate each other's weaknesses. The hybrid of solar energy and wave energy becomes possible through the introduction of a stable floating platform which enables solar energy generation above it and wave energy harvesting underneath it. This paper is intended to study the feasibility of harnessing ocean wave energy using a tuned liquid column damper (TLCD), a type of passive damping device that is designed to suppress externally induced vibration force at a specific frequency range. The proposed TLCD is to be implemented within a floating offshore structure to serve as a vibration mitigating mechanism by reducing the dynamic response of the structure and simultaneously utilize the flowing motion of liquid within the TLCD for generating electricity. The constructed TLCD prototype is tuned according to theoretical study and tested using a shaking table with a predetermined frequency range. The oscillating motion of water within the TLCD and the potential of installation of hydro turbine generator in term of recoverable amount of energy are studied.

  1. Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves

    International Nuclear Information System (INIS)

    Sloovere, P. de.


    Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices

  2. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo


    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  3. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System ) (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.


    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  4. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves (United States)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise


    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (, an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  5. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea (United States)

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin


    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  6. Modeling and simulation of ocean wave propagation using lattice Boltzmann method (United States)

    Nuraiman, Dian


    In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.

  7. Design and characterization of an ocean wave powered lifejacket using 2DOF floating boards (United States)

    Mi, Jia; Xu, Lin; Yang, Yaling; Zuo, Lei


    Lifejacket is an indispensable life-saving equipment for ships and airplanes. Traditional lifejacket is designed to prevent human from drowning. However, the water temperature is usually low, especially in winter, which significantly reduces the human body temperature and leads to death. Meanwhile, power is critical for drowning people to use emergency communication equipment. This paper proposed an ocean wave powered lifejacket using 2DOF floating boards to provide both buoyance and electricity for drowning people. Hence, they can use this continuous electric power to keep key body warm and send distress signal. This lifejacket is featured with two 2DOF floating boards and the mechanical motion rectifier (MMR) can convert the 2-DOF motions to the unidirectional rotation of generator. The design principle is illustrated and the dynamic modelling for the 2-DOF motions has been analyzed. Bench test and lake test have been conducted to validate the design concept.

  8. Buoy observations of the influence of swell on wind waves in the open ocean

    Energy Technology Data Exchange (ETDEWEB)

    Violante-Carvalho, N.; Robinson, I.S. [University of Southampton (United Kingdom). Oceanography Centre; Ocampo-Torres, F.J. [CICESE, Ensenada (Mexico). Dpto. de Oceanografia Fisica


    The influence of longer (swell) on shorter, wind sea waves is examined using an extensive database of directional buoy measurements obtained from a heave-pitch-roll buoy moored in deep water in the South Atlantic. This data set is unique for such an investigation due to the ubiquitous presence of a young swell component propagating closely in direction and frequency with the wind sea, as well as a longer, opposing swell. Our results show, within the statistical limits of the regressions obtained from our analysis when compared to measurements in swell free environments, that there is no obvious influence of swell on wind sea growth. For operational purposes in ocean engineering this means that power-laws from fetch limited situations describing the wind sea growth can be applied in more realistic situations in the open sea when swell is present. (author)

  9. Direct AC–AC grid interface converter for ocean wave energy system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.


    Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes

  10. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.


    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  11. Relic gravitational wave spectrum, the trans-Planckian physics and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Koh, Seoktae


    We calculate the spectrum of the relic gravitational wave due to the trans-Planckian effect in which the standard linear dispersion relations may be modified. Of the modified dispersion relations suggested in the literature which has investigated the trans-Planckian effect, we especially use the Corley-Jacobson dispersion relations. The Corley-Jacobson-type modified dispersion relations can be obtained from Horava-Lifshitz gravity which is non-relativistic and UV complete. Although it is not clear how the transitions from Horava-Lifshitz gravity in the UV regime to Einstein gravity in the IR limit occur, we assume that the Horava-Lifshitz gravity regime is followed by the inflationary phase in Einstein gravity.

  12. Change of spin-wave spectrum arising from interaction of magnons

    International Nuclear Information System (INIS)

    Prozorova, L.A.; Smirnov, A.I.


    Variation of the proper frequency of magnons with a definite wave number k=k 1 is observed in the antiferromagnetic crystal CsMnF 3 by exciting the magnons with k=k 2 . Magnon excitation is performed parametrically by microwave pumping. The density of the parametrically excited magnons is of the order of 10 17 cm -3 . The relative variation of the proper frequency (magnon spectrum shift) is approximately 10 -5 . The variation in the proper frequency is recorded and measured on observation of transition processes in a system of parametrically excited magnons. The frequencies of magnons are 10.5 and 17.5 GHz (k 1 approximately k 2 approximately 10 5 cm -1 ) and sample temperature T=1.6 K. The amplitude of four-magnon interaction inducing the spectral shift is determined and found to be T 12 /2π approximately -10 -12 Hzxcm 3

  13. Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean (United States)

    Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric


    Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.

  14. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam


    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  15. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)


    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  16. Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed (United States)

    Ruzhansky, Michael; Tokmagambetov, Niyaz


    Given a Hilbert space H, we investigate the well-posedness of the Cauchy problem for the wave equation for operators with a discrete non-negative spectrum acting on H. We consider the cases when the time-dependent propagation speed is regular, Hölder, and distributional. We also consider cases when it is strictly positive (strictly hyperbolic case) and when it is non-negative (weakly hyperbolic case). When the propagation speed is a distribution, we introduce the notion of "very weak solutions" to the Cauchy problem. We show that the Cauchy problem for the wave equation with the distributional coefficient has a unique "very weak solution" in an appropriate sense, which coincides with classical or distributional solutions when the latter exist. Examples include the harmonic and anharmonic oscillators, the Landau Hamiltonian on {R^n}, uniformly elliptic operators of different orders on domains, Hörmander's sums of squares on compact Lie groups and compact manifolds, operators on manifolds with boundary, and many others.

  17. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic atlantic ocean

    KAUST Repository

    Moreno-Ostos, Enrique; Blanco, José Marí a; Agusti, Susana; Lubiá n, Luis M.; Rodrí guez, Valeriano; Palomino, Roberto L.; Llabré s, Moira; Rodrí guez, Jaime


    high phytoplankton biovolume in productive regions with flatter spectrum slope and the opposite in oligotrophic ecosystems. Rather than this, the relationship between high biovolume phytoplankton assemblages and flatter size-abundance spectra does

  18. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  19. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation (United States)

    Hauser, DanièLe; Caudal, GéRard


    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the

  20. Determination of central q and effective mass on textor based on discrete Alfven wave (DAW) spectrum measurements

    International Nuclear Information System (INIS)

    Descamps, P.; Wassenhove, G. van; Koch, R.; Messiaen, A.M.; Vandenplas, P.E.; Lister, J.B.; Marmillod, P.


    The use of the discrete Alfven wave spectrum to determine the current density profile and the effective mass density of the plasma in the TEXTOR tokamak is studied; the measurement, the validity of which is discussed, confirms independently the central q(r=0)<1 already obtained by polarimetry. (orig.)

  1. Application of the model of the relativistic anti-loss-cone distribution to ECE spectrum in discharge applying LH wave

    International Nuclear Information System (INIS)

    Sato, Masayasu; Yokomizo, Hideaki


    The electron cyclotron emission (ECE) is dominated from supra-thermal electron in discharge applying LH wave. We obtain informations of supra-thermal electron by applying the model of the relativistic anti-loss-cone distribution to ECE spectrum in the discharge. In this model, the emission perpendicular to the magnetic field are considered. The frequency range is considered to be well above the plasma and electron cyclotron frequencies, thus collective effects can be neglected. The electron distribution is assumed to be anisotropic in the velocity space and strongly extended in the direction parallel to the magnetic field, namely the relativistic anti-loss-cone distribution. The informations of supra-thermal electron are obtained by the following way. The temperature and density of the supra-thermal electron and the anti-loss-cone angle are obtained from the power spectrum of LH wave launched, the measured slope of the spectrum of ECE and the spectral radiance of ECE. (author)

  2. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John


    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  3. A new method for detection of the electron temperature in laser-plasma short wave cut off of stimulated Raman scattering spectrum

    International Nuclear Information System (INIS)

    Zhang Jiatai


    From the theory of stimulated Raman scattering (SRS) three wave interaction, a new method of detecting the electron temperature in laser-plasma is obtained. SRS spectrum obtained from Shenguang No. 12 Nd-laser experiments are analysed. Using the wave length of short wave cut off of SRS, the electron temperature in corona plasma region is calculated consistently. These results agree reasonable with X-ray spectrum experiments

  4. Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM (United States)

    Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.


    Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave

  5. Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface

    NARCIS (Netherlands)

    Palasantzas, George


    The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree


    Energy Technology Data Exchange (ETDEWEB)

    He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui, E-mail: [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)


    The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He{sup 2+} particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He{sup 2+} particles occurs. This is caused by the cyclotron resonance between He{sup 2+} particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He{sup 2+} particles and the density fluctuations leads to the parallel heating of He{sup 2+} particles. The influence of the drift velocity between the protons and the He{sup 2+} particles on the heating of He{sup 2+} particles is also discussed in this paper.

  7. Ocean Acidification | Smithsonian Ocean Portal (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  8. Mantle Serpentinization near the Central Mariana Trench Constrained by Ocean Bottom Surface Wave Observations (United States)

    Cai, C.; Wiens, D. A.; Lizarralde, D.; Eimer, M. O.; Shen, W.


    We investigate the crustal and uppermost mantle seismic structure across the Mariana trench by jointly inverting Rayleigh wave phase and group velocities from ambient noise and longer period phase velocities from Helmholtz tomography of teleseismic waveforms. We use data from a temporary deployment in 2012-2013, consisting of 7 island-based stations and 20 broadband ocean bottom seismographs, as well as data from the USGS Northern Mariana Islands Seismograph Network. To avoid any potential bias from the starting model, we use a Bayesian Monte-Carlo algorithm to invert for the azimuthally-averaged SV-wave velocity at each node. This method also allows us to apply prior constraints on crustal thickness and other parameters in a systematic way, and to derive formal estimates of velocity uncertainty. The results show the development of a low velocity zone within the incoming plate beginning about 80 km seaward of the trench axis, consistent with the onset of bending faults from bathymetry and earthquake locations. The maximum depth of the velocity anomaly increases towards the trench, and extends to about 30 km below the seafloor. The low velocities persist after the plate is subducted, as a 20-30 km thick low velocity layer with a somewhat smaller velocity reduction is imaged along the top of the slab beneath the forearc. An extremely low velocity zone is observed beneath the serpentine seamounts in the outer forearc, consistent with 40% serpentinization in the forearc mantle wedge. Azimuthal anisotropy results show trench parallel fast axis within the incoming plate at uppermost mantle depth (2%-4% anisotropy). All these observations suggest the velocity reduction in the incoming plate prior to subduction results from both serpentinized normal faults and water-filled cracks. Water is expelled from the cracks early in subduction, causing a modest increase in the velocity of the subducting mantle, and moves upward and causes serpentinization of the outer forearc

  9. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  10. Proceedings of oceans '91

    International Nuclear Information System (INIS)



    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  11. A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Winston C. [NASA/Goddard Space Flight Center, Global Modeling and Assimilation Office, Mail Code 610.1, Greenbelt, MD (United States); Yang, Bo; Fu, Xiouhua [University of Hawaii at Manoa, School of Ocean and Earth Science and Technology, International Pacific Research Center, Honolulu, HI (United States)


    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called ''convectively coupled Kelvin (mixed Rossby-gravity) waves'' are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of ''convectively coupled Kelvin waves,'' which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, ''convectively coupled Kelvin waves'' do show anti-symmetric components, and ''convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)'' do show a hint of symmetric components. These results bolster a published proposal that these waves should be called ''chimeric Kelvin waves,'' ''chimeric mixed Rossby-gravity waves,'' etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves. (orig.)

  12. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps (United States)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.


    Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.Plain Language SummaryThe foam patches made by breaking waves, also known as "whitecaps", are an important source of marine sea spray, which impacts weather and climate through the formation of cloud drops and ice. Sea spray

  13. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation (United States)

    Alexander, LYSENKO; Iurii, VOLK


    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  14. Comments on the Alfven wave spectrum as measured on the TCA tokamak

    International Nuclear Information System (INIS)

    Puri, S.


    The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)

  15. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.


    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  16. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane


    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  17. The M-2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Scherneck, H.G.


    Crustal deformations caused by surface load due to ocean tides are strongly dependent on the surface load closest to the observing site. In order to correctly model this ocean loading effect near irregular coastal areas, a high-resolution coastline is required. A test is carried out using two GPS...

  18. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations (United States)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi


    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  19. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: [School of Physics and Electronics, Central South University, Changsha 410083 (China)


    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  20. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA (United States)

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.


    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  1. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰


    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  2. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi


    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  3. Possibilities of the observation of the discrete spectrum of the water dimer at equilibrium in millimeter-wave band

    International Nuclear Information System (INIS)

    Krupnov, A.F.; Tretyakov, M.Yu.; Leforestier, C.


    Attempts of experimental observations of the water dimer spectrum at equilibrium conditions have lasted for more than 40 years since the dimeric hypothesis for extra absorption, but have not yielded any positive confirmed result. In the present paper a new approach is considered: using a high-resolution millimeter-wave spectrum of the water dimer at equilibrium, calculated by a rigorous fully quantum method, we show the potential existence of discernible spectral series of discrete features of the water dimer, which correspond to J+1 1 symmetry, already observed in cold molecular beam experiments and having, therefore, well-defined positions. The intensity of spectral series and contrast to the remaining continuum-like spectrum of the dimer are calculated and compared with the monomer absorption. The suitability of two types of microwave spectrometers for observing these series is considered. The collisional line-width of millimeter lines of the dimer at equilibrium is estimated and the width of IR dimer bands is discussed. It is pointed out that the large width of IR dimer bands may pose difficulties for their reliable observation and conclusive separation from the rest of absorption in water vapor. This situation contrasts with the suggested approach of dimer detection in millimeter-waves.

  4. Drifting and meandering of Olive Ridley Sea turtles in the Bay of Bengal: Role of oceanic Rossby waves

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, P.S.; Rao, S.A.; Sadhuram, Y.

    in the direction of geostrophic currents. It is found that the locations of these thermal fronts in the Bay of Bengal are primarily determined by the Oceanic Rossby waves and local Ekman pumping. Key Words: Bay of Bengal, Circulation, Cyclonic and Anti... drawn with black dots shows the meandering path of the rest of the three turtles. Locations of the turtles at different times are also shown as white stars. A strong anti-cyclonic gyre (warm core eddy) centered at 17º N with SSHD above 30 cm...

  5. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.


    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  6. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash


    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  7. An overview of the numerical and neural network accosts of ocean wave prediction

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    .8 1.2 1.6 Avg. Measured wave height (m) 0.0 0.4 0.8 1.2 1.6 Fo re ca ste d a vg . w av e h eig ht (m ) COPEDEC VI, 2003, Colombo, Sri Lanka 8 5. CONCLUSIONS The use of neural network for wave prediction will have future application...

  8. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A; Basu, S.K.; Kumar, R.; Sarkar, A

    prediction when NCMRWF winds blended with MSMR winds are utilised in the wave model. A comparison between buoy and TOPEX wave heights of May 2000 at 4 buoy locations provides a good match, showing the merit of using altimeter data, wherever it is difficult...

  9. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change (United States)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.


    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  10. Millimeter wave spectrum of bromomethyl radical, CH.sub.2./sub.Br

    Czech Academy of Sciences Publication Activity Database

    Bailleux, S.; Dréan, P.; Zelinger, Zdeněk; Civiš, Svatopluk; Ozeki, H.; Saito, S.


    Roč. 122, č. 13 (2005), 134302-1-6 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010110; GA MŠk OC 723.001; GA AV ČR 1ET400400410 Institutional research plan: CEZ:AV0Z40400503 Keywords : matrix infrared-spectrum * diode-laser spectroscopy * microwave spectrum * kinetics * ionization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.138, year: 2005

  11. Probability function of breaking-limited surface elevation. [wind generated waves of ocean (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.


    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  12. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Paul T; Hagerman, George; Scott, George


    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  13. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Neary, Vincent S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies


    This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Speci cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.

  14. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian


    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  15. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity (United States)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.


    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in

  16. Evanescent Acoustic Wave Scattering by Targets and Diffraction by Ripples Graduate Traineeship Award in Ocean Acoustics

    National Research Council Canada - National Science Library

    Osterhoudt, Curtis F; Marston, Philip L


    .... The purpose of his research was to improve the understanding of the way that acoustic evanescent waves interact with targets buried in sediments in situations encountered in underwater acoustics...

  17. Observational evidence of lower-frequency Yanai waves in the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    David, D.T.; PrasannaKumar, S.; Byju, P.; Sarma, M.S.S.; Suryanarayana, A.; Murty, V.S.N.

    created by the northward shifting and strengthening of the westward flowing south equatorial current associated with positive IOD and the eastward flowing southwest monsoon current provides energy for the generation of lower-frequency Yanai waves. Vertical...

  18. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)


    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  19. Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines (United States)

    Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis


    We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.

  20. A numerical study of wave-current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996 (United States)

    Xie, L.; Pietrafesa, L. J.; Wu, K.


    A three-dimensional wave-current coupled modeling system is used to examine the influence of waves on coastal currents and sea level. This coupled modeling system consists of the wave model-WAM (Cycle 4) and the Princeton Ocean Model (POM). The results from this study show that it is important to incorporate surface wave effects into coastal storm surge and circulation models. Specifically, we find that (1) storm surge models without coupled surface waves generally under estimate not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment, (2) introducing wave-induced surface stress effect into storm surge models can significantly improve storm surge prediction, (3) incorporating wave-induced bottom stress into the coupled wave-current model further improves storm surge prediction, and (4) calibration of the wave module according to minimum error in significant wave height does not necessarily result in an optimum wave module in a wave-current coupled system for current and storm surge prediction.

  1. Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants

    Directory of Open Access Journals (Sweden)

    Aitor J. Garrido


    Full Text Available Oscillating Water Column (OWC-based power take-off systems are one of the potential solutions to the current energy problems arising from the use of nuclear fission and the consumption of fossil fuels. This kind of energy converter turns wave energy into electric power by means of three different stages: firstly wave energy is transformed into pneumatic energy in the OWC chamber, and then a turbine turns it into mechanical energy and finally the turbogenerator module attached to the turbine creates electric power from the rotational mechanical energy. To date, capture chambers have been the least studied part. In this context, this paper presents an analytical model describing the dynamic behavior of the capture chamber, encompassing the wave motion and its interaction with the OWC structure and turbogenerator module. The model is tested for the case of the Mutriku wave power plant by means of experimental results. For this purpose, representative case studies are selected from wave and pressure drop input-output data. The results show an excellent matching rate between the values predicted by the model and the experimental measured data with a small bounded error in all cases, so that the validity of the proposed model is proven.

  2. Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island (United States)

    Kovalev, Dmitry P.; Kovalev, Peter D.


    The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.

  3. Proceedings of the Ocean Industries BC conference : the next wave. Online ed.

    International Nuclear Information System (INIS)


    Ocean Industries BC is a non-profit society that aims to promote the responsible development of British Columbia's ocean industries by working to ensure that people and businesses in British Columbia obtain the maximum possible benefits from the opportunities presented by new developments in the region. This conference discussed recent developments in both the natural gas, nuclear and petroleum industries. Renewable energy source development was also discussed. Helicopters and submarines used by various industries were reviewed, as well as new technologies for modelling. New developments in oceanography and basin research were also presented, as well as various modelling approaches now used by researchers in the petroleum industry. Issues concerning the construction of liquefied natural gas (LNG) facilities were also discussed. The conference featured 23 presentations, of which 1 has been catalogued separately for inclusion in this database. refs., tabs., figs

  4. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita


    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  5. Inertial Sea Wave Energy Converter from Mediterranean Sea to Ocean - Design Optimization (United States)

    Calleri, Marco

    Optimization of the number of gyroscopes and flywheel rotational speed of a Wave Energy Converter able to produce 725 kW as the nominal power, in the chosen installation site, respecting some imposed constraints and some dimensions from the previous design, by minimizing the cost of the device and the bearing power losses, through the minimization of the LCOE of the device.

  6. Observational evidence of mixed rossby gravity waves at the central equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.; Mohankumar, K.; Sijikumar, S.; Sivakumar, K.U.; Mathew, T.

    –920. Zangvil A (1975b) Upper tropospheric waves in the tropics and their association with clouds in the wavenumber-frequency domain. Ph.D. thesis, Meteor. Pap. Nos. 13 and 14, University of California, Los Angeles, pp131. Zangvil A, Yanai M (1980) Upper...

  7. Wavelength of ocean waves and surf beat at duck from array measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Menon, H.B.; Sarma, Y.V.B.; Jog, P.D.; Almeida, A.M.

    , North Carolina, USA, has been used. The method used is an extension of the 3-gauge method of Esteva 1976 and 1977 for computing wave direction. Wavelength was also computed using the Singular Value Decomposition (SVD) method of Herbers et al. 1995 from...

  8. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov


    Full Text Available Currently, solar flares are under observation on the RT-7.5 radio telescope of BMSTU. This telescope operates in a little-studied range of the spectrum, at wavelengths of 3.2 and 2.2 mm (93 and 140 GHz, thereby providing unique information about parameters of the chromosphere plasma and zone of the temperature minimum. Observations on various instruments provided relatively small amount of data on the radio emission flare at frequencies close to 93 GHz, and at frequency of 140 GHz such observations were not carried out. For these reasons, data collected from the RT-7.5 radio telescope are of high value (Shustikov et al., 2012.This work describes modeling and gives interpretation of the reason for raising flux density spectrum of sub-millimeter radio frequency emission using as an example the GOES flare of class M 5.3 occurred on 04.07.2012 in the active region 11515. This flare was observed on the RT-7.5 radio telescope of BMSTU and was described by Shustikov et al. (2012 and by Smirnova et al. (2013, where it has been suggested that the reason for raising radio frequency emission is a bremsstrahlung of the thermal electrons in the hot plasma of the solar chromosphere. Rough estimates of the plasma temperature at the flare source were obtained.This paper proposes model calculations of the flux density spectrum of the sub-millimeter radio emission based on the gyrosynchrotron Fleischman-Kuznetsov code (Fleishman & Kuznetsov, 2010. Section 1 briefly describes observational data, tools and processing methods used in the work. Section 2 shows results of modeling the flare radio emission. Section 3 discusses results and conclusions.Numerical modeling the sub-millimeter part of the spectrum of the radio flux density for the GOES flare of class M5.3 has been carried out. This flare occurred in the active region 11515 on 04.07.2012. Modeling was based on the observations on the BMSTU’s RT-7.5 radio telescope.The paper draws conclusion based on the

  9. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget. (United States)

    Yokoyama, Naoto; Takaoka, Masanori


    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  10. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver


    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  11. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum. (United States)

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver


    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  12. Wind and wave extremes over the world oceans from very large ensembles (United States)

    Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.


    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.

  13. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions (United States)


    Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the

  14. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space ⋆,⋆⋆ (United States)

    Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.


    Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514

  15. Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor (United States)

    Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu


    This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.

  16. Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model (United States)

    Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.


    We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is

  17. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail:, E-mail: [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)


    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  18. An efficient flexible-order model for coastal and ocean water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    Current work are directed toward the development of an improved numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included for flexibility in the description...... as in the original works \\cite{LiFleming1997,BinghamZhang2007}. The new and improved approach employs a GMRES solver with multigrid preconditioning to achieve optimal scaling of the overall solution effort, i.e., directly with $n$ the total number of grid points. A robust method is achieved through a special...

  19. Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves

    Directory of Open Access Journals (Sweden)

    Brian G. Sellar


    Full Text Available The data analyses and results presented here are based on the field measurement campaign of the Reliable Data Acquisition Platform for Tidal (ReDAPT project (Energy Technologies Institute (ETI, U.K. 2010–2015. During ReDAPT, a 1 MW commercial prototype tidal turbine was deployed and operated at the Fall of Warness tidal test site within the European Marine Energy Centre (EMEC, Orkney, U.K. Mean flow speeds and Turbulence Intensity (TI at multiple positions proximal to the machine are considered. Through the implemented wave identification techniques, the dataset can be filtered into conditions where the effects of waves are present or absent. Due to the volume of results, only flow conditions in the absence of waves are reported here. The analysis shows that TI and mean flows are found to vary considerably between flood and ebb tides whilst exhibiting sensitivity to the tidal phase and to the specification of spatial averaging and velocity binning. The principal measurement technique was acoustic Doppler profiling provided by seabed-mounted Diverging-beam Acoustic Doppler Profilers (D-ADP together with remotely-operable Single-Beam Acoustic Doppler Profilers (SB-ADP installed at mid-depth on the tidal turbine. This novel configuration allows inter-instrument comparisons, which were conducted. Turbulence intensity averaged over the rotor extents of the ReDAPT turbine for flood tides vary between 16.7% at flow speeds above 0.3 m/s and 11.7% when considering only flow speeds in the turbine operating speed range, which reduces to 10.9% (6.8% relative reduction following the implementation of noise correction techniques. Equivalent values for ebb tides are 14.7%, 10.1% and 9.3% (7.9% relative reduction. For flood and ebb tides, TI values resulting from noise correction are reduced in absolute terms by 3% and 2% respectively across a wide velocity range and approximately 1% for turbine operating speeds. Through comparison with SB-ADP-derived mid

  20. Energy dissipation through wind-generated breaking waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuwen; CAO Ruixue; XIE Lingling


    Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.

  1. Measurement of wave number spectrums; Mesure des spectres de nombres d'onde

    Energy Technology Data Exchange (ETDEWEB)

    Perceval, F. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    To measure wave lengths in an ionized medium, the cross-correlation product of the signal collected by a fixed probe and that collected by a movable one exploring the medium, is carried out by an interferometer. In order to determine the various modes, we have made a device which computes the Fourier transform of the signal. The influence of the phase at the origin, of the damping of the signal and of the finite explored length has been studied in order to make a numerical calculation of the Fourier transform. (author) [French] Pour mesurer des longueurs d'onde dans un milieu ionise, nous effectuons a l'aide d'un interferometre un produit d'intercorrelation entre le signal collecte par une sonde fixe et celui d'une sonde mobile explorant le milieu. Afin de pouvoir determiner les differents modes constituant ces signaux, nous avons realise un dispositif qui effectue l'analyse de Fourier de tels enregistrements. L'influence de la phase a l'origine, de l'amortissement du signal et de la longueur finie d'exploration, a ete etudiee en vue du calcul numerique de la transformee de Fourier. (auteur)

  2. Measurements of the millimeter-wave spectrum of interstellar dust emission (United States)

    Fischer, M. L.; Clapp, A.; Devlin, M.; Gundersen, J. O.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.; Richards, P. L.; Smoot, G. F.


    We report measurements of the differential brightness of interstellar dust emission near the Galactic plane and at high Galactic latitudes. The data were obtained as part of a program to measure anisotropy in the cosmic microwave background (CMB). The measurements were made with a 0.5 deg beam size and a 1.3 deg sinusoidal chop, in broad bands (Delta nu/nu approximately 0.3) centered near frequencies of 6, 9, and 12 cm(exp -1). A measurement made toward the Galactic plane, at longitude 1 = 23.7 deg, is compared with the contrast observed in the 100 micrometers IRAS data. Assuming the dust emission has a brightness I(sub nu) proportional to nu(sup n)B(sub nu)(T(sub d)), where B(sub nu) is the Planck function, a best fit yields n = 1.6 +/- 0.4, T(sub d) = 24 +/- 5 K. In a region near the star mu Pegasi (mu PEG l = 91 deg, b = -31 deg), the comparison of our data with the 100 micrometers IRAS data yields n = 1.4 +/- 0.4, and T(sub d) = 18 +/- 3 K. In a second region near the star gamma Ursa Minoris (GUM l = 108 deg, b = 41 deg), an upper limit is placed on contrast in dust emission. This upper limit is consistent with spectrum measured at mu PEG and the IRAS 100 micrometer emission contrast at GUM, which is approximately 8 times lower than mu PEG.

  3. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal (United States)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin


    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  4. Comparison of Oceanic and Continental Lithosphere, Asthenosphere, and the LAB Through Shear Velocity Inversion of Rayleigh Wave Data from the ALBACORE Amphibious Array in Southern California (United States)

    Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.


    Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.

  5. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights (United States)

    Wang, Xiaolan L.; Feng, Yang; Swail, Val R.


    This study uses the analysis of variance approaches to quantify the climate change signal and uncertainty in multimodel ensembles of statistical simulations of significant wave height (Hs), which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of sea level pressure. Here the signal of climate change refers to the temporal variations caused by the prescribed forcing. "Significant" means "significantly different from zero at 5% level." In a four-model ensemble of Hs simulations, the common signal—the signal that is simulated in all the four models—is found to strengthen over time. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant in 16.6% and 82.2% of the area by year 2005 and 2099, respectively. The global average of the variance proportion of the common signal increases from 0.75% in year 2005 to 12.0% by year 2099. The signal is strongest in the eastern tropical Pacific (ETP), featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., intermodel variability) is significant nearly globally; its magnitude is comparable to or greater than that of the common signal in most areas, except in the ETP where the signal is much larger. In a 20-model ensemble of Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the variability between the RCP4.5 and RCP8.5 scenarios. The copyright line for this article was changed on 10 JUNE 2015 after original online publication.

  6. Wind speed, wind direction, air temperature, wave energy spectra, significant wave height, dominant wave period and direction, peak wave period and direction, currents, temperature, conductivity, pressure, sigma-theta, river level, sonar readings, and backscatter data collected at Myrtle Beach in the North Atlantic Ocean from instruments deployed on MOORINGS using platforms NOAA Ship NANCY FOSTER and RV DAN MOORE from 2003-10-01 to 2004-05-01 (NODC Accession 0066109) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These bottom current, wave and associated observations were collected as part of a larger study to understand the physical processes that control the transport of...

  7. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  8. Reminiscences on the study of wind waves (United States)

    MITSUYASU, Hisashi


    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  9. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals. (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar


    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  10. Magnetic Spin-Wave Properties of Ferromagnetic Nanosystems of Various Shapes. Peculiarities of the Border Conditions Accounting in the Process of the Wavenumber Values Spectrum Finding

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Kulish


    Conclusions. The obtained expressions for the spectrum of the values of the investigated spin waves’ wavenumbers can be used for a wider range of cases than the ones obtained in the previous papers dedicated to the investigated configurations of nanosystems. For a nanotube of the circular cross-section with small (compared to the inverse characteristic size of the nanotube cross-section values of the longitudinal wave number, the dependence of the latter on the transverse wave number is weak, as well as for the big longitudinal to transverse wavenumber component ratio. The obtained dependence is also represented graphically.

  11. Current direction, wind wave spectra, and CTD data from moored current meter and CTD casts in the North Atlantic Ocean from 1982-09-15 to 1983-09-15 (NODC Accession 8500148) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, wind wave spectra, and CTD data were collected using moored current meter and CTD casts in the Gulf of Mexico from September 3, 1982 to September...

  12. Physical, chemical and meteorological data from CTD and other instruments from Wave Gliders in the Pacific Ocean in support of the Pacific Crossing (PacX) Challenge from 18 November 2011 to 14 February 2013 (NODC Accession 0114435) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was generated by a group of 4 Wave Gliders, referred to as Papa Mau, Benjamin, Piccard Maru, and Fontaine Maru. The vehicles were launched from San...

  13. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  14. Temperature profiles from XBT casts from the MOANA WAVE from the Toga Area - Pacific (30 N to 30 S) as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 1986-12-18 to 1987-03-01 (NODC Accession 8700129) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from the MOANA WAVE and other platforms in the Toga Area - Pacific (30 N to 30 S) from 18 December 1986 to 01...

  15. Temperature profile and other data collected using bottle casts from the MOANA WAVE and other platforms from the Pacific Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 20 February to 1975-05-27 (NODC Accession 8700066) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station Data and temperature profile, and other data were collected using meteorological sensors, secchi disks, and bottle casts from MOANA WAVE and...

  16. Ocean energy

    International Nuclear Information System (INIS)


    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  17. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean

    CSIR Research Space (South Africa)

    Schmidt, KM


    Full Text Available observations in the Southern Ocean 2 3 Kevin M. Schmidta, Sebastiaan Swartb,c,d, Chris Reasonc, Sarah Nicholsonb,c 4 a Marine Research Institute, University of Cape Town, Rondebosch, South Africa 5 b Southern Ocean Carbon & Climate Observatory, Council...

  18. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    the respective correlation coefficients. Preliminary results with limited processed data showed that the correlation coefficients are approximately 0.6. Sample maps of wave and wind (satellite derived) in 2.5 degrees x 2.5 degrees grids have been prepared...

  19. Validation Test Report for the Coupled Ocean/Atmosphere MesoscalePrediction System (COAMPS) Version 5.0: Ocean/Wave Component Validation (United States)


    wind flow ahead of the next extratropical low pressure system entering Europe . Figure 3.4-4 shows the mean SWH difference and mean NCOM-only and...RED) TC TRACKS ARE SHOWN. CIRCLES ON BOTH TRACKS REPRESENT HOURLY LOCATIONS OF THE STORM CENTERS. ..................................... 18  FIGURE...conditions such as wave boundary conditions, tides, wind, and storm surge. A quasi-stationary approach is used with stationary SWAN computations in a

  20. Directional waves simulated for a severe cyclone and a typical monsoon season in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sudheesh, K.

    in terms of source functions using the basic energy balance equation. The cyclone waves are simulated over an area of 1000 km sup(2) which includes the location (off Pondicherry), where wave data is available for comparison. The wind input to the model...

  1. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MOANA WAVE in the North Pacific Ocean and Philippine Sea from 1989-02-06 to 1989-05-19 (NCEI Accession 0157429) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157429 includes chemical, discrete sample, physical and profile data collected from MOANA WAVE in the North Pacific Ocean and Philippine Sea from...

  2. Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion

    KAUST Repository

    Tom, Nathan; Yeung, Ronald W.


    To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.

  3. Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans (United States)

    White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.


    In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.

  4. Image processing to optimize wave energy converters (United States)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  5. Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO (United States)

    Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su


    This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.

  6. Ocean energy

    International Nuclear Information System (INIS)


    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  7. Signatures of Kelvin and Rossby wave propagation in the northern Indian Ocean from TOPEX/POSEIDON Altimeter

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Unnikrishnan, A.S.; Muraleedharan, P.M.

    The climatological monthly mean sea surface height (SSH) anomalies derived from T/P altimeter in the northern Indian Ocean, during 1993 to 1997, are used to prepare time-longitude plots. Along the equator they reveal strong semi-annual variability...

  8. Study of a new technique for measuring the travel time of ultrasonic waves using the frequency spectrum

    International Nuclear Information System (INIS)

    Santos, Allan Xavier dos


    During the operation of a nuclear plant and other industrial plants, the operational time and the exposition to severe working conditions may cause the wear of its components, consequently, compromising the safety and the performance of the installation. The implementation of periodical inspections helps to ensure the safe operation and the best performance of the plant. In this way, the use of ultrasonic techniques for inspection and materials characterization becomes more and more attractive, since they offer quick, precise results and are technically ease to implement. The usual ultrasonic techniques, need to the measure the travelling time of the ultrasonic wave in the material examined in order to extract information useful to characterize it. Thus, the measurement of the travelling time of the ultrasonic wave is the overriding factor in most of the applications made with ultrasound. In this work a new technique was developed for measuring the travelling time of the ultrasonic wave using a Fourier's Fast Transformer (FFT). It will be shown mathematically and experimentally that it is possible to use the ultrasonic signal in the frequency domain to determine the travelling time of the ultrasonic wave. Five experiments were carried out for the experimental validation of this new technique. The materials used were 20 ceramic pastilles with different porosities and 3 aluminum plates of different thicknesses. The obtained results have shown that the new technique proposed in this work was able to determine the travelling time of the ultrasonic wave with the same precision as the conventional technique. It was shown, furthermore, that this new technique is able to measure the travelling time of the ultrasonic wave in situations where the conventional technique cannot be applied greatly expanding the range of application of ultrasonic testing and inspections. (author)

  9. Transformation of a wave energy spectrum from encounter to absolute domain when observing from an advancing ship

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam


    directly in the encounter domain. The encounter domain is that observed from a ship when it advances in a seaway, whereas the absolute domain is that corresponding to making observations from a fixed point in the inertial frame. Spectrum transformation can be uniquely carried out if the ship sails ”against...

  10. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. (United States)

    Yi, Xiang; Li, Zan; Liu, Zengji


    In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.

  11. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics. (United States)

    El Koussaifi, R; Tikan, A; Toffoli, A; Randoux, S; Suret, P; Onorato, M


    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  12. Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics (United States)

    El Koussaifi, R.; Tikan, A.; Toffoli, A.; Randoux, S.; Suret, P.; Onorato, M.


    Rogue waves are extreme and rare fluctuations of the wave field that have been discussed in many physical systems. Their presence substantially influences the statistical properties of a partially coherent wave field, i.e., a wave field characterized by a finite band spectrum with random Fourier phases. Their understanding is fundamental for the design of ships and offshore platforms. In many meteorological conditions waves in the ocean are characterized by the so-called Joint North Sea Wave Project (JONSWAP) spectrum. Here we compare two unique experimental results: the first one has been performed in a 270 m wave tank and the other in optical fibers. In both cases, waves characterized by a JONSWAP spectrum and random Fourier phases have been launched at the input of the experimental device. The quantitative comparison, based on an appropriate scaling of the two experiments, shows a very good agreement between the statistics in hydrodynamics and optics. Spontaneous emergence of heavy tails in the probability density function of the wave amplitude is observed in both systems. The results demonstrate the universal features of rogue waves and provide a fundamental and explicit bridge between two important fields of research. Numerical simulations are also compared with experimental results.

  13. Approximate Stokes Drift Profiles and their use in Ocean Modelling (United States)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian


    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  14. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas (United States)

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.


    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  15. Power recovery method for testing the efficiency of the ECD of an integrated generation unit for offshore wind power and ocean wave energy

    Institute of Scientific and Technical Information of China (English)

    CHEN WeiXing; GAO Feng; MENG XiangDun; REN AnYe; HU Yan


    Offshore wind power and ocean wave energy are clean,renewable and rich resources.The integrated generation unit for the two kinds of energy is introduced.The energy conversion device (ECD) is utilized to convert the mechanical energy absorbed from the wind power and wave energy into the hydraulic energy,the conversion efficiency of which is significant.In this paper,a power recovery method for testing the efficiency of the ECD is proposed.A simulation desktop is developed to validate the proposed method.The efficiency of the ECD is influenced by the hydraulic cylinders and the mechanical transmission.Here,the static efficiency of the hydraulic cylinders of the ECD is tested first.The results show that the static mechanical efficiency is about 95 % and that the volumetric efficiency is over 99%.To test the effects induced by the mechanical transmission of the ECD,each hydraulic cylinder of the ECD is substituted with two springs.Then the power loss of the ECDM under different rotational speeds is obtained.Finally,a test platform is built and the efficiency of the ECD under different rotational speeds and pressures is obtained.The results show that the efficiency is about 80%.

  16. BAROMETRIC PRESSURE and Other Data from MOANA WAVE and Other Platforms From North Pacific Ocean from 19900103 to 19901220 (NODC Accession 9300148) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Depth, Salinity, dissolved Oxygen (CTD); and Ocean chemistry data collected in North Pacific Ocean between January 3, 1990 and December 20, 1990 during...

  17. Soft mode and energy gap in spin wave spectrum for a second order orientation phase transition. AFMR in YFe3

    International Nuclear Information System (INIS)

    Balbashov, A.M.; Berezin, A.G.; Gufan, Yu.M.; Kolyadko, G.S.; Marchukov, P.Yu.; Rudashevskij, E.G.


    A pronounced energy gap of a nonmagnetoelastic origin is observed experimentally in the spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic resonance branch during a second order spin-flip phase transition in an external magnetic field directed along the a axis of the rhombic weak ferromagnetic YFeO 3 . From the theory developed which takes into account the susceptibility along the antiferromagnetism axis and dissipation processes, it follows that beside the usual AFMR oscillatory branches there should also be a relaxation mode which is ''soft'' fo the given transition. The magnitude of the energy gaps, the values of the kinetic coefficients, Dzyaloshinsky field strengths and ratio of the longitudinal susceptibility to the transverse susceptibility are determined by analyzing the experimental data obtained in fields up to 130 kOe in the frequency range from 60 to 400 GHz at room temperature

  18. Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin. (United States)

    Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V


    Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Parameter identification of JONSWAP spectrum acquired by airborne LIDAR (United States)

    Yu, Yang; Pei, Hailong; Xu, Chengzhong


    In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.

  20. High Resolution Millimeter Wave Absorption Spectroscopy of Flexi- Ble Complex Organic Molecules: Laboratory Spectrum of 1, 2-Butanediol (United States)

    Maris, Assimo


    The enhancing sensibility of radioastronomical observations allows for detec- tion of complex organic molecules (COMs) with increasing size. Observations performed by the Atacama Large Millimeter Array (ALMA) open up new oppor- tunities to reveal the COMs, at the same time, the huge amount of data collected and the extremely rich surveys represent a challenge for the astrochemistry community. Among all the detected molecules, the diols are object of chemical interest, because of their similarity with important biological building block molecules such as sugar alcohols. The simplest of them, ethylene glycol (EG), is one of the largest COMs detected in space thus far. Lines attributable to the most stable conformer of EG were detected in different environments and recently also the higher energy conformer has been observed both towards IRAS 16293-2422 and the Orion KL. Observations of 1, 2- and 1, 3-propanediol toward Sgr B2 (N-LMH) were attempted as part of the GBT Prebiotic Interstellar Molecule Sur- vey Legacy Project, but no transitions were detected. Although up to now, due the fact that the column densities of molecules tend to decrease with increasing molecular weight, no large diols have been observed in interstellar space, owing to the raising sensitivity of the radioastronomy observations, their future detection can not be excluded. In this context we report, for the first time, the laboratory millimeter spectrum of 1, 2-butanediol (BD) recorded in the 59.6-103.6 GHz frequency region (5.03-2.89 mm). BD (the ethylated form of EG) is a flexible molecule characterized by a great conformational complexity, thus at room condi- tions the population is distributed in a large number of species, leading to a very congested spectrum. This problem has been overcome exploiting the rotational and conformational cooling produced by the supersonic expansion technique. Six conformers of BD, including the global minimum, have been assigned yielding the rotational constants

  1. The 2004 Indian Ocean Tsunami in Maldives: waves and disaster affected by shape of coral reefs and islands (United States)

    Kan, H.; Ali, M.; Riyaz, M.


    In Maldives, 39 islands are significantly damaged among 200 inhabited islands and nearly a third of the Maldivian people are severely affected by the Indian Ocean Tsunami in 26 December 2004. We surveyed tsunami impact in 43 islands by measuring island topography and run-up height, interview to local people and mapping of the flooded and destructed areas. The differences in tsunami height and disaster corresponding to the atoll shape and island topography are observed. In the northern atolls, atoll rims consist of many ring-shaped reefs, i.e. miniature atolls called `faro', and interrupted many channels between them. The interrupted atoll rim may play an important role to reducing tsunami run-up height. Severe damage was not observed in the eastern coast of the islands. Beach ridge also contribute to the protection against tsunami. However, in some islands, houses beside the lagoon are damaged by backwashing floodwater from the lagoon. Water marks show the run-up height of -1.8m above MSL. The lagoon water-level seems to set-up by tsunami which permeates into the lagoon through the interrupted atoll rim. The disaster was severe at the southern atolls of Meemu, Thaa and Laamu. The higher run-up heights of up to 3.2m above MSL and enormous building damages were observed at the islands on the eastern atoll rims. The continuous atoll rim of these atolls may reinforce tsunami impact at the eastern islands. In addition, tsunami surge washed the islands totally because of low island topography without beach ridge. Significant floodwater from lagoon was not observed in these atolls. It seems the lagoon water-level was not set-up largely. The continuous atoll rim reduces the tsunami influence to the lagoon and the western side of the atolls. The continuity of atoll rim is probably the major factor to cause the difference in water movement, i.e. tsunami run-up and lagoon set-up, which affects the disaster in the islands. Beach ridge contribute to reduce the tsunami impact to

  2. Radio wave scattering observations of the solar corona: First-order measurements of expansion velocity and turbulence spectrum using Viking and Mariner 10 spacecraft

    International Nuclear Information System (INIS)

    Tyler, G.L.; Vesecky, J.F.; Plume, M.A.; Howard, H.T.; Barnes, A.


    Solar conjunction of Mars on 1976 November 25 occurred very near the beginning of solar cycle 21, about 4 months after the first Viking spacecraft arrived at the planet. Radio wave scattering data were collected at 3.6 and 13 cm wavelengths, using the radio link between the Viking orbiters and the Earth. These data allow measurements of solar wind properties over a range of heliocentric radial distance from approx.6 to 44 R/sub sun/ with solar latitudes ranging from -17 0 to +7 0 . Observations with Mariner 10 during a period of moderate solar activity in 1974 cover from 6 to 24 R/sub sun/ and from approx.20 0 to near 90 0 . We have found that the temporal frequency variance spectrum of amplitude fluctuations is useful for characterizing the bulk motion of the plasma. This spectrum has an approximately constant low frequency plateau and a power-law high frequency asymptote; the plateau-asymptote intersection frequency provides a measure of the solar wind velocity V. We also obtain the spectral index p of electron density turbulence, Phi/sub N/approx.kappa/sup -p/, where kappa is spatial wavenumber. These results apply to a cylindrical region oriented with its axis along the radio ray path and its center at the point of closest approach to the Sun. The measurements of V and p cover some 78/sup d/ for Viking and 49 2 for Mariner 10 and show the combined effects of changing heliocentric distance rho, solar latitude theta, and solar longitude Psi, as well as solar activity. The Viking results can be regarded as a function primary of rho and Psi since the observations are concentrated in the equatorial regions when solar activity was near minimum. For Mariner 10, rho, theta, and Psi variations were important. The Viking results show an abrupt change in V(rho) and the turbulence spectral index at approx.15 R/sub sun/

  3. Millimeter Wave Spectrum of the Two Monosulfur Derivatives of Methyl Formate: s- and O-Methyl Thioformate, in the Ground and the First Excited Torsional States (United States)

    Jabri, Atef; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.; Alekseev, E. A.; Kleiner, Isabelle; Tercero, Belén; Cernicharo, Jose


    Methyl formate CH_{3}OC(O)H is a relatively abundant component of the interstellar medium (ISM). Thus, we decided to study its sulfur derivatives as they can be reasonably proposed for detection in the ISM. In fact there is two relatively stable isomers for methyl thioformate, S-Methyl thioformate CH_{3}SC(O)H and O-Methyl thiofomate CH_{3}OC(S)H. Theoretical investigations on these molecules have been done recently by Senent et al.. Previous experimental investigations were performed only for the S-Methyl thioformate in the 10-41 GHz spectral range by Jones et al. and Caminati et al.. For the present study both isomers were synthesized and the millimeter wave spectrum was then recorded for the first time from 150 to 660 GHz with the Lille's spectrometer based on solid-state sources. The internal rotation effect on the millimeter wave spectra is not the same for these two molecules because the barrier height to internal rotation is relatively low for the S- isomer (V_{3} ≈ 140 \\wn) and rather high for the O- isomer (V_{3} ≈ 700 \\wn). Analysis of the ground and excited torsional states performed with the BELGI-C_{s} code will be presented and discussed. We will provide the search for methyl thioformate in different sources. E. Chruchwell, G. Winnewisser, A&A, 45, 229 (1975) M. L. Senent, C. Puzzarini, M. Hochlaf, R. Dominguez-Gomez, and M. Carvajal, J. Chem. Phys., 141, 104303 (2014) G. I. L. Jones, D. G. Lister, N. L. Owen, J. Mol. Spectrosc., 60, 348 (1976) W. Caminati, B. P. V. Eijck, D. G. Lister, J. Mol. Spectrosc., 90, 15 (1981) J. T. Hougen, I. Kleiner, and M. Godefroid, J. Mol. Spectrosc. 163, 559 (1994)

  4. Scattering of internal gravity waves


    Leaman Nye, Abigail


    Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...

  5. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  6. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.


    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  7. Energy from rivers and oceans

    International Nuclear Information System (INIS)



    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  8. Utilization of statistical table for waves in North-west Pacific Ocean and a long-term estimation on hull responses; Seihoku Taiheiyo haro tokeihyo no riyo to sentai oto choki yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, A [Kyushu University, Fukuoka (Japan). Faculty of Engineering


    Designing a vessel to sail oceans for an extended period of time requires statistical estimation on different hull responses to waves. To meet the requirement, it is necessary to accurately identify hydrographic conditions (particularly waves) which are considered to be encountered by the vessel. This paper makes clear the statistical characteristics of the wave statistics table presented by Fang et al, and compares them with other processes for discussion. This statistics collection is based on data collected in China, Hong Kong and Japan, including those collected in the Sea of Japan, the Yellow Sea, the North Sea, the East China Sea and the South China Sea. It was found that these data provide results slightly lower than the long-term estimation values derived from data of the global wave statistics (GWS) prepared by Hogben et al. The cause for this was found attributable to the format of the statistical data, especially setting of wave height classes. However, since the data provided by Fang et al include items of detailed information on small sea areas near the Chinese coast lines, the data are thought to provide useful information source in investigating long-term hull response characteristics relative to spatial spread of the sea areas in the North-west Pacific Ocean. 15 refs., 5 figs., 2 tabs.

  9. Homogeneous wave turbulence driven by tidal flows (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.


    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  10. 5G Spectrum Sharing


    Nekovee, Maziar; Rudd, Richard


    In this paper an overview is given of the current status of 5G industry standards, spectrum allocation and use cases, followed by initial investigations of new opportunities for spectrum sharing in 5G using cognitive radio techniques, considering both licensed and unlicensed scenarios. A particular attention is given to sharing millimeter-wave frequencies, which are of prominent importance for 5G.

  11. Effects of the competition between the exchange and dipolar interactions in the spin-wave spectrum of two-dimensional circularly magnetized nanodots

    International Nuclear Information System (INIS)

    Mamica, S; Krawczyk, M; Lévy, J-C S


    We use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. We also provide a selective overview of the experimental, analytical and numerical results from the literature, where different profiles of the lowest mode are reported. We attribute this diversity to the competition between the dipolar and exchange interactions. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules. (paper)

  12. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.


    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  13. WATER TEMPERATURE and Other Data from MOANA WAVE and Other Platforms From North Pacific Ocean from 19881030 to 19891129 (NODC Accession 9300183) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — JGOFS Hawaii Ocean Time Series data (HOTS) data collected primarily from a HOTS deepwater site 100 km north of Kahuku Point, Oahu (Station Aloha, 22 degrees 45 N,...

  14. Measuring changes in ambient noise levels from the installation and operation of a surge wave energy converter in the coastal ocean

    Energy Technology Data Exchange (ETDEWEB)

    Haxel, Joe H [Oregon State Univ., Newport, OR (United States); Henkel, Sarah K [Oregon State Univ., Newport, OR (United States)


    Ecosystem impacts resulting from elevated underwater noise levels generated by anthropogenic activities in the coastal ocean are poorly understood and remain difficult to address as a result of a significant gap in knowledge for existing nearshore sound levels. Ambient noise is an important habitat component for marine mammals and fish that use sound for essential functions such as communication, navigation, and foraging. Questions surrounding the amplitudes, frequency distributions, and durations of noise emissions from renewable wave energy conversion (WEC) projects during their construction and operation present concerns for long-term consequences in marine habitats. Oregon’s dynamic nearshore environment presents significant challenges for passive acoustic monitoring that include flow noise contamination from wave orbital motions, turbulence from breaking surf, equipment burial, and fishing pressure from sport and commercial crabbers. This project included 2 techniques for passive acoustic data collection: 1) campaign style deployments of fixed hydrophone lander stations to capture temporal variations in noise levels and 2) a drifting hydrophone system to record spatial variations within the project site. The hydrophone lander deployments were effective and economically feasible for enabling robust temporal measurements of ambient noise levels in a variety of sea state conditions. Limiting factors for the fixed stations included 1) a flow shield mitigation strategy failure in the first deployment resulting in significant wideband data contamination and 2) flow noise contamination of the unshielded sensors restricting valuable analysis to frequencies above 500 Hz for subsequent deployments. Drifting hydrophone measurements were also effective and economically feasible (although logistically challenging in the beginning of the project due to vessel time constraints) providing a spatial distribution of sound levels, comparisons of noise levels in varying levels

  15. The physical basis for estimating wave energy spectra from SAR imagery (United States)

    Lyzenga, David R.


    Ocean surface waves are imaged by synthetic aperture radar (SAR) through a combination of the effects of changes in the surface slope, surface roughness, and surface motion. Over a limited range of conditions, each of these effects can be described in terms of a linear modulation-transfer function. In such cases, the wave-height spectrum can be estimated in a straightforward manner from the SAR image-intensity spectrum. The range of conditions over which this assumption of linearity is valid is investigated using a numerical simulation model, and the implications of various departures from linearity are discussed.

  16. Smithsonian Ocean Portal | Find Your Blue (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor life. These two are in the middle of a courtship. VIEW ARCHIVE Ocean Optimism Success Stories in Ocean

  17. Crossing seas and occurrence of rogue waves (United States)

    Bitner-Gregersen, Elzbieta; Toffoli, Alessandro


    The study is addressing crossing wave systems which may lead to formation of rogue waves. Onorato et al. (2006, 2010) have shown using the Nonlinear Schr?dringer (NLS) equations that the modulational instability and rogue waves can be triggered by a peculiar form of directional sea state, where two identical, crossing, narrow-banded random wave systems interact with each other. Such results have been underpinned by numerical simulations of the Euler equations solved with a Higher Order Spectral Method (HOSM) and experimental observations (Toffoli et al., 2011). They substantiate a dependence of the angle between the mean directions of propagation of the two crossing wave systems, with a maximum rogue wave probability for angles of approximately 40 degrees. Such an unusual sea state of two almost identical wave systems (approximately the same significant wave height and mean frequency) with high steepness and different directions was observed during the accident to the cruise ship Louis Majesty (Cavaleri et al. 2012). Occurrence of wind sea and swell having almost the same spectral period and significant wave height and crossing at the angle 40o low and intermediate wave conditions. They have not been found in a location off coast of Australia and Nigeria. There are some indications that in the future climate we may expect an increase number of occurrence of rogue-prone crossing sea states in some ocean regions An adopted partitioning procedure of a wave spectrum will impact the results. References Bitner-Gregersen, E.M. and Toffoli, A., 2014. Probability of occurrence of rogue sea states and consequences for design of marine structures. Special Issue of Ocean Dynamics, ISSN 1616-7341, 64(10), DOI 10.1007/s10236-014-0753-2. Cavaleri, L., Bertotti, L., Torrisi, L. Bitner-Gregersen, E., Serio, M. and Onorato, M., 2012. Rogue Waves in Crossing Seas: The Louis Majesty accident. J. Geophysical Research, 117, C00J10, doi:10.1029/2012JC007923 Onorato, M., A. Osborne, A

  18. On the upper ocean turbulent dissipation rate due to microscale breakers and small whitecaps (United States)

    Banner, Michael L.; Morison, Russel P.


    In ocean wave modelling, accurately computing the evolution of the wind-wave spectrum depends on the source terms and the spectral bandwidth used. The wave dissipation rate source term which spectrally quantifies wave breaking and other dissipative processes remains poorly understood, including the spectral bandwidth needed to capture the essential model physics. The observational study of Sutherland and Melville (2015a) investigated the relative dissipation rate contributions of breaking waves, from large-scale whitecaps to microbreakers. They concluded that a large fraction of wave energy was dissipated by microbreakers. However, in strong contrast with their findings, our analysis of their data and other recent data sets shows that for young seas, microbreakers and small whitecaps contribute only a small fraction of the total breaking wave dissipation rate. For older seas, we find microbreakers and small whitecaps contribute a large fraction of the breaking wave dissipation rate, but this is only a small fraction of the total dissipation rate, which is now dominated by non-breaking contributions. Hence, for all the wave age conditions observed, microbreakers make an insignificant contribution to the total wave dissipation rate in the wave boundary layer. We tested the sensitivity of the results to the SM15a whitecap analysis methodology by transforming the SM15a breaking data using our breaking crest processing methodology. This resulted in the small-scale breaking waves making an even smaller contribution to the total wave dissipation rate, and so the result is independent of the breaker processing methodology. Comparison with other near-surface total TKE dissipation rate observations also support this conclusion. These contributions to the spectral dissipation rate in ocean wave models are small and need not be explicitly resolved.

  19. Estimation of directional wave spreading

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Bhat, S.S.; Anand, N.M.; Nayak, B.U.

    Directional properties of ocean waves are of great economic interest. The knowledge of wave directionality is important for the design of maritime structures and offshore operations. Two main aspects are considered for this study for the data...

  20. Integration of coastal inundation modeling from storm tides to individual waves (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai


    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  1. Life cycle assessment of ocean energy technologies




    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  2. Spectral Characterization of the Wave Energy Resource for Puerto Rico (PR) and the United States Virgin Islands (USVI) (United States)

    Garcia, C. G.; Canals, M.; Irizarry, A. A.


    Nowadays a significant amount of wave energy assessments have taken place due to the development of the ocean energy markets worldwide. Energy contained in surface gravity waves is scattered along frequency components that can be described using wave spectra. Correspondingly, characterization and quantification of harvestable wave energy is inherently dictated by the nature of the two-dimensional wave spectrum. The present study uses spectral wave data from the operational SWAN-based CariCOOS Nearshore Wave Model to evaluate the capture efficiency of multiple wave energy converters (WEC). This study revolves around accurately estimating available wave energy as a function of varying spectral distributions, effectively providing a detailed insight concerning local wave conditions for PR and USVI and the resulting available-energy to generated-power ratio. Results in particular, provide a comprehensive characterization of three years' worth of SWAN-based datasets by outlining where higher concentrations of wave energy are localized in the spectrum. Subsequently, the aforementioned datasets were processed to quantify the amount of energy incident on two proposed sites located in PR and USVI. Results were largely influenced by local trade wind activity, which drive predominant sea states, and the amount of North-Atlantic swells that propagate towards the region. Each wave event was numerically analyzed in the frequency domain to evaluate the capacity of a WEC to perform under different spectral distribution scenarios, allowing for a correlation between electrical power output and spectral energy distribution to be established.

  3. Rogue waves in nonlinear science

    International Nuclear Information System (INIS)

    Yan Zhenya


    Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.

  4. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter


    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  5. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface (United States)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.


    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  6. NOAA NDBC SOS - waves (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  7. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos


    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  8. Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides

    CERN Document Server

    Schneider, Wilhelm; Trulsen, Karsten


    Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.

  9. Internal Waves, South China Sea (United States)


    Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.

  10. Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project (United States)

    Pautet, P.-D.; Taylor, M. J.; Fritts, D. C.; Bossert, K.; Williams, B. P.; Broutman, D.; Ma, J.; Eckermann, S. D.; Doyle, J. D.


    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) project was conducted over New Zealand and the surrounding regions during June and July 2014, to more fully understand the generation, propagation, and effects of atmospheric gravity waves. A large suite of instruments collected data from the ground to the upper atmosphere (~100 km), with several new remote-sensing instruments operating on board the NSF Gulfstream V (GV) research aircraft, which was the central measurement platform of the project. On 14 July, during one of the research flights (research flight 23), a spectacular event was observed as the GV flew in the lee of the sub-Antarctic Auckland Islands (50.7°S). An apparent "ship wave" pattern was imaged in the OH layer (at ~83.5 km) by the Utah State University Advanced Mesospheric Temperature Mapper and evolved significantly over four successive passes spanning more than 4 h. The waves were associated with orographic forcing generated by relatively strong (15-20 m/s) near-surface wind flowing over the rugged island topography. The mountain wave had an amplitude T' ~ 10 K, a dominant horizontal wavelength ~40 km, achieved a momentum flux exceeding 300 m2 s-2, and eventually exhibited instability and breaking at the OH altitude. This case of deep mountain wave propagation demonstrates the potential for strong responses in the mesosphere arising from a small source under suitable propagation conditions and suggests that such cases may be more common than previously believed.

  11. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor


    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  12. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping


    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  13. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.


    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  14. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum (United States)

    Ando, Koji


    A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.

  15. A Comparison Study of a Generic Coupling Methodology for Modeling Wake Effects of Wave Energy Converter Arrays

    Directory of Open Access Journals (Sweden)

    Tim Verbrugghe


    Full Text Available Wave Energy Converters (WECs need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, by diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC array is complex; it is difficult, or in some cases impossible, to simulate both these near-field and far-field wake effects using a single numerical model, in a time- and cost-efficient way in terms of computational time and effort. Within this research, a generic coupling methodology is developed to model both near-field and far-field wake effects caused by floating (e.g., WECs, platforms or fixed offshore structures. The methodology is based on the coupling of a wave-structure interaction solver (Nemoh and a wave propagation model. In this paper, this methodology is applied to two wave propagation models (OceanWave3D and MILDwave, which are compared to each other in a wide spectrum of tests. Additionally, the Nemoh-OceanWave3D model is validated by comparing it to experimental wave basin data. The methodology proves to be a reliable instrument to model wake effects of WEC arrays; results demonstrate a high degree of agreement between the numerical simulations with relative errors lower than 5 % and to a lesser extent for the experimental data, where errors range from 4 % to 17 % .

  16. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A


    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  17. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses

    NARCIS (Netherlands)

    Sitnikova, E.Y.; Luijtelaar, E.L.J.M. van


    Periods in the electroencephalogram (EEG) that immediately precede the onset of spontaneous spike-wave discharges (SWD) were examined in WAG/Rij rat model of absence epilepsy. Precursors of SWD (preSWD) were classified based on the distribution of EEG power in delta-theta-alpha frequency bands as

  18. Parametric instability and wave turbulence driven by tidal excitation of internal waves (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael


    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  19. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath


    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  20. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick


    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  1. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave (United States)

    Wen, Biyang; Li, Ke


    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  2. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum (United States)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.


    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  3. Ocean tides (United States)

    Hendershott, M. C.


    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  4. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.


    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  5. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean) (United States)

    Ferré, B.; Durrieu de Madron, X.; Estournel, C.; Ulses, C.; Le Corre, G.


    Modern sediment deposits on continental margins form a vast reservoir of particulate matter that is regularly affected by resuspension processes. Resuspension by bottom trawling on shelves with strong fishing activity can modify the scale of natural disturbance by waves and currents. Recent field data show that the impact of bottom trawls on fine sediment resuspension per unit surface is comparable with that of the largest storms. We assessed the impact of both natural and anthropogenic processes on the dispersal of riverborne particles and shelf sediments on the Gulf of Lion shelf. We performed realistic numerical simulations of resuspension and transport forced by currents and waves or by a fleet of bottom trawlers. Simulations were conducted for a 16-month period (January 1998-April 1999) to characterise the seasonal variability. The sediment dynamics takes into account bed armoring, ripple geometry and the cohesive and non-cohesive characteristics of the sediments. Essential but uncertain parameters (clay content, erosion fluxes and critical shear stress for cohesive sediment) were set with existing data. Resuspension by waves and currents was controlled by shear stress, whereas resuspension by trawls was controlled by density and distribution of the bottom trawler fleet. Natural resuspension by waves and currents mostly occurred during short seasonal episodes, and was concentrated on the inner shelf. Trawling-induced resuspension, in contrast, occurred regularly throughout the year and was concentrated on the outer shelf. The total annual erosion by trawls (5.6×10 6 t y -1, t for metric tonnes) was four orders of magnitude lower than the erosion induced by waves and currents (35.3×10 9 t y -1). However the net resuspension (erosion/deposition budget) for trawling (0.4×10 6 t y -1) was only one order of magnitude lower than that for waves and currents (9.2×10 6 t y -1). Off-shelf export concerned the finest fraction of the sediment (clays and fine silts

  6. Homogeneous internal wave turbulence driven by tidal flows (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team


    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  7. Ocean Bottom Seismic Scattering (United States)


    EPR, the Clipperton and Orozco fracture zones , and along the coast of Mexico, were recorded for a two month period using ocean bottom seismometers...67. Tuthill, J.D., Lewis, B.R., and Garmany, J.D., 1981, Stonely waves, Lopez Island noise, and deep sea noise from I to 5 hz, Marine Geophysical...Patrol Pell Marine Science Library d/o Coast Guard R & D Center University of Rhode Island Avery Point Narragansett Bay Campus Groton, CT 06340

  8. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin


    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  9. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis (United States)

    Sheehan, Anne Francis


    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  10. Water temperature, salinity, oxygen and other data collected from NOAA Ship Ka'imimoana and Moana Wave in the North Pacific Ocean from 1988-10-30 to 1989-11-29 (NODC Accession 9100012) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Ocean Time-series data in this accession were collected as part of World Ocean Circulation Experiment (WOCE) conducted by Marine Laboratory, University of...

  11. Massachusetts Bay - Internal wave packets digitized from SAR imagery (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  12. Millimeter and submillimeter wave spectroscopic investigations into the rotation-tunneling spectrum of gGg' ethylene glycol, HOCH 2CH 2OH (United States)

    Müller, Holger S. P.; Christen, Dines


    The rotation-tunneling spectrum of the second most stable gGg' conformer of ethylene glycol (1,2-ethanediol) in its ground vibrational state has been studied in selected regions between 77 and 579 GHz. Compared to the study of the more stable aGg' conformer, a much larger frequency range was studied, resulting in a much extended frequency list covering similar quantum numbers, J⩽55 and Ka⩽19. While the input data were reproduced within experimental uncertainties up to moderately high values of J and Ka larger residuals remain at higher quantum numbers. The severe mixing of the states caused by the Coriolis interaction between the two tunneling substates is suggested to provide a considerable part of the explanation. In addition, a Coriolis interaction of the gGg' ground vibrational state with an excited state of the aGg' conformer may also contribute. Relative intensities of closely spaced lines have been investigated to determine the signs of the Coriolis constants between the two tunneling substates relative to the dipole moment components and to estimate the magnitudes of the dipole moment components and the energy difference between the gGg' and the aGg' conformers. Results of ab initio calculations on the total dipole moment and the vibrational spectrum were needed for these estimates. The current analysis is limited to transitions with quantum numbers J⩽40 and Ka⩽6 plus those having J⩽22 and Ka⩽17 which could be reproduced within experimental uncertainties. The results are aimed at aiding radioastronomers to search for gGg' ethylene glycol in comets and in interstellar space.

  13. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María


    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  14. Bubbles and breaking waves (United States)

    Thorpe, S. A.


    The physical processes which control the transfer of gases between the atmosphere and oceans or lakes are poorly understood. Clouds of micro-bubbles have been detected below the surface of Loch Ness when the wind is strong enough to cause the waves to break. The rate of transfer of gas into solution from these bubbles is estimated to be significant if repeated on a global scale. We present here further evidence that the bubbles are caused by breaking waves, and discuss the relationship between the mean frequency of wave breaking at a fixed point and the average distance between breaking waves, as might be estimated from an aerial photograph.

  15. Surfing surface gravity waves (United States)

    Pizzo, Nick


    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  16. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  17. Design wave estimation considering directional distribution of waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C Technical Note Design wave estimation considering directional distribution of waves V. Sanil Kumar a,C3 , M.C. Deo b a OceanEngineeringDivision,NationalInstituteofOceanography,Donapaula,Goa-403004,India b Civil... of Physical Oceanography Norway, Report method for the routine 18, 1020–1034. ocean waves. Division of No. UR-80-09, 187 p. analysis of pitch and roll Conference on Coastal Engineering, 1. ASCE, Taiwan, pp. 136–149. Deo, M.C., Burrows, R., 1986. Extreme wave...

  18. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses. (United States)

    Sitnikova, Evgenia; van Luijtelaar, Gilles


    Periods in the electroencephalogram (EEG) that immediately precede the onset of spontaneous spike-wave discharges (SWD) were examined in WAG/Rij rat model of absence epilepsy. Precursors of SWD (preSWD) were classified based on the distribution of EEG power in delta-theta-alpha frequency bands as measured in the frontal cortex. In 95% of preSWD, an elevation of EEG power was detected in delta band (1-4Hz). 73% of preSWD showed high power in theta frequencies (4.5-8Hz); these preSWD might correspond to 5-9Hz oscillations that were found in GAERS before SWD onset [Pinault, D., Vergnes, M., Marescaux, C., 2001. Medium-voltage 5-9Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181-201], however, theta component of preSWD in our WAG/Rij rats was not shaped into a single rhythm. It is concluded that a coalescence of delta and theta in the cortex is favorable for the occurrence of SWD. The onset of SWD was associated with strengthening of intracortical and thalamo-cortical coherence in 9.5-14Hz and in double beta frequencies. No features of EEG coherence can be considered as unique for any of preSWD subtype. Reticular and ventroposteromedial thalamic nuclei were strongly coupled even before the onset of SWD. All this suggests that SWD derive from an intermixed delta-theta EEG background; seizure onset associates with reinforcement of intracortical and cortico-thalamic associations.

  19. Overview of Wave to Wire Models

    DEFF Research Database (Denmark)

    Nielsen, Kim; Kramer, Morten Mejlhede; Ferri, Francesco

    A “Wave to Wire” (W2W) model is a numerical tool that can calculate the power output from a specified Wave Energy Converter (WEC), under specified ocean wave conditions. The tool can be used to assess and optimize the performance of a Wave Energy Converter (WEC) design and provide knowledge...

  20. Variations in return value estimate of ocean surface waves - a study based on measured buoy data and ERA-Interim reanalysis data (United States)

    Muhammed Naseef, T.; Sanil Kumar, V.


    An assessment of extreme wave characteristics during the design of marine facilities not only helps to ensure their safety but also assess the economic aspects. In this study, return levels of significant wave height (Hs) for different periods are estimated using the generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD) based on the Waverider buoy data spanning 8 years and the ERA-Interim reanalysis data spanning 38 years. The analysis is carried out for wind-sea, swell and total Hs separately for buoy data. Seasonality of the prevailing wave climate is also considered in the analysis to provide return levels for short-term activities in the location. The study shows that the initial distribution method (IDM) underestimates return levels compared to GPD. The maximum return levels estimated by the GPD corresponding to 100 years are 5.10 m for the monsoon season (JJAS), 2.66 m for the pre-monsoon season (FMAM) and 4.28 m for the post-monsoon season (ONDJ). The intercomparison of return levels by block maxima (annual, seasonal and monthly maxima) and the r-largest method for GEV theory shows that the maximum return level for 100 years is 7.20 m in the r-largest series followed by monthly maxima (6.02 m) and annual maxima (AM) (5.66 m) series. The analysis is also carried out to understand the sensitivity of the number of observations for the GEV annual maxima estimates. It indicates that the variations in the standard deviation of the series caused by changes in the number of observations are positively correlated with the return level estimates. The 100-year return level results of Hs using the GEV method are comparable for short-term (2008 to 2016) buoy data (4.18 m) and long-term (1979 to 2016) ERA-Interim shallow data (4.39 m). The 6 h interval data tend to miss high values of Hs, and hence there is a significant difference in the 100-year return level Hs obtained using 6 h interval data compared to data at 0.5 h interval. The

  1. Remote sensing signatures of oceanic whitecap at different wavelengths (United States)

    Anguelova, M. D.; Dowgiallo, D. J.; Smith, G. B.; Means, S. L.; Savelyev, I.; Frick, G. M.; Snow, C. M.; Schindall, J. A.; Bobak, J. P.


    Oceanic whitecaps are the most direct surface expression of breaking wind waves in the ocean. Whitecap fraction quantifies the breaking events and is thus a suitable forcing variable for parameterizing and predicting various air-sea interaction processes. To this end, we have compiled a database of whitecap fraction W from satellites-borne microwave radiometric observations. These observations provide the total W including foam generated during active breaking of wind-driven waves and residual foam left behind by these breaking waves. However, the whitecap fraction associated with the actively breaking waves WA is needed for dynamic air-sea processes in the upper ocean such as turbulent mixing, gas exchange, ocean ambient noise, and spray-mediated intensification of tropical storms. To parameterize such processes, a database of WA separate from W is needed. We pursue this separation of WA from W by combining the Phillips concept of breaking wave statistics which connects WA with the energy dissipation rate of breaking waves and parametric estimates of energy dissipation from wave spectra measured from buoys. We seek additional physical understanding of, and experimental support for, this separation with a multi-instrumental field campaign. The instrumentation deployed includes a suite of sensors recording the whitecaps and breaking waves on the surface over wide range of the electromagnetic spectrum: visible (video cameras), infrared (IR camera), and microwave (radiometers at two frequencies, 10 GHz and 37 GHz). An acoustic array with three nested-aperture array at frequencies up to 2.4 kHz and aerosol/particle counter provide data for the bubbles generated beneath and sea spray produced above the whitecaps. We also deployed a transmitter horn to collect data useful to asses Radio Frequency Interference (RFI), which affects the collection and accuracy of satellite-based data. Various auxiliary data such as wind speed, air temperature, humidity, wave field, and

  2. Wave Tank Studies of Phase Velocities of Short Wind Waves (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  3. Assessment of Ocean Wave Model used to Analyze the Constellation Program (CxP) Orion Project Crew Module Water Landing Conditions (United States)

    Smith, Bryan K.; Bouchard, Richard; Teng, Chung-Chu; Dyson, Rodger; Jenson, Robert; OReilly, William; Rogers, Erick; Wang, David; Volovoi, Vitali


    Mr. Christopher Johnson, NASA's Systems Manager for the Orion Project Crew Module (CM) Landing and Recovery at the Johnson Space Center (JSC), and Mr. James Corliss, Project Engineer for the Orion CM Landing System Advanced Development Project at the Langley Research Center (LaRC) requested an independent assessment of the wave model that was developed to analyze the CM water landing conditions. A NASA Engineering and Safety Center (NESC) initial evaluation was approved November 20, 2008. Mr. Bryan Smith, NESC Chief Engineer at the NASA Glenn Research Center (GRC), was selected to lead this assessment. The Assessment Plan was presented and approved by the NESC Review Board (NRB) on December 18, 2008. The Assessment Report was presented to the NRB on March 12, 2009. This document is the final Assessment Report.

  4. Observation and parametrization of wave attenuation through the MIZ (United States)

    Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.


    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.

  5. Cold plasma waves

    International Nuclear Information System (INIS)

    Booker, H.G.


    The book aims to present current knowledge concerning the propagation of electromagnetic waves in a homogeneous magnetoplasma for which temperature effects are unimportant. It places roughly equal emphasis on the radio and the hydromagnetic parts of the electromagnetic spectrum. The dispersion properties of a magnetoplasma are treated as a function both of wave frequency (assumed real) and of ionization density. The effect of collisions is included only in so far as this can be done with simplicity. The book describes how pulses are radiated from both small and large antennas embedded in a homogeneous magnetoplasma. The power density radiated from a type of dipole antenna is studied as a function of direction of radiation in all bands of wave frequency. Input reactance is not treated, but the dependence of radiation resistance on wave frequency is described for the entire electromagnetic spectrum. Also described is the relation between beaming and guidance for Alfven waves. (Auth.)

  6. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  7. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L


    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  8. Survey technology for ocean engineering applications

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.; Chandramohan, P.

    Various types of sophisticated instruments available at the National Institute of Oceanography, Goa, India, for obtaining precise information on waves, ocean currents, water level variations, meteorological parameters, etc. are described...

  9. Temperature fluctuations in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Hjoello, Solfrid Saetre


    The article discusses the temperature fluctuations in connection with drought in Africa, the climate in North America, the European heat waves and the frequent tropical hurricanes in the Atlantic Ocean. Problems with climate modelling and some pollution aspects are mentioned

  10. On the instability of wave-fields with JONSWAP spectra to inhomogeneous disturbances, and the consequent long-time evolution (United States)

    Ribal, A.; Stiassnie, M.; Babanin, A.; Young, I.


    The instability of two-dimensional wave-fields and its subsequent evolution in time are studied by means of the Alber equation for narrow-banded random surface-waves in deep water subject to inhomogeneous disturbances. A linear partial differential equation (PDE) is obtained after applying an inhomogeneous disturbance to the Alber's equation and based on the solution of this PDE, the instability of the ocean wave surface is studied for a JONSWAP spectrum, which is a realistic ocean spectrum with variable directional spreading and steepness. The steepness of the JONSWAP spectrum depends on γ and α which are the peak-enhancement factor and energy scale of the spectrum respectively and it is found that instability depends on the directional spreading, α and γ. Specifically, if the instability stops due to the directional spreading, increase of the steepness by increasing α or γ can reactivate it. This result is in qualitative agreement with the recent large-scale experiment and new theoretical results. In the instability area of α-γ plane, a long-time evolution has been simulated by integrating Alber's equation numerically and recurrent evolution is obtained which is the stochastic counterpart of the Fermi-Pasta-Ulam recurrence obtained for the cubic Schrödinger equation.

  11. [Ureteral stricture after extracorporeal shock wave lithotripsy. Case report and overview of the spectrum of rare side effects of modern ESWL treatment]. (United States)

    Finter, F; Rinnab, L; Simon, J; Volkmer, B; Hautmann, R; Kuefer, R


    Extracorporeal shock wave lithotripsy (ESWL) is considered a very safe and noninvasive procedure for the treatment of urolithiasis. Achievements in the technical development of recent decades resulted in a continuous reduction of side effects. One of our patients, a woman with cystinuria, developed a temporary ureteral stricture after several sessions of ESWL. Encouraged by this observation we set out to explore--based on a MEDLINE literature search--published reports of more severe side effects observed in modern ESWL therapy. Besides hydronephrosis and renal colic the most common side effects were renal and perirenal hematomas in up to 4% in the larger series. Uncommon extrarenal complications are described mostly in case reports, which are also outlined in this report. The injury of visceral organs (liver, spleen, gut, pancreas) was published most frequently. A rupture or dissection of an abdominal aortic aneurysm as an outstanding serious complication was also reported several times. Taking obvious and well-known contraindications into consideration and carefully preparing the patients for the therapy (i.e., checking hemostasis, drug history), ESWL is a very safe procedure with a low risk of serious complications. Yet, postoperative clinical and ultrasound monitoring seems to be essential especially with respect to the increasing numbers of outpatient procedures.

  12. Estimation of directional sea wave spectra from radar images. A Mediterranean Sea case study

    International Nuclear Information System (INIS)

    Corsini, G.; Grasso, R.; Manara, G.; Monorchio, A.


    An inversion technique for estimating sea wave directional spectra from Synthetic Aperture Radar (SAR) images is applied to a set of ERS-1 data relevant to selected Mediterranean areas. The approach followed is based on the analytical definition of the transform which maps the sea wave spectrum onto the corresponding SAR image spectrum. The solution of the inverse problem is determined through a numerical procedure which minimises a proper functional. A suitable iterative scheme is adopted, involving the use of the above transform. Although widely applied to the ocean case, the method has not been yet extensively tested widely applied to the ocean case, the method has not been yet extensively tested in smaller scale basins, as for instance the Mediterranean sea. The results obtained demonstrate the effectiveness of the numerical procedure discussed for retrieving the sea wave spectrum from SAR images. This work provides new experimental data relevant to the Mediterranean Sea, discusses the results obtained by the above inversion technique and compares them with buoy derived sea truth measurements

  13. Spectrum Recombination. (United States)

    Greenslade, Thomas B., Jr.


    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  14. Numerical investigation of freak waves (United States)

    Chalikov, D.


    of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).

  15. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor. (United States)

    Farrell, W E; Munk, Walter


    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.

  16. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.


    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  17. Wave-induced mixing and transport of buoyant particles: application to the Statfjord A oil spill

    Directory of Open Access Journals (Sweden)

    M. Drivdal


    Full Text Available This study focuses on how wave–current and wave–turbulence interactions modify the transport of buoyant particles in the ocean. Here the particles can represent oil droplets, plastic particles, or plankton such as fish eggs and larvae. Using the General Ocean Turbulence Model (GOTM, modified to take surface wave effects into account, we investigate how the increased mixing by wave breaking and Stokes shear production, as well as the stronger veering by the Coriolis–Stokes force, affects the drift of the particles. The energy and momentum fluxes, as well as the Stokes drift, depend on the directional wave spectrum obtained from a wave model. As a first test, the depth and velocity scales from the model are compared with analytical solutions based on a constant eddy viscosity (i.e., classical Ekman theory. Secondly, the model is applied to a case in which we investigate the oil drift after an oil spill off the west coast of Norway in 2007. During this accident the average net drift of oil was observed to be both slower and more deflected away from the wind direction than predicted by oil-drift models. In this case, using wind and wave forcing from the ERA Interim archive it is shown that the wave effects are important for the resultant drift and have the potential to improve drift forecasting.

  18. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan


    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  19. Meteorite impact in the ocean (United States)

    Strelitz, R.


    In the present study, the dynamic of hypervelocity impacts and crater formation in water are examined with allowance for the unique properties of water. More precisely, the transient crater calculated is permitted to relax and act as a source of oceanic surface waves.

  20. Oceanic forcing of coral reefs. (United States)

    Lowe, Ryan J; Falter, James L


    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  1. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.


    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  2. NODC Standard Format NOS Coastal Wave Program (F182) Data (1979-1983) (NODC Accession 0014203) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type was designed for analyzed wave data originating from the National Ocean Service (NOS) Coastal Wave Program. The data are organized into 3 record...

  3. Ocean Acidification (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  4. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  5. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  6. Ocean Color (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  7. Ocean Quality


    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis


    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  8. A Stokes drift approximation based on the Phillips spectrum (United States)

    Breivik, Øyvind; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.


    A new approximation to the Stokes drift velocity profile based on the exact solution for the Phillips spectrum is explored. The profile is compared with the monochromatic profile and the recently proposed exponential integral profile. ERA-Interim spectra and spectra from a wave buoy in the central North Sea are used to investigate the behavior of the profile. It is found that the new profile has a much stronger gradient near the surface and lower normalized deviation from the profile computed from the spectra. Based on estimates from two open-ocean locations, an average value has been estimated for a key parameter of the profile. Given this parameter, the profile can be computed from the same two parameters as the monochromatic profile, namely the transport and the surface Stokes drift velocity.

  9. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  10. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva


    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  11. Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects (United States)

    Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.


    The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.

  12. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.


    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a bet...

  13. Directional wave measurements and modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; Bhat, S.S.; SanilKumar, V.

    Some of the results obtained from analysis of the monsoon directional wave data measured over 4 years in shallow waters off the west coast of India are presented. The directional spectrum computed from the time series data seems to indicate...

  14. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    gradient in the upper ocean. This strengthens the geostrophically balanced westward currents in both side of the equatorial wave-guide (within 5 degree bands). Once these currents reach the western Pacific coast, they feed the Equatorial undercurrent (EUC...

  15. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya


    In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated.

  16. Wave energy: a Pacific perspective. (United States)

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen


    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  17. The Damage To The Armour Layer Due To Extreme Waves (United States)

    Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka


    computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal

  18. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.


    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  19. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  20. Rogue waves in shallow water (United States)

    Soomere, T.


    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  1. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.


    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  2. Gravitational Waves from Oscillons with Cuspy Potentials. (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary


    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  3. Ocean Acidification (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin


    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  4. Zellweger Spectrum (United States)

    ... severe defect, resulting in essentially nonfunctional peroxisomes. This phenomenon produces the range of severity of the disorders. How is the Zellweger Spectrum Diagnosed? The distinctive shape of the head and face of a child born with one of the diseases of the ...

  5. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.


    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  6. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    Gaussian smoothed SAR image spectra have been evaluated from 512 x 512 pixel subscenes of image mode ERS-1 SAR scenes off Goa, Visakhapatnam, Paradeep and Portugal. The two recently acquired scenes off Portugal showed the signature of swell...

  7. Wave directional spectrum from SAR imagery

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.; Vethamony, P.

    < 2m and the zero-crossing period during the satellite overpass is small (< 6s, �O�O < 60m). We therefore utilized the visit of one of the authors (Sarma) to the Southampton Oceanographic Centre, U.K., to procure two ERS-1 digital image mode SAR...-dimensional FFT as well as a computer program for downloading SAR data from CCT. Finally we owe a debt of gratitude to J C da Silva, Southampton Oceanographic Centre, U K for sharing some of his SAR data with us. References Allan T. D. (Ed) (1983...

  8. Electromagnetic wave energy converter (United States)

    Bailey, R. L. (Inventor)


    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  9. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox (United States)

    Karimpour, Arash; Chen, Qin


    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  10. Shear Alfven waves in tokamaks

    International Nuclear Information System (INIS)

    Kieras, C.E.


    Shear Alfven waves in an axisymmetric tokamak are examined within the framework of the linearized ideal MHD equations. Properties of the shear Alfven continuous spectrum are studied both analytically and numerically. Implications of these results in regards to low frequency rf heating of toroidally confined plasmas are discussed. The structure of the spatial singularities associated with these waves is determined. A reduced set of ideal MHD equations is derived to describe these waves in a very low beta plasma

  11. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S


    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  12. Aperture averaging in strong oceanic turbulence (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya


    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  13. Ocean wave nonlinearity and phase couplings

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J

    stream_size 4 stream_content_type text/plain stream_name Indian_J_Mar_Sci_20_93.pdf.txt stream_source_info Indian_J_Mar_Sci_20_93.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  14. Rossby Waves in the Arctic Ocean

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Schmith, Torben

    internal centennial scale Rossby modes. In this study we investigate these modes in a theoretical framework. We apply the free surface two layer model with a linear damping on the sphere and solve this in idealised geometries. We solve this system numerically by a finite difference scheme based...

  15. Multivariate autoregressive algorithms for ocean wave modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Lyons, G.J.; Witz, J.A.

    stream_size 8 stream_content_type text/plain stream_name 2_Int_Offshore_Polar_Eng_Conf_Proc_1992_77.pdf.txt stream_source_info 2_Int_Offshore_Polar_Eng_Conf_Proc_1992_77.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  16. Scattering of Acoustic Waves from Ocean Boundaries (United States)


    at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de Janeiro , Brazil...a Sandy Seabed at the Target and Reverberation Experiment 2013 (TREX13),” in Proc. IEEE/OES Acoustics in Underwater Geosciences Symposium, Rio de ... Janeiro , Brazil, July 2015. PRESENTATIONS Presenter: Isakson, M.J., Chotiros, N.P., Piper, J.N. and McNeese, A. “Acoustic Scattering from a Sandy Seabed

  17. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Weather. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  18. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, MOSE (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, MOSE. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  19. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Telemetry. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops...

  20. Modeling the SAR Signature of Nonlinear Internal Waves

    National Research Council Canada - National Science Library

    Lettvin, Ellen E


    Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...

  1. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, AIS (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, AIS. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  2. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, CTD (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, CTD. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that develops near...

  3. Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Phytoflash (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Liquid Robotics Wave Glider, Honey Badger (G3), 2015, Phytoflash. The MAGI mission is to use the Wave Glider to sample the late summer chlorophyll bloom that...

  4. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence


    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  5. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation (United States)

    Seiffert, Betsy R.; Ducrozet, Guillaume


    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  6. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.


    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  7. Wave energy : from demonstration to commercialization

    Energy Technology Data Exchange (ETDEWEB)



    The Wave Energy Centre is a non-profit organization dedicated to the development and marketing of ocean wave energy devices through technical and strategic support to companies and research and development institutions. WEC provides access to researchers to associated test infrastructures for testing and demonstration of wave energy structures. This presentation described the current status of wave energy. Public policies that support wave energy were also highlighted. Wave energy technology is currently in the demonstration phase, with several pilot plants and prototypes in service around the world. The first 2 offshore shoreline ocean wave current pilot plants were constructed in 2000. This presentation identified the 12 near or offshore pilot plants that were in operation by 2007. The pilot plants represent 5 basic different concepts with many different designs. The world's first commercial park was launched in 2007 in Portugal. The Pelamis wave farm uses three Pelamis P-750 machines with a capacity of 2.25 megawatts. figs.

  8. In Pursuit of Internal Waves (United States)

    Peacock, Thomas


    Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.

  9. Arctic Climate and Atmospheric Planetary Waves (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)


    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  10. Harvesting the electromagnetic spectrum: from communications to renewables


    Gremont, Boris


    The talk will give a unified perspective on one of the most precious commodities underpinning the globalised world: the electromagnetic spectrum. In particular, we will describe how electromagnetic waves have been used over the years to create the global village and the modern world as we know it. How waves can be used to help fight global warming will be discussed along with how waves and remote sensing help in saving lives. Finally, how can the electromagnetic spectrum be used to create the...

  11. Panorama 2011: Ocean renewable energies

    International Nuclear Information System (INIS)

    Demoulin, P.; Vinot, S.


    Our society is looking increasingly to renewable energy sources in the face of the energy and environmental challenges with which it is grappling. As far as ocean renewable energies are concerned, a wide range of technologies is currently being experimented with, including wind power and energy derived from waves and tidal currents. They are all at varying levels of maturity, and bring with them very different technical and economic challenges. (author)

  12. Forecasting Water Waves and Currents: A Space-time Approach

    NARCIS (Netherlands)

    Ambati, V.R.


    Forecasting water waves and currents in near shore and off shore regions of the seas and oceans is essential to maintain and protect our environment and man made structures. In wave hydrodynamics, waves can be classified as shallow and deep water waves based on its water depth. The mathematical

  13. Rational homoclinic solution and rogue wave solution for the ...

    Indian Academy of Sciences (India)

    –4]. Rogue waves were first observed in deep ocean [5]. A wave can be called a rogue wave when its height and steepness is much greater than the average crest, and appears from nowhere and disappears without a trace [6]. Rogue waves ...

  14. Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures

    NARCIS (Netherlands)

    Zou, T.; Kaminski, M.L.


    In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated

  15. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.


    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  16. Stratified Coastal Trapped Waves and Mean Flows

    National Research Council Canada - National Science Library

    Thompson, LuAnne


    Our long term goals are to identify the roles that rectified subinertial waves and mesoscale motions play in the mean-flow transport of fluid properties in the coastal ocean and to apply these ideas...

  17. African Easterly Wave Climatology, Version 1 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AEWC dataset was created using a new algorithm developed by researchers at Georgia Tech and represents the first attempt to produce a standard easterly wave...

  18. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D


    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  19. Spectrum 101: An Introduction to Spectrum Management (United States)


    produces a Joint Restricted Frequency List (JRFL). The JFRL consolidates and classifies the spectrum uses that are most critical to operations and to...Management Office JRFL Joint Restricted Frequency List JSC Joint Spectrum Center JSIR Joint Spectrum Interference Resolution JSME Joint Spectrum...Multifunctional Information Distribution System MILSATCOM Military Satellite Communications MOA Memorandum of Agreement MRFL Master Radio Frequency

  20. Field Observations of Wave-Driven Circulation over Spur and Groove Formations near the Palmyra Atoll in the North Pacific Ocean from 2012-09-16 to 2013-09-16 (NCEI Accession 0123612) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spur and groove (SAG) formations are found on the forereefs of many coral reefs worldwide. Modeling results have shown that SAG formations together with shoaling...

  1. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe


    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  2. Directional wave spectra off southeast coast of Tamil Nadu

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; Gowthaman, R.

    directional spreading. A well established way to describe the energy content in an irregular wind generated surface wave assumes superposition of linear waves and the two dimensional energy spectrum can be conveniently expressed as a product of the one...

  3. Planet Ocean (United States)

    Afonso, Isabel


    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  4. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.


    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  5. Simulations of the Ocean Response to a Hurricane: Nonlinear Processes

    KAUST Repository

    Zedler, Sarah E.


    of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized

  6. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter


    density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....

  7. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves (United States)


    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  8. Ocean Uses: Hawaii (PROUA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  9. Wave spectral shapes in the coastal waters based on measured data off Karwar on the Western coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.A.; SanilKumar, V.

    of the wave spectrum is within the range of -4 to -3 during the monsoon period, the Donelan spectrum shows a better fit for the high-frequency part of the wave spectra in monsoon months compared to other months....

  10. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ


    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  11. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market




    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  12. Wave transmission in mangrove forests

    NARCIS (Netherlands)

    Schiereck, G.J.; Booij, N.


    There is an increasing awareness of the role of mangrove forests in coastal ecosystems and coastal protection. At the transition between ocean and land, they have to absorb the energy that comes from the motion of the water. Little quantitative in formation is available, however, on wave


    National Aeronautics and Space Administration — This data set consists of 4-second edited, wave electric field intensities from the Voyager 2 Plasma Wave Receiver spectrum analyzer obtained in the vicinity of the...

  14. Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere

    International Nuclear Information System (INIS)

    Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.


    The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments

  15. Comments on ‘Temporal significant wave height estimation from wind speed by perceptron Kalman filtering’ by A. Altunkaynak and M. Ozger, Ocean Engineering, Vol. 31(10); 2004,1245-1255

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    wind speed. Interestingly the PKF model is a two layered network (input and output) without hidden layer. Also it is a fact that numerical or physical models have restrictions by certain assumptions and conditions, whereas artificial neural network... is shown by Tsai et al (2002). They have carried out forecasting of significant wave heights and periods at a desired location directly from the observed wave records using a supervised artificial neural network with error back-propagation procedures...

  16. Regional Wave Climates along Eastern Boundary Currents (United States)

    Semedo, Alvaro; Soares, Pedro


    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or

  17. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten


    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  18. Reversed phase propagation for hyperbolic surface waves

    DEFF Research Database (Denmark)

    Repän, Taavi; Novitsky, Andrey; Willatzen, Morten


    Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....

  19. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  20. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters


    Fusco, Francesco; Ringwood, John


    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...