Sample records for ocean sciences nicholas

  1. Nicholas Gilroy | NREL (United States)

    Nicholas Gilroy desc Nicholas Gilroy Geospatial Data Scientist II | 303 -384-7354 Nicholas Gilroy is a member of the Geospatial Data Science team within the Systems Modeling (AAG) Featured Publications Veda, Santosh, Zhang, Yingchen, Tan, Jin, Chartan, Erol Kevin, Gilroy

  2. Nicholas Thornburg | NREL (United States)

    -Chemical Engineering | 303-275-4885 Orcid ID reaction systems Chemical reaction engineering and reactor design Chemical product design Gas (EXAFS) spectroscopies Education Ph.D., Chemical Engineering, Northwestern University, 2017 B.S

  3. Building a Global Ocean Science Education Network (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.


    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See

  4. Public affairs events at Ocean Sciences Meeting (United States)

    Uhlenbrock, Kristan


    AGU public affairs will be cohosting two special events at Ocean Sciences 2012 that offer scientists opportunities to expand their communication, policy, and media experience. Join the conversations that highlight two important topics to connect science to society.

  5. Ocean FEST: Families Exploring Science Together (United States)

    Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene


    This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…

  6. Ocean Science Video Challenge Aims to Improve Science Communication (United States)

    Showstack, Randy


    Given today's enormous management and protection challenges related to the world's oceans, a new competition calls on ocean scientists to effectively communicate their research in videos that last up to 3 minutes. The Ocean 180 Video Challenge, named for the number of seconds in 3 minutes, aims to improve ocean science communication while providing high school and middle school teachers and students with new and interesting educational materials about current science topics.

  7. Environmental science: Oceans lose oxygen (United States)

    Gilbert, Denis


    Oxygen is essential to most life in the ocean. An analysis shows that oxygen levels have declined by 2% in the global ocean over the past five decades, probably causing habitat loss for many fish and invertebrate species. See Letter p.335

  8. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 2 (2004) >. Log in or Register to get access to full text downloads.

  9. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 6, No 2 (2008) >. Log in or Register to get access to full text downloads.

  10. Ocean Sciences and Remote Sensing Research Facility (United States)

    Federal Laboratory Consortium — FUNCTION: A 52,000 ft 2 state-of-the-art buildig designed to house NRL's Oceanography Division, part of the Ocean and Atmospheric Science and Technology Directorate....

  11. Lindstrom Receives 2013 Ocean Sciences Award: Citation (United States)

    Gordon, Arnold L.; Lagerloef, Gary S. E.


    Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.

  12. Ocean FEST (Families Exploring Science Together) (United States)

    Bruno, B. C.; Wiener, C. S.


    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In

  13. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    The Western Indian Ocean Journal of Marine Science (WIOJMS) provides an avenue for ... Effects of blood meal as a substitute for fish meal in the culture of juvenile Silver ... area of eastern Africa: the case of Quirimbas National Park, Mozambique ... This work is licensed under a Creative Commons Attribution 3.0 License.

  14. Archives: Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... Archives: Western Indian Ocean Journal of Marine Science. Journal Home > Archives: Western Indian Ocean Journal of Marine Science. Log in or Register to get access to full text downloads.

  15. Western Indian Ocean Journal of Marine Science: Journal ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Journal Home > About the Journal > Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Log in or Register to get access to full text downloads.

  16. Automated sensor networks to advance ocean science (United States)

    Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.


    The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.

  17. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science (United States)

    Holloway, A. E.


    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  18. National Ocean Sciences Bowl in 2014: A National Competition for High School Ocean Science Education (United States)


    and Environmental Science (NJ). Through creative storytelling and visualization, "Ocean Acidification" addressed human actions that increase carbon... history . They also are beginning to understand the interplay between areas of science, something that is rarely taught. To he an effective scientist

  19. Dynamic Reusable Workflows for Ocean Science

    Directory of Open Access Journals (Sweden)

    Richard P. Signell


    Full Text Available Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog searches and data access now make it possible to create catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS which automates the skill assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC Catalog Service for the Web (CSW, then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased

  20. Dynamic reusable workflows for ocean science (United States)

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle


    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic

  1. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.


    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  2. The future of naval ocean science research (United States)

    Orcutt, John A.; Brink, Kenneth

    The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.

  3. Ocean Color and Earth Science Data Records (United States)

    Maritorena, S.


    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  4. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.


    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  5. Sor Juana and Nicholas of Cusa

    Directory of Open Access Journals (Sweden)

    Rocío Olivares Zorrilla


    Full Text Available Without evaluating the extraordinary and consistent impression that Nicholas of Cusa exerted on the works by Sor Juana Inés de la Cruz, it would be hardly possible to achieve a profound comprehension of one of the most prominent women writers of the Latin American Baroque period. The Cusan’s legacy provided Sor Juana with the symbol of the opposing pyramids of light and shadow, and with the metaphor of the circle and the center, already sifted by the Spanish mystics. Both symbols in her poem The Dream inscribe within a Renaissance change of episteme, in which a mathematical and optical version of the ideas was always produced through the elucidation of oneself, of the individual as part of a cyclic, spherical universe in which a central, all-seeing eye is described in various works by Nicholas of Cusa. The idea of divine contemplation with our bodily eyes closed, for the incorporeal is only accessible by getting rid of the corporeal; the mathematical and geometrical speculations about divinity and the conceptions of the world as a combination of signs; how the infinite and the finite encounter and the knowledge of the world is always a probability and a conjecture, all these are philosophical traces which enlighten The Dream, one of the most captivating intellectual poems in Spanish literature.

  6. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.


    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  7. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada


    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  8. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy (United States)

    Keener-Chavis, P.


    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  9. Building Ocean Learning Communities: A COSEE Science and Education Partnership (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.


    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  10. Communicating Ocean Sciences to Informal Audiences (COSIA): Interim Evaluation Report (United States)

    St. John, Mark; Phillips, Michelle; Smith, Anita; Castori, Pam


    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of seven long-term three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the…

  11. Communicating Ocean Sciences to Informal Audiences (COSIA): Final Evaluation Report (United States)

    Phillips, Michelle; St. John, Mark


    Communicating Ocean Sciences to Informal Audiences (COSIA) is a National Science Foundation (NSF)-funded project consisting of six three-way partnerships between the Lawrence Hall of Science (LHS) and an informal science education institution (ISEI) partnered with an institution of higher education (IHE). Together, educators from the ISEI (often…

  12. What can Citizen Science do for Ocean Science and Ocean Scientists? (United States)

    Best, M.; Hoeberechts, M.; Mangin, A.; Oggioni, A.; Orcutt, J. A.; Parrish, J.; Pearlman, J.; Piera, J.; Tagliolato, P.


    The ocean represents over 70% of our planet's surface area, over 90% of the living space. Humans are not marine creatures, we therefore have fundamentally not built up knowledge of the ocean in the same way we have on land. The more we learn about the ocean, the more we understand it is the regulatory engine of our planet…How do we catch up? Answers to this question will need to come from many quarters; A powerful and strategic option to complement existing observation programs and infrastructure is Citizen Science. There has been significant and relevant discussion of the importance of Citizen Science to citizens and stakeholders. The missing effective question is sometimes what is the potential of citizen science for scientists? The answers for both scientists and society are: spatial coverage, remote locations, temporal coverage, event response, early detection of harmful processes, sufficient data volume for statistical analysis and identification of outliers, integrating local knowledge, data access in exchange for analysis (e.g. with industry) and cost-effective monitoring systems. Citizens can be involved in: instrument manufacture and maintenance, instrument deployment/sample collection, data collection and transmission, data analysis, data validation/verification, and proposals of new topics of research. Such opportunities are balanced by concern on the part of scientists about the quality, the consistency and the reliability of citizen observations and analyses. Experience working with citizen science groups continues to suggest that with proper training and mentoring, these issues can be addressed, understanding both benefits and limitations. How to do it- implementation and maintenance of citizen science: How to recruit, engage, train, and maintain Citizen Scientists. Data systems for acquisition, assessment, access, analysis, and visualisation of distributed data sources. Tools/methods for acquiring observations: Simple instruments, Smartphone Apps

  13. Western Indian Ocean Journal of Marine Science: Submissions

    African Journals Online (AJOL)

    Already have a Username/Password for Western Indian Ocean Journal of Marine Science? ... Editorial Policy ... The manuscript is your own original work, and does not duplicate any other previously published work, including your own ...

  14. Kõik sai alguse juhusest / Nicholas Sinclair ; interv. Marge Monko

    Index Scriptorium Estoniae

    Sinclair, Nicholas


    Inglise portreefotograaf ja 2003 a. Hasselbladi meister Nicholas Sinclair oma fotograafi karjäärist, ilmunud fotoalbumitest, näitustest, peamistest meelisteemadest ja töö- ning õpetamismeetoditest

  15. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support. (United States)

    Pedemonte, S.; Weiss, E. L.


    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  16. Communicating Ocean Science at the Lower-Division Level (United States)

    Coopersmith, A.


    Pacific Ocean Literacy for Youth, Publics, Professionals, and Scientists (POLYPPS) is an NSF-funded collaboration between the University of Hawai`i and the Center for Ocean Science Education Excellence (COSEE) - California, which is based at the Lawrence Hall of Science, University of California - Berkeley. One of the objectives of this project is to instutionalize ocean science communications courses at colleges and universities in Hawai`i. Although the focus of most of these communications courses has been on training graduate students and scientists, lower-division students interested in the ocean sciences are finding this background helpful. At the University of Hawai`i Maui College there are several marine science courses and certificate programs that require students to interact with the public through internships, research assistantships, and course-related service-learning projects. Oceanography 270, Communicating Ocean Science, is now offered to meet the needs of these students who engage with the public in informal educational settings. Other students who enroll in this course have a general interest in the marine environment and are considering careers in K-12 formal education. This course gives this group of students an opportunity to explore formal education by assisting classroom teachers and preparing and presenting problem-based, hands-on, inquiry activities. Employers at marine-related businesses and in the tourist industry have welcomed this course with a focus on communication skills and indicate that they prefer to hire local people with strong backgrounds in marine and natural sciences. A basic premise of POLYPPS is that science education must draw not only from the latest advances in science and technology but also from the cultural contexts in which the learners are embedded and that this will achieve increased understanding and stewardship of ocean environments. Students in Oceanography 270 integrate traditional Hawaiian knowledge into their

  17. Advancing Ocean Science Through Coordination, Community Building, and Outreach (United States)

    Benway, H. M.


    The US Ocean Carbon and Biogeochemistry (OCB) Program ( is a dynamic network of scientists working across disciplines to understand the ocean's role in the global carbon cycle and how marine ecosystems and biogeochemical cycles are responding to environmental change. The OCB Project Office, which is based at the Woods Hole Oceanographic Institution (WHOI), serves as a central information hub for this network, bringing different scientific disciplines together and cultivating partnerships with complementary US and international programs to address high-priority research questions. The OCB Project Office plays multiple important support roles, such as hosting and co-sponsoring workshops, short courses, working groups, and synthesis activities on emerging research issues; engaging with relevant national and international science planning initiatives; and developing education and outreach activities and products with the goal of promoting ocean carbon science to broader audiences. Current scientific focus areas of OCB include ocean observations (shipboard, autonomous, satellite, etc.); changing ocean chemistry (acidification, expanding low-oxygen conditions, etc.); ocean carbon uptake and storage; estuarine and coastal carbon cycling; biological pump and associated biological and biogeochemical processes and carbon fluxes; and marine ecosystem response to environmental and evolutionary changes, including physiological and molecular-level responses of individual organisms, as well as shifts in community structure and function. OCB is a bottom-up organization that responds to the continually evolving priorities and needs of its network and engages marine scientists at all career stages. The scientific leadership of OCB includes a scientific steering committee and subcommittees on ocean time-series, ocean acidification, and ocean fertilization. This presentation will highlight recent OCB activities and products of interest to the ocean science community.

  18. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.


    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  19. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers (United States)

    Baldauf, J.; Denton, J.


    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  20. Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World (United States)

    De Oca, M.; Noll, S.


    A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.

  1. A New Approach to Data Publication in Ocean Sciences (United States)

    Lowry, Roy; Urban, Ed; Pissierssens, Peter


    Data are collected from ocean sciences activities that range from a single investigator working in a laboratory to large teams of scientists cooperating on big, multinational, global ocean research projects. What these activities have in common is that all result in data, some of which are used as the basis for publications in peer-reviewed journals. However, two major problems regarding data remain. First, many data valuable for understanding ocean physics, chemistry, geology, biology, and how the oceans operate in the Earth system are never archived or made accessible to other scientists. Data underlying traditional journal articles are often difficult to obtain. Second, when scientists do contribute data to databases, their data become freely available, with little acknowledgment and no contribution to their career advancement. To address these problems, stronger ties must be made between data repositories and academic journals, and a “digital backbone” needs to be created for data related to journal publications.

  2. Grass Roots Design for the Ocean Science of Tomorrow (United States)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.


    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences

  3. Advances in the science and technology of ocean management

    CERN Document Server

    Smith, Hance


    This book reviews key developments in the field of marine science and technology. It focuses on three major themes such as the importance of technical developments in ocean management, the application of these developments to specific sea uses ranging from fish farming to the disposal of industrial waste, and the long-term issues that such developments raise.

  4. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.


    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  5. The Centers for Ocean Science Education Excellence (COSEE) initiative (United States)

    Cook, S.; Rom, E.


    Seven regional Centers for Ocean Science Education Excellence have recently been established to promote the integration of ocean science research into high-quality education programs aimed at both formal and informal audiences throughout the United States. The regional Centers include two complementary partnerships in California, a New England regional effort, a Mid-Atlantic partnership, a Southeastern collaborative, a Florida initiative and a central Gulf of Mexico alliance. A Central Coordinating Office in Washington DC will help the group develop into a cohesive and focused national network. Initial funding has been provided by the National Science Foundation with complementary support from the Office of Naval Research and multiple units within the National Oceanographic and Atmospheric Administration (specifically the National Ocean Service, the Office of Ocean Exploration and the National SeaGrant Office). Under an umbrella of common goals and objectives, the first cohort of Centers in the COSEE network is remarkably diverse in terms of geography, organizational structure and programmatic focus. NSF’s presentation will describe these partnerships, the different approaches that are being taken by the individual Centers and the expectations that NSF has for the network as a whole.

  6. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.


    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  7. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  8. On the Ocean, Communicating Science Through Radio Broadcasts (United States)

    Daugherty, M.; Campbell, L.


    The outcomes of oceanic research are of critical importance to the general public. Communicating these results in a relatable and efficient manner however, is no simple task. To further the cause of scientific outreach done for the benefit of society, a weekly radio show was created at Texas A&M University, taking cutting edge research and translating it into applicable, interesting radio segments. The show, named "On the Ocean", was created by the Department of Oceanography to inform and entertain listeners of the general public on marine issues affecting their lives. On the Ocean is an effort to present high-level research without sacrificing the complexity of the science conducted. On the Ocean is a uniquely designed module with a systematic approach in teaching a new oceanographic concept each month. On the Ocean has a format of monthly topics with a two minute show each week. The first monthly installment is general, introducing the topic and its relevancy. The second and third shows are cause or effect, or possibly something very interesting the public would not already know. The fourth installment highlights how researchers study the topic, with the contributing professor's specific research methods emphasized. All shows are co-created with, and inspected for validity, by Texas A&M University professors, and edited for radio adaption by graduate students. In addition to airing on public broadcast radio to the College Station/Bryan TX area, the show also includes a globally accessible interactive website with podcasts, additional figures, and links to better elaborate on the material presented, as well as credit the contributing professors. The website also allows these professors the opportunity to present their research visually and link to their current work. Overall, On the Ocean is a new tool to deliver applicable science.

  9. The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms (United States)

    Williams, P.


    The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database ( This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.

  10. NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media (United States)

    Keener-Chavis, P.


    "Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website ( It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed

  11. Stand Up for Science: Lessons on Ocean Acidification from the Agua Hedionda Lagoon


    Waters, Shannon


    Climate science has been a hallmark discipline at Scripps Institution of Oceanography (SIO) and other oceanographic institutions for decades. However, despite the dedication from researchers to investigate the connections between climate science and ocean health, people outside the scientific community are largely unaware of climate-related ocean health issues like ocean warming and ocean acidification.  And yet one demographic group seems especially interested in ocean health issues: teenage...

  12. Barriers to teaching ocean science in Greek schools (United States)

    Papathanassiou, Martha; McHugh, Patricia; Domegan, Christine; Gotensparre, Susan; Fauville, Geraldine; Parr, Jon


    Most European citizens are not aware of the full extent of the medical, economic, social, political and environmental importance of the sea to Europe and beyond. Most citizens are not aware of how our day-to-day actions can have a cumulative effect on the health of the ocean - a necessary resource that must be protected for all life on the planet Earth to exist. In other words, European citizens lack a sense of "Ocean Literacy" - an understanding of the ocean's influence on us and our influence on the ocean. Sea Change, a 3.5 million EU-funded project started in March 2015, is designed to bring about a fundamental 'Sea Change' in the way European citizens view their relationship with the sea, by empowering them as 'Ocean Literate' citizens - to take direct and sustainable action towards healthy seas and ocean, healthy communities and ultimately, a healthy planet. The project involves 17 partners from nine countries across Europe and will bring about real actions using behavior change and social engagement methodologies. Building upon the latest research on citizen and stakeholder attitudes, perceptions and values, the Sea Change partnership will design and implement mobilisation activities focused on education, community, government agencies, policy makers and citizens. Eight consultations were held around Europe with regards to barriers to teaching ocean science at schools. All project partners used a Collective Intelligence (CI) methodology to involve target group(s) in active, direct participation for Sea Change. CI is a "barriers and value" structuring methodology, a process of critical learning and reflection followed by action, and then by more critical learning to enable mobilisation, design and development 'with' people rather than on their behalf. In Greece, the consultation was carried out by HCMR, the lead partner for Greece. Participants were recruited through personal contact and existing education networks that the HCMR has previously worked with. In


    Directory of Open Access Journals (Sweden)

    Anass BAYAGA


    Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.

  14. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems

    International Nuclear Information System (INIS)

    Martin Taylor, S.


    The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.

  15. Science Potential of a Deep Ocean Antineutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii 96744 (United States)


    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and {theta}{sub 13}. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  16. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.


    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  17. A Field Course in Ocean Sciences that Emphasizes Sustainabilty (United States)

    Macko, S. A.; O'Connell, M. T.


    Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. During regular session (18 week) or shorter term (4 week) summer classes such long trips are logistically difficult owing to large numbers of students involved or timing. This approach, to use a field basis for a course supplement addresses the requests by utilizing local resources and trips for a limited number of students (20) to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time, readings, along with paper and laboratories. In addition, short day-long trips to locations where the ocean was "captured" were also used to supplement the experience as well as speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and NOAA) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local stores, or larger city markets in Washington, Baltimore and Virginia Beach and International distribution centers, enhanced the understanding of productivity in the ocean, and viability of the fisheries sustainability. The course could then address not only the particulars of the marine science, but also aspects of sustainability with discussions on ethics, including keeping animals in captivity or overfishing of particular species and the special difficulties that arise from captive or culturing ocean populations. In addition, the

  18. Connecting Coastal Communities with Ocean Science: A Look at Ocean Sense and the Inclusion of Place-based Indigenous Knowledge (United States)

    McLean, M. A.; Brown, J.; Hoeberechts, M.


    Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. In 2014, ONC pioneered an innovative educational program, Ocean Sense: Local observations, global connections, which introduces students and teachers to the technologies installed on community observatories. The program introduces middle and high school students to research methods in biology, oceanography and ocean engineering through hands-on activities. Ocean Sense includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. The connection to place and local relevance of the program is further enhanced through an emphasis on Indigenous and place-based knowledge. ONC is working with coastal Indigenous communities in a collaborative process to include local knowledge, culture, and language in Ocean Sense materials. For this process to meaningful and culturally appropriate, ONC is relying on the guidance and oversight of Indigenous community educators and knowledge holders. Ocean Sense also includes opportunities for Indigenous youth and teachers in remote communities to connect in person, including an annual Ocean Science Symposium and professional development events for teachers. Building a program which embraces multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking Indigenous knowledge and place-based knowledge to ocean science.

  19. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq


    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  20. Social media connecting ocean sciences and the general public: the @OceanSeaIceNPI experiment (United States)

    Pavlov, A. K.; Granskog, M. A.; Gerland, S.; Meyer, A.; Hudson, S. R.; Rösel, A.; King, J.; Itkin, P.; Cohen, L.; Dodd, P. A.; de Steur, L.


    As researchers we are constantly being encouraged by funding agencies, policy-makers and journalists to conduct effective outreach and to communicate our latest research findings. As environmental scientists we also understand the necessity of communicating our research to the general public. Many of us wish to become better science communicators but have little time and limited funding available to do so. How can we expend our science communication past project-based efforts that have a limited lifetime? Most critically, how can a small research groups do it without additional resources such as funds and communication officers? Social media is one answer, and has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and researchers are exploring the full breadth of possibilities brought by social media for reaching out to the general public, journalists, policy-makers, stake-holders, and research community. However, smaller research groups and labs are still underrepresented in social media. When it comes to practice, some essential difficulties can be encountered: identifying key target groups, defining the framework for sharing responsibilities and interaction within the research group, and finally, choosing a currently up-to-date social medium as a technical solution for communicating your research. Here, a group of oceanography and sea ice researchers (@OceanSeaIceNPI) share the positive experience of developing and maintaining for more than one year a researcher-driven outreach effort currently implemented through Instagram, Twitter and Facebook. We will present potential pitfalls and challenges that small research groups could face, and how to better overcome them. This will hopefully inspire and help other research groups and labs to conduct their own effective ocean science communication.

  1. Spolia from the Church of St. Nicholas in Nikoljac

    Directory of Open Access Journals (Sweden)

    Pejić Svetlana


    Full Text Available Two, so far unknown, spolia with carved interlace ornaments, built into the wall of the Church of St. Nicholas in Nikoljac are analyzed. These spolia are a part of the collection of fragments discovered earlier in the Church of St. Peter in Bijelo Polje. A comparative analysis was performed on a multitude of pre-Romanic material, in order to determine the time when they were made and whether they originated from any specific circle of stonemasons, and also to identify the initial position of the fragments in the liturgical church furniture for which they had been carved. [Projekat Ministarstva nauke Republike Srbije, br. 177036

  2. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences (United States)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.


    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  3. Youth Science Ambassadors: Connecting Indigenous communities with Ocean Networks Canada tools to inspire future ocean scientists and marine resource managers (United States)

    Pelz, M.; Hoeberechts, M.; Hale, C.; McLean, M. A.


    This presentation describes Ocean Networks Canada's (ONC) Youth Science Ambassador Program. The Youth Science Ambassadors are a growing network of youth in Canadian coastal communities whose role is to connect ocean science, ONC data, and Indigenous knowledge. By directly employing Indigenous youth in communities in which ONC operates monitoring equipment, ONC aims to encourage wider participation and interest in ocean science and exploration. Further, the Youth Science Ambassadors act as role models and mentors to other local youth by highlighting connections between Indigenous and local knowledge and current marine science efforts. Ocean Networks Canada, an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories as well as community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. Youth Science Ambassadors are part of the Learning and Engagement team whose role includes engaging Indigenous communities and schools in ocean science through ONC's K-12 Ocean Sense education program. All of the data collected by ONC are freely available over the Internet for non-profit use, including disaster planning, community-based decision making, and education. The Youth Science Ambassadors support collaboration with Indigenous communities and schools by facilitating educational programming, encouraging participation in ocean data collection and analysis, and fostering interest in ocean science. In addition, the Youth Science Ambassadors support community collaboration in decision-making for instrument deployment locations and identify ways in which ONC can help to address any areas of concern raised by the community. This

  4. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan


    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  5. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop (United States)

    Fu, Lee-Lueng (Editor)


    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  6. Impetus and barriers to teaching ocean literacy: A perspective from landlocked middle school science teachers (United States)

    Gillan, Amy Larrison

    The demand for a more ocean literate citizenry is growing rapidly in response to an ocean increasingly in peril. Discovering how to include students far removed from the ocean in our teaching about the ocean is imperative to meeting that charge. The purpose of the present study was to investigate the extent to which middle school science teachers in landlocked states addressed important ocean literacy concepts and what they perceived to be barriers and motivators to their doing so. This descriptive study was based on a nation-wide survey of middle school science teachers and content analyses of their most commonly used science textbooks and their state science standards. Data was analyzed quantitatively. Results indicated that landlocked and coastal teachers are similar in terms of their infrequency of teaching about the ocean, yet a number of their perceptions of barriers and motivators to do so vary. The barrier most often mentioned was middle school state science standards, which characteristically ignore the ocean sciences. The results are discussed in terms of their impact on ocean literacy professional development providers, science textbook publishers, and state science standards revision committees.

  7. Focus: knowing the ocean: a role for the history of science. (United States)

    Rozwadowski, Helen M


    While most historians have treated the sea as a surface or a void, the history of science is well positioned to draw the ocean itself into history. The contributors to this Focus section build on the modest existing tradition of history of oceanography and extend that tradition to demonstrate both the insights to be gained by studying oceans historically and the critical role that the history of science should play in future environmental history of the ocean.

  8. Dialog, olikhet och globalisering. En intervju med Nicholas Burbules

    Directory of Open Access Journals (Sweden)

    Klas Roth


    Full Text Available DIALOGUE, DIFFERENCE AND GLOBALIZATION. In this interview Associate Profes-sor Klas Roth talks with Nicholas Burbules, Grayce Wicall Gauthier Pro-fessor in the Department of Educational Policy Studies, College of Educa-tion, Illinois University, USA, about the value and importance of philoso-phy of education for education in general and teachers in particular, aswell as the barriers to philosophical reflection in schools. They also talkabout issues of difference, globalization, and dialogue in times of transi-tion, and especially about Burbules’s own writing and thinking on theseissues. In particular Professor Burbules puts forward his ideas on thetragic sense of education, which he says is probably the most importantperspective for him in his work on education and related issues.

  9. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.


    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  10. Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science

    NARCIS (Netherlands)

    D.T. Crommelin (Daan); B. Khouider; B. Engquist


    htmlabstractIntroduction The behavior of the atmosphere, oceans, and climate is intrinsically uncertain. The basic physical principles that govern atmospheric and oceanic flows are well known, for example, the Navier-Stokes equations for fluid flow, thermodynamic properties of moist air, and the

  11. Nationalism and legitimation for authoritarianism: A comparison of Nicholas I and Vladimir Putin

    Directory of Open Access Journals (Sweden)

    Sean Cannady


    Full Text Available This article draws parallels between Tsar Nicholas I and current Russian President Vladimir Putin with respect to their use of nationalism to justify statist policies and political authoritarianism. Building upon insights by Alexander Gerschenkron about the economic development of “backwards” states, it argues that both Nicholas and Putin have rhetorically used Western concepts such as nationalism and democracy to legitimize their rule but have modified them to give them more statist content. Under Nicholas, this was exemplified in the tripartite (Orthodoxy, Autocracy, and Nationality Official Nationality policy. Putin has emphasized patriotism, power, and statism to justify centralization of power and authoritarian policies. Putin's policies and rhetoric are strong analogs to those of Nicholas. Ultimately, the goal of this paper is to explain state-inspired Russian nationalism and how it has been aligned with authoritarian politics, as well as specifying similarities between present and past in Russia.

  12. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary


    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  13. What Will Science Gain From Mapping the World Ocean Floor? (United States)

    Jakobsson, M.


    It is difficult to estimate how much of the World Ocean floor topography (bathymetry) that has been mapped. Estimates range from a few to more than ten percent of the World Ocean area. The most recent version of the bathymetric grid compiled by the General Bathymetric Chart of the Oceans (GEBCO) has bathymetric control points in 18% of the 30 x 30 arc second large grid cells. The depth values for the rest of the cells are obtained through interpolation guided by satellite altimetry in deep water. With this statistic at hand, it seems tenable to suggest that there are many scientific discoveries to be made from a complete high-resolution mapping of the World Ocean floor. In this presentation, some of our recent scientific discoveries based on modern multibeam bathymetric mapping will be highlighted and discussed. For example, how multibeam mapping provided evidence for a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions, a hypothesis proposed nearly half a century ago, and how groundwater escape features are visible in high-resolution bathymetry in the Baltic Sea, with potential implications for the freshwater budget and distribution of nutrients and pollutants. Presented examples will be placed in the context of mapping resolution, systematic surveys versus mapping along transits, and scientific hypothesis driven mapping versus ocean exploration. The newly announced Nippon Foundation - GEBCO Seabed 2030 project has the vision to map 100% of the World Ocean floor mapped by 2030. Are there specific scientific areas where we can expect new discoveries from all mapping data collected through the Seabed 2030 project? Are there outstanding hypothesis that can be tested from a fully mapped World Ocean floor?

  14. Slow science: the value of long ocean biogeochemistry records. (United States)

    Henson, Stephanie A


    Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical-biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.

  15. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre


    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  16. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science (United States)

    Kinsinger, Anne E.


    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  17. 11th National Conference on Science, Policy, and the Environment: Our Changing Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Peter Saundry


    On January 19-21, 2011, The National Council for Science and the Environment (NCSE) successfully convened its 11th National Conference on Science, Policy and the Environment: Our Changing Oceans in Washington, DC at the Ronald Reagan Building and International Trade Center. Over 1,247 participants attended the conference, representing federal, state and local governments, university and colleges across the US, civil society organizations, the business community, and international entities. In addition, the conference was webcast to an audience across several states. The conference provided a forum to examine the profound changes our ocean will undergo over the next 25-50 years and share various perspectives on the new research, tools, and policy initiatives to protect and sustain our ocean. Conference highlights and recommendations are available to the public on NCSE's conference website,

  18. Recommendations on Future Science and Engineering Studies for Ocean Color (United States)

    Mannino, Antonio


    The Ocean Health Index measured Ecological Integrity as the relative condition of assessed species in a given location. This was calculated as the weighted sum of the International Union for Conservation of Natures (IUCN) assessments of species. Weights used were based on the level of extinction risk following Butchart et al.2007: EX (extinct) 0.0, CR (critically endangered) 0.2, EN (endangered) 0.5, VU (vulnerable) 0.7, NT (not threatened) 0.9, and LC (least concern) 0.99. For primarily coastal goals, the spatial average of these per pixel scores was based on a 3nmi buffer; for goals derived from all ocean waters, the spatial average was computed for the entire EEZ.

  19. The Climate Science Special Report: Rising Seas and Changing Oceans (United States)

    Kopp, R. E.


    GMSL has risen by about 16-21 cm since 1900. Ocean heat content has increased at all depths since the 1960s, and global mean sea-surface temperature increased 0.7°C/century between 1900 to 2016. Human activity contributed substantially to generating a rate of GMSL rise since 1900 faster than during any preceding century in at least 2800 years. A new set of six sea-level rise scenarios, spanning a range from 30 cm to 250 cm of 21st century GMSL rise, were developed for the CSSR. The lower scenario is based on linearly extrapolating the past two decades' rate of rise. The upper scenario is informed by literature estimates of maximum physically plausible values, observations indicating the onset of marine ice sheet instability in parts of West Antarctica, and modeling of ice-cliff and ice-shelf instability mechanisms. The new scenarios include localized projections along US coastlines. There is significant variability around the US, with rates of rise likely greater than GMSL rise in the US Northeast and the western Gulf of Mexico. Under scenarios involving extreme Antarctic contributions, regional rise would be greater than GMSL rise along almost all US coastlines. Historical sea-level rise has already driven a 5- to 10-fold increase in minor tidal flooding in several US coastal cities since the 1960s. Under the CSSR's Intermediate sea-level rise scenario (1.0 m of GMSL rise in 2100) , a majority of NOAA tide gauge locations will by 2040 experience the historical 5-year coastal flood about 5 times per year. Ocean changes are not limited to rising sea levels. Ocean pH is decreasing at a rate that may be unparalleled in the last 66 million years. Along coastlines, ocean acidification can be enhanced by changes in the upwelling (particularly along the US Pacific Coast); by episodic, climate change-enhanced increases in freshwater input (particularly along the US Atlantic Coast); and by the enhancement of biological respiration by nutrient runoff. Climate models project

  20. NOAA's Big Data Partnership and Applications to Ocean Sciences (United States)

    Kearns, E. J.


    New opportunities for the distribution of NOAA's oceanographic and other environmental data are being explored through NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp. and the Open Cloud Consortium. This partnership was established in April 2015 through Cooperative Research and Development Agreements, and is seeking new, financially self-sustaining collaborations between the Partners and the federal government centered upon NOAA's data and their potential value in the information marketplace. We will discuss emerging opportunities for collaboration among businesses and NOAA, progress in making NOAA's ocean data more widely accessible through the Partnerships, and applications based upon this access to NOAA's data.

  1. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5 (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.


    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  2. GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science (United States)

    Caron, L.; Ivins, E. R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G.


    We provide a new analysis of glacial isostatic adjustment (GIA) with the goal of assembling the model uncertainty statistics required for rigorously extracting trends in surface mass from the Gravity Recovery and Climate Experiment (GRACE) mission. Such statistics are essential for deciphering sea level, ocean mass, and hydrological changes because the latter signals can be relatively small (≤2 mm/yr water height equivalent) over very large regions, such as major ocean basins and watersheds. With abundant new >7 year continuous measurements of vertical land motion (VLM) reported by Global Positioning System stations on bedrock and new relative sea level records, our new statistical evaluation of GIA uncertainties incorporates Bayesian methodologies. A unique aspect of the method is that both the ice history and 1-D Earth structure vary through a total of 128,000 forward models. We find that best fit models poorly capture the statistical inferences needed to correctly invert for lower mantle viscosity and that GIA uncertainty exceeds the uncertainty ascribed to trends from 14 years of GRACE data in polar regions.

  3. To the History of Samara Desert-Nicholas Monastery Archive and Book Collections

    Directory of Open Access Journals (Sweden)

    Luchka, L. M.


    Full Text Available The works by archimandrites Havriil (V. F. Rozanov and Feodosiy (O. G. Makarevsky, historians A. O. Skalkovsky, D. I. Yavornitsky and V. O. Bidnov were the first documents on the history of the monastery (Novomoskovsk, Dnipropetrovsk Region. The monastery suffered from raids, fires, epidemics and robberies. The monastic archives were largely lost in the military operations. A lot of original documents didnʼt survive. The epidemic of 1750 did a great damage. The paper archive, infected things and monastery items were burned. The archive consisted of clerical documents, volumes of ancient laws, manuscripts and correspondence. The archive contained some other documents of great importance. They are so-called Universals, 11 statements with seals of Zaporizhian Sich Kosh (Leader and priorsʼ complaints. The monastery archive contained manuscripts by the last Kosh Otaman (leader − P. Kalnyshevsky. The archive included documents of state and local authorities and supreme church governing boards – reports, orders, decrees, warrants referring to the monastery property, inventories of monastery household items. A certain percentage of documents was correspondence among priors referring to internal discipline and economic life of the monastery. The names of famous visitors of the monastery are known: archimandrites Havriil and Feodosiy, A. O. Skalkovsky, A. P. Chirkov, P. M. Sochinskiy, V. D. Mashukov, D. I. Yavornitsky and V. O. Bidnov. They worked with documents and left published articles, essays and reviews. Except manuscripts the monastery had printed editions. The monastery library kept 150 liturgical books of Kyiv and Moscow publishing of the 17th − 18th centuries. Six printed books from Samara Desert-Nicholas Monastery are kept in Dnipropetrovsk National Historical Museum. The library collection of the 19th century was quite big. The research of the archive and the library of the monastery give an opportunity to highlight some of the unknown

  4. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs. (United States)

    Cowles, S.; Collier, R.; Torres, M. K.


    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  5. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond


    Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Peck, L.S.; Massom, R.; Rintoul, S.R.; Storey, J.; Vaughan, D.G.; Wilson, T.J.; Allison, I.; Ayton, J.; Badhe, R.; Baeseman, J.; Barrett, P.J.


    Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consu...

  6. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education (United States)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.


    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  7. Open science resources for the discovery and analysis of Tara Oceans data. (United States)

    Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah


    The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.

  8. Trends and frontiers for the science and management of the oceans. (United States)

    Mumby, Peter J


    People have an enduring fascination with the biology of the oceans. When the BBC's 'Blue Planet' series first aired on British television almost a quarter of the nation tuned in. As the diversity of science in this special issue of Current Biology attests, the ocean presents a challenging environment for study while also exhibiting some of the most profound and disruptive symptoms of global change. Marine science has made major advances in the past few decades, which were primarily made possible through important technological innovations. This progress notwithstanding, there are persistent challenges in achieving an understanding of marine processes at appropriate scales and delivering meaningful insights to guide ocean policy and management. Naturally, the examples chosen below betray my ecological leanings, but I hope that many of the issues raised resonate with readers in many different disciplines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Western Indian Ocean Journal of Marine Science - Vol 6, No 2 (2008)

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. ... Assessment of Heavy Metal Pollution in Sediment and Polychaete Worms from the Mzinga Creek and Ras Dege Mangrove Ecosystems, Dar es Salaam, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems (United States)

    Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia


    We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…

  11. Ocean to Outback: Leonie Rennie's Contribution to Science Education in Australia (United States)

    Venville, Grady


    In this article I initially borrow a metaphor from an art exhibition, "Ocean to Outback," as a way to express my perspective on the contribution that Leonie Rennie has made to science education in Australia. I then consider Leonie's contributions as overlapping themes. In particular, Leonie's well-known research on gender and issues of…

  12. The Byzantine Office  for the Translation of Saint Nicholas to Bari (AD 1087)

    DEFF Research Database (Denmark)

    Troelsgård, Christian


    The contribution includes a historical introduction, transcriptions of selections of the music and tranlations of the texts for the Byzantine office composed on the occasion of the translation of the relics of St Nicholas to Bari in AD 1087. Texts and music is interpreted in relation...

  13. Sõrve 2008 / Nicholas Wurm, Steven Buchert, Mai Buchert, Sandra Buchert...[jt.

    Index Scriptorium Estoniae


    lapsed ja lapsevanemad Austraaliast meenutavad oma viibimist Sõrve lastelaagris: This is a story of a family from Sõrve; Nicholas Wurm - Age 9 (Adelaide); Alan and Debbie Mikkor (Melbourne); Jesse Mikkor's point of view: Age 8; Lauren Mikkor's point of view: Age 13

  14. Promoting Lifelong Ocean Education: Shaping Tomorrow's Earth Stewards and the Science and Technology Workforce (United States)

    Meeson, Blanche


    The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and

  15. Chasing Science at Sea: Racing Hurricanes, Stalking Sharks, and Living Undersea With Ocean Experts (United States)

    Lee, Cindy


    Ellen Prager's new book, Chasing Science at Sea, is a personal account of why fieldwork is so important in many areas of ocean science, and how exciting that fieldwork can be. Prager has interwoven her own story of studying carbonates at the interface between biology and geology with stories from friends and colleagues. Storm stories and up-close-and-personal encounters with ocean creatures such as reef squid, marine iguanas, and whales abound. Throughout the book, she emphasizes the idea that the combination of observations and serendipity plays a critical role in science, and she gives examples of where this combination has led to especially important discoveries (e.g., that of hydrothermal vent organisms).

  16. Emergence of a global science-business initiative for ocean stewardship. (United States)

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Rockström, Johan


    The ocean represents a fundamental source of micronutrients and protein for a growing world population. Seafood is a highly traded and sought after commodity on international markets, and is critically dependent on healthy marine ecosystems. A global trend of wild stocks being overfished and in decline, as well as multiple sustainability challenges associated with a rapid growth of aquaculture, represent key concerns in relation to the United Nations Sustainable Development Goals. Existing efforts aimed to improve the sustainability of seafood production have generated important progress, primarily at the local and national levels, but have yet to effectively address the global challenges associated with the ocean. This study highlights the importance of transnational corporations in enabling transformative change, and thereby contributes to advancing the limited understanding of large-scale private actors within the sustainability science literature. We describe how we engaged with large seafood producers to coproduce a global science-business initiative for ocean stewardship. We suggest that this initiative is improving the prospects for transformative change by providing novel links between science and business, between wild-capture fisheries and aquaculture, and across geographical space. We argue that scientists can play an important role in facilitating change by connecting knowledge to action among global actors, while recognizing risks associated with such engagement. The methods developed through this case study contribute to identifying key competences in sustainability science and hold promises for other sectors as well.

  17. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia


    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, Activities are aligned with the Ocean Literacy Principles ( and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" ( ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow"; posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  18. Strategies for reducing ocean plastic debris should be diverse and guided by science (United States)

    Rochman, Chelsea M.


    Studies suggest that trillions of microplastic particles are floating on the surface of the global oceans and that the total amount of plastic waste entering the ocean will increase by an order of magnitude by 2025. As such, this ever-increasing problem demands immediate mitigation and reduction. Diverse solutions have been proposed, ranging from source reduction to ocean-based cleanup. These solutions are most effective when guided by scientific evidence. A study published in Environmental Research Letters (Sherman and van Sebille 2016 Environ. Res. Lett. 11 014006) took a closer look at the potential effectiveness of ocean-based cleanup. They conclude that it will be most cost-effective and ecologically beneficial if clean-up efforts focus on the flux of microplastics from the coasts rather than in the center of the oceans where plastic accumulates in so called ‘garbage patches’. If followed, this example may become one of a series of examples where science has informed a solution to the complex problem of plastic pollution.

  19. A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond (United States)

    Kennicutt, M. C., II


    Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.

  20. Expanding the Reach of the Coastal Ocean Science Classroom to Teachers through Teleducation (United States)

    Macko, S.; Szuba, T.


    In a first of its kind connectivity, using high speed internet connections, a summer class in Oceanography was live, interactively broadcast (teleducation) to Arcadia High School on the Eastern Shore of Virginia, allowing teachers in the Accomack County School District to receive university credit without leaving their home classrooms 250 miles from UVA. This project was an outreach and education program with a partner in the K-12 schools on the Eastern Shore of Virginia. It endeavored to build a community knowledgeable of the importance the ocean plays daily in our lives, and our own impact on the ocean. By establishing teleducation linkages with the Eastern Shore High Schools we were rigorously testing the live-Internet-based classroom with earth science teachers enabling them to remotely participate in University of Virginia classes in Oceanography. The classes were designed on a faculty development basis or to allow the teachers to acquire NSTA certification in Earth Science Education. While not without small problems of interruptions in connectivity or the occasional transmission of hardcopies of materials, the approach was seen to be extremely successful. The ability to reach school districts and teachers that are in more remote locations and with fewer resources is clearly supported by this venture. Currently we are planning to link multiple classrooms in the next iteration of this work, intending to offer the expanded classroom in more distant college-based classrooms where Ocean Sciences is a desired portion of the curriculum, but is presently only occasionally offered owing to limited resources.

  1. @OceanSeaIceNPI: Positive Practice of Science Outreach via Social Media (United States)

    Meyer, A.; Pavlov, A.; Rösel, A.; Granskog, M. A.; Gerland, S.; Hudson, S. R.; King, J.; Itkin, P.; Negrel, J.; Cohen, L.; Dodd, P. A.; de Steur, L.


    As researchers, we are keen to share our passion for science with the general public. We are encouraged to do so by colleagues, journalists, policy-makers and funding agencies. How can we best achieve this in a small research group without having specific resources and skills such as funding, dedicated staff, and training? How do we sustain communication on a regular basis as opposed to the limited lifetime of a specific project? The emerging platforms of social media have become powerful and inexpensive tools to communicate science for various audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. A small group of oceanographers, sea ice, and atmospheric scientists at the Norwegian Polar Institute have been running their social media science outreach for two years @OceanSeaIceNPI. Here we share our successful experience of developing and maintaining a researcher-driven outreach through Instagram, Twitter and Facebook. We present our framework for sharing responsibilities within the group to maximize effectiveness. Each media channel has a target audience for which the posts are tailored. Collaboration with other online organizations and institutes is key for the growth of the channels. The @OceanSeaIceNPI posts reach more than 4000 followers on a weekly basis. If you have questions about our @OceanSeaIceNPI initiative, you can tweet them with a #ask_oceanseaicenpi hashtag anytime.

  2. The Information Concept of Nicholas Belkin revisited – some semeiotic Comments

    DEFF Research Database (Denmark)

    Thellefsen, Torkild Leo; Sørensen, Bent; Thellefsen, Martin


    Purpose – The purpose of the paper is to examine and compare Nicholas Belkin’s information concept and his concept of communication with the authors’ semeiotic inspired communication model – the Dynacom. Design/methodology/approach – The authors compare the two communication models by comparing...... the requirements given by Belkin and the conditions of the Dynacom. Findings – The authors conclude that Belkin’s idea of information and his idea of communication lack the social aspect. Based on his theory, he is unable to point out how information becomes knowledge. These are two major issues the authors...... believe they can elaborate on by introducing the Dynacom and their semeiotic inspired concept of information. Originality/value – No one has previously specifically analyzed Nicholas Belkin’s concept of information and compared it to a semeiotic ditto. Keywords Communication, Information, Cognitive...


    Directory of Open Access Journals (Sweden)

    Yuli Andria Fajarini


    Full Text Available The study described the devotion of Noah Calhoun, the main character in Nicholas Sparks’ The Notebook. It focused on its structural elements and the devotion of Noah to deal with inferiority feeling and compensation, striving for superiority, fictional finalism, style of life, social interest, and creative self that were explored through an individual psychological approach. This research was qualitative research with the primary data source of the novel entitled The Notebook written by Nicholas Sparks in 1996. While the secondary data were other related sources. The data were collected through library research. The results showed that based on individual psychology analysis the major character, Noah Calhoun is psychologically affected. Noah fights hard to get his true love and shows her his devotion. He dedicates all of his life for Allie.     Keywords: Devotion, The Notebook, Individual Psychological Approach.

  4. IAEA Meeting Focuses on Nuclear and Isotopic Science to Protect Oceans

    International Nuclear Information System (INIS)


    Full text: The marine ecosystems that keep the oceans healthy are subject to increasing stress. Levels of acidity are rising in a process that is taking place at a more rapid pace than ever observed before. This poses risks to all life in the ocean - and all who depend on the oceans. Starting today, some of the world's top marine scientists are meeting in Vienna to discuss this multi-faceted problem and ways to tackle it. Science conducted and coordinated by the IAEA that uses isotopic techniques plays a key role in learning about ocean acidification and its effects. ''In dealing with threats to the health of the seas, governments need accurate data. For that, they need skilled researchers who can devise accurate models to help predict future conditions. That way, governments can start implementing the appropriate strategies to protect the seas and oceans,'' IAEA Director General Yukiya Amano told participants in the IAEA's Scientific Forum, titled The Blue Planet - Nuclear Applications for a Sustainable Marine Environment. ''The IAEA helps to make this possible. We promote a comprehensive approach to the study, monitoring and protection of marine, coastal and terrestrial ecosystems. We support effective global cooperation to address the threats to our oceans.'' The oceans not only produce as much as half of the world's oxygen; they also absorb more than a quarter of man-made CO 2 . This reduces the greenhouse effect, but it also increases the acidity of seawater, resulting in a hostile environment for calciferous plankton, crustaceans, molluscs and coral reefs. With all parts of the ecosystem connected, all life in the oceans suffers from the increased level of acidity. The two-day Forum, held on the sidelines of the IAEA's annual General Conference, is divided into three sessions. The first session focuses on the pressures faced by the coastal and marine systems and the need for partnerships and science to develop targeted responses. The second session addresses

  5. Bokanmeldelse: "Fooled by randomness : the hidden role of chance in the markets and in life" / Nassim Nicholas Taleb


    Sommervoll, Dag Einar


    Artikkelen er gjengitt med tillatelse fra Samfunnsøkonomenes Forening. Bokanmeldelse av: Taleb, Nassim Nicholas (2005) "Fooled by randomness : the hidden role of chance in the markets and in life", New York: Random House.

  6. Between Theology and Mathematics. Nicholas of Cusa’s Philosophy of Mathematics

    Directory of Open Access Journals (Sweden)

    Murawski Roman


    Full Text Available The paper is devoted to the philosophical and theological as well as mathematical ideas of Nicholas of Cusa (1401–1464. He was a mathematician, but first of all a theologian. Connections between theology and philosophy on the one side and mathematics on the other were, for him, bilateral. In this paper we shall concentrate only on one side and try to show how some theological ideas were used by him to answer fundamental questions in the philosophy of mathematics.

  7. The Black Swan and the owl of Minerva: Nassim Nicholas Taleb and the historians


    Bennett, Bruce S.


    In The Black Swan, Nassim Nicholas Taleb considers the importance in human affairs of "Black Swan" events of low probability but high impact. In the process he argues, in a confrontational manner, that historians' causal narratives are mainly invalid on a number of grounds but especially because the unpredictability of Black Swan (or other) events implies that subsequent narratives connecting events are merely "good-sounding stories". This article analyses Taleb's arguments against historical...

  8. 75 FR 48731 - Notice of Availability for Public Comment on the Draft Joint Subcommittee on Ocean Science and... (United States)


    ..., the academic community and the private sector in providing IOOS environmental information, products...-Private Use Policy is available for review at Web site URL: . For the public unable to... Subcommittee on Ocean Science and Technology--Interagency Ocean Observation Committee Public-Private Use Policy...

  9. Attorneys for the Ocean - Graduate Training in the Transatlantic Helmholtz Research School for Ocean System Science and Technology (HOSST/TOSST) (United States)

    van den Bogaard, Christel; Dullo, Christian; Devey, Colin; Kienast, Markus; Wallace, Douglas


    The worldwide growth in population and standards of living is leading to ever increasing human pressure on the oceans: as a source of resources, a transportation/trade pathway, and a sink for pollutants. However, use of the world's ocean is not presently guided by any over-arching management plan at either national or international level. Marine science and technology provide the necessary foundation, both in terms of system understanding and observational and modeling tools, to address these issues and to ensure that management of ocean activities can be placed on the best-possible scientific footing. The transatlantic Helmholtz Research School Ocean Science and Technology pools the complementary expertise of the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Christian-Albrechts-Universität zu Kiel, Dalhousie University and the Institute for Ocean Research Enterprise (IORE), to train the next generation of researchers in the key scientific areas critical for responsible resource utilization and management of the ocean with special emphasis on our "local ocean" - the North Atlantic. The Research School is organized around three themes which encompass key sensitivities of the North Atlantic to external forcing and resource exploitation: 4D Ocean Dynamics, Ecosystem Hotspots, and Seafloor Structures. Interactions within and between these themes regulate how the ocean system responds to both anthropogenic and natural change. The HOSST/TOSST fellows gain an in-depth understanding of how these ocean systems interact, which in turn provides a solid understanding for the formulation of scientifically-sound management practices. Given the broad scope of the school, student education is two-pronged: it provides excellent institutional support where needed, including scientific input, personal support and financial incentives, while simultaneously generating an open "intellectual space" in which ingenious, often unpredictable, ideas can take root, overcoming

  10. Modeling Ships and Space Craft The Science and Art of Mastering the Oceans and Sky

    CERN Document Server

    Hagler, Gina


    Modeling Ships and Space Craft: The Science and Art of Mastering the Oceans and Sky begins with the theories of Aristotle and Archimedes, moving on to examine the work of Froude and Taylor, the early aviators and the Wright Brothers, Goddard and the other rocket men, and the computational fluid dynamic models of our time. It examines the ways each used fluid dynamic principles in the design of their vessels. In the process, this book covers the history of hydrodynamic (aero and fluid) theory and its progression – with some very accessible science examples – including seminal theories. Hydrodynamic principles in action are also explored with examples from nature and the works of man. This is a book for anyone interested in the history of technology – specifically the methods and science behind the use of scale models and hydrodynamic principles in the marine and aeronautical designs of today.

  11. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction (United States)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.


    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  12. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.


    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  13. Not Just About the Science: Cold War Politics and the International Indian Ocean Expedition (United States)

    Harper, K.


    The International Indian Ocean Expedition broke ground for a series of multi-national oceanographic expeditions starting in the late 1950s. In and of itself, it would have been historically significant—like the International Geophysical Year (1957-58)—for pulling together the international scientific community during the Cold War. However, US support for this and follow-on Indian Ocean expeditions were not just about the science; they were also about diplomacy, specifically efforts to bring non-aligned India into the US political orbit and out of the clutches of its Cold War enemy, the Soviet Union. This paper examines the behind-the-scenes efforts at the highest reaches of the US government to extract international political gain out of a large-scale scientific effort.

  14. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples (United States)

    Carter, M.; Lehnert, K.


    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013,, as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  15. Using Citizen Science to Close Gaps in Cabled Ocean Observatory Research (United States)

    Morley, M. G.; Moran, K.; Riddell, D. J.; Hoeberechts, M.; Flagg, R.; Walsh, J.; Dobell, R.; Longo, J.


    Ocean Networks Canada operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, and a community observatory in Cambridge Bay, Nunavut. Continuous power and connectivity permit large volumes of data to be collected and made available to scientists and citizens alike over the Internet through a web-based interface. The Oceans 2.0 data management system contains over one quarter petabyte of data, including more than 20,000 hours of video from fixed seafloor cameras and a further 8,000 hours of video collected by remotely operated vehicles. Cabled observatory instrument deployments enable the collection of high-frequency, long-duration time series of data from a specific location. This enables the study of important questions such as whether effects of climate change—for instance, variations in temperature or sea-level—are seen over the long term. However, cabled observatory monitoring also presents challenges to scientific researchers: the overwhelming volume of data and the fixed spatial location can be barriers to addressing some big questions. Here we describe how Ocean Networks Canada is using Citizen Science to address these limitations and supplement cabled observatory research. Two applications are presented: Digital Fishers is a crowd-sourcing application in which participants watch short deep-sea video clips and make annotations based on scientific research questions. To date, 3,000 participants have contributed 140,000 scientific observations on topics including sablefish abundance, hydrothermal vent geology and deep-sea feeding behaviour. Community Fishers is a program in which ordinary citizens aboard vessels of opportunity collect ocean data including water temperature, salinity, dissolved oxygen and chlorophyll. The program's focus is to directly address the typical quality concerns around data that are collected using a citizen science approach. This is done by providing high quality scientific

  16. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  17. Archive of Geosample Data and Information from the University of Hawaii at Manoa School of Ocean and Earth Science and Technology (SOEST) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST) is a partner in the Index to Marine and Lacustrine Geological Samples...

  18. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.


    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  19. Scales and scaling in turbulent ocean sciences; physics-biology coupling (United States)

    Schmitt, Francois


    Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.

  20. The Visiting of the Tsarevich Nicholas Alexandrovich the Tobolsk cityin 1891

    Directory of Open Access Journals (Sweden)

    Alexander А. Valitov


    Full Text Available Study trips royal personages remains relevant scientific subject for historical research. The article is devoted to the visit of His Imperial Majesty the Emperor Tsarevich Nicholas Alexandrovich in Tobolsk in July 1891 Visit to the provincial center was held in a large trial trip to the east of the country. Ride the future ruler of the Russian throne in remote provinces of the empire, he performed the final step in the formation of an heir. On a variety of literary and archival sources disclosed the stages of training and visits "honored guest" of the city. In the analyzed period there is a certain ceremonial organization and meetings of royalty. In general, we can consider this visit as part of the ritual of imperial culture, whose main purpose is the process legimitizatsii future ruler. Along with legimitizatsiey played out certain "scenario of power" is intended to reflect the unity of the government and the people. As part of the visit to Tobolsk, it can be said has been successfully implemented, the Grand Duke Nicholas Alexandrovich, entered into active cooperation with the local population in the course of various meetings and ceremonial procedures. Parallel to this, the future emperor learned to make management decisions, so a visit to Tsarevich Nicholas Alexandrovich Tobolsk provincial museum in 1891 and its acceptance under his protection was evidence of special attention by the Government to the development of social institutions in the late imperial period. Thus, the visit of Crown Prince Nikolai Alexandrovich Romanov, the future Emperor gave the opportunity to officially present themselves for the cast, helping to create in the public mind of certain social myths of the proximity of the common man and the authorities in the form of direct interaction between the Russian tsar and the people.

  1. Real-time Science and Educational Collaboration Online from the Indian Ocean (United States)

    Wilson, R. H.; Sager, W. W.


    During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."

  2. Appropriating A Female Voice: Nicholas Breton And The Countess Of Pembroke

    Directory of Open Access Journals (Sweden)



    Full Text Available The sixteenth century author Nicholas Breton appropriates a female voice in many of his writings, among which Marie Magdalens Loue and The Pilgrimage to Paradise joyned with the Countesse of Penbrookes Loue feature prominently. The Countess of Pembroke, celebrated by Aemilia Lanyer in her Salve Deus Rex Judaeorum as a paragon of female religious devotion, is often associated in Breton's texts with Mary Magdalene. This paper will analyse some of the anxieties engendered by this appropriation of voice and of the Magdalene figure, anxieties that prove to be disruptive of Elizabethan gender hierarchies.

  3. Vinylogous Nicholas reactions in the synthesis of bi- and tricyclic cycloheptynedicobalt complexes. (United States)

    Kolodziej, Izabela; Green, James R


    The Lewis acid mediated intramolecular Nicholas reactions of allylic acetate enyne-Co2(CO)6 complexes afford cycloheptenyne-Co2(CO)6 complexes in three manifestations. Electron rich aryl substituted alkyne complexes give tricyclic 6,7,x-benzocycloheptenyne complexes, with x = 5, 6, or 7. Allylsilane substituted complexes afford exo methylene bicyclic x,7-cycloheptenyne complexes (x = 6,7). The allyl acetate function may also be replaced by a benzylic acetate, to afford dibenzocycloheptyne-Co2(CO)6 complexes. Following reductive complexation, the methodology may be applied to the synthesis of the icetexane diterpene carbon framework.

  4. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation. (United States)

    Stern, A.


    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  5. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators (United States)

    Weiss, E.; Skene, J.; Tran, L.


    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  6. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.


    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  7. Customizing Process to Align with Purpose and Program: The 2003 MS PHD'S in Ocean Sciences Program Evaluative Case Study (United States)

    Williamson, V. A.; Pyrtle, A. J.


    How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in

  8. Exploring the Oceans in 4D: Using Paleoceanography to Engage Students in Interdisciplinary Science (United States)

    Waite, A. J.; Fournier, A.; Paxson, M.; Grant, C.; MacFadden, B. J.


    Recent collaborations between educators and scientists have helped to change the face of K-12 education and allow for the development of curricula that closely mimic real word scientific inquiry in ever more accessible formats. Here we capitalize on collaborations established by the Great American Biotic Interchange - Research Experience for Teachers (GABI-RET) and the Panama Canal Project - Partnerships in International Research and Education (PCP-PIRE) to create a series of hands-on activities that investigate the dynamic response of various components of the Earth's system to changes in ocean gateways through time. In particular, we focus on the rise of the Isthmus of Panama and subsequent closure of the Central American Seaway that provide an opportune platform for the interdisciplinary teaching of multiple secondary education topics. Relevant themes include, but are not limited to, geologic time, dating techniques, plate tectonics, ocean circulation, climate, and the speciation/diversification of life. We have taken a versatile approach to these activities by simulating deep sea sediment cores, complete with 3D printed microfossils and related data, that allow students to actively apply the scientific method to simplified geologic archives, graph and assess evidence, and debate their findings in a project based format. The exercises themselves are designed to meet Next Generation and Florida State Science Standards for 6th grade Earth Science and 12th grade Environmental Management/Science classes, though the nature of the activities can be adapted to intermediary skill levels with relative ease. The project kit is designed for use in classrooms without ready access to computers or microscopes and the associated lesson plans/materials will be made available through the GABI-RET and PaleoTEACH websites.

  9. Going from lectures to expeditions: Creating a virtual voyage in undergraduate ocean science education (United States)

    Reed, D.; Garfield, N.; Locke, J.; Anglin, J.; Karl, H.; Edwards, B.


    The WWW provides for new collaborations in distributed learning in higher education. The lead author has developed a highly successful online course at the undergraduate level with an enrollment of more than 300 non-science majors each year, We are currently initiating a new focus for the course by emphasizing sea-going research, primarily in the northeastern Pacific Ocean, through the development of a virtual oceanographic voyage over the WWW. The "virtual voyage" courseware combines elements of experiential learning with anytime, anywhere access of the WWW to stimulate inquiry-based learning in the ocean sciences. The first leg of the voyage is currently being synthesized from contemporary ocean research sponsored by a collaboration of U.S. government agencies, including NSF, NOAA, and the USGS. The initial portion of this effort involves transforming portions of USGS Circular 1198, Beyond the Golden Gate -- Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, into an interactive expedition by which students participate as scientists aboard a research vessel departing from San Francisco. Virtual experiments on the voyage are patterned after research cruises over the past decade in two national marine sanctuaries and include the technologies of data acquisition and data analysis, as well as providing insight into the methodologies of working marine scientists. Real-time data for monitoring the marine environment are embedded into several modules; for example, students will analyze data from offshore buoys and satellite imagery to assess ocean conditions prior to departing from port. Multibeam sonar is used to create seafloor maps near the Golden Gate Bridge and sediment cores provide evidence of sea-level change in the region. Environmental studies in the region include locating canisters of low-level radioactive waste and assessing potential sites for the disposal for dredged materials from the San Francisco Bay. Upon completion

  10. 76 FR 26721 - Re-Issuance of a General Permit to the National Science Foundation for the Ocean Disposal of Man... (United States)


    ...EPA proposes to re-issue a permit authorizing the National Science Foundation (NSF) to dispose of ice piers in ocean waters. Permit re-issuance is necessary because the current permit has expired. EPA does not propose changes to the content of the permit because ocean disposal under the terms of the previous permit will continue to meet the ocean disposal criteria.


    Directory of Open Access Journals (Sweden)

    Voropaev V. A.


    Full Text Available The article tells the history of St. Nicholas Church in Dykanka and its holy image of Saint Nicholas, examines some details of the Gogol family life, the legend of Maria Gogol-Yanovskaya's marriage and her oath in front of the Holy Saint icon.

  12. Nicholas Cook "Pärnu nüüdismuusika päevadel 2005" / Maris Valk-Falk ; interv. Andrus Kallastu

    Index Scriptorium Estoniae

    Valk-Falk, Maris, 1934-2016


    A. Kallastu ja M. Valk-Falk muusikasotsioloogist Nicholas Cookist ja tema vaadetest muusikaanalüüsile. Kirjastuselt Scripta Musicalia ilmunud Nicholas Cooki tõlkeraamatust "Music, Imigination and Culture", raamatu esitlusest 19.-23. jaanuarini toimuvatel Pärnu nüüdismuusikapäevadel

  13. A Two-Ocean Bouillabaisse: Science, Politics, and the Central American Sea-Level Canal Controversy. (United States)

    Keiner, Christine


    As the Panama Canal approached its fiftieth anniversary in the mid-1960s, U.S. officials concerned about the costs of modernization welcomed the technology of peaceful nuclear excavation to create a new waterway at sea level. Biologists seeking a share of the funds slated for radiological-safety studies called attention to another potential effect which they deemed of far greater ecological and evolutionary magnitude - marine species exchange, an obscure environmental issue that required the expertise of underresourced life scientists. An enterprising endeavor to support Smithsonian naturalists, especially marine biologists at the Smithsonian Tropical Research Institute in Panama, wound up sparking heated debates - between biologists and engineers about the oceans' biological integrity and among scientists about whether the megaproject represented a research opportunity or environmental threat. A National Academy of Sciences panel chaired by Ernst Mayr failed to attract congressional funding for its 10-year baseline research program, but did create a stir in the scientific and mainstream press about the ecological threats that the sea-level canal might unleash upon the Atlantic and Pacific. This paper examines how the proposed megaproject sparked a scientific and political conversation about the risks of mixing the oceans at a time when many members of the scientific and engineering communities still viewed the seas as impervious to human-facilitated change.

  14. OBIS-USA: Enhancing Ocean Science Outcomes through Data Interoperability and Usability (United States)

    Goldstein, P.; Fornwall, M.


    Commercial and industrial information systems have long built and relied upon standard data formats and transactions. Business processes, analytics, applications, and social networks emerge on top of these standards to create value. Examples of value delivered include operational productivity, analytics that enable growth and profit, and enhanced human communication and creativity for innovation. In science informatics, some research and operational activities operate with only scattered adoption of standards and few of the emergent benefits of interoperability. In-situ biological data management in the marine domain is an exemplar. From the origination of biological occurrence records in surveys, observer programs, monitoring and experimentation, through distribution techniques, to applications, decisions, and management response, marine biological data can be difficult, limited, and costly to integrate because of non-standard and undocumented conditions in the data. While this presentation identifies deficits in marine biological data practices, the presentation also identifies this as a field of opportunity. Standards for biological data and metadata do exist, with growing global adoption and extensibility features. Scientific, economic, and social-value motivations provide incentives to maximize marine science investments. Diverse science communities of national and international scale begin to see benefits of collaborative technologies. OBIS-USA ( is a program of the United States Geological Survey. This presentation shows how OBIS-USA directly addresses the opportunity to enhance ocean science outcomes through data infrastructure, including: (1) achieving rapid, economical, and high-quality data capture and data flow, (2) offering technology for data storage and methods for data discovery and quality/suitability evaluation, (3) making data understandable and consistent for application purposes, (4) distributing and integrating data in

  15. 75 FR 4043 - Science Advisory Board; Draft Report of the NOAA Science Advisory Board Oceans and Health Working... (United States)


    ...: January 20, 2010. Mark E. Brown, Chief Financial Officer, Office of Oceanic and Atmospheric Research... decide to entertain: (1) What are NOAA's unique and important scientific roles in addressing ocean health...

  16. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond (United States)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.


    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom

  17. The death of Nicholas Bolkonski. Neurology in Tolstoy's War and Peace. (United States)

    Albin, R L


    Painstaking realism is an essential feature of the fiction of Count Leo Tolstoy. One example of Tolstoy's attention to detail is the description of the death of Prince Nicholas Bolkonski in War and Peace. The information provided in War and Peace allows the identification of the prince's terminal illness as a brain-stem stroke and is probably the first description of the one-and-a-half syndrome. Prince Bolkonski is also portrayed as suffering from a dementing process. Tolstoy used the character of Prince Bolkonski to exemplify the rationalistic, Western-influenced aristocracy that dominated Russia at the end of the 18th century. Prince Bolkonski's decline and apoplectic death parallel the fate of Enlightenment thought in Eastern Europe. The clinical detail employed in this case illustrates how Tolstoy used symbolic characters without sacrificing the realism of War and Peace.

  18. The Library of Gerard Nicholas Heerkens (1726–1801, Dutch physician, traveller, and Latin poet

    Directory of Open Access Journals (Sweden)

    Tarantino, Giovanni


    Full Text Available The very extensive library collection of Gerard Nicholas Heerkens (1726–1801, the cosmopolitan Dutch physician and Latin poet,1 was sold at auction between 23 and 28 September and between 14 and 21 October 1805 at the University of Groningen. The auction was organized by the antiquarian and book dealer Jan Hendrik Bolt (active 1779–1845,2 who prepared the catalogue.3 If not the same person, Bolt was possibly a relative of a homonymous member of the radical De Jonge group (named after the proprietor of a cafe in Groningen, where a small group of republicans actively hostile towards King Willem II used to meet in the 1840s. The latter Bolt published the openly subversive and ultraradical democratic journal De Tolk der Vrijheid (‘The Mouthpiece of Freedom’, run by the maverick republican Eillert Meeter (c.1818–62.

  19. Report on Workshop "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups"

    Directory of Open Access Journals (Sweden)

    Mitsuo Fukuchi


    Full Text Available A workshop on "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups" was held on November 1,2000,at the National Institute of Polar Research with 21 participants. In this workshop, a plan to charter a research vessel other than "Shirase" was introduced and a science plan using the chartered research vessel by 43rd Japanese Antarctic Research Expedition was discussed. This study is going to be conducted in the sea ice area around 140-150°E in mid-summer (February 2002, when biological production becomes active in the Antarctic Ocean. Oceanographic observations using "Shirase" are difficult to conduct in this season since she supports a wide range of summer operations around Syowa Station. The relationships between biological production and greenhouse effect gas production and the vertical transport of organic materials from the surface to deep ocean will be the focus of this study. At this stage, one deputy leader and three members of JARE, and 25-26 other scientists including graduate students and foreign scientists, will participate in the field observations using the chartered vessel. The members of JARE will conduct a project science program of the VI Phase of JARE, while the other participants will do part of the science program "Antarctic Ocean in Earth System". Since further observations for several years after the summer of 2002 will be required to understand the role of the Antarctic Ocean in global climate change, we have applied for a Grant-in-Aid for Scientific Research for the next project, which will start from 2001,to the Ministry of Education, Science, Sports and Culture of Japan. The proposal was discussed in detail in this workshop.

  20. Managing ocean information in the digital era--events in Canada open questions about the role of marine science libraries. (United States)

    Wells, Peter G


    Information is the foundation of evidence-based policies for effective marine environmental protection and conservation. In Canada, the cutback of marine science libraries introduces key questions about the role of such institutions and the management of ocean information in the digital age. How vital are such libraries in the mission of studying and protecting the oceans? What is the fate and value of the massive grey literature holdings, including archival materials, much of which is not in digital form but which often contains vital data? How important is this literature generally in the marine environmental sciences? Are we likely to forget the history of the marine pollution field if our digital focus eclipses the need for and access to comprehensive collections and skilled information specialists? This paper explores these and other questions against the backdrop of unprecedented changes in the federal libraries, marine environmental science and legislation in Canada. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  1. The Ocean in Depth - Ideas for Using Marine Technology in Science Communication (United States)

    Gerdes, A.


    By deploying camera and video systems on remotely operated diving vehicles (ROVs), new and fascinating insights concerning the functioning of deep ocean ecosystems like cold-water coral reef communities can be gained. Moreover, mapping hot vents at mid-ocean ridge locations, and exploring asphalt and mud volcanoes in the Gulf of Mexico and the Mediterranean Sea with the aid of video camera systems have illustrated the scientific value of state-of-the-art diving tools. In principle, the deployment of sophisticated marine technology on seagoing expeditions and their results - video tapes and photographs of fascinating submarine environments, publication of new scientific findings - offer unique opportunities for communicating marine sciences. Experience shows that an interest in marine technology can easily be stirred in laypersons if the deployment of underwater vehicles such as ROVs during seagoing expeditions can be presented using catchwords like "discovery", "new frontier", groundbreaking mission", etc. On the other hand, however, a number of restrictions and challenges have to be kept in mind. Communicating marine science in general, and the achievements of marine technology in particular, can only be successful with the application of a well-defined target-audience concept. While national and international TV stations and production companies are very much interested in using high quality underwater video footage, the involvement of journalists and camera teams in seagoing expeditions entails a number a challenges: berths onboard research vessels are limited; safety aspects have to be considered; copyright and utilisation questions of digitalized video and photo material has to be handled with special care. To cite one example: on-board video material produced by professional TV teams cannot be used by the research institute that operated the expedition. This presentation aims at (1)informing members of the scientific community about new opportunities related

  2. The Gulf of Mexico Coastal Ocean Observing System: A Gulf Science Portal (United States)

    Howard, M.; Gayanilo, F.; Kobara, S.; Jochens, A. E.


    The Gulf of Mexico Coastal Ocean Observing System's (GCOOS) regional science portal ( was designed to aggregate data and model output from distributed providers and to offer these, and derived products, through a single access point in standardized ways to a diverse set of users. The portal evolved under the NOAA-led U.S. Integrated Ocean Observing System (IOOS) program where automated largely-unattended machine-to-machine interoperability has always been a guiding tenet for system design. The web portal has a business unit where membership lists, new items, and reference materials are kept, a data portal where near real-time and historical data are held and served, and a products portal where data are fused into products tailored for specific or general stakeholder groups. The staff includes a system architect who built and maintains the data portal, a GIS expert who built and maintains the current product portal, the executive director who marshals resources to keep news items fresh and data manger who manages most of this. The business portal is built using WordPress which was selected because it appeared to be the easiest content management system for non-web programmers to add content to, maintain and enhance. The data portal is custom built and uses database, PHP, and web services based on Open Geospatial Consortium standards-based Sensor Observation Service (SOS) with Observations and Measurements (O&M) encodings. We employ a standards-based vocabulary, which we helped develop, which is registered at the Marine Metadata Interoperability Ontology Registry and Repository ( The registry is currently maintained by one of the authors. Products appearing in the products portal are primarily constructed using ESRI software by a Ph.D. level Geographer. Some products were built with other software, generally by graduate students over the years. We have been sensitive to the private sector when deciding which products to produce. While

  3. Partner-built ecosystem science - The National Ocean Partnership Program as a builder of EBM Tools and Data (United States)

    Hoffman, P. L.; Green, R. E.; Kohanowich, K. M.


    The National Ocean Partnership Program (NOPP) was created in 1997 by federal public law to identify "and carry out partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community in the areas of data, resources, education, and communications." Since that time, numerous federal agencies have pooled talent, funding, and scientific resources (e.g. ships, aircraft, remote sensors and computing capability) to address pressing ocean science needs which no one entity can manage alone. In this presentation, we will address the ways the National Ocean Policy identifies ecosystem-based management (EBM) as a foundation for providing sound science-based and adaptable management to maintain the health, productivity, and resilience of U.S. ocean, coastal, and Great Lakes ecosystems. Because EBM is an important approach for efficient and effective interagency, multi-jurisdictional, and cross-sectoral marine planning and management, ocean science partnerships such as those provided by NOPP create a pool of regionally-pertinent, nationally-available data from which EBM decision makers can draw to address critical management issues. Specifically, we will provide examples drawn from the last five years of funding to illustrate how the NOPP process works, how it is managed by a federal Interagency Working Group (IWG-OP), and how EBM practitioners can both partner with others through the NOPP and offer guidance on the implementation of projects beneficial to the regional needs of the EBM community. Projects to be discussed have been carried out under the following themes: Arctic Cumulative Impacts: Marine Arctic Ecosystem Study (MARES) - Ecosystem Dynamics and Monitoring of the Beaufort Sea: An Integrated Science Approach. Biodiversity Indicators: Demonstration of a U.S. Marine Biodiversity Observation Network (Marine BON) Long-Term Observations: Coordinated Regional Efforts That Further the U.S. Integrated Ocean Observing System

  4. A Hurricane Hits Home: An Interactive Science Museum Exhibit on Ocean Mapping and Marine Debris (United States)

    Butkiewicz, T.; Vasta, D. J.; Gager, N. C.; Fruth, B. W.; LeClair, J.


    As part of the outreach component for a project involving the detection and analysis of marine debris generated by Super Storm Sandy, The Center for Coastal and Ocean Mapping / Joint Hydrographic Center partnered with The Seacoast Science Center to develop an interactive museum exhibit that engages the public with a touchscreen based game revolving around the detection and identification of marine debris. "A Hurricane Hits Home" is a multi-station touchscreen exhibit geared towards children, and integrates a portion of a historical wooden shipwreck into its physical design. The game invites museum guests to examine a number of coastal regions and harbors in Sandy affected areas. It teaches visitors about modern mapping technology by having them control boats with multibeam sonars and airplanes with lidar sensors. They drag these vehicles around maps to reveal the underlying bathymetry below the satellite photos. They learn the applications and limitations of sonar and lidar by where the vehicles can and cannot collect survey data (e.g. lidar doesn't work in deep water, and the boat can't go in shallow areas). As users collect bathymetry data, they occasionally reveal marine debris objects on the seafloor. Once all the debris objects in a level have been located, the game challenges them to identify them based on their appearance in the bathymetry data. They must compare the simulated bathymetry images of the debris targets to photos of possible objects, and choose the correct matches to achieve a high score. The exhibit opened January 2016 at the Seacoast Science Center in Rye, NH.

  5. Reaching out in new Ways: Bridging the gap Between Science and Media Through the National Oceanic and Atmospheric Administration's Office of Ocean Exploration (United States)

    Gorell, F. R.; Martinez, C.


    NOAA's Office of Ocean Exploration (OE) was created in response to the recommendations of the President's Panel on Ocean Exploration in 2000. With the establishment of OE, NOAA developed a great opportunity to reach out to teachers, students, and the general public to share the excitement of discovery. As exciting expeditions are the core of our NOAA program, outreach efforts are focused around these cruises. Through various initiatives, OE works with the science community to share the excitement of ocean science and discovery with a wide variety of audiences. Initiatives include media events held during port calls, media conference calls arranged with scientists at sea, journalists' participation in expeditions, and select interviews with scientist-explorers. NOAA OE is now poised to initiate a major ongoing satellite-based education and public outreach program from its new dedicated research vessel, the Okeanos Explorer that will become operational in 2008. Through telepresence technology designed by the Institute for Exploration (IFE) in Mystic, CT, expeditions can be managed `virtually' by scientists working from Science Command Centers on land, live education broadcasts can be produced in real-time, and media events can be held through shore-based consoles connected to scientists at sea. Three pilot programs were successfully completed in the past few years demonstrating the potential for this new technology to allow for unlimited access to data, including video, from expeditions, sharing in real-time the excitement of discovery through multiple virtual pathways. News media provide a powerful means to inform and educate the public. In some cases, scientists may believe that interaction with media representatives poses risks unmatched by rewards. While it is important to serve the public's right to know, scientist-explorers on NOAA-sponsored ocean expeditions have a recognized interest in protecting certain data, including images, for a number of legitimate

  6. An open source approach to enable the reproducibility of scientific workflows in the ocean sciences (United States)

    Di Stefano, M.; Fox, P. A.; West, P.; Hare, J. A.; Maffei, A. R.


    Every scientist should be able to rerun data analyses conducted by his or her team and regenerate the figures in a paper. However, all too often the correct version of a script goes missing, or the original raw data is filtered by hand and the filtering process is undocumented, or there is lack of collaboration and communication among scientists working in a team. Here we present 3 different use cases in ocean sciences in which end-to-end workflows are tracked. The main tool that is deployed to address these use cases is based on a web application (IPython Notebook) that provides the ability to work on very diverse and heterogeneous data and information sources, providing an effective way to share the and track changes to source code used to generate data products and associated metadata, as well as to track the overall workflow provenance to allow versioned reproducibility of a data product. Use cases selected for this work are: 1) A partial reproduction of the Ecosystem Status Report (ESR) for the Northeast U.S. Continental Shelf Large Marine Ecosystem. Our goal with this use case is to enable not just the traceability but also the reproducibility of this biannual report, keeping track of all the processes behind the generation and validation of time-series and spatial data and information products. An end-to-end workflow with code versioning is developed so that indicators in the report may be traced back to the source datasets. 2) Realtime generation of web pages to be able to visualize one of the environmental indicators from the Ecosystem Advisory for the Northeast Shelf Large Marine Ecosystem web site. 3) Data and visualization integration for ocean climate forecasting. In this use case, we focus on a workflow to describe how to provide access to online data sources in the NetCDF format and other model data, and make use of multicore processing to generate video animation from time series of gridded data. For each use case we show how complete workflows

  7. Charting the Course for Ocean Science in the United States for the Next Decade: An Ocean Research Priorities Plan and Implementation Strategy

    National Research Council Canada - National Science Library


    .... Understanding society's impact on the ocean and the ocean's impact on society forms the basis for ensuring a clean, healthy, and stable ocean environment that can be responsibly used and enjoyed for generations to come...

  8. Nicholas reactions in the construction of cyclohepta[de]naphthalenes and cyclohepta[de]naphthalenones. The total synthesis of microstegiol. (United States)

    Taj, Rafiq A; Green, James R


    The application of the Nicholas reaction chemistry of 2,7-dioxygenated naphthalenes in the synthesis of cyclohepta[de]napthalenes and in the synthesis of (±)-microstegiol (1) is presented. The substitution profile of Nicholas monosubstitution (predominantly C-1) and disubstitution reactions (predominantly 1,6-) on 2,7-dioxygenated napthalenes is reported. Application of a 1,8-dicondensation product and selected C-1 monocondensation products to the construction of cyclohepta[de]naphthalenes by way of ring closing metathesis and intramolecular Friedel-Crafts reactions, respectively, is described. Deprotection of the C-7 oxygen function to the corresponding naphthol allows tautomerization to cyclohepta[de]naphthalene-1-ones upon seven-membered-ring closure in most cases, and replacement of the C-2 oxygen function in the naphthalene by a methyl group ultimately allows the synthesis of (±)-microstegiol.

  9. H08105: NOS Hydrographic Survey , W. End - Nicholas Channel, Florida, 1954-06-28 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  10. H08104: NOS Hydrographic Survey , W. End - Nicholas Channel, Florida, 1954-06-22 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  11. H08015: NOS Hydrographic Survey , W. End - Nicholas Channel, Florida, 1954-11-18 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  12. H08016: NOS Hydrographic Survey , W. End - Nicholas Channel, Florida, 1954-11-19 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  13. Integrated prospecting in the crypt of the Basilica of Saint Nicholas in Bari, Italy

    International Nuclear Information System (INIS)

    Calia, Angela; Leucci, Giovanni; Masini, Nicola; Matera, Loredana; Persico, Raffaele; Sileo, Maria


    In this paper, we present the results of non-destructive integrated geophysical surveys (ground penetrating radar (GPR) and seismic sonic) performed in the crypt of the Basilica of St Nicholas in Bari, Italy. The aim was twofold, namely to investigate the consistency of restoration work performed in 1950 and the presence of features of archaeological interest. The GPR technique has also been exploited to characterize the subsurface water content under the crypt. In particular, the existence of buried anomalies, probably due to the restoration work, has been identified. Moreover, by means of an electromagnetic-wave velocity analysis, an estimation of the volumetric water content under the floor has been achieved. The results indicate the main causes of the deterioration and have provided significant information for the safeguard of this historical building. Furthermore, the GPR survey allowed us to identify some anomalies buried under the crypt that are probably of archaeological interest. Finally, both sonic tomography and a GPR survey have been performed on an important mosaic, and have enabled us to identify probable ‘internal’ reasons for its decay. (paper)

  14. Western Indian Ocean Journal of Marine Science - Vol 8, No 2 (2009)

    African Journals Online (AJOL)

    Eddy formation around South West Mascarene Plateau (Indian Ocean) as evidenced by satellite 'global ocean colour' data · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MR Badal, SDDV Rughooputh, L Rydberg, IS Robinson, C Pattiaratchi.

  15. Fostering Eroticism in Science Education to Promote Erotic Generosities for the Ocean-Other (United States)

    Luther, Rachel


    Despite the increase in marine science curriculum in secondary schools, marine science is not generally required curricula and has been largely deemphasized or ignored in relation to earth science, biology, chemistry, and physics. I call for the integration and implementation of marine science more fully in secondary science education through…

  16. Marine Science Summer Enrichment Camp's Impact Ocean Literacy for Middle School Students (United States)

    Young, Victoria Jewel


    Although careers in science, technology, engineering, and mathematics have expanded in the United States, science literacy skills for K-12 students have declined from 2001 to 2011. Limited research has been conducted on the impact of science enrichment programs on the science literacy skills of K-12 students, particularly in marine science. The…

  17. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013) (United States)

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.


    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  18. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013). (United States)

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F


    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  19. Western Indian Ocean Journal of Marine Science - Vol 13, No 1 (2014)

    African Journals Online (AJOL)

    View or download the full issue, Untitled () PDF. Table of Contents. Articles. Morphology of the Zambezi River plume in the Sofala Bank, Mozambique · EMAIL ... (Iles Eparses, France) in the Mozambique Channel, South Western Indian Ocean.

  20. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study. (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva


    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    Energy Technology Data Exchange (ETDEWEB)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.


    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: • directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. •Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5Ωm. •Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60Ωm, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5Ωm, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. •Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. •Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. •S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. •In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with zones that have high fracture porosity below the clay cap. These zones coincide with fault zones trending in the NNE-SSW and NW-SE directions in otherwise uniform volcanic rocks and laterally continuous geology. The NW-SE orientation is parallel to the regional shear fractures while the NNE-SSW trending polarizations align parallel to rift zone fracture swarms. This suggest that correlations between MT polarizations and MEQ splitting may be related to fluid filled fractures. •In areas of high resistivity (60Ωm), the P-wave velocity approaches that of the rock matrix. •S-wave splitting polarization is determined from measurements of angles of rotation to get the optimum direction of polarization. •The use of MEQ and resistivity for imaging fractures requires that the MEQ data acquisition system be located close to the fracture zone.

  2. Marine Physical Laboratory Multi-Disciplinary Ocean Science and Technology Program (United States)


    ambierit noise were made with the advent of large. of 3800 m. Reflection profiles and drill logs from this hole scale seismome ter arrays." Sensor arrays...Deaion. and S C Webb."A deep-sea differential pressure frequency. The array was too limited in extent to make spa- gauge ." J. Aimos Ocean Tech. 2. 237...75, 847-864 (1985). 2"P. K Spudich andi I A. Orcutt," Petrology and porcisit% of tn oceanic "M E Dougherty and R. A. Stephen."Seismic energy

  3. Center of Microbial Oceanography Research and Education (C-MORE) Initiatives Toward Promoting Diversity in the Ocean Sciences (United States)

    Bruno, B. C.


    The ocean sciences suffer from a lack of diversity, particularly among indigenous peoples, despite the fact that indigenous peoples often have deep, cultural knowledge about the marine environment. Nowhere is this inequity more glaring than in Hawaii. Traditional knowledge in marine science enabled Native Hawaiians and Pacific Islanders (NHPI) to become world leaders in transpacific canoe voyaging, aquaculture, and fisheries. Yet today, NHPI are severely underrepresented in the ocean sciences (and in STEM fields in general) at all levels of education and employment. When compared to other ethnic and racial groups in Hawaii, NHPI students as a group have among the poorest educational performance, indicated in part by underrepresentation in college enrolment and pre-college gifted and talented programs, as well as overrepresentation in eligibility for special education and free and reduced lunch programs. The Center of Microbial Oceanography Research and Education (C-MORE), a NSF-funded, multi-institutional Science and Technology Center based at the University of Hawai (UH), is determined to address this inequity. C- MORE is committed to increasing diversity in the ocean sciences, particularly among NHPI, at all levels of education and research. Our approach is to work with existing programs with a track record of increasing diversity among NHPI. We are currently developing culturally relevant materials including educational games for K-12 students, mentorships for high school and community college students, and laboratory and shipboard experiences for teachers and undergraduates in partnership with minority-serving organizations. Some of our main partners are EPSCoR (Experimental Program to Stimulate Competitive Research), Ka `Imi `Ike (an NSF- funded program to recruit and retain NHPI undergraduates in geosciences), Upward Bound (an enrichment program for economically disadvantaged high school students which includes intensive summer courses), the UH Center on

  4. Western Indian Ocean Journal of Marine Science - Vol 9, No 1 (2010)

    African Journals Online (AJOL)

    Coastal Marine Pollution in Dar es Salaam (Tanzania) relative to Recommended Environmental Quality Targets for the Western Indian Ocean · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JF Machiwa, 17-30 ...

  5. Western Indian Ocean Journal of Marine Science - Vol 11, No 1 (2012)

    African Journals Online (AJOL)

    Using an ecosystem model to evaluate fisheries management options to mitigate climate change impacts in western Indian Ocean coral reefs · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Carlos Ruiz Sebastián, Tim R. McClanahan, 77-86 ...

  6. Western Indian Ocean Journal of Marine Science - Vol 10, No 1 (2011)

    African Journals Online (AJOL)

    Assessing Spatio-temporal Patterns of Groundwater Salinity in Small Coral Islands in the Western Indian Ocean · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. J-L Join, O Banton, J-C Comte, J Leze, F Massin, E Nicolini, 1-12 ...

  7. Partnering and teamwork to create content for spherical display systems to enhance public literacy in earth system and ocean sciences (United States)

    Beaulieu, S. E.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.; Spargo, A.; Brickley, A.; Emery, M.


    Spherical display systems, also known as digital globes, are technologies that, in person or online, can be used to help visualize global datasets and earth system processes. Using the InterRidge Global Database of Active Submarine Hydrothermal Vent Fields and imagery from deep-sea vehicles, we are creating content for spherical display systems to educate and excite the public about dynamic geophysical and biological processes and exploration in the deep ocean. The 'Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents' is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, hosting a Magic Planet and Science On a Sphere (SOS), respectively. The main activities in the first year of our project were geared towards team building and content development. Here we will highlight the partnering and teamwork involved in creating and testing the effectiveness of our new content. Our core team is composed of a lead scientist, educators at both institutions, graphic artists, and a professional evaluator. The new content addresses key principles of Earth Science Literacy and Ocean Literacy. We will share the collaborative, iterative process by which we developed two educational pieces, 'Life without sunlight' and 'Smoke and fire underwater' - each focusing on a different set of 3 literacy principles. We will share how we conducted our front-end and formative evaluations and how we focused on 2 NSF Informal Education Impact Categories for our evaluation questionnaire for the public. Each educational piece is being produced as a stand-alone movie and as an interactive, docent-led presentation integrating a number of other datasets available from NOAA's SOS Users Network. The proximity of our two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS.

  8. Communicating polar science to the general public: sharing the social media experience of @OceanSeaIceNPI (United States)

    Rösel, Anja; Pavlov, Alexey K.; Granskog, Mats A.; Gerland, Sebastian; Meyer, Amelie; Hudson, Stephen R.; King, Jennifer; Itkin, Polona; Cohen, Lana; Dodd, Paul; de Steur, Laura


    The findings of climate science need to be communicated to the general public. Researchers are encouraged to do so by journalists, policy-makers and funding agencies and many of us want to become better science communicators. But how can we do this at the lab or small research group level without specifically allocated resources in terms of funds and communication officers? And how do we sustain communication on a regular basis and not just during the limited lifetime of a specific project? One of the solutions is to use the emerging platform of social media, which has become a powerful and inexpensive tool for communicating science to different target audiences. Many research institutions and individual researchers are already advanced users of social media, but small research groups and labs remain underrepresented. The group of oceanographers, sea ice and atmospheric scientists at the Norwegian Polar Institute (@OceanSeaIceNPI( will share our experiences developing and maintaining researcher-driven outreach for over a year through Instagram, Twitter and Facebook. We will present our solutions to some of the practical considerations such as identifying key target groups, defining the framework for sharing responsibilities and interactions within the research group, and choosing an up-to-date and appropriate social medium. By sharing this information, we aim to inspire and assist other research groups and labs in conducting their own effective science communication.


    Directory of Open Access Journals (Sweden)

    Анна Филипповна Грушина


    Full Text Available The article concentrates on the history of the formation and development of the Common Vestry of Moscow Church of St. Nicholas in Klenniki. There are revealed the outstanding characteristics of the living, its spiritual origins and bonds. In the centre of the research is the ministration of two hegumens of the church, namely: archpriest Alexius Mechov and his son priest Sergius Mechov. The father started the penancing-liturgical family and the son continued the father's work, retained and enriched his pastoral heritage. The Common Vestry of the Church of St. Nicholas in Klenniki, which had been guided by father Sergius, turned out to be one of the most wonderful phenomena of the Russian Church history of the previous century. In the years of the persecutions against the Church it survived. The peculiarity of this living was that it was disintegrated after the shutdown of the church and the taking away of the pastors. This peculiarity is unique not only for Moscow, but also for all Russian Orthodox Church.

  10. Universal and peculiar in old hagiographical images of St. Nicholas. The hagiographic icon from Urisiu de Jos - A case study

    Directory of Open Access Journals (Sweden)

    Raluca Marilena Dumitrescu


    Full Text Available The article treats some issues related to the beginning of hagiographical icons and mural paintings as a short pass in review, especially the representations of Saint Nicholas as a very popular character, their common or different features, and their development, depending on their inspiration source. Thus for having a background in what concerns an informed reference and a comparison basis for a case study, the icon of Saint Nicholas from Urisiu de Jos, Mureș County. There are taken into consideration the stylistic particularities, the compositional and symbolic features in a closed relation with the inspiration sources and the message that these representations convey, resulting in a new perspective upon the provenience, the way they were made and spiritual effects. The knowledge is accompanied by examples, and some images to relate to. For the case study, there is made a characterization of the biographic scenes of the saint, with a closed reference to the general or peculiar features that were studied before. In this way, the frame of its research begun broader, and as a consequence, a more defined portrayal upon the sources of the influences and artistic moves that marked the epoch in which the icon was designed.

  11. Introduction to this special issue on ocean acidification: the pathway from science to policy (United States)

    Mathis, Jeremy T.; Cooley, Sarah R.; Yates, Kimberly K.; Williamson, Phillip


    Ocean acidification (OA) is a progressive decrease in the pH of seawater over decades, caused primarily by uptake of excess atmospheric CO2 and accompanied by changes in seawater carbonate chemistry. Scientific studies designed to examine the effects of anthropogenic carbon dioxide (CO2) emissions on global carbon fluxes have also led to the detection of OA. During the last decade, this phenomenon has surged to the attention of not only scientists but also policymakers and the public. OA chemistry is well understood and follows first principles of acid-base chemistry (e.g., Gattuso and Hansson, 2011; Box 1 in McLaughlin et al.). Today, total anthropogenic release of CO2 exceeds nine petagrams of carbon annually, with ~85% coming directly from industrial sources and ~15% from changes in land use. The three major sinks for this CO2 are: ~46% of CO2 emitted remains in the atmosphere, ~29% is absorbed by the terrestrial biosphere, and the ocean absorbs the remaining ~26% (Le Quéré et al., 2014), resulting in OA. Since the Industrial Revolution, global average surface ocean pH has dropped 0.1 unit (about a 30% increase in acidity; IPCC, 2013), and it is expected to drop another 0.3 to 0.4 units by 2100 (100-150% increase in acidity) if CO2 emissions continue in a business-as-usual scenario (Orr et al., 2005; IPCC, 2013). Some areas of the ocean, such as coastal regions, upwelling zones, and polar seas, may be subjected to much greater chemical perturbations from OA than indicated by such globally averaged values (e.g., Feely et al., 2008; Mathis et al.).

  12. Is Ocean Reflectance Acquired by Citizen Scientists Robust for Science Applications?

    Directory of Open Access Journals (Sweden)

    Yuyan Yang


    Full Text Available Monitoring the dynamics of the productivity of ocean water and how it affects fisheries is essential for management. It requires data on proper spatial and temporal scales, which can be provided by operational ocean colour satellites. However, accurate productivity data from ocean colour imagery is only possible with proper validation of, for instance, the atmospheric correction applied to the images. In situ water reflectance data are of great value due to the requirements for validation and reflectance is traditionally measured with the Surface Acquisition System (SAS solar tracker system. Recently, an application for mobile devices, “HydroColor”, was developed to acquire water reflectance data. We examined the accuracy of the water reflectance measures acquired by HydroColor with the help of both trained and untrained citizens, under different environmental conditions. We used water reflectance data acquired by SAS solar tracker and by HydroColor onboard the BC ferry Queen of Oak Bay from July to September 2016. Monte Carlo permutation F tests were used to assess whether the differences between measurements collected by SAS solar tracker and HydroColor with citizens were significant. Results showed that citizen HydroColor measurements were accurate in red, green, and blue bands, as well as red/green and red/blue ratios under different environmental conditions. In addition, we found that a trained citizen obtained higher quality HydroColor data especially under clear skies at noon.

  13. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community (United States)

    Jearld, A.


    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  14. Plastics in the Ocean: Engaging Students in Core Competencies Through Issues-Based Activities in the Science Classroom. (United States)

    Fergusson-Kolmes, L. A.


    Plastic pollution in the ocean is a critical issue. The high profile of this issue in the popular media makes it an opportune vehicle for promoting deeper understanding of the topic while also advancing student learning in the core competency areas identified in the NSF's Vision and Change document: integration of the process of science, quantitative reasoning, modeling and simulation, and an understanding of the relationship between science and society. This is a challenging task in an introductory non-majors class where the students may have very limited math skills and no prior science background. In this case activities are described that ask students to use an understanding of density to make predictions and test them as they consider the fate of different kinds of plastics in the marine environment. A comparison of the results from different sampling regimes introduces students to the difficulties of carrying out scientific investigations in the complex marine environment as well as building quantitative literacy skills. Activities that call on students to make connections between global issues of plastic pollution and personal actions include extraction of microplastic from personal care products, inventories of local plastic-recycling options and estimations of contributions to the waste stream on an individual level. This combination of hands-on-activities in an accessible context serves to help students appreciate the immediacy of the threat of plastic pollution and calls them to reflect on possible solutions.

  15. Ocean Science for the Year 2000. A Report on an Inquiry by the Scientific Committee on Oceanic Research and the Advisory Committee on Marine Resources Research. (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Intergovernmental Oceanographic Commission.

    This report, which examines expected major trends in ocean research up to the year 2000, focuses on the most important ocean research problems that should receive particular attention during the next decades, what major advances should be expected and what kinds of research should be encouraged for them to be achieved, and impediments to achieving…

  16. Successes, Challenges and Lessons Learned for Recruiting, Engaging and Preparing a Diverse Student Population for 21st Century Careers in Ocean Sciences. (United States)

    Clarkston, B. E.; Garza, C.


    Diversity within the Ocean Sciences workforce is still underperforming relative to other scientific disciplines, a problem that will be only be solved by recruiting, engaging and retaining a more diverse student population. The Monterey Bay Regional Ocean Science Research Experiences for Undergraduates program is housed at California State University, Monterey Bay (CSUMB), an HSI with strong connections to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system. From this unique position, 11 sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students engage in rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two cohorts (2014, 2015) and here we present successes, challenges and lessons learned for a program designed to prepare students for 21st century Ocean Science careers.

  17. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences. (United States)

    Clarkston, B. E.; Garza, C.


    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  18. Designing and Implementing a Computational Methods Course for Upper-level Undergraduates and Postgraduates in Atmospheric and Oceanic Sciences (United States)

    Nelson, E.; L'Ecuyer, T. S.; Douglas, A.; Hansen, Z.


    In the modern computing age, scientists must utilize a wide variety of skills to carry out scientific research. Programming, including a focus on collaborative development, has become more prevalent in both academic and professional career paths. Faculty in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin—Madison recognized this need and recently approved a new course offering for undergraduates and postgraduates in computational methods that was first held in Spring 2017. Three programming languages were covered in the inaugural course semester and development themes such as modularization, data wrangling, and conceptual code models were woven into all of the sections. In this presentation, we will share successes and challenges in developing a research project-focused computational course that leverages hands-on computer laboratory learning and open-sourced course content. Improvements and changes in future iterations of the course based on the first offering will also be discussed.

  19. Using Web 2.0 tools to connect shore-based users to live science from the wide blue ocean (United States)

    Cooper, S. K.; Peart, L.; Collins, J.


    The fast-expanding use of social networking tools, combined with improved connectivity available through satellite-provided internet on board the scientific ocean drilling vessel JOIDES Resolution (the JR), has allowed for a whole new kind of interaction. Unlike in the not-so-distant past, when non-participants were forced to wait for months to read about the results of ongoing research, web tools allow almost instantaneous participation in ship-based ocean science. Utilizing a brand new portal,, scientists and educators at sea can post daily blogs about their work and respond to questions and comments on those blogs, update the JR’s Facebook and Twitter pages, and post videos and photos to YouTube and Flickr regularly. Live video conferencing tools also allow for direct interaction with scientists and a view into the work being done on board in real time. These tools have allowed students, teachers and families, groups and individuals on shore to follow along with the expeditions of the ship and its exciting scientific explorations -- and become a part of them. Building this community provides a whole range of rich interactions and brings seafloor research and the real process of science to those who would never before have had access to it. This presentation will include an overview of the web portal and its associated social networking sites, as well as a discussion of the challenges and lessons learned over nearly a year of utilizing these new tools. The web portal home page.

  20. Enhancing Graduate Education and Research in Ocean Sciences at the Universidad de Concepcion (UDEC) and in Chile: Cooperation Between UDEC and Woods Hole Oceanographic Institution. (United States)

    Farrington, J.; Pantoja, S.


    The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.

  1. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.


    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  2. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses (United States)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.


    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an…

  3. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.


    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  4. History and Nature of Science enriched Problem-Based Learning on the origins of biodiversity and of continents and oceans

    Directory of Open Access Journals (Sweden)

    Cristina Sousa


    Full Text Available The episode of the History of Science (HOS on the theory of continental drift proposed by Alfred Wegener has been considered an excellent example for teaching students aspects of Nature of Science (NOS and the relation of Science with social and tecnological contexts. We implemented a NOS and HOS-enriched Problem-Based Learning environment at the middle (year 7 of the Portuguese National Curriculum and secondary level (year 10 for teaching the origins of biodiversity and of continents and oceans (mobilism.  The goal of providing detailed implementation practices is to adress the lack of how to in Problem-based learning (PBL implementation in classrooms for 12 to 16 year old students and is the first practical example of implementation using this episode of HOS for teaching geological mobilism integrated with evolution. Therefore, in this study, we provide specific suggestions for supporting teachers’ classroom efforts in implementing PBL, such as scaffolding. The ill-problem presented to students, without a single correct answer, was based on the phylogeny of extant and extinct ratite birds, described by Charles Darwin and the present geographical distribution. The evaluation of the students was focused on the chain of reasoning employed, and we performed a comparisation analysis of the problem’s solution presented by the students of both classes regarding the explanation of the phylogeny of ratites based on geological mobilism. We observed an overall improvement (25-77% of the percentages of students pre- and post-instruction adequate answers; therefore our PBL strategy was efficient.

  5. VIIRS Ocean Color Reprocessed Science Quality Environmental Data Record (EDR) Level 2 products from 2012-01 to the present (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains VIIRS Ocean Color Reprocessed Environmental Data Record (EDR) Level 2 products produced by the NESDIS Center for Satellite Applications and...

  6. VIIRS Ocean Color Reprocessed Science Quality Environmental Data Record (EDR) Level 3 products from 2012-01 to the present (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains VIIRS Ocean Color Reprocessed Environmental Data Record (EDR) Level 3 products produced by the NESDIS Center for Satellite Applications and...

  7. The Ocean Literacy Campaign (United States)

    Schoedinger, S. E.; Strang, C.


    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL:

  8. Tools for Tomorrow's Science and Technology Workforce: MATE's 2006 ROV Competition Sets Students' Sights on Ocean Observing Systems (United States)

    Zande, Jill; Meeson, Blanche; Cook, Susan; Matsumoto, George


    Teams participating in the 2006 ROV competition organized by the Marine Advanced Technology Education (MATE) Center and the Marine Technology Society's (MTS) ROV Committee experienced first-hand the scientific and technical challenges that many ocean scientists, technicians, and engineers face every day. The competition tasked more than 1,000 middle and high school, college, and university students from Newfoundland to Hong Kong with designing and building ROVs to support the next generation of ocean observing systems. Teaming up with the National Office for Integrated and Sustained Ocean Observations, Ocean. US, and the Ocean Research Interactive Observatory Networks (ORION) Program, the competition highlighted ocean observing systems and the careers, organizations, and technologies associated with ocean observatories. The student teams were challenged to develop vehicles that can deploy, install, and maintain networks of instruments as well as to explore the practical applications and the research questions made possible by observing systems.

  9. Provenance of marbles used for building the internal spiral staircase of the bell tower of St. Nicholas Church (Pisa, Italy) (United States)

    Lezzerini, Marco; Antonelli, Fabrizio; Gallello, Gianni; Ramacciotti, Mirco; Parodi, Luca; Alberti, Antonio; Pagnotta, Stefano; Legnaioli, Stefano; Palleschi, Vincenzo


    The aim of this study is to investigate the provenance of marbles used as architectural elements (bases, shafts and capitals of columns) for building the internal spiral staircase of the medieval bell tower of St. Nicholas Church at Pisa, Italy. Accordingly, the 45 collected marble samples have been analysed by optical microscopy, X-ray powder diffraction and mass spectroscopy for carbon and oxygen stable isotope ratio analysis; additionally, SEM-EDS analysis have been performed to complement data about accessory minerals. By comparison with literature data on the main sources of the white Mediterranean marbles used in ancient times, the results show that the analysed samples are mainly white crystalline marbles from Carrara (Italy) and, subordinately, from other Tuscan and Eastern Mediterranean quarrying areas. In fact, Mt. Pisano and Campiglia (Tuscany, Italy) and Marmara (Turkey), Paros, Mt. Penteli, Thasos (Greece) are minor sources. The other coloured stones identified on the strength of their macroscopic features are quartzites from Mt. Pisano area and granitoids from Sardinia and Island of Elba (Italy). Occasionally, a very limited number of architectonical elements made up of Acquabona limestone from Rosignano Marittimo (Livorno, Italy), red limestone with ammonites (the so-called "Rosso Ammonitico") and black limestone belonging to the Tuscan Nappe sequence, outcropping at northwest of Pisa in the nearby Monti d'Oltre Serchio area, are present.

  10. Time horizons and electricity futures: An application of Nicholas Georgescu-Roegen's general theory of economic production

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Katharine N. [Department of Economics, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Gibson Institute for Land, Food and Environment, Queen' s University of Belfast, Northern Ireland (United Kingdom); Mayumi, Kozo [Faculty of Integrated Arts and Sciences, The University of Tokushima (Japan)


    This paper reports theoretical economic production work and uses electricity futures trading to illustrate its argument. The focus is relationships between time, production and tradition both in Nicholas Georgescu-Roegen's analytical representation of the production process (i.e., flow/fund model) and in his dialectical scheme dealing with the evolutionary changes in the economic process. Our main arguments are (1) the flow/fund model is designed to be employed in conjunction with attention to how the boundaries of a given process are determined and (2) process boundaries are dialectical distinctions - between process and not-process - that are strongly related to time and tradition. We propose that Georgescu-Roegen's The Entropy Law and the Economic Process is best understood as the elaboration of a general theory of economic production and we developed two conceptual tools (time {open_square} and meta-funds), both of which are related to the dialectical distinction between process and not-process, which we use to operationalise this general theory. Finally, we demonstrate that, although trading in electricity futures is surprising if one uses a stock/flow vs services distinction (because electricity supply is classed as a service) it appears perfectly logical under Georgescu-Roegen's general theory: shortening time horizons, combined with a shift in the relationship between raw fuel supplies and power production procedures, lead to a shift in the status of electricity supply, from fund to flow. (author)

  11. Nicholas Urfe’s Masculine Trap or the Construction of Manhood, its Ambivalences and Limitations in John Fowles’s The Magus

    Directory of Open Access Journals (Sweden)

    Irina Strout


    Full Text Available Western society and its fi ction faces the overwhelming problem of masculinity and its modeling. The era of war, capitalism, the challenges of feminism aff ect the ideology within which men are constructed both as individuals and as a social group. John Fowles’s fi ction tackles the crucial issue of male power and control as masculinity is put to test and trial in his 1965 novel The Magus. The defi nition of manhood, male virility and social respectability of the period shape the 20th century male characters in Fowles’s fiction. This paper aims to explore how John Fowles investigates the role of masculinity and power myths on the personal level of relationship and a wider scale of war and capitalism in The Magus. Notions of masculinity off er the protagonist, Nicholas Urfe, a sense of a superiority and power over women in the course of the novel. Among the goals of the project is to examine the mythical journey of Nicholas, which becomes a testing ground of his masculinity and maturity, as well his trial and ‘disintoxication,’ which is intended to help him to reevaluate his life and his relationships with women. One of the issues posed is whether Nicholas Urfe is reborn as a new man at the end of his search for redemption or if he remains the same egotistic, ‘lone wolf’ as he appears in the beginning of the novel.

  12. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University


    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  13. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans (United States)

    Ryan, J. G.; Singer, J.


    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  14. Aspects of marine geoscience: a review and thoughts on potential for observing active processes and progress through collaboration between the ocean sciences. (United States)

    Mitchell, Neil C


    Much progress has been made in the UK in characterizing the internal structures of major physiographic features in the oceans and in developing understanding of the geological processes that have created or shaped them. UK researchers have authored articles of high impact in all areas described here. In contrast to terrestrial geoscience, however, there have been few instrumented observations made of active processes by UK scientists. This is an area that could be developed over the next decades in the UK. Research on active processes has the potential ability to engage the wider public: Some active processes present significant geo-hazards to populations and offshore infrastructure that require monitoring and there could be commercial applications of technological developments needed for science. Some of the suggestions could involve studies in shallow coastal waters where ship costs are much reduced, addressing tighter funding constraints over the near term. The possibilities of measuring aspects of volcanic eruptions, flowing lava, turbidity currents and mass movements (landslides) are discussed. A further area of potential development is in greater collaboration between the ocean sciences. For example, it is well known in terrestrial geomorphology that biological agents are important in modulating erosion and the transport of sediments, ultimately affecting the shape of the Earth's surface in various ways. The analogous effect of biology on large-scale geomorphology in the oceans is also known but remains poorly quantified. Physical oceanographic models are becoming increasingly accurate and could be used to study further the patterns of erosion, particle transport and deposition in the oceans. Marine geological and geophysical data could in turn be useful for further verification of such models. Adapting them to conditions of past oceans could address the shorter-period movements, such as due to internal waves and tides, which have been barely addressed in

  15. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, La Parguera and Guanica, Puerto Rico, 2011-2012 (NODC Accession 0104343) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected in order to 1) To spatially characterize and monitor the distribution, abundance, and size of both reef fishes and macro-invertebrates...

  16. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, Flower Garden Banks, Texas, 2009-2011 (NODC Accession 0104344) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Flower Garden Banks National Marine Sanctuary (FGBNMS) represents the northernmost tropical western Atlantic coral reef on the continental shelf and supports the...

  17. Ocean Physicochemistry versus Climate Change


    Góralski, Bogdan


    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  18. National Status and Trends, Benthic Surveillance Project Pathology, 1984-1992, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  19. National Status and Trends: Bioeffects Assessment Program Sites (1986 to present) Compiled from NOAA's National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains sample collection location information for the National Status and Trends, Bioeffects Assessment Project. The Bioeffects Assessment Sites data...

  20. Okeanos Explorer (EX1504L4): Campaign to Address Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) Leg IV (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ship will conduct 24 hour operations consisting of daytime ROV dives and evening/nighttime mapping operations including during transit. During this cruise we...

  1. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  2. National Status and Trends, Benthic Surveillance Project Sites, 1984-1992, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set reports information regarding the nominal sampling locations for the National Status and Trends Benthic Surveillance Project sites. One record is...

  3. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  4. National Status and Trends, Benthic Surveillance Project DNA-Xenobiotic Adducts Data, 1991, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and to detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National...

  5. Communicating Ocean Acidification (United States)

    Pope, Aaron; Selna, Elizabeth


    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  6. Wind Generated Ocean Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter


    Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)......Book review: I. R. Young, Elsevier Ocean Engineering Series, Vol 2. Elsevier Science, Oxford, UK, 1999, 306 pages, hardbound, ISBN 0-08-043317-0, Dfl. 275,00 (US$ 139.50)...

  7. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science (United States)

    Anderson, T.


    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  8. Putting Science First: Using the Precautionary Principle in the Central Arctic Ocean to Prevent a Fishing Disaster Before it Occurs (Invited) (United States)

    Nachman, C.


    As ice conditions change and ocean temperatures continue to rise, the potential for living marine resources to migrate farther north and for vessels to journey north with them is expanding. To date, the central Arctic Ocean (CAO) has remained relatively unexposed to human activities, including commercial fishing. However, as conditions continue to change, the potential for expansion of fishing fleets exists. In July 2015, the five Arctic coastal states signed a declaration concerning the prevention of unregulated high seas fishing in the CAO. Recognizing the need to involve additional nations with interests in the Arctic region, in December 2015, the five Arctic coastal states, along with China, the European Union, Japan, Iceland, and Korea, began a process to negotiate a binding agreement to prevent unregulated fishing in the high seas of the CAO. A key underlying goal of the negotiations is to reach agreement that nations would establish a joint program of scientific research and monitoring to better understand the CAO ecosystem and whether fish stocks might exist there that could be harvested on a sustainable basis and the possible impacts of such fisheries on the ecosystems. The data collected through the international joint science program will compose a key piece of the decision-making at the policy level regarding establishing appropriate measures or organizations to manage fishing in the CAO should the science indicate potentials for commercial fishing in the CAO. Since the beginning of these high-level negotiations, the policy makers have consistently agreed that conducting collaborative science is the primary way to determine whether sustainable commercial fishing could one day occur in the region. I will highlight the policy negotiation process and parallel science meetings to date to demonstrate how science can influence policy to prevent a fishing disaster.

  9. NOAA/NOS National Centers for Coastal Ocean Science (NCCOS) /Center for Coastal Ocean Science (CCMA) benthic habitat and fish community assessment, U.S. Virgin Islands, 2011-2012 (NODC Accession 0088018) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were collected 2011-2012 from select locations on St. Thomas, St. Croix, and St. John (U.S. VI) in order to 1) to spatially characterize and monitor the...

  10. Paradigm change in ocean studies: multi-platform observing and forecasting integrated approach in response to science and society needs (United States)

    Tintoré, Joaquín


    The last 20 years of ocean research have allowed a description of the state of the large-scale ocean circulation. However, it is also well known that there is no such thing as an ocean state and that the ocean varies a wide range of spatial and temporal scales. More recently, in the last 10 years, new monitoring and modelling technologies have emerged allowing quasi real time observation and forecasting of the ocean at regional and local scales. Theses new technologies are key components of recent observing & forecasting systems being progressively implemented in many regional seas and coastal areas of the world oceans. As a result, new capabilities to characterise the ocean state and more important, its variability at small spatial and temporal scales, exists today in many cases in quasi-real time. Examples of relevance for society can be cited, among others our capabilities to detect and understand long-term climatic changes and also our capabilities to better constrain our forecasting capabilities of the coastal ocean circulation at temporal scales from sub-seasonal to inter-annual and spatial from regional to meso and submesoscale. The Mediterranean Sea is a well-known laboratory ocean where meso and submesoscale features can be ideally observed and studied as shown by the key contributions from projects such as Perseus, CMEMS, Jericonext, among others. The challenge for the next 10 years is the integration of theses technologies and multiplatform observing and forecasting systems to (a) monitor the variability at small scales mesoscale/weeks) in order (b) to resolve the sub-basin/seasonal and inter-annual variability and by this (c) establish the decadal variability, understand the associated biases and correct them. In other words, the new observing systems now allow a major change in our focus of ocean observation, now from small to large scales. Recent studies from SOCIB have shown the importance of this new small to large-scale multi

  11. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  12. Intramolecular Nicholas reactions in the synthesis of dibenzocycloheptanes. Synthesis of allocolchicine NSC 51046 and analogues and the formal synthesis of (-)-allocolchicine. (United States)

    Djurdjevic, Sinisa; Yang, Fei; Green, James R


    The preparation of dibenzocycloheptyne-Co(2)(CO)(6) complexes by intramolecular Nicholas reactions of biaryl-2-propargyl alcohol-Co(2)(CO)(6) derivatives is described. Reductive decomplexation of the dibenzocycloheptyne-Co(2)(CO)(6) complexes affords the corresponding dibenzocycloheptenes, individual members of which have been employed in a formal total synthesis of (-)-allocolchicine, the preparation of 6,7-dihydro-3,4,9,10,11-pentamethoxy-5H-dibenzo[a,c]cyclohepten-5-one, and the enantioselective total syntheses of NSC 51046 and its 3,8,9,10-tetramethoxy regioisomer.

  13. Nicholas J. Grundl | NREL (United States)

    , 2014 Featured Publications "Improving Efficiency of Human Pluripotent Stem Cell Differentiation -3228 Research Interests Application of numerical methods to process problems Fuel and chemical production from biomass feedstocks Biochemical conversion of feedstocks Affiliated Research Programs Algal

  14. Nicholas Chielotam Akas

    African Journals Online (AJOL)


    Maps. Mapping activities are often used as introductory activities. They allow the community to show and talk about how they see the area where they live, the resources/ ... Brain Storming. Here the member of the community is asked to think of any idea that comes to mind and list all the ideas without evaluation or judgment.

  15. [George Nicholas Papanicolaou]. (United States)

    Broso, P R; Buffetti, G


    G. N. Papanicolaou was born on May the 13, 1883 in the city of Kymi on the Greek island of Euboea. He received his MD degree from the University of Athens in 1904 and a PhD from the University of Munich in 1910. After service as a medical officer in the Balkan War of 1912-1913, he came to New York with Mary (for over 50 years Dr Pap's life companion). George's violin playing at restaurants and coffee-shops supplied them with a few extra cents. Papanicolaou was appointed assistant in the Pathology Laboratory at the New York Hospital. In 1928 he presented his work "New Cancer Diagnosis" to the third race betterment conference (Battle Creek, Michigan). But the work was met with scepticism. The now famous monograph "The Diagnostic Value of Vaginal Smears in Carcinoma of the Uterus" was published in 1941 in the Am J Obst Gyn. During this time, he developed his method of preservation of these cells by wet fixation and precise staining. Papanicolaou persisted with his ideas, and finally cytologic examination of the cervix was accepted. The power of Papanicolaou screening for uterine cancer was remarkable. The first National Cytology Congress, held in 1948, hailed this new diagnostic tool for carcinoma of the cervix as unique because it could detect cancer before it was visible. He described the importance of a distinct cellular pattern corresponding to cervical intraepithelial neoplastic lesions. The value of this pattern, expressing evolutionary steps in the development of cancer at individual cell levels, was not appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Nicholas J. Nagle | NREL (United States) | 303-384-6184 Research Interests Nick is interested in understanding how advanced feedstocks Technology (2015) "Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based

  17. The sea as science: ocean research institutions and strategies in Portugal in the twentieth century (from the First Republic to democracy). (United States)

    Rollo, Maria Fernanda; Queiroz, Maria Inês; Brandão, Tiago


    Historical perspective has revealed the many aspects of Portugal's interest in the sea, evident in a series of initiatives and entities throughout the twentieth century. From the beginning of the century until the 1974 Revolution, the genesis of organizations devoted to the scientific study of the sea is analyzed, observing their specific missions in the context of the formulation of science policy, and more specifically "ocean policies." The Portuguese valued knowledge of the sea due to their maritime vocation, coastal life and geographic position. Traversing different historical and political contexts and development cycles, the assumptions and political implications that accentuate the strategic dimension of science policy, visible in the geopolitical affirmation of oceanography, are studied.

  18. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.


    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  19. History and Nature of Science enriched Problem-Based Learning on the origins of biodiversity and of continents and oceans


    Sousa, Cristina


    [EN] The episode of the History of Science (HOS) on the theory of continental drift proposed by Alfred Wegener has been considered an excellent example for teaching students aspects of Nature of Science (NOS) and the relation of Science with social and tecnological contexts. We implemented a NOS and HOS-enriched Problem-Based Learning environment at the middle (year 7 of the Portuguese National Curriculum) and secondary level (year 10) for teaching the origins of biodiversity and of continent...

  20. Energy from the ocean. Report of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fifth Congress, Second Session by the Science Policy Research Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)


    In the area of renewable sources of energy from the ocean, the report includes chapters on ocean thermal energy conversion; energy from ocean waves; energy from ocean currents; energy from tides; energy from oceanic winds; energy from salinity gradients; and energy from oceanic bioconversion. Also covered are the nonrenewable sources of energy from the ocean with chapters on deep ocean oil and gas; offshore geothermal energy; and offshore hard mineral energy resources. The report concludes with a bibliography and a selection of current articles on the general subject of the energy potential of the oceans.

  1. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  2. Ocean Acidification | Smithsonian Ocean Portal (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  3. Métallogénie du gîte à PB-ZN-AG de Nicholas-Denys, Nouveau-Brunswick


    Deakin, Michelle Kyle


    Le gîte à Pb–Zn–Ag de Nicholas-Denys, dans le camp minier de Bathurst (Nouveau-Brunswick), est constitué de plusieurs lentilles à pyrrhotite–sphalérite–galène, encaissées par le mudstone de la Formation de Millstream du Groupe de Fournier, déposé dans un bassin d’arrière-arc ordovicien. Les lentilles de sulfures sont concordantes avec la foliation régional S1, et sont boudinées parallèlement à la faille de Rocky-Brook Millstream, indiquant que les sulfures prédatent la déformation décrochante...

  4. Oceanic Weather Decision Support for Unmanned Global Hawk Science Missions into Hurricanes with Tailored Satellite Derived Products (United States)

    Feltz, Wayne; Griffin, Sarah; Velden, Christopher; Zipser, Ed; Cecil, Daniel; Braun, Scott


    The purpose of this presentation is to identify in-flight hazards to high-altitude aircraft, namely the Global Hawk. The Global Hawk was used during Septembers 2012-2016 as part of two NASA funded Hurricane Sentinel-3 field campaigns to over-fly hurricanes in the Atlantic Ocean. This talk identifies the cause of severe turbulence experienced over Hurricane Emily (2005) and how a combination of NOAA funded GOES-R algorithm derived cloud top heights/tropical overshooting tops using GOES-13/SEVIRI imager radiances, and lightning information are used to identify areas of potential turbulence for near real-time navigation decision support. Several examples will demonstrate how the Global Hawk pilots remotely received and used real-time satellite derived cloud and lightning detection information to keep the aircraft safely above clouds and avoid regions of potential turbulence.

  5. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  6. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  7. The Lenfest Ocean Program's experience in building institutional support for connecting science and decision-making in marine systems (United States)

    Bednarek, A.; Close, S.; Curran, K.; Hudson, C.


    Addressing contemporary sustainability challenges requires attention to the integration of scientific knowledge into decision-making and deliberation. However, this remains a challenge in practice. We contend that careful stewardship of this process of integration can result in positive, durable outcomes by reconciling the production and use of scientific knowledge, and improve its relevance and utility to decision-makers. We will share lessons learned from a grantmaking program that has addressed this challenge through programmatic innovations, including by supporting staff devoted to an intermediary role. Over the past 13 years, the Lenfest Ocean Program served in a boundary spanning role by integrating decision-makers into the scoping and outreach of program supported scientific research grants. Program staff engage with decision-makers and influencers to identify policy-relevant research questions and approaches, ensuring that the research direction addresses users' needs. As research progresses, the staff monitor the grant's progress to improve the match between the research and user needs. The process is resource-intensive, however, and raises interesting questions about the role and development of this kind of specialist within different kinds of institutions, including funding agencies. We suggest that nurturing this role as a practice and profession could ultimately help the scientific community more efficiently respond to sustainability challenges.

  8. Ocean tides (United States)

    Hendershott, M. C.


    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  9. Springer handbook of ocean engineering

    CERN Document Server

    Xiros, Nikolaos


    The handbook is the definitive reference for the interdisciplinary field that is ocean engineering. It integrates the coverage of fundamental and applied material and encompasses a diverse spectrum of systems, concepts and operations in the maritime environment, as well as providing a comprehensive update on contemporary, leading-edge ocean technologies. Coverage includes but is not limited to; an overview of ocean science, ocean signals and instrumentation, coastal structures, developments in ocean energy technologies, and ocean vehicles and automation. The handbook will be of interest to practitioners in a range of offshore industries and naval establishments as well as academic researchers and graduate students in ocean, coastal, offshore, and marine engineering and naval architecture.

  10. Bringing an Ocean to School. (United States)

    MacMillan, Mark W.


    Describes a school program in which two sixth-grade science classes researched, created, and put together an ocean museum targeted at kindergarten through eighth graders who are geographically distanced from the ocean. Details the process for investigating topical areas, organizing teams of students, researching, writing, creating displays, and…

  11. On the implications of the Surface Water and Ocean Topography (SWOT) mission for hydrologic science and applications (Invited) (United States)

    Lettenmaier, D. P.


    The SWOT mission will provide surface water elevation and extent information with unprecedented accuracy and spatial resolution globally. All of the implications of thedata that SWOT will produce for the hydrologic science and applications communities are not yet apparent. The SWOT data will, however, certainly offer groundbreaking opportunities for estimation of two key terms in the land surface water budget: surface water storage (in almost all water bodies with surface area exceeding about 1 km2) and derived discharge for many of the world’s large rivers (widths greater than roughly 100-250 m). Among just a few of the science questions that the observations should allow us to address are a) what are the dynamics of floods and overbank flows in large rivers? b) what is the contribution of long-term, seasonal, and interannual storage in reservoirs, lakes, and wetlands to sea level? c) what is the magnitude of surface water storage changes at seasonal to decadal time scales and continental spatial scales relative to soil moisture and groundwater? d) what will be the implications of SWOT-based estimates of reservoir storage and storage change to the management of transboundary rivers? These quite likely are among just a few of the questions that SWOT will help elucidate. Others no doubt will arise from creative analyses of SWOT data in combination with data from other missions I conclude with a discussion of mechanisms that will help foster a community to investigate these and other questions, and the implications of a SWOT data policy.

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  13. The Power of Cooperation in International Paleoclimate Science: Examples from the PAGES 2k Network and the Ocean2k Working Group (United States)

    Addison, J. A.


    The Past Global Changes (PAGES) project of IGBP and Future Earth supports research to understand the Earth's past environment to improve future climate predictions and inform strategies for sustainability. Within this framework, the PAGES 2k Network was established to provide a focus on the past 2000 years, a period that encompasses Medieval Climate Anomaly warming, Little Ice Age cooling, and recent anthropogenically-forced climate change. The results of these studies are used for testing earth system models, and for understanding decadal- to centennial-scale variability, which is needed for long-term planning. International coordination and cooperation among the nine regional Working Groups that make up the 2k Network has been critical to the success of PAGES 2k. The collaborative approach is moving toward scientific achievements across the regional groups, including: (i) the development of a community-driven open-access proxy climate database; (ii) integration of multi-resolution proxy records; (iii) development of multivariate climate reconstructions; and (iv) a leap forward in the spatial resolution of paleoclimate reconstructions. The last addition to the 2k Network, the Ocean2k Working Group has further innovated the collaborative approach by: (1) creating an open, receptive environment to discuss ideas exclusively in the virtual space; (2) employing an array of real-time collaborative software tools to enable communication, group document writing, and data analysis; (3) consolidating executive leadership teams to oversee project development and manage grassroots-style volunteer pools; and (4) embracing the value-added role that international and interdisciplinary science can play in advancing paleoclimate hypotheses critical to understanding future change. Ongoing efforts for the PAGES 2k Network are focused on developing new standards for data quality control and archiving. These tasks will provide the foundation for new and continuing "trans-regional" 2k

  14. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)


    often not well known or are completely unknown, a strategic workshop was organised by the ESF Standing Committee for Life, Earth and Environmental Sciences (LESC) in cooperation with the ESF EUROCORES Programme EuroCLIMATE. The aim was to address the issue of the impacts of ocean acidification on both the natural and socioeconomic systems, and to identify the gaps of knowledge in this field. The present Science Policy Briefing resulting from this strategic workshop has undergone external international peer review and has been approved by both the Marine Board-ESF and LESC. The ESF considers this Science Policy Briefing on the Impacts of Ocean Acidification an important step towards raising awareness amongst a wide range of research actors, policy makers and funding agencies. Taking into account the range of priorities and key areas of research requiring action at the pan-European level, a series of recommendations for European actions have been drawn up under the following five headings: (i) increase understanding and improve quantification of the organismal and ecosystem responses to ocean acidification; (ii) include the human dimension by increasing collaboration and integration efforts between natural and social sciences; (iii) rationalise, improve and focus monitoring and data gathering, management, processing and accessibility efforts; (iv) increase dissemination, outreach and capacity-building efforts, in particular related to communicating ocean acidification to stakeholders (policy makers, research founders, public, media, etc.); and (v) improve coordination of ocean acidification research and collaboration both at the national and international levels

  15. Oceans and Human Health (OHH): a European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF). (United States)

    Moore, Michael N; Depledge, Michael H; Fleming, Lora; Hess, Philipp; Lees, David; Leonard, Paul; Madsen, Lise; Owen, Richard; Pirlet, Hans; Seys, Jan; Vasconcelos, Vitor; Viarengo, Aldo


    will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.

  16. An overview on integrated data system for archiving and sharing marine geology and geophysical data in Korea Institute of Ocean Science & Technology (KIOST) (United States)

    Choi, Sang-Hwa; Kim, Sung Dae; Park, Hyuk Min; Lee, SeungHa


    We established and have operated an integrated data system for managing, archiving and sharing marine geology and geophysical data around Korea produced from various research projects and programs in Korea Institute of Ocean Science & Technology (KIOST). First of all, to keep the consistency of data system with continuous data updates, we set up standard operating procedures (SOPs) for data archiving, data processing and converting, data quality controls, and data uploading, DB maintenance, etc. Database of this system comprises two databases, ARCHIVE DB and GIS DB for the purpose of this data system. ARCHIVE DB stores archived data as an original forms and formats from data providers for data archive and GIS DB manages all other compilation, processed and reproduction data and information for data services and GIS application services. Relational data management system, Oracle 11g, adopted for DBMS and open source GIS techniques applied for GIS services such as OpenLayers for user interface, GeoServer for application server, PostGIS and PostgreSQL for GIS database. For the sake of convenient use of geophysical data in a SEG Y format, a viewer program was developed and embedded in this system. Users can search data through GIS user interface and save the results as a report.

  17. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María


    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  18. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  19. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic" (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne


    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  20. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  1. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L


    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  2. "Crystals within Crystals: The Story of Sea Ice". A Classroom-Based Outreach Project Communicating Cutting-Edge Ocean Science to School Pupils (United States)

    Butler, B.


    'Crystals within Crystals: The story of sea ice' is a UK based outreach project based that uses a range practical tools to engage school students with cutting edge scientific research that relates to the use of some of the world's most powerful X-rays in sea ice research. The project is delivered in the form of a classroom workshop that first introduces school pupils (aged 11-14) to seawater and the salts that give it a salinity. The pupils are then shown how the presence of salts within seawater results in very important physical changes when the liquid freezes, which includes different structural and optical properties of the ice. The properties of the ice are then linked to the presence of countless microscopic salt crystals that are trapped within the microstructure of the frozen seawater, which is explained with use of a novel crystal growth demonstration. Given that there is currently no way of successfully removing these salt crystals from the ice, the workshop culminates in explaining how some of the worlds most powerful X-rays can be used to investigate processes that otherwise remain elusive. The workshop introduces students to the fundamental principles of scientific enquiry, the sea ice environment, and the power of X-rays in investigating the properties of crystals. Here we present information that outlines a host of practical and project management tools that are applicacble to outreach projects in the the field of ocean sciences, with the aim of seeding ideas and interest for other graduate student to enage with the public during their studies.

  3. Engaging in Argument from Evidence and the Ocean Sciences Sequence for Grades 3-5: A case study in complementing professional learning experiences with instructional materials aligned to instructional goals (United States)

    Schoedinger, S. E.; Weiss, E. L.


    K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers

  4. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  5. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  6. Ocean energy

    International Nuclear Information System (INIS)


    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  7. Measuring Ocean Literacy: What teens understand about the ocean using the Survey of Ocean Literacy and Engagement (SOLE) (United States)

    Greely, T. M.; Lodge, A.


    Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental

  8. Ocean Acidification (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  9. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  10. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S


    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  11. Ocean Color (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  12. Ocean Bottom Seismic Scattering (United States)


    EPR, the Clipperton and Orozco fracture zones , and along the coast of Mexico, were recorded for a two month period using ocean bottom seismometers...67. Tuthill, J.D., Lewis, B.R., and Garmany, J.D., 1981, Stonely waves, Lopez Island noise, and deep sea noise from I to 5 hz, Marine Geophysical...Patrol Pell Marine Science Library d/o Coast Guard R & D Center University of Rhode Island Avery Point Narragansett Bay Campus Groton, CT 06340

  13. Ocean Quality


    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis


    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  14. Okeanos Explorer (EX1504L2): Campaign to Address Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) NWHI Exploration Leg II (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ship will conduct 24 hour operations consisting of daytime ROV dives and evening/nighttime mapping operations including during transit. During this cruise we...

  15. National Status and Trends, Benthic Surveillance Project Aryl Hydrocarbon Hydrolase (AHH) Data, 1988-1992, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In order to determine the current status of and detect any long-term trends in the environmental quality of U.S. nearshore waters, NOAA initiated the National Status...

  16. National Status and Trends, Benthic Surveillance Project Fluorescent Aromatic Compounds (FAC) Data, 1984-1991, National Centers for Coastal Ocean Science (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Fluorescent Aromatic Compounds (FAC) file reports the trace concentrations of Fluorescent Aromatic...

  17. Archive of Geosample Data and Information from the Oregon State University (OSU) College of Earth, Ocean and Atmospheric Sciences (CEOAS) Marine Geology Repository (MGR) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon State University Marine Geology Repository (OSU-MGR) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database, contributing...

  18. Monitoring of ocean storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)


    It has been proposed that atmospheric CO2 accumulation could be slowed by capture of CO2 from point sources and subsequent storage of that CO2 in the ocean. If applied, such sequestration efforts would need to be monitored for compliance, effectiveness, and unintended consequences. Aboveground inspection and monitoring of facilities and practices, combined with ocean observations, could assure compliance with ocean sequestration guidelines and regulations. Ocean observations could be made using a variety of sensors mounted on moorings or underwater gliders. Long-term effectiveness and leakage to the atmosphere must be estimated from models, since on large spatial scales it will be impossible to observationally distinguish carbon stored by a project from variable concentrations of background carbon. Furthermore, the ocean naturally would absorb roughly 80% of fossil fuel CO2 released to the atmosphere within a millennium. This means that most of the CO2 sequestered in the ocean that leaks out to the atmosphere will be reabsorbed by the ocean. However, there is no observational way to distinguish remaining carbon from reabsorbed carbon. The science of monitoring unintended consequences in the deep ocean interior is at a primitive state. Little is understood about ecosystems of the deep ocean interior; and even less is understood about how those ecosystems would respond to added CO2. High priority research objectives should be (1) to improve our understanding of the natural ecosystems of the deep ocean, and (2) to improve our understanding of the response of these ecosystems to increased oceanic CO2 concentrations and decreased ocean pH.

  19. In the Footsteps of Roger Revelle: A STEM Partnership Between Scripps Institution of Oceanography, Office of Naval Research and Middle School Science Students Bringing Next Generation Science Standards into the Classroom through Ocean Science (United States)

    Brice, D.; Appelgate, B., Jr.; Mauricio, P.


    Now in its tenth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with Next Generation Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO),Office of Naval Research (ONR), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With a generous grant from ONR, students are able to tour the SIO Ships and spend a day at sea doing real oceanographic data collection and labs. Through real-time and near-realtime broadcasts and webcasts, students are able to share data with scientists and gain an appreciation for the value of Biogeochemical research in the field as it relates to their classroom studies. Interaction with scientists and researchers as well as crew members gives students insights into not only possible career paths, but the vital importance of cutting edge oceanographic research on our society. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, Skype, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum models the Next Generation Science Standards encouraging active inquiry and critical thinking with intellectually stimulating problem- solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as

  20. Numerical Modeling of Ocean Circulation (United States)

    Miller, Robert N.


    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  1. Ocean images in music compositions and folksongs (United States)

    Liu, C. M.


    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  2. Archive of Geosample Information from Scientific Ocean Drilling (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Texas A and M University (TAMU), JOIDES Resolution Science Operator of the International Ocean Discovery Program (IODP), is a partner in the Index to Marine and...

  3. Northwest pacific carbon study (NOPACCS) on the environmental science in the ocean; Kaiyochu no tanso junkan mechanism no kaimei (NOPACCS) wo chushin to shite

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K. [National Institute for Resources and Environment, Tsukuba (Japan); Tsubota, H. [Kansai Environmental Engineering Center Co. Ltd., Osaka (Japan)


    At a budget of NEDO, NOPACCS (northwest pacific carbon cycle study) has been started on a five-year plan since 1990. This study solves the behavior of CO2, that is one of the green house effect gases, according to the relation with the ocean. Internationally, this study has a very important meaning. This paper describes the carbon cycle mechanism in the ocean, and the transition and theme of international study activities. For example, among CO2 that was released to the atmosphere in human activities until now, CO2 accumulated in the sea has been deduced in various ways. CO2 in the ocean is circulated via a complicated process such as immobilization by living things, nutritive chain, and particle precipitation in addition to advection and dispersion by an ocean current. Many proposals have also been given to a three-dimensional ocean circulation model. Moreover, the technology of measurement experiment has been developed, and the Hakuho-Maru in the Tokyo university has been taking an active part in an observation boat. 75 refs., 5 figs.

  4. Swedish Masters of Modernism: A Review of Nicholas Adams, Gunnar Asplund’s Gothenburg: The Transformation of Public Architecture in Interwar Europe, and Janne Ahlin, Sigurd Lewerentz, Architect 1885–1975

    Directory of Open Access Journals (Sweden)

    Peter Blundell Jones


    Full Text Available Nicholas Adams, Gunnar Asplund’s Gothenburg: The Transformation of Public Architecture in Interwar Europe, University Park: Penn State University Press, 288 pages, 152 illustrations, 2014, ISBN: 978-0-271-05984-6 Janne Ahlin, Sigurd Lewerentz, Architect 1885–1975, with an epilog by Wilfried Wang, Zürich: Park Books, 204 pages, 29 colour and 307 b/w illustrations, plans and drawings, 2014, ISBN: 978-3-906027-48-7, (facsimile of the original edition by Byggförlaget, Stockholm and MIT Press, Cambridge MA, 1987

  5. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  6. Ocean energy

    International Nuclear Information System (INIS)


    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  7. The wall painting on the western façade and the lunette of the southern portal of St. Nicholas in Ljuboten

    Directory of Open Access Journals (Sweden)

    Radujko Milan


    Full Text Available The wall painting on the façades of St. Nicholas in Ljuboten near Skopje, the endowment of 'Lady Danica', a noblewoman in the time of King Dušan, was destroyed in 1928, during the restoration of the church. Evidence of the appearance of the hitherto unnoticed decoration on the western facade and the southern entrance can be seen on glass plates in the Photograph Collection of the National Museum in Belgrade. When the photographs Nos. 1438, 1444 and 1567 were taken, the painting on the Ljuboten church façades, although damaged or washed away, was still partly visible. On the western façade it extended in three zones (the socle, the standing figures and the busts across the entire façade and from the ground to the porch, the roof of which stood at the foot of the western wall archivolt, while the ornamentation of the southern façade covered the lunette above the entrance and its archivolt. Although in 1925, the painting did not contain a single legible signature or physiognomy, thematically, the outer ornamentation of Ljuboten is essentially clear. The bust of the Mother of God with the infant Christ, facing south, was in the centre of the compositional focus of the western façade. Three figures stood on the left and on the right sides of the portal, one on each of the pilasters, and one monumental figure in each of two niches. From the south, a church hierarch, with short, curly beard, was moving in a stooping position towards the Mother of God. He, certainly, could be identified as the patron of the church, St. Nicholas. The saint raises his right hand in a gesture of exhortation. Behind him, a figure in monastic habit was painted. This person holds a model of the church in the left hand, with the right hand in a gesture of prayer. Undoubtedly, it was the donatrix of the church painted here. As opposed to the figures in the southern part of the western façade, those in the northern part were facing forward. We recognized a saint on the

  8. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  9. Nicholas Kaldor after Thirty Years

    Directory of Open Access Journals (Sweden)

    John Edward King


    Full Text Available The article analyses Kaldor’s ideas on economic policy, his interest in policy issues, and his contribution on specific policies. It underlines Kaldor’s strong and cogent views on three main topics: monetary and fiscal policy, the control of cost inflation, and the stabilisation of commodity prices. The author suggests how Kaldor might have reacted to the most important economic policy questions that still face Britain and the European Union, thirty years after his death. Kaldor was a prominent opponent of Britain’s entry into the then Common Market in the 1970s: not on the basis of any emotive English nationalism, but rather because he believed that the British economy would be damaged by an exposure to unlimited competition from more successful European industries. Perhaps he would have argued that, by 2016, the damage has already been done, and that Britain should now remain in the Union to continue the fight for more sensible macroeconomic policies. He would certainly have been pleased that his adoptive country had refused to join the Eurozone. JEL: B31; E61; E52

  10. Abstract - Belbas, Nicholas (EC2) (United States)

    Belbas, Nicholas


    Originally, I was brought into the Design and Analysis Branch in the Crew and Thermal Systems to work on administrative tasks like archiving and scheduling. However, I ended up splitting my time between secretarial tasks and a technical project. My technical project was originally meant to be a wireless sensor package for the 20ft Spacecraft Thermal Vacuum Chamber in the B7 High Bay. I would be using a miniature wifi development board and a temperature/humidity sensor along with custom 3D modeling to accomplish this. However, after some discussion with my technical mentor, the plan was changed to a mobile autonomous self-charging sensor platform. A mobile platform will allow the sensors to be moved around without depressurizing the chamber. Also, the self-charging aspect of the package allows for almost unlimited time in the chamber. If the on-board battery runs low, the robot can easily be driven to its charging dock and continue to transmit while charging. The driving base is based around a Raspberry Pi 3 board with a 12C PMW DC Motor controller and a PWM controller driving two small gear motors. The sensor transmitter itself is a RHT03 temperature and humidity sensor and Cozir CO2 sensor connected to an ESP8266 Huzzah board. The power distribution system utilizes a pair of 3.7v 3600mah lipo batteries wired to Powerboost 500 boards. Also, the self-charging mechanism utilizes two 12v-max inductive charging coils wired into the same Powerboost boards as the battery. The Raspberry pi is running Python 3.3 for the driving base and Javascript MJPEG library for transmitting live video from the onboard camera. The sensor package is running Arduino-based C++ and the program capturing the data is running PyqtGraph Python and HTML. The shell of the robot itself is a 3D printed case that will (work in progress) snap together. The photo to the left shows the two halves separated from each other. The black shell contains the power distribution boards and connectors while the white shell contains the driving base and data systems.

  11. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery (United States)

    Terrill, E.; John, O.


    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  12. Ocean Acidification (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin


    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  13. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.


    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  14. Tools for Tomorrow’s Science and Technology Workforce: MATE’s 2006 ROV Competition Sets Students’ Sights on Ocean Observing Systems (United States)


    Underwater Robot Challenge was organized and supported by the City University of Hong Kong and the WWF (Worldwide Fund for Nature). THE POWER OF... PARTNERSHIP In addition to providing background information and resources for developing the mission scenario, working with Ocean.US and the ORION

  15. The Volvo Ocean Adventure (United States)

    Boxall, S. R.; Flechter, S.; Byfield, Y.


    The Volvo Ocean Adventure is a web-based international programme for schools and young scientists in the 10-16 age range which was established in June 2001 ( Using the Volvo Ocean Race as its focus it made use of environmental data colletced from the yachts in the round the World race to introduce the public to a wide range of marine environmental topics including pollution, global climate change and fisheries. As well as web-based activities for the class room a variety of "road" shows were established with the race along with an international competition to encourage active participation by young people. The Adventure involved input from over 50 scientists form around the World with the first phase finishing in September 2002. The successes and lessons learned will be presented by the science co-ordinators of the project.

  16. Proceedings of oceans '91

    International Nuclear Information System (INIS)



    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  17. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide


    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  18. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence


    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  19. The origin of continents and oceans

    National Research Council Canada - National Science Library

    Wegener, Alfred 1880-1930; Biram, John


    ... and Antarctica up through the Indian Ocean, and closing the remaining gaps. Wegener then explained various phenomena in historical geology, geomorphy, paleontology, paleoclimatology, and similar areas of science in terms of this continental drift."--From back cover.

  20. Ocean Drilling Program: Web Site Access Statistics (United States)

    web site ODP/TAMU Science Operator Home Ocean Drilling Program Web Site Access Statistics* Overview See statistics for JOIDES members. See statistics for Janus database. 1997 October November December

  1. Artificial radionuclides in the oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.


    The report highlights the areas of major contributions that the nuclear era has made to the understanding of oceanography and the marine sciences, and in particular the application to the public health problems that arise through anthropogenic exploitation of the oceans for the disposal of radioactive materials

  2. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.


    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  3. 77 FR 72831 - Meeting of the Ocean Research Advisory Panel (United States)


    ... commentary. ADDRESSES: The meeting will be held at the Consortium for Ocean Leadership, 1201 New York Avenue... Committee Act (5 U.S.C. App. 2). The meeting will include discussions on ocean research, resource management, and other current issues in the ocean science and management communities. Dated: November 29, 2012. L...

  4. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others


    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  5. The deep ocean under climate change. (United States)

    Levin, Lisa A; Le Bris, Nadine


    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  6. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session. (United States)

    Weiss, N. K.; Wood, J. H.


    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  7. Planet Ocean (United States)

    Afonso, Isabel


    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  8. Ocean plankton. Structure and function of the global ocean microbiome. (United States)

    Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer


    Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  9. Ocean Uses: Hawaii (PROUA) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  10. Marine Science

    African Journals Online (AJOL)

    ination of high quality research generated in the Western Indian Ocean (WIO) region, ... fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships ... Science features state-of-the-art review articles and short communications. ... Non-metric multidimensional scaling (nMDS).

  11. Norwegian Ocean Observatory Network (NOON) (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon


    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  13. Ocean Research - Perspectives from an international Ocean Research Coordination Network (United States)

    Pearlman, Jay; Williams, Albert, III


    The need for improved coordination in ocean observations is more urgent now given the issues of climate change, sustainable food sources and increased need for energy. Ocean researchers must work across disciplines to provide policy makers with clear and understandable assessments of the state of the ocean. With advances in technology, not only in observation, but also communication and computer science, we are in a new era where we can answer questions asked over the last 100 years at the time and space scales that are relevant. Programs like GLOBEC moved us forward but we are still challenged by the disciplinary divide. Interdisciplinary problem solving must be addressed not only by the exchange of data between the many sides, but through levels where questions require day-to-day collaboration. A National Science Foundation-funded Research Coordination Network (RCN) is addressing approaches for improving interdisciplinary research capabilities in the ocean sciences. During the last year, the RCN had a working group for Open Data led by John Orcutt, Peter Pissierssens and Albert Williams III. The teams has focused on three areas: 1. Data and Information formats and standards; 2. Data access models (including IPR, business models for open data, data policies,...); 3. Data publishing, data citation. There has been a significant trend toward free and open access to data in the last few years. In 2007, the US announced that Landsat data would be available at no charge. Float data from the US (NDBC), JCOMM and OceanSites offer web-based access. The IODE is developing its Ocean Data Portal giving immediate and free access to ocean data. However, from the aspect of long-term collaborations across communities, this global trend is less robust than might appear at the surface. While there are many standard data formats for data exchange, there is not yet widespread uniformity in their adoption. Use of standard data formats can be encouraged in several ways: sponsors of

  14. Ocean Prediction Center (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  15. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Associate Profile. Period: 2001–2005. Satheesh, Dr S K . Date of birth: 1 May 1970. Specialization: Aerosols in Climate Address during Associateship: Centre for Atmospheric & Oceanic, Sciences, Indian Institute of Science, Bangalore 560 012

  16. Enhancing Ocean Research Data Access (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter


    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  17. Exploring the southern ocean response to climate change (United States)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire


    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  18. Studying ocean acidification in the Arctic Ocean (United States)

    Robbins, Lisa


    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  19. Ocean Surface Topography Mission (OSTM) /Jason-2: Level-2 Geophysical Data Records (GDR) (NODC Accession 0043269) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSTM/JASON-2 is a follow-on mission continuing the TOPEX/Poseidon and Jason-1, and is designed to ensure continuity of high quality measurements for ocean science...

  20. Ocean Surface Topography Mission (OSTM) /Jason-2 Data Collection, 2008-present (NODC Accession 0118277) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSTM/JASON-2 is a follow-on mission continuing the TOPEX/Poseidon and Jason-1, and is designed to ensure continuity of high quality measurements for ocean science...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  2. Origin of the ``Ocean Bible" (United States)

    Munk, W. H.


    ``The Oceans" is such a landmark for Sverdrup and the Scripps Institution that one ought to take a look at how it came about. The book came very close to NOT being written. Sverdrup was about to decline an invitation by Prentice Hall when his secretary persuaded him to accept. The contract called for 500-600 pages, it ended up with 1087 pages. Royalty was 10% (\\$0.27 to each author for the copy I purchased in 1943). Sverdrup had estimated a market of 550 copies. By the end of 1965 23,766 copies of the American edition alone had been sold. The book was completed in the early war years under very trying conditions for Sverdrup personally. When it did appear in print, a year after Pearl Harbor, the distribution was restricted to the continental United States because `` would be of great aid to the enemy should it fall into his hands." The book carries the mark of Sverdrup's lifelong emphasis on the synthesis of observations: ``we have preferred definite statements to mere enumeration of uncorrelated observations and conflicting interpretations." The result was a coherent presentation of ocean science, a remarkable achievement considering how badly the ocean was undersampled. I will describe my experience as a willing listener while Sverdrup was contemplating of how to organize Chapter XV: The Water Masses and Currents of the Oceans.

  3. So You Want the Public to Care About Your Favourite Submarine Vent-Site? An Art-School Approach to Making Deep-Ocean Science More Accessible (United States)

    German, J. A.; German, C. R.


    In January 2012 the ROV Jason, part of UNOLS/DESSC's National Deep Submergence Facility, conducted the first dives to the world's deepest vent-sites at the Piccard Field, Mid Cayman Rise. The expedition was led by an internationally recognized team of senior scientists and the diverse and spectacular vents present, together with the unusual fauna that they host, were imaged using the new NDSF HDTV camera. Even so, this presentation starts with the premise that such experienced, senior, scientists may not be the best judges of what makes for the best or most engaging public outreach product. When producing a video for outreach, a first consideration must be "why should my viewer be interested?". For any outreach video, there is no incentive for anyone to view it, aside from mutual interests between the message of the video and the viewer. This is the fundamental theoretical application that must always be considered when making any outreach video, poster, banner, etc. For an oceanographic outreach video, viewers could be from any background, relating to science. It is important not to discriminate against any viewer. This requires reducing the informational content to its most fundamental form. We all start from the ground up, which is what outreaches' purpose is: exposing the content of the video to those who are unexposed, in an enticing way. With all this considered, you have to start somewhere. As an enticing artwork, music is a fundamental step to making an impact. It is emotional, and sets a firm narrative, that will underpin the other layers of the message of the outreach. It is important to retain your viewers' interest through a short, sweet experience; they may have no prior knowledge of your field and a harsh concentrated exposure to something new is rarely enjoyable. They need something inspiring, impactful, and unique. Accompanying this music should be video clips that match the patterns of the music. They should be compliant with the music's tone

  4. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD (United States)


    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  5. Ocean Disposal Site Monitoring (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  6. People and Oceans. (United States)

    NatureScope, 1988


    Discusses people's relationship with oceans, focusing on ocean pollution, use, and protective measures of the sea and its wildlife. Activities included are "Mythical Monsters"; "Globetrotters"; "Plastic in the Sea"; and "Sea of Many Uses." (RT)

  7. Ocean Sediment Thickness Contours (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  8. Ocean Uses: California (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  9. Ethane ocean on Titan (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.


    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  10. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.


    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  11. Ocean Disposal Sites (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  12. Ocean Station Vessel (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  13. California Ocean Uses Atlas (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  14. Ocean Acidification Product Suite (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  15. Ocean Literacy After-School (United States)

    Hlinka, Lisa


    Ocean Literacy is a topic that is often underrepresented in secondary school science curriculum. To combat this deficit, our School has partnered up with Hudson River Community Sailing (HRCS), a local organization in New York City that offers an after-school program to high-need high school students in the surrounding community. This organization has developed a 9th grade Sail Academy which allows students from participating public high schools to increase their proficiency in math and science by learning basic sailing, navigation, and boat building. Upon successfully completing the 9th grade Sail Academy curriculum, students enter the "First Mates Program" which offers a scaffolded set of youth development experiences that prepare students for college, career, leadership, and stewardship. This program is built in the context of a new Ocean Literacy Curriculum focused around 3 major topics within Ocean Literacy: Marine Debris, Meteorology, and Ecology (specifically water quality). The learning experiences include weekly data collection of marine debris, weather conditions, and water quality testing in the Hudson River adjacent to the HRCS Boathouse. Additionally there are weekly lessons engaging students in the fundamentals of each of the 3 topics and how they are also important in the lens of sailing. During the marine debris portion of the curriculum students identify sources of marine debris, impacts on the local environment, and study how debris can travel along the ocean currents leading in to larger garbage gyres. To supplement the curriculum, students embarked on a day trip to the Newtown Creek Wastewater Treatment Facility in Brooklyn, NY to learn how and where NYC receives its drinking water, how wastewater is treated, and how water quality in the local area can be easily influenced. While on the trip, students did their data collection of marine debris, weather conditions, and water quality testing at Newtown Creek, and then they compared their results

  16. Measuring Ocean Literacy in Pre-Service Teachers: Psychometric Properties of the Greek Version of the Survey of Ocean Literacy and Experience (SOLE) (United States)

    Markos, Angelos; Boubonari, Theodora; Mogias, Athanasios; Kevrekidis, Theodoros


    The aim of the present study was to respond to the increasing demand for comprehensive tools for the measurement of ocean literacy, by investigating the psychometric characteristics of a Greek version of the Survey of Ocean Literacy and Experience (SOLE), an instrument that assesses conceptual understanding of general ocean sciences content,…

  17. The Book and the Archive in the History of Science. (United States)

    Yale, Elizabeth


    In recent years, the history of archives has opened up rich possibilities for understanding early modern science and medicine in material terms. Yet two strands of inquiry, vital to understanding the development of science and medicine as "paper knowledge," have been left largely unpursued: the archiving of personal papers, as distinct from the formation of institutional archives; and the ways in which printed books and archival papers functioned in relation to each other. This essay brings these two strands to the forefront, considering in particular books published posthumously from the notes and correspondence left behind by Nicholas Culpeper, a popular mid-seventeenth-century English vernacular medical author, and John Ray, naturalist and Fellow of the Royal Society. Culpeper's and Ray's cases illustrate, in particular, the central role of women in preserving, circulating, and certifying the authenticity of medical and scientific papers and of any books published posthumously from them.

  18. Ocean Drilling: Forty Years of International Collaboration (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki


    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  19. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.


    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  20. Influencing a Vision for the Future Ocean (United States)

    Macko, S. A.


    The ocean is the major source of nutrition for billions of people, while employing millions of workers, and generating trillions of dollars for the world economy. Clearly, the ocean is central to human well-being. As vast as our ocean and its resources are, they are not infinite. And today the ocean is under tremendous pressure from human activity - including unsustainable and illegal fishing, marine pollution, and climate-related impacts. We have created a special January-term class that offered students exposure to the utilization of the oceans' resources through a mixture of in-class work and field experiences. The course addressed not only fundamentals of marine science, but also legalities and ethics on aspects of culturing and capturing marine animals, with an emphasis on aquaculture and sustainability for wild fisheries. We limited the course to a manageble number (18) with transport in 3 vans, and overnighting at convenient hotels near the sites. Various trips to locations where the ocean is being maricultured and/or marketed allowed students to explore both the extant ocean while complementing class activities with speakers dealing with fishery product distribution and aquaculture with laboratory experiences at UVa. Locations for field trips included the National Aquarium in Baltimore, Washington, Virginia Beach and Baltimore seafood markets, Virginia aquaculture facilities and the Virginia Aquarium in Virginia Beach.

  1. The 360 Degree Fulldome Production "Clockwork Ocean" (United States)

    Baschek, B.; Heinsohn, R.; Opitz, D.; Fischer, T.; Baschek, T.


    The investigation of submesoscale eddies and fronts is one of the leading oceanographic topics at the Ocean Sciences Meeting 2016. In order to observe these small and short-lived phenomena, planes equipped with high-resolution cameras and fast vessels were deployed during the Submesoscale Experiments (SubEx) leading to some of the first high-resolution observations of these eddies. In a future experiment, a zeppelin will be used the first time in marine sciences. The relevance of submesoscale processes for the oceans and the work of the eddy hunters is described in the fascinating 9-minute long 360 degree fulldome production Clockwork Ocean. The fully animated movie is introduced in this presentation taking the observer from the bioluminescence in the deep ocean to a view of our blue planet from space. The immersive media is used to combine fascination for a yet unknown environment with scientific education of a broad audience. Detailed background information is available at the parallax website The Film is also available for Virtual Reality glasses and smartphones to reach a broader distribution. A unique Mobile Dome with an area of 70 m² and seats for 40 people is used for science education at events, festivals, for politicians and school classes. The spectators are also invited to participate in the experiments by presenting 360 degree footage of the measurements. The premiere of Clockwork Ocean was in July 2015 in Hamburg, Germany and will be worldwide available in English and German as of fall 2015. Clockwork Ocean is a film of the Helmholtz-Zentrum Geesthacht produced by Daniel Opitz and Ralph Heinsohn.

  2. Ocean Modeling and Visualization on Massively Parallel Computer (United States)

    Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.


    Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.

  3. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  4. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.


    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  5. Estimation of the Atmosphere-Ocean Fluxes of Greenhouse Gases and Aerosols at the Finer Resolution of the Coastal Ocean

    Czech Academy of Sciences Publication Activity Database

    Vieira, V.; Sahlée, E.; Juruš, Pavel; Clementi, E.; Pettersson, H.; Mateus, M.


    Roč. 18 (2016), EGU2016-1990-1 ISSN 1607-7962. [EGU General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985807 Keywords : greenhouse gases * carbon cycle * atmosphere- ocean interaction * atmosphere modelling * ocean modelling Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. New associates | Announcements | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sushmee Badhulika, Indian Institute of Technology, Hyderabad ... Sankar Chakma, Indian Institute of Science Education & Research, Bhopal Joydeep ... B Praveen Kumar, Indian National Centre for Ocean Information Services, Hyderabad

  7. Riding a tsunami in ocean science education (United States)

    Reed, Donald L.


    An experiment began in late 1994 in which the WWW plays a critical role in the instruction of students in an oceanography course for non-majors. The format of the course consists of an equal blend of traditional lectures, tutorial-style exercises delivered from the course WWW site, classroom activities, such as poster presentations and group projects, and field excursions to local marine environments. The driving force behind the technology component of the course is to provide high-quality educational materials that can be accessed at the convenience of the student. These materials include course information and handouts, lecture notes, self-paced exercises, a virtual library of electronic resources, information on newsworthy marine events, and late-breaking oceanographic research that impacts the population of California. The course format was designed to partially meet the demands of today's students, involve students in the learning process, and prepare students for using technology in work following graduation. Students have reacted favorably to the use of the WWW and comments by peers have been equally supportive. Students are more focused in their efforts during the computer-based exercises than while listening to lecture presentations. The implementation of this form of learning, however, has not, as yet, reduced the financial cost of the course or the amount of instructor effort in providing a high quality education. Interactions between the instructor and students have increased significantly as the informality of a computer laboratory promotes individual discussions and electronic communication provides students with easy (and frequent) access to the instructor outside of class.

  8. Apeiron: engaging students if ocean science (United States)

    Manzella, Alessandro; Manzella, Giuseppe M. R.


    Anaxagoras believed that all things existed in a boundless form. Ápeiron begun to rotate under the control of Nous (Mind) and the rotation caused the universe to break up into fragments, each containing parts of all other things. However, since all individual things had originated from the same ápeiron, all things must contain parts of all other things. In some sense, the title contain the main concept on the interdependence of humans and the natural environment that make necessary to have a general understanding on how anthropogenic activities have changed the earth system and how they are impacting the climate cycles. Ápeiron is the interdependence of humans and natural environment. A general understanding on human influences on earth system is necessary. The ability to solve a problem, to write a coherent paragraph, to utter a cogent statement are soft skills supporting sustainable development. Soft skills must be tempered with the ability to integrate knowledge from various sources into a coherent whole. Students, professors and researchers interaction improve personal comprehension. Students must be encouraged to debate ideas and the way to present them. They are asked to look for and develop bases for shared understanding. In this way they participated to the definition of a knowledge building process as a social epistemology: from personal beliefs to social shared vision.

  9. NERC's Biogeochemical Ocean Flux Study (North Atlantic Data Set) was collected aboard the RRS DISCOVERY and CHARLES DARWIN in the North Atlantic Ocean from 19890417 to 19910728 (NODC Accession 0000708) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biogeochemical Ocean Flux Study (BOFS) was a Community Research Project of the Marine and Atmospheric Sciences Directorate of the Natural Environment Research...

  10. The Southern Ocean Observing System


    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise


    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  11. 77 FR 42297 - Meeting of the Ocean Research and Resources Advisory Panel (United States)


    ... Consortium for Ocean Leadership, 1201 New York Avenue NW., 4th Floor, Washington, DC 2005. FOR FURTHER... discussions on ocean research, resource management, and other current issues in the ocean science and management communities. J.M. Beal, Lieutenant Commander, Office of the Judge Advocate General, U.S. Navy...

  12. Promoting Ocean Literacy through American Meteorological Society Programs (United States)

    Passow, Michael; Abshire, Wendy; Weinbeck, Robert; Geer, Ira; Mills, Elizabeth


    American Meteorological Society Education Programs provide course materials, online and physical resources, educator instruction, and specialized training in ocean, weather, and climate sciences ( Ocean Science literacy efforts are supported through the Maury Project, DataStreme Ocean, and AMS Ocean Studies. The Maury Project is a summer professional development program held at the US Naval Academy designed to enhance effective teaching of the science, technology, engineering, and mathematics of oceanography. DataStreme Ocean is a semester-long course offered twice a year to participants nationwide. Created and sustained with major support from NOAA, DS Ocean explores key concepts in marine geology, physical and chemical oceanography, marine biology, and climate change. It utilizes electronically-transmitted text readings, investigations and current environmental data. AMS Ocean Studies provides complete packages for undergraduate courses. These include online textbooks, investigations manuals, RealTime Ocean Portal (course website), and course management system-compatible files. It can be offered in traditional lecture/laboratory, completely online, and hybrid learning environments. Assistance from AMS staff and other course users is available.

  13. Ejecta from Ocean Impacts (United States)

    Kyte, Frank T.


    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  14. PacificReefs2011: Ocean Exploration and Biotechnology on the Reefs of Palau between 20110219 and 20110304 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This expedition represents the culmination of ongoing collaboration between National Institute for Undersea Science and Technology- Ocean Biotechnology Center and...

  15. Archive of Core and Site/Hole Data and Photographs from the Integrated Ocean Drilling Program (IODP) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Science Operator for the Integrated Ocean Drilling Program (IODP) operated the drilling vessel JOIDES Resolution from 2004-2013 for worldwide expeditions...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... 835 215, India. Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560 012, India. Laboratoire Image Ville Environnement, UMR 7362CNRS/UDS, 3, rue de l'Argonne, 67000 Strasbourg, France.

  17. Library holdings for EX1504L4: Campaign to Address Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) Leg IV on NOAA Ship Okeanos Explorer between September 7, 2015 and September 30, 2015 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Library Catalog may include: Data Management Plans, Cruise Plans, Cruise Summary Reports, Scientific "Quick Look Reports", Video Annotation Logs, Image Collections,...

  18. Library holdings for EX1504L2: Campaign to Address Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) NWHI Exploration Leg II on NOAA Ship Okeanos Explorer between July 31, 2015 and August 22, 2015 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Library Catalog may include: Data Management Plans, Cruise Plans, Cruise Summary Reports, Scientific "Quick Look Reports", Video Annotation Logs, Image Collections,...

  19. Oceanographic data and ROV dive-related multimedia and information collected during the EX1504L4 Campaign to Address Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) Leg IV on NOAA Ship OKEANOS EXPLORER in the North Pacific Ocean from 2015-09-07 to 2015-09-30 (NCEI Accession 0131887) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains oceanographic data collected in the deep waters in and around Papahanaumokuakea Marine National Monument (PMNM) in the Northwestern Hawaiian...

  20. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE06W4, from 20040708 to 20060613 (NODC Accession 0050194) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program collected CTD and water chemistry (macronutrients, chlorophyll) data during four cruises from 2004-2006 off the Oregon and Washington coast,...

  1. Environmental toxicology data collected by the NOAA, National Ocean Service, National Centers For Coastal Ocean Science, National Status and Trends Program for monitoring contaminants in coastal United States marine water bodies from 01 Jan 1960 to 05 May 2010 (NODC Accession 0074376) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends Program is comprised of three nationwide programs: Benthic Surveillance, Mussel Watch, and Bioeffects. These programs are in place to...

  2. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  3. Our Changing Oceans: All about Ocean Acidification

    International Nuclear Information System (INIS)

    Rickwood, Peter


    The consequences of ocean acidification are global in scale. More research into ocean acidification and its consequences is needed. It is already known, for example, that there are regional differences in the vulnerability of fisheries to acidification. The combination of other factors, such as global warming, the destruction of habitats, overfishing and pollution, need to be taken into account when developing strategies to increase the marine environment’s resilience. Among steps that can be taken to reduce the impact is better protection of marine coastal ecosystems, such as mangrove swamps and seagrass meadows, which will help protect fisheries. This recommendation was one of the conclusions of a three-day workshop attended by economists and scientists and organized by the IAEA and the Centre Scientifique de Monaco in November 2012. In their recommendations the workshop also stressed that the impact of increasing ocean acidity must be taken into account in the management of fisheries, particularly where seafood is a main dietary source

  4. Ocean Networks Canada's "Big Data" Initiative (United States)

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.


    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  5. Blue ocean strategy. (United States)

    Kim, W Chan; Mauborgne, Renée


    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades.

  6. Global Ocean Carbon and Biogeochemistry Coordination (United States)

    Telszewski, Maciej; Tanhua, Toste; Palacz, Artur


    The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the

  7. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ph.D. (Stanford), FNA, FNAE Council Service: 2007- ; Secretary: 2007-12; Treasurer: 2013-. Date of birth: 26 September 1947. Specialization: Climate Science and Solar Energy Address: Honorary Professor, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact:

  8. 75 FR 69920 - (NOAA) Science Advisory Board (SAB) (United States)


    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science... Administration (NOAA) science programs are of the highest quality and provide optimal support to resource...

  9. 78 FR 16254 - (NOAA) Science Advisory Board (SAB) (United States)


    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA) Science Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The Science... Administration (NOAA) science programs are of the highest quality and provide optimal support to resource...

  10. Scientists’ perspectives on global ocean research priorities

    Directory of Open Access Journals (Sweden)

    Murray Alan Rudd


    Full Text Available Diverse natural and social science research is needed to support policies to recover and sustain healthy oceans. While a wide variety of expert-led prioritization initiatives have identified research themes and priorities at national and regional scale, over the past several years there has also been a surge in the number of scanning exercises that have identified important environmental research questions and issues ‘from the bottom-up’. From those questions, winnowed from thousands of contributions by scientists and policy-makers around the world who participated in terrestrial, aquatic and domain-specific horizon scanning and big question exercises, I identified 657 research questions potentially important for informing decisions regarding ocean governance and sustainability. These were distilled to a short list of 67 distinctive research questions that, in an internet survey, were ranked by 2179 scientists from 94 countries. Five of the top 10 research priorities were shared by respondents globally. Despite significant differences between physical and ecological scientists’ priorities regarding specific research questions, they shared seven common priorities among their top 10. Social scientists’ priorities were, however, much different, highlighting their research focus on managerial solutions to ocean challenges and questions regarding the role of human behavior and values in attaining ocean sustainability. The results from this survey provide a comprehensive and timely assessment of current ocean research priorities among research-active scientists but highlight potential challenges in stimulating crossdisciplinary research. As ocean and coastal research necessarily becomes more transdisciplinary to address complex ocean challenges, it will be critical for scientists and research funders to understand how scientists from different disciplines and regions might collaborate and strengthen the overall evidence base for ocean

  11. Blue Ocean Thinking (United States)

    Orem, Donna


    This article describes a concept called the "blue ocean thinking strategy," developed by W. Chan Kim and Renée Mauborgne, professors at INSEAD, an international graduate school of business in France. The "blue ocean" thinking strategy considers opportunities to create new markets for services, rather than focusing solely on…

  12. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  13. Global Ocean Phytoplankton (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.


    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  14. Ocean acidification postcards (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.


    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit:

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 5 .... Current products based on Ocean General Circulation Models like ECCO2 ... An assessment of wind forcing impact on a spectral wave model for the Indian Ocean .... variability over India and its subregions using a regional climate model (RegCM3).

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Modelling and analyzing the watershed dynamics using Cellular Automata (CA)– Markov ... based on past trend in a hydrological unit, Choudwar watershed, India. ... Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian ...


    African Journals Online (AJOL)

    They are often burdened with exceedingly great parental expectations particularly ... the life span, Smarts sees human development as: The scientific .... existence which is balance, speed and coordination. Dance: A ... In every work of art especially dance, what makes it more effective is .... The Benefits of Dance. Owerri: Ata ...

  19. IT ei loe / Nicholas G. Carr

    Index Scriptorium Estoniae

    Carr, Nicholas G.


    Harvard Business Review endise toimetaja arvates on infotehnoloogia (IT) strateegiline tähtsus ettevõtetes oluliselt vähenenud ning innovaatilised IT lahendused ei anna enam konkurentsieeliseid, mille tõttu peab muutuma ka juhtide suhtumine IT riskidesse, investeeringutesse ja juhtimisse. Vt. samas: Kuidas vältida üleinvesteerimist IT-sse?; Liiga palju head; Mis saab müüjatest?; Uued reeglid IT juhtimises. Kommenteerivad Henn Sarv, Avo Kokk, Olli Heinonen ja Jüri Kaljundi

  20. Kallis surm, odav vanadus / Nicholas Timmins

    Index Scriptorium Estoniae

    Timmins, Nicholas


    Vananemisest tingitud kulude puhul tuleks lisaks pensionisüsteemi maksumusele rääkida veel tervishoiu ja vanurite hoolekandega seotud kulutustest. Vanurite osakaalu kasv toob kaasa tervishoiukulude tõusu, mis ei ole katastroofiliselt suur. Diagrammid: Keskmine vanus; Sündivus; Vananemine

  1. Nicholas Steno and Renè Descartes

    DEFF Research Database (Denmark)

    Olden-Jørgensen, Sebastian


    Den danske videnskabsmand Niels Steensen (1638-86) læste allerede som ung student Renè Descartes og blev grebet af hans metode, som han forblev tro i hele sit videnskabelige virke. Cartesianismen kan beskrives som Steensens videnskabelige paradigme (Kuhn), men det var også et paradigme, han testede...

  2. VIIRS Product Evaluation at the Ocean PEATE (United States)

    Patt, Frederick S.; Feldman, Gene C.


    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.

  3. SCICEX: Submarine Arctic Science Program (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  4. Climate Change Science Program Collection (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  6. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)


    Full text: The International Atomic Energy Agency (IAEA) is to launch a new centre this summer to address the growing problem of ocean acidification. Operated by the Agency's Monaco Environmental Laboratories, the Ocean Acidification International Coordination Centre will serve the scientific community - as well as policymakers, universities, media and the general public - by facilitating, promoting and communicating global actions on ocean acidification. Growing amounts of carbon dioxide in the Earth's atmosphere are being absorbed in the planet's oceans which increases their acidity. According to the experts, ocean acidification may render most regions of the ocean inhospitable to coral reefs by 2050 if atmospheric carbon dioxide levels continue to increase. This could lead to substantial changes in commercial fish stocks, threatening food security for millions of people as well as the multi-billion dollar fishing industry. International scientists have been studying the effect and possible responses, and the new centre will help coordinate their efforts. ''During the past five years, numerous multinational and national research projects on ocean acidification have emerged and significant research advances have been made,'' said Daud bin Mohamad, IAEA Deputy Director General for Nuclear Sciences and Applications. ''The time is now ripe to provide international coordination to gain the greatest value from national efforts and research investments.'' The centre will be supported by several IAEA Member States and through the Peaceful Uses Initiative, and it will be overseen by an Advisory Board consisting of leading institutions, including the U.N. Intergovernmental Oceanographic Commission, the U.S. National Oceanic and Atmospheric Administration, the U.N. Food and Agriculture Organization, the Fondation Prince Albert II de Monaco, the OA-Reference User Group, as well as leading scientists and economists in the field. The new centre will focus on international

  7. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio


    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  8. Oceans and Coasts (United States)

    An overview of EPA’s oceans, coasts, estuaries and beaches programs and the regulatory (permits/rules) and non-regulatory approaches for managing their associated environmental issues, such as water pollution and climate change.

  9. Ocean Dumping: International Treaties (United States)

    The London Convention and London Protocol are global treaties to protect the marine environment from pollution caused by the ocean dumping of wastes. The Marine, Protection, Research and Sanctuaries Act implements the requirements of the LC.

  10. Ocean Technology Development Tank (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  11. Loggerhead oceanic stage duration (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study involves analysis of skeletal growth marks in humerus bones of 222 juvenile loggerhead sea turtles (Caretta caretta) stranded dead along the Atlantic US...

  12. Ocean iron fertilization

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Smetacek, V.

    In 2009 and 2010, an Indo-German scientific expedition dusted the ocean with iron to stimulate the biological pump that captures atmosphereic carbon dioxide. Two onboard scientists tell the story of this controversial project. Besides raising...

  13. Ocean Dumping Control Regulations

    International Nuclear Information System (INIS)


    These Regulations were made further to the Ocean Dumping Control Act which provides for restrictions in dumping operations. The Regulations contain model applications for permits to dump or load a series of materials. (NEA)

  14. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.; Delworth, Thomas L.; Ramaswamy, V.; Stouffer, Ronald J.; Wittenberg, Andrew; Zeng, Fanrong


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean

  15. 75 FR 13537 - Clean Water Act Section 303(d): Notice of Call for Public Comment on 303(d) Program and Ocean... (United States)


    ... evaluate regional coral reef responses to changes in climate and ocean chemistry. Limnology and... Science 86 157-164 (2010). Hoegh-Guldberg, O. Coral reefs under rapid climate change and ocean...) from the atmosphere. Ocean acidification is not a climate process, but instead directly affects ocean...

  16. IODE OceanTeacher


    Brown, M.; Pikula, L.; Reed, G.


    The OceanTeacher website and CD-ROM publication have proven to be powerful and flexible tools for marine data and information management training. There are two segments of OceanTeacher: marine data management and marine information management. The IODE trainers have created an encyclopedic Resource Kit covering all aspects of the subjects. Through continual updates, the Kit provides the latest versions of popular public-domain software, documentation for global and regional datasets, docu...

  17. Modeling of oceanic vortices (United States)

    Cushman-Roisin, B.

    Following on a tradition of biannual meetings, the 5th Colloquium on the Modeling of Oceanic Vortices was held May 21-23, 1990, at the Thayer School of Engineering at Dartmouth College, Hanover, N.H. The colloquium series, sponsored by the Office of Naval Research, is intended to gather oceanographers who contribute to our understanding of oceanic mesoscale vortices via analytical, numerical and experimental modeling techniques.

  18. Report on final evaluation of industrial science and technology research and development system. Comprehensive basic technologies for development of ocean resources. Manganese nodule exploitation system; Kaiyo shigen sogo kiban gijutsu (mangan dankai saiko system). Saishu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    Described herein are the final evaluation results of the basic research and development of the system for exploiting manganese nodules as one of ocean resources. A 9-year project was started in the FY 1981 to establish the techniques to efficiently, economically exploit Mn nodules on a commercial basis, which are occurring on deep sea bottoms (4,000 to 6,000 m deep), in order to stably supply non-ferrous metallic resources, e.g., Ni, Cu, Co and Mn, which are essential for economic activities of Japan. Originally, the UN convention related to ocean laws raised development of unique exploitation techniques as the prerequisite condition for obtaining the right to develop Mn nodules. However, the situations around development of Mn nodules were changed since then, to devalue objects, significance and urgency of this project. The fourth amendment of the basic plans decided to suspend the comprehensive ocean tests in 1996, and to implement only the ocean/land tests in which part of the individual elementary techniques were combined. Therefore, the technological validation of the overall system could not be done sufficiently, and degree of achievement of the project is low, viewed from insufficient prospects of the commercial production. However, this project produced good results in individual elementary techniques, which are of significance for the resources policies. (NEDO)

  19. The Ocean: Our Future (United States)

    Independent World Commission On The Oceans; Soares, Mario


    The Ocean, Our Future is the official report of the Independent World Commission on the Oceans, chaired by Mário Soares, former President of Portugal. Its aim is to summarize the very real problems affecting the ocean and its future management, and to provide imaginative solutions to these various and interlocking problems. The oceans have traditionally been taken for granted as a source of wealth, opportunity and abundance. Our growing understanding of the oceans has fundamentally changed this perception. We now know that in some areas, abundance is giving way to real scarcity, resulting in severe conflicts. Territorial disputes that threaten peace and security, disruptions to global climate, overfishing, habitat destruction, species extinction, indiscriminate trawling, pollution, the dumping of hazardous and toxic wastes, piracy, terrorism, illegal trafficking and the destruction of coastal communities are among the problems that today form an integral part of the unfolding drama of the oceans. Based on the deliberations, experience and input of more than 100 specialists from around the world, this timely volume provides a powerful overview of the state of our water world.

  20. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.


    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  1. Troubled waters. The future of the oceans. Human activity is polluting the marine environment and the economic livelihoods of millions who fish the seas. Science can help change the picture

    International Nuclear Information System (INIS)

    McIntyre, A.D.


    In assessing the state of the ocean today, it is useful to think in terms of its general condition and consider its living resources. The good news is that the waters of the open ocean are in reasonable chemical health. They receive contaminant inputs from two major sources - the atmosphere and shipping. Atmospheric input is a diverse mixture of all the pollutants already mentioned which mingle in the air carried around the world, and eventually fall out by wet or dry deposition. However, due to dilution and the long residence time often associated with atmospheric transport, the oceanic fallout, although measurable, leads to only low concentrations in surface waters so that significant impacts on marine biota are not detected. The shipping input is more concentrated, but is confined to traffic lanes, and tends to be rapidly dispersed and diluted - although persistent materials that float, like plastics and tar balls, can be carried great distances and accumulate on beaches. In contrast to the open ocean, the coastal zones of the world present a very different picture. As most of the polluting inputs come from the continental landmasses, near-shore areas are significantly at risk, and the adjacent shelf seas are also threatened. Degradation is particularly acute in estuaries where industry is concentrated and in coastal areas where major rivers carry wastes from the hinterland to the sea. Semienclosed bays that have extensive urban or farming hinterland, and are poorly flushed by the open ocean, are also highly vulnerable. As for the living resources, in spite of earlier fears, marine pollution has not been the threat that was feared. Indeed, the danger to them is more direct - the impact of excessive exploitation. The decline of catches of the preferred species, and the collapse of important stocks is now all too clear, and fishing communities are under great pressure. Today, of the major fish stocks throughout the world, 47% are fully exploited, 18% are over

  2. Linked Ocean Data (United States)

    Leadbetter, Adam; Arko, Robert; Chandler, Cynthia; Shepherd, Adam


    "Linked Data" is a term used in Computer Science to encapsulate a methodology for publishing data and metadata in a structured format so that links may be created and exploited between objects. Berners-Lee (2006) outlines the following four design principles of a Linked Data system: Use Uniform Resource Identifiers (URIs) as names for things. Use HyperText Transfer Protocol (HTTP) URIs so that people can look up those names. When someone looks up a URI, provide useful information, using the standards (Resource Description Framework [RDF] and the RDF query language [SPARQL]). Include links to other URIs so that they can discover more things. In 2010, Berners-Lee revisited his original design plan for Linked Data to encourage data owners along a path to "good Linked Data". This revision involved the creation of a five star rating system for Linked Data outlined below. One star: Available on the web (in any format). Two stars: Available as machine-readable structured data (e.g. An Excel spreadsheet instead of an image scan of a table). Three stars: As two stars plus the use of a non-proprietary format (e.g. Comma Separated Values instead of Excel). Four stars: As three stars plus the use of open standards from the World Wide Web Commission (W3C) (i.e. RDF and SPARQL) to identify things, so that people can point to your data and metadata. Five stars: All the above plus link your data to other people's data to provide context Here we present work building on the SeaDataNet common vocabularies served by the NERC Vocabulary Server, connecting projects such as the Rolling Deck to Repository (R2R) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO) and other vocabularies such as the Marine Metadata Interoperability Ontology Register and Repository and the NASA Global Change Master Directory to create a Linked Ocean Data cloud. Publishing the vocabularies and metadata in standard RDF XML and exposing SPARQL endpoints renders them five-star Linked

  3. Vulnerability and adaptation of US shellfisheries to ocean acidification (United States)

    Ekstrom, Julia A.; Suatoni, Lisa; Cooley, Sarah R.; Pendleton, Linwood H.; Waldbusser, George G.; Cinner, Josh E.; Ritter, Jessica; Langdon, Chris; van Hooidonk, Ruben; Gledhill, Dwight; Wellman, Katharine; Beck, Michael W.; Brander, Luke M.; Rittschof, Dan; Doherty, Carolyn; Edwards, Peter E. T.; Portela, Rosimeiry


    Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multidisciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.

  4. Red ocean vs blue ocean strategies


    Λαΐνος, Ιάσονας


    This paper is about the strategies that a company can adopt in order to get a competitive advantage over its rivals, and thus be successful (Red Ocean Strategies). We also tried to explain what actually entrepreneurship is, to be able to understand why the corporate strategies are formed as they do, and why companies are choosing to follow them. The following project is a part of our master thesis that we will present for the University of Piraeus for the MBA-TQM master department. The thesis...

  5. Imaging Sciences Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.


    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  6. Role of the ocean in climate changes (United States)

    Gulev, Sergey K.


    The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.

  7. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Francis, T.J.G.; Searle, R.C.; Wilson, T.R.S.


    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  8. The ocean planet. (United States)

    Hinrichsen, D


    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  9. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.


    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. They gave their names to science

    National Research Council Canada - National Science Library

    Halacy, D. S


    ...: Ernst Mach and his number, Gergor Mendel and his laws, Christian Johann Doppler and his effect, Hans Geiger and his radiation counter, Nicholas Sadi Carnot and thermodynamics, Gustave, Gaspard de...

  11. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  12. Oceanographic profile temperature, oxygen, nitrate+nitrite and other measurements collected using bottle from various platforms in the North Atlantic ocean from 1988 to 2001 (NODC Accession 0000990) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Profile data collected as part of the Bermuda-Atlantic Time Series Study (BATS) from Bermuda Institute of Ocean Sciences (BIOS; formerly BBSR)

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this study we observe wave heights by an array of four wave gauges at the Hiratsuka Tower of (Independent Administrative Institution) National Research Institute for Earth Science and ... Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Sarkar. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 157-169. Palaeomonsoon and palaeoproductivity records of O, C and CaCO3 variations in the northern Indian Ocean sediments · A Sarkar R Ramesh S K Bhattacharya ...

  16. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Mathematics, Teachers College of Qingdao University, Qingdao 266071, People's Republic of China; School of Mathematical Sciences, Ocean University of China, Qingdao 266100, People's Republic of China; School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, People's ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R A Scrutton. Articles written in Journal of Earth System Science. Volume 123 Issue 1 February 2014 pp 33-47. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean · K S Krishna J M Bull O Ishizuka R A Scrutton S ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K S Krishna. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 17-28. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data · K S Krishna D Gopala Rao Yu P ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Radhakrishna. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 605-615. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach · K M Sreejith M ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Shyam Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 531-539. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin · J N Pattan M Shyam Prasad E V S S K Babu · More Details Abstract ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  5. Science Programs (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  6. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A


    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  7. Program options to explore ocean worlds (United States)

    Sherwood, B.; Lunine, J.; Sotin, C.; Cwik, T.; Naderi, F.


    Including Earth, roughly a dozen water ocean worlds exist in the solar system: the relict worlds Ceres and Mars, vast oceans inside most of the large Jovian and Saturnian icy moons, and Kuiper Belt Objects like Triton, Charon, and Pluto whose geologies are dominated by water and ammonia. Key pieces of the ocean-world science puzzle - which when completed may reveal whether life is widespread in the cosmos, why it exists where it does, and how it originates - are distributed among them. The eventual exploration of all these worlds will yield humanity's total tangible knowledge about life in the universe, essentially forever. Thus, their exploration has existential significance for humanity's self-regard, and indeed perhaps of our place in the natural scheme. The matter of planning how to pursue such a difficult and unprecedented exploration opportunity is therefore historic. The technical challenges are formidable, far harder than at Mars: missions to the Jovian and Saturnian ocean worlds are severely power-limited; trip times can be as much as a half decade and decade, respectively. And the science targets are global-scale oceans beneath kilometers of cryogenic ice. Reaching and exploring them would be a multi-generational undertaking, so again it is essential to plan and prepare. Today, we lack the instrumentation, subsystems, and remote operational-intelligence technologies needed to build and use exploration avatars as good as what we can envision needing. Each ocean world holds a piece of the puzzle, but the three priority targets are Europa at Jupiter, and Enceladus and Titan at Saturn. As with the systematic exploration of Mars, exploring these diverse worlds poses a complex technical and programmatic challenge - a strategic challenge - that needs to be designed and managed if each generation is to see its work bear fruit, and if the space science community is to make most effective use of the public money devoted to the quest. Strategic programs benefit from

  8. U.S. ocean acidification researchers: First national meeting (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather


    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee ( held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  9. International Search for Life in Ocean Worlds (United States)

    Sherwood, B.


    We now know that our solar system contains diverse "ocean worlds." One has abundant surface water and life; another had significant surface water in the distant past and has drawn significant exploration attention; several contain large amounts of water beneath ice shells; and several others evince unexpected, diverse transient or dynamic water-related processes. In this century, humanity will explore these worlds, searching for life beyond Earth and seeking thereby to understand the limits of habitability. Of our ocean worlds, Enceladus presents a unique combination of attributes: large reservoir of subsurface water already known to contain salts, organics, and silica nanoparticles originating from hydrothermal activity; and able to be sampled via a plume predictably expressed into space. These special circumstances immediately tag Enceladus as a key destination for potential missions to search for evidence of non-Earth life, and lead to a range of potential mission concepts: for orbital reconnaissance; in situ and returned-sample analysis of plume and surface-fallback material; and direct sulcus, vent, cavern, and ocean exploration. Each mission type can address a unique set of science questions, and would require a unique set of capabilities, most of which are not yet developed. Both the questions and the capability developments can be sequenced into a programmatic precedence network, the realization of which requires international cooperation. Three factors make this true: exploring remote oceans autonomously will cost a lot; the Outer Space Treaty governs planetary protection; and discovery of non-Earth life is an epochal human imperative. Results of current planning will be presented in AGU session 8599: how ocean-world science questions and capability requirements can be parsed into programmatically acceptable mission increments; how one mission proposed into the Discovery program in 2015 would take the next step on this path; the Decadal calendar of

  10. Climate change in the oceans: Human impacts and responses. (United States)

    Allison, Edward H; Bassett, Hannah R


    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions. Copyright © 2015, American Association for the Advancement of Science.

  11. Global Climate Change and Ocean Education (United States)

    Spitzer, W.; Anderson, J.


    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  12. RU COOL's scalable educational focus on immersing society in the ocean through ocean observing systems (United States)

    Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.


    Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres

  13. OceanGLOBE: an Outdoor Research and Environmental Education Program for K-12 Students (United States)

    Perry, R. B.; Hamner, W. M.


    OceanGLOBE is an outdoor environmental research and education program for upper elementary, middle and high school students, supplemented by online instructional materials that are available without charge to any educator. OceanGLOBE was piloted in 1995 with support from a National Science Foundation Teacher Enhancement project, "Leadership in Marine Science" (award no.ESI-9454413 to UCLA). Continuing support by a second NSF Teacher Enhancement project (award no. ESI-9819424 to UCLA) and by COSEE-West (NSF awards OCE-215506 to UCLA and OCE-0215497 to USC) has enabled OceanGLOBE to expand to a growing number of schools and to provide an increasingly robust collection of marine science instructional materials on its website, OceanGLOBE provides a mechanism for students to conduct inquiry-based, hands-on marine science research, providing experiences that anchor the national and state science content standards learned in the classroom. Students regularly collect environmental and biological data from a beach site over an extended period of time. In the classroom they organize, graph and analyze their data, which can lead to a variety of student-created science products. Beach research is supported by instructional marine science materials on the OceanGLOBE website. These online materials also can be used in the classroom independent of the field component. Annotated PowerPoint slide shows explain research protocols and provide marine science content. Field guides and photographs of marine organisms (with emphasis on the Southern California Bight) and a growing collection of classroom investigations (applicable to any ocean location) support the science content presented in the beach research program and slide shows. In summary, OceanGLOBE is a comprehensive learning package grounded in hands-on, outdoor marine science research project in which students are the principal investigators. By doing scientific work repetitively over an

  14. An Ocean of Possibilities (United States)

    Williams, Doug


    For more than one hundred years teachers have paddled beside the great ocean of mathematical adventure. Between them they have taught millions of young people. A few have dived in and kept swimming, some have lingered on the shore playing in pools, but most have dipped their toes in and run like heck in the other direction never to return. There…

  15. Deep Water Ocean Acoustics (United States)


    roughly 28°S. The second is the Hawaiian Island Chain, extending to Midway Island at 28°N, 177°W and finally the Emperor Seamount chain running due...dimension array centered near Ascension. The climatology ocean (WOA09) showed very little seasonal dependence or change from the geodesic and this is

  16. Enhanced Ocean Scatterometry

    NARCIS (Netherlands)

    Fois, F.


    An ocean scatterometer is an active microwave instrument which is designed to determine the normalized radar cross section (NRCS) of the sea surface. Scatterometers transmit pulses towards the sea surface and measure the reflected energy. The primary objective of spaceborne scatterometers is to

  17. Power from Ocean Waves. (United States)

    Newman, J. N.


    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  18. Investigating Ocean Pollution. (United States)

    LeBeau, Sue


    Describes a fifth-grade class project to investigate two major forms of ocean pollution: plastics and oil. Students work in groups and read, discuss, speculate, offer opinions, and participate in activities such as keeping a plastics journal, testing the biodegradability of plastics, and simulating oil spills. Activities culminate in…

  19. Ocean Dumping Control Act

    International Nuclear Information System (INIS)


    This Act provides for the control of dumping of wastes and other substances in the ocean in accordance with the London Convention of 1972 on Prevention of Marine Pollution by the Dumping of Wastes and other Matter to which Canada is a Party. Radioactive wastes are included in the prohibited and restricted substances. (NEA)

  20. Ocean Ridges and Oxygen (United States)

    Langmuir, C. H.


    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  1. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy (United States)

    Altalo, M. G.


    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  2. Zoogeography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.S.S.

    The distribution pattern of zooplankton in the Indian Ocean is briefly reviewed on a within and between ocean patterns and is limited to species within a quite restricted sort of groups namely, Copepoda, Chaetognatha, Pteropoda and Euphausiacea...

  3. World Ocean Atlas 2005, Temperature (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  4. OW CCMP Ocean Surface Wind (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  5. OW ASCAT Ocean Surface Winds (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  6. World Ocean Atlas 2005, Salinity (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  7. Satellite Ocean Heat Content Suite (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  8. ocean_city_md.grd (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to...

  9. Science and Science Fiction (United States)

    Oravetz, David


    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  10. The silent services of the world ocean. (United States)

    Stocker, Thomas F


    The most recent comprehensive assessment carried out by the Intergovernmental Panel on Climate Change has concluded that "Human influence on the climate system is clear," a headline statement that was approved by all governments in consensus. This influence will have long-lasting consequences for ecosystems, and the resulting impacts will continue to be felt millennia from now. Although the terrestrial impacts of climate change are readily apparent now and have received widespread public attention, the effects of climate change on the oceans have been relatively invisible. However, the world ocean provides a number of crucial services that are of global significance, all of which come with an increasing price caused by human activities. This needs to be taken into account when considering adaptation to and mitigation of anthropogenic climate change. Copyright © 2015, American Association for the Advancement of Science.

  11. Tides. Ocean Related Curriculum Activities. (United States)

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  12. Energy from rivers and oceans

    International Nuclear Information System (INIS)



    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  13. Avoiding pollution in scientific ocean drilling

    International Nuclear Information System (INIS)

    Francis, T.J.G.


    Scientific ocean drilling has been carried out in the world's oceans since the nineteen sixties. From 1968-83 the Deep Sea Drilling Project (DSDP), managed by the Scripps Institution of Oceanography in California under a contract with the US National Science Foundation, employed the drilling vessel Glomar Challenger for this purpose. In January 1985 the Ocean Drilling Program (GDP), operated by Texas A and M University, began operations with the drillship JOIDES Resolution which continue to this day. The principal funding agency remains the US National Science Foundation, but since its inception GDP has been an international program and currently receives financial support from 21 countries. The ODP operates globally and, as with DSDP before it, drills without a riser or blowout preventer in a wide range of geological environments. Water depths at GDP drill sites have ranged from 38 m to 5969 m, but are typically within the range 1000-5000 m. Depths of penetration at GDP drill sites, while generally less than 1000 m, have ranged up to 2111 m below the sea floor. The drilling fluid is seawater, although occasional slugs of mud are circulated to clean or condition the hole. Thus drilling is carried out without well control, i.e. without the ability to control pressures within the well. Because of the absence of well control, it is vital to ensure that the drillship does not drill into an accumulation of oil or gas. Drilling into a charged reservoir and causing oil or gas to escape into the marine environment is recognised as the main pollution hazard in scientific ocean drilling

  14. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements (United States)



    CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.

  15. 78 FR 32556 - Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD (United States)


    ... FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information The... Atlantic Ocean in Ocean City, MD. In recent years, there have been unfortunate instances of jets and planes...

  16. NCEI Standard Product: World Ocean Database (WOD) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Ocean Database (WOD) is the world's largest publicly available uniform format quality controlled ocean profile dataset. Ocean profile data are sets of...

  17. Crustal Ages of the Ocean Floor - Poster (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  18. Remote Sensing of Ocean Color (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  19. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory


    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  20. Open ocean tide modelling (United States)

    Parke, M. E.


    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  1. The role of ocean phenomenon in music compositions (United States)

    Liu, Chi-Min


    This is a preliminarily interdisciplinary study for exploring the elements of ocean phenomenon appearing in some compositions of classical music. The so-called ocean phenomenon contain wave conditions, climate change, coastal landform, and other natural events around or over the sea. In some music compositions, it is apparent that natural phenomenon over the sea influence the composers' moods and the music pieces they composed. In this poster, some music compositions in the 19th and the early 20th centuries will be introduced to demonstrate the relation between ocean and music works. These works include Meeresstille by Schubert, Étude Op.25 No.12 by Chopin, Fingal's Cave Overture by Mendelssohn, Der Fliegende Holländer by Wagner and La Mer by Debussy. In addition, present idea may give a novel way for music teachers to elucidate the knowledge of ocean science in classes.

  2. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus


    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  3. Marine pollution. Plastic waste inputs from land into the ocean. (United States)

    Jambeck, Jenna R; Geyer, Roland; Wilcox, Chris; Siegler, Theodore R; Perryman, Miriam; Andrady, Anthony; Narayan, Ramani; Law, Kara Lavender


    Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025. Copyright © 2015, American Association for the Advancement of Science.

  4. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.


    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  5. Ocean Surface Topography Mission (OSTM) /Jason-3 Data Collection, 2015- (NCEI Accession 0118278) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — OSTM/JASON-3 is a follow-on mission continuing the TOPEX/Poseidon and Jason-1/2, and is designed to ensure continuity of high quality measurements for ocean science...

  6. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2...

  7. 76 FR 51353 - Nominations for Membership on the Ocean Research Advisory Panel (United States)


    ... Leadership Council (NORLC), the governing body of the National Oceanographic Partnership Program (NOPP... extended expertise and experience in the field of ocean science and/or ocean resource management... balance a range of geographic and sector representation and experience. Applicants must be U.S. citizens...

  8. On the Spot: Oceans


    Male, Alan; Butterfield, Moira


    This a children's non-fiction, knowledge bearing picture book that is part of a Reader's Digest series called 'On the Spot'. The series deals with a range of topics related to the natural world and this one introduces its young audience to the ecosystems of the oceans. \\ud The publication was illustrated and designed by the author (Alan Male) and is technically described as a board book with interactive 'pop up' features, specifically conceived to engage children's discovery and learning thro...

  9. Islands in the Ocean

    Directory of Open Access Journals (Sweden)

    Elena Bagina


    Full Text Available Today’s China is an outpost of modern western architecture. All famous architects and firms build here. Having lost their historical context, the objects of traditional Chinese architecture become islands in the ocean of new development. Their destiny is controversial. Architectural masterpieces are perceived in a superficial manner not only by tourists, but also by local people. The link of times that used to be cherished in Chinese culture is being broken today.

  10. Turbines in the ocean (United States)

    Smith, F. G. W.; Charlier, R. H.


    It is noted that the relatively high-speed ocean currents flowing northward along the east coast of the U.S. may be able to supply a significant proportion of the future electric power requirements of urban areas. The Gulf Stream core lies only about 20 miles east of Miami; here its near-surface water reaches velocities of 4.3 miles per hour. Attention is called to the estimate that the energy available in the current of the Gulf Stream adjacent to Florida is approximately equivalent to that generated by 25 1,000-megawatt power plants. It is also contended that this power could be produced at competitive prices during the 1980s using large turbines moored below the ocean surface near the center of the Stream. Assuming an average ocean-current speed between 4 and 5 knots at the current core, the power density of a hydroturbine could reach 410 watts per square foot, about 100 times that of a wind-driven device of similar scale operating in an airflow of approximately 11 knots.

  11. The diversity of Indian Ocean Heterotardigrada

    Directory of Open Access Journals (Sweden)

    Roberto SANDULLI


    Full Text Available Information about Indian Ocean tardigrades is quite scarce and in most cases refers to species in coastal coralline sediment and occasionally in abyssal mud. The present data concern species found in the intertidal sand of Coco and La Digue Islands in the Seychelles, previously unsampled for tardigrades, as well as species in subtidal sediment found at depths ranging between 1 and 60 m off the shores of the Maldive Atolls. These sediments are all very similar and consist of heterogeneous coralline sand, moderately or scarcely sorted. Sixteen species (three new to science were found in the Seychelles, belonging to Renaudarctidae, Stygarctidae, Halechiniscidae, Batillipedidae and Echiniscoididae. Diversity and evenness data are also interesting, with maximum values of H' = 2.59 and of J = 0.97. In the Maldives 25 species were found (two new to science belonging to Neostygarctidae, Stygarctidae, Halechiniscidae and Batillipedidae. Such a number of species, despite the low percentage of tardigrade fauna (only 0.6% of the total meiofauna, contributes to the high values of both diversity and evenness, with H' ranging between 1.5 and 2.6 and J between 0.6 and 1. The Indian Ocean tardigrade fauna currently numbers 31 species of Arthrotardigrada and 2 species of Echiniscoidida. In the present study, Arthrotardigrada are the most abundant and all the families are present except Neoarctidae. Halechiniscidae is present with all the sub-families (except Euclavartinae, thus contributing to the high diversity values. Furthermore, 18 species, representing more than 50% of the total marine tardigrade fauna, are new records for the Indian Ocean, including five species new to science.

  12. Compartmental models for assessing the fishery production in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    Compartmental models for assessing the fishery production in the Indian Ocean is discussed. The article examines the theoretical basis on which modern fishery sciences is built. The model shows that, large changes in energy flux from one pathway...

  13. Ocean Observations of Climate Change (United States)

    Chambers, Don


    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  14. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.


    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  15. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.


    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  16. Ocean Disposal of Man-Made Ice Piers (United States)

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  17. Drift in ocean currents impacts intergenerational microbial exposure to temperature

    NARCIS (Netherlands)

    Doblin, Martina A.; Van Sebille, Erik


    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes,

  18. Recent advances in the biogeochemistry of nitrogen in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Voss, M.; Montoya, J.P.

    , K. O., Orr, W. L., and Rittenberg, S. C.: Nutrient budgets in the ocean, in: Essays in Natural Sciences in Honor of Captain Allan Hancock, University of Southern California Press, Los An- geles, pp. 299-309, 1955. Falcon, L. I., Carpenter, E. J...

  19. Decadal variation of ocean heat content and tropical cyclone activity ...

    Indian Academy of Sciences (India)

    The upper ocean heat content up to 700 m depth (OHC700) is an important ... made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the ..... In: Climate change 2007: The physical science basis (eds).

  20. Maui Citizen Science Coastal Water Quality Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A network of citizen science volunteers periodically monitors water quality at several beaches across the island of Maui in the State of Hawaii. This community-based...

  1. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Lihua Jiang1 Aiyi Zhu1 Jianse Zhang1 Changwen Wu1. National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China ...

  2. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)



    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  3. Monte Carlo radiation transport: A revolution in science

    International Nuclear Information System (INIS)

    Hendricks, J.


    When Enrico Fermi, Stan Ulam, Nicholas Metropolis, John von Neuman, and Robert Richtmyer invented the Monte Carlo method fifty years ago, little could they imagine the far-flung consequences, the international applications, and the revolution in science epitomized by their abstract mathematical method. The Monte Carlo method is used in a wide variety of fields to solve exact computational models approximately by statistical sampling. It is an alternative to traditional physics modeling methods which solve approximate computational models exactly by deterministic methods. Modern computers and improved methods, such as variance reduction, have enhanced the method to the point of enabling a true predictive capability in areas such as radiation or particle transport. This predictive capability has contributed to a radical change in the way science is done: design and understanding come from computations built upon experiments rather than being limited to experiments, and the computer codes doing the computations have become the repository for physics knowledge. The MCNP Monte Carlo computer code effort at Los Alamos is an example of this revolution. Physicians unfamiliar with physics details can design cancer treatments using physics buried in the MCNP computer code. Hazardous environments and hypothetical accidents can be explored. Many other fields, from underground oil well exploration to aerospace, from physics research to energy production, from safety to bulk materials processing, benefit from MCNP, the Monte Carlo method, and the revolution in science

  4. Science and data science. (United States)

    Blei, David M; Smyth, Padhraic


    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  5. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.


    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  6. New Community Education Program on Oceans and Global Climate Change: Results from Our Pilot Year (United States)

    Bruno, B. C.; Wiener, C.


    Ocean FEST (Families Exploring Science Together) engages elementary school students and their parents and teachers in hands-on science. Through this evening program, we educate participants about ocean and earth science issues that are relevant to their local communities. In the process, we hope to inspire more underrepresented students, including Native Hawaiians, Pacific Islanders and girls, to pursue careers in the ocean and earth sciences. Hawaii and the Pacific Islands will be disproportionately affected by the impacts of global climate change, including rising sea levels, coastal erosion, coral reef degradation and ocean acidification. It is therefore critically important to train ocean and earth scientists within these communities. This two-hour program explores ocean properties and timely environmental topics through six hands-on science activities. Activities are designed so students can see how globally important issues (e.g., climate change and ocean acidification) have local effects (e.g., sea level rise, coastal erosion, coral bleaching) which are particularly relevant to island communities. The Ocean FEST program ends with a career component, drawing parallel between the program activities and the activities done by "real scientists" in their jobs. The take-home message is that we are all scientists, we do science every day, and we can choose to do this as a career. Ocean FEST just completed our pilot year. During the 2009-2010 academic year, we conducted 20 events, including 16 formal events held at elementary schools and 4 informal outreach events. Evaluation data were collected at all formal events. Formative feedback from adult participants (parents, teachers, administrators and volunteers) was solicited through written questionnaires. Students were invited to respond to a survey of five questions both before and after the program to see if there were any changes in content knowledge and career attitudes. In our presentation, we will present our

  7. Monitoring the Northern San Francisco Bay Water Quality with Landsat-8. Nicholas B. Tufillaroa , and Curtiss O. Davisa. aOregon State University, Corvallis, OR, 97331, USA, (United States)

    Davis, C. O.; Tufillaro, N.


    Landsat-8's high spatial resolution ( 30 nm nominal), improved signal-to-noise (12bit digitizer) and expanded band set open up new applications for coastal and in-land waters. We use a recent ocean color processor for Landsat-8 created by Vanhellemont and Ruddick (RSE, 2015)to examine changes in the Northern San Francisco Bay, in particular looking for possiblechanges due to the on-going California drought. For instance, a temporary drought barrier to prevent salt water intrusion was placed during May of 2015 at West False River in the Sacramento-San Joaquin Delta. Using the new Landsat-8 ocean color products, we illustrate how to monitor changes in macro algae and plants (Sago pondweed (native), Curly pondweed (non-native)) in regions directly effected,such as the Franks Track region. Product maps using panchromatic enhancement ( 15 m resolution) andscene based atmospheric correction allow a detailed synoptic look every 16 days during theSpring, Summer, and Fall of 2015. This work is part of a larger NASA funded project aimed atimproving the modeling and predictive capabilities of the biogeochemical state for the San Francisco Bay(Davis, PI: Impacts of Population Growth on the San Francisco Bay and Delta Ecosystem, 2014-2017).

  8. Vital Signs: Seismology of Icy Ocean Worlds. (United States)

    Vance, Steven D; Kedar, Sharon; Panning, Mark P; Stähler, Simon C; Bills, Bruce G; Lorenz, Ralph D; Huang, Hsin-Hua; Pike, W T; Castillo, Julie C; Lognonné, Philippe; Tsai, Victor C; Rhoden, Alyssa R


    Ice-covered ocean worlds possess diverse energy sources and associated mechanisms that are capable of driving significant seismic activity, but to date no measurements of their seismic activity have been obtained. Such investigations could reveal the transport properties and radial structures, with possibilities for locating and characterizing trapped liquids that may host life and yielding critical constraints on redox fluxes and thus on habitability. Modeling efforts have examined seismic sources from tectonic fracturing and impacts. Here, we describe other possible seismic sources, their associations with science questions constraining habitability, and the feasibility of implementing such investigations. We argue, by analogy with the Moon, that detectable seismic activity should occur frequently on tidally flexed ocean worlds. Their ices fracture more easily than rocks and dissipate more tidal energy than the worlds also should create less thermal noise due to their greater distance and consequently smaller diurnal temperature variations. They also lack substantial atmospheres (except in the case of Titan) that would create additional noise. Thus, seismic experiments could be less complex and less susceptible to noise than prior or planned planetary seismology investigations of the Moon or Mars. Key Words: Seismology-Redox-Ocean worlds-Europa-Ice-Hydrothermal. Astrobiology 18, 37-53.

  9. Do swimming animals mix the ocean? (United States)

    Dabiri, John


    Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.

  10. Ocean Tide Loading Computation (United States)

    Agnew, Duncan Carr


    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  11. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E


    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  12. The Second International Indian Ocean Expedition (IIOE-2) (United States)

    Cowie, Greg; Hood, Raleigh


    the development of sustainable coastal zone, ecosystem, and fisheries management strategies for the Indian Ocean. Other goals of IIOE-2 include helping to build research capacity and improving availability and accessibility of oceanographic data from the region. The IIOE-2 Science Plan is structured around six scientific themes. Each theme comprises a set of core questions fundamental to our need to understand the forcings, processes, and resultant variability of the Indian Ocean and to develop the capacity to predict how this variability will impact human populations in the future. In this presentation we will report on current efforts to motivate an IIOE-2 and we will present the draft science plan that has been commissioned by SCOR.

  13. Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview (United States)

    Rogers, A. D.


    The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence

  14. Engaging wider publics with studying and protecting the ocean (United States)

    Nauen, Cornelia E.


    The ocean is dying. The vast scientific literature diagnoses massive reductions in the biomass of fish and invertebrates from overfishing, increasing destruction of coral ecosystems in the tropics from climate change, extensive dead zones from eutrophication and collapse of marine bird populations from ingesting plastic. Even though Darwin suspected already The scale is becoming apparent only from meta-analyses at regional or even global scales as individual studies tend to focus on one fishery or one type of organisms or geographic location. In combination with deep rooted perceptions of the vastness of the ocean the changes are difficult to comprehend for specialists and the general public alike. Even though more than half of humanity is estimated to live in coastal zones as defined by some, urbanisation is removing about half from regular, more direct exposure. Yet, there is much still to be explored, not only in the deep, little studied, parts. The ocean exercises great fascination on many people heightened since the period of discovery and the mystery of far-flung places, but the days, when Darwin's research results were regularly discussed in public spaces are gone. Rachel Carson's prize-winning and best selling book "The Sea Around Us", some serialised chapters in magazines and condensations in "Reader's Digest" transported the poetic rendering of science again to a wider public. But compared to the diversity of scientific inquiry about the ocean and importance for life-support system earth there is much room for engaging ocean science in the broad sense with larger and diverse publics. Developing new narratives rooted in the best available sciences is among the most promising modes of connecting different areas of scientific inquiry and non-specialists alike. We know at latest since Poincaré's famous dictum that "the facts don't speak". However, contextualised information can capture the imagination of the many and thus also reveal unexpected connections

  15. Are Global In-Situ Ocean Observations Fit-for-purpose? Applying the Framework for Ocean Observing in the Atlantic. (United States)

    Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.


    There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of

  16. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change (United States)

    Weiss, N.; Wood, J. H.


    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  17. Advances in a Distributed Approach for Ocean Model Data Interoperability

    Directory of Open Access Journals (Sweden)

    Richard P. Signell


    Full Text Available An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC Sensor Observation Service (SOS, a metadata standard for unstructured grid model output (UGRID, and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS® Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  18. Advances in a distributed approach for ocean model data interoperability (United States)

    Signell, Richard P.; Snowden, Derrick P.


    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  19. Understanding Climate Uncertainty with an Ocean Focus (United States)

    Tokmakian, R. T.


    ocean circulation due to parameter specification will be described and early results using the ocean/ice components of the CCSM climate model in a designed experiment framework will be shown. Cox, P. and D. Stephenson, Climate Change: A Changing Climate for Prediction, 2007, Science 317 (5835), 207, DOI: 10.1126/science.1145956. Rougier, J. C., 2007: Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, Climatic Change, 81, 247-264. Smith L., 2002, What might we learn from climate forecasts? Proc. Nat’l Academy of Sciences, Vol. 99, suppl. 1, 2487-2492 doi:10.1073/pnas.012580599.

  20. Paleomagnetism continents and oceans

    CERN Document Server

    McElhinny, Michael W; Dmowska, Renata; Holton, James R; Rossby, H Thomas


    Paleomagnetism is the study of the fossil magnetism in rocks. It has been paramount in determining that the continents have drifted over the surface of the Earth throughout geological time. The fossil magnetism preserved in the ocean floor has demonstrated how continental drift takes place through the process of sea-floor spreading. The methods and techniques used in paleomagnetic studies of continental rocks and of the ocean floor are described and then applied to determining horizontal movements of the Earth''s crust over geological time. An up-to-date review of global paleomagnetic data enables 1000 millionyears of Earth history to be summarized in terms of the drift of the major crustal blocks over the surface of the Earth. The first edition of McElhinny''s book was heralded as a "classic and definitive text." It thoroughly discussed the theory of geomagnetism, the geologicreversals of the Earth''s magnetic field, and the shifting of magnetic poles. In the 25 years since the highly successful first editio...

  1. Blue ocean leadership. (United States)

    Kim, W Chan; Mauborgne, Renée


    Ten years ago, two INSEAD professors broke ground by introducing "blue ocean strategy," a new model for discovering uncontested markets that are ripe for growth. In this article, they apply their concepts and tools to what is perhaps the greatest challenge of leadership: closing the gulf between the potential and the realized talent and energy of employees. Research indicates that this gulf is vast: According to Gallup, 70% of workers are disengaged from their jobs. If companies could find a way to convert them into engaged employees, the results could be transformative. The trouble is, managers lack a clear understanding of what changes they could make to bring out the best in everyone. Here, Kim and Mauborgne offer a solution to that problem: a systematic approach to uncovering, at each level of the organization, which leadership acts and activities will inspire employees to give their all, and a process for getting managers throughout the company to start doing them. Blue ocean leadership works because the managers' "customers"-that is, the people managers oversee and report to-are involved in identifying what's effective and what isn't. Moreover, the approach doesn't require leaders to alter who they are, just to undertake a different set of tasks. And that kind of change is much easier to implement and track than changes to values and mind-sets.

  2. Ocean bottom seismometer technology (United States)

    Prothero, William A., Jr.

    Seismometers have been placed on the ocean bottom for about 45 years, beginning with the work of Ewing and Vine [1938], and their current use to measure signals from earthquakes and explosions constitutes an important research method for seismological studies. Approximately 20 research groups are active in the United Kingdom, France, West Germany, Japan, Canada, and the United States. A review of ocean bottom seismometer (OBS) instrument characteristics and OBS scientific studies may be found in Whitmarsh and Lilwall [1984]. OBS instrumentation is also important for land seismology. The recording systems that have been developed have been generally more sophisticated than those available for land use, and several modern land seismic recording systems are based on OBS recording system designs.The instrumentation developed for OBS work was the topic of a meeting held at the University of California, Santa Barbara, in July 1982. This article will discuss the state of the art of OBS Technology, some of the problems remaining to be solved, and some of the solutions proposed and implemented by OBS scientists and engineers. It is not intended as a comprehensive review of existing instrumentation.

  3. Satellite Ocean Color Sensor Design Concepts and Performance Requirements (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan


    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  4. SeaWinds - Oceans, Land, Polar Regions (United States)


    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  5. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)


    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  6. The ocean circulation inverse problem

    National Research Council Canada - National Science Library

    Wunsch, C


    .... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...

  7. The Geonauts inquire into the oceans (United States)

    Bonnefond, P.; Fogstrand, K.; Exertier, P.


    The main idea of this project was to maintain the link between research and school in order to avoid mutual lack of understanding. In that way, it is particularly important to meet and speak together, inside the teacher-researcher-child triptych, to define the better way to transmit to children scientific knowledge, but above all the idea that science can be funny and not so difficult. We have to take the advantage of the children's native curiosity to stimulate them and then amplify the field of exchange. From February to June 2000, several presentations of what can be learn from satellite altimetry to improve knowledge about oceans, have been performed into six classes (8--10 years old) of Grasse (France). The goal was to encourage the children (called Geonauts) to put in search mysteries of the oceans, and to become sensitive of ocean's role for climate stability. For each theme (tides, circulation, sea floor, interaction between ocean and atmosphere, etc) a scientist has been invited to present it into each classroom to go further a cordial exchange. In the frame of this project, we have asked children to present us back what they have considered to be the high points of this exchange, using their preferred medium (drawings, poetry, etc). In parallel, we have used the children and teacher feedback to develop a CD-ROM. Results from children and a web version of the CD-ROM have been put inside a Web site: The CD-ROM is now ready and contain a French and an English (Mac/PC compatible).

  8. CURRENT DIRECTION, turbidity and other data from FIXED PLATFORM and UNKNOWN PLATFORMS OF CANADA in the North Pacific Ocean, Northwest Passage and other waters from 1979-01-01 to 1987-12-31 (NCEI Accession 9000069) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains microfische data provided by the Canadian Fisheries and Oceans and taken from the Canadian Data Report of Hydrography and Sciences. The...

  9. Profile data collected from CTDs aboard NOAA Ship Oscar Elton Sette in the South Pacific Ocean near American Samoa from 2004-03-03 to 2004-03-15 (NODC Accession 0014889) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecosystems and Oceanography Division of the Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric...

  10. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 01/03/2012 (NCEI Accession 0083185) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  11. Temperature, salinity, and water chemistry data from quarterly surface transects of the Comprehensive Environmental Monitoring Program at the Ocean Thermal Energy Conversion plant in Keahole, Island of Hawaii 1993-2016 (NCEI Accession 0156452) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and Technology park in Kailua-Kona on...

  12. Temperature, salinity, and water chemistry data from quarterly bottom transects of the Comprehensive Environmental Monitoring Program at the Ocean Thermal Energy Conversion plant in Keahole, Island of Hawaii 1993-2007 (NCEI Accession 0156980) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona on...

  13. Temperature, salinity, and water chemistry data from the Comprehensive Environmental Monitoring Program of the Ocean Thermal Energy Conversion plant at Keahole, Island of Hawaii, from shallow and deep intake pipes during 1982-2016 (NODC Accession 0001623) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona on...

  14. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted since 1999-10-04 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  15. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 11/23/2004 (NCEI Accession 0001907) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  16. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 06/08/1979 - 05/25/2010 (NODC Accession 0065272) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  17. Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change (United States)

    Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.


    Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at

  18. Productivity, chlorophyll a, Photosynthetically Active Radiation (PAR) and other phytoplankton data from the Arctic Ocean, Bering Sea, Chukchi Sea, Beaufort Sea, East Siberian Sea, Kara Sea, Barents Sea, and Arctic Archipelago measured between 17 April, 1954 and 30 May, 2006 compiled as part of the Arctic System Science Primary Production (ARCSS-PP) observational synthesis project (NODC Accession 0063065) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Arctic Ocean primary production data were assembled from original input data archived in various international databases, provided by individual investigators or in...

  19. Ocean Acidification from space: recent advances (United States)

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas


    satellite data sources. The overarching long-term objectives are to develop new algorithms and data processing strategies to overcome the relative immaturity of OA satellite products currently available, and to produce a global, temporally evolving, quasi-operational suite of OA satellite-derived data. References: [1] Land, P., J. Shutler, H. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J. Salisbury, D. Vandemark, R. Bellerby, and P. Bhadury, "Salinity from space unlocks satellite-based assessment of ocean acidification", Environmental Science & Technology, DOI: 10.1021/es504849s, Publication Date (Web): January 8, 2015 [2] Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108-121, [3] Sabia R., D. Fernández-Prieto, J. Shutler, C. Donlon, P. Land, N. Reul, Remote Sensing of Surface Ocean pH Exploiting Sea Surface Salinity Satellite Observations, IGARSS '15 (International Geoscience and Remote Sensing Symposium), Milano, Italy, July 27 -31, 2015.

  20. Science in Science Fiction. (United States)

    Allday, Jonathan


    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)