WorldWideScience

Sample records for ocean salinity delta18owater

  1. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  2. Europa's Compositional Evolution and Ocean Salinity

    Science.gov (United States)

    Vance, S.; Glein, C.; Bouquet, A.; Cammarano, F.; McKinnon, W. B.

    2017-12-01

    Europa's ocean depth and composition have likely evolved through time, in step with the temperature of its mantle, and in concert with the loss of water and hydrogen to space and accretion of water and other chemical species from comets, dust, and Io's volcanism. A key aspect to understanding the consequences of these processes is combining internal structure models with detailed calculations of ocean composition, which to date has not been done. This owes in part to the unavailability of suitable thermodynamic databases for aqueous chemistry above 0.5 GPa. Recent advances in high pressure aqueous chemistry and water-rock interactions allow us to compute the equilibrium ionic conditions and pH everywhere in Europa's interior. In this work, we develop radial structure and composition models for Europa that include self-consistent thermodynamics of all materials, developed using the PlanetProfile software. We will describe the potential hydration states and porosity of the rocky interior, and the partitioning of primordial sulfur between this layer, an underlying metallic core, and the ocean above. We will use these results to compute the ocean's salinity by extraction from the upper part of the rocky layer. In this context, we will also consider the fluxes of reductants from Europa's interior due to high-temperature hydrothermalism, serpentinization, and endogenic radiolysis.

  3. Salinity fronts in the tropical Pacific Ocean.

    Science.gov (United States)

    Kao, Hsun-Ying; Lagerloef, Gary S E

    2015-02-01

    This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m 3 . In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics.

  4. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  5. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  6. Importance of ocean salinity for climate and habitability.

    Science.gov (United States)

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M

    2016-04-19

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  7. Ocean acidification alters temperature and salinity preferences in larval fish.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  8. Advances in measuring ocean salinity with an optical sensor

    International Nuclear Information System (INIS)

    Menn, M Le; De Bougrenet de la Tocnaye, J L; Grosso, P; Delauney, L; Podeur, C; Brault, P; Guillerme, O

    2011-01-01

    Absolute salinity measurement of seawater has become a key issue in thermodynamic models of the oceans. One of the most direct ways is to measure the seawater refractive index which is related to density and can therefore be related to the absolute salinity. Recent advances in high resolution position sensitive devices enable us to take advantage of small beam deviation measurements using refractometers. This paper assesses the advantages of such technology with respect to the current state-of-the-art technology. In particular, we present the resolution dependence on refractive index variations and derive the limits of such a solution for designing seawater sensors well suited for coastal and deep-sea applications. Particular attention has been paid to investigate the impact of environmental parameters, such as temperature and pressure, on an optical sensor, and ways to mitigate or compensate them have been suggested here. The sensor has been successfully tested in a pressure tank and in open oceans 2000 m deep

  9. Atlantic Ocean CARINA data: overview and salinity adjustments

    Directory of Open Access Journals (Sweden)

    T. Tanhua

    2010-02-01

    Full Text Available Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean. The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control for salinity for this data set. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example

  10. Soil Moisture Ocean Salinity (SMOS) salinity data validation over Malaysia coastal water

    International Nuclear Information System (INIS)

    Reba, M N M; Rosli, A Z; Rahim, N A

    2014-01-01

    The study of sea surface salinity (SSS) plays an important role in the marine ecosystem, estimation of global ocean circulation and observation of fisheries, aquaculture, coral reef and sea grass habitats. The new challenge of SSS estimation is to exploit the ocean surface brightness temperature (Tb) observed by the Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture Ocean Salinity (SMOS) satellite that is specifically designed to provide the best retrieval of ocean salinity and soil moisture using the L band of 1.4 GHz radiometer. Tb observed by radiometer is basically a function of the dielectric constant, sea surface temperature (SST), wind speed (U), incidence angle, polarization and SSS. Though, the SSS estimation is an ill-posed inversion problem as the relationship between the Tb and SSS is non-linear function. Objective of this study is to validate the SMOS SSS estimates with the ground-truth over the Malaysia coastal water. The LM iteratively determines the SSS of SMOS by the reduction of the sum of squared errors between Tb SMOS and Tb simulation (using in-situ) based on the updated geophysical triplet in the direction of the minimum of the cost function. The minimum cost function is compared to the desired threshold at each iteration and this recursive least square process updates the SST, U and SSS until the cost function converged. The designed LM's non-linear inversion algorithm simultaneously estimates SST, U and SSS and thus, map of SSS over Malaysia coastal water is produced from the regression model and accuracy assessment between the SMOS and in-situ retrieved SSS. This study found a good agreement in the validation with R square of 0.9 and the RMSE of 0.4. It is concluded that the non-linear inversion method is effective and practical to extract SMOS SSS, U and SST simultaneously

  11. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  12. A new atlas of temperature and salinity for the North Indian Ocean

    Indian Academy of Sciences (India)

    The most used temperature and salinity climatology for the world ocean, including the Indian Ocean, is the World Ocean Atlas (WOA) (Antonov et al 2006, 2010; Locarnini et al 2006, 2010) because of the vast amount of data used in its preparation. The WOA climatology does not, however, include all the available ...

  13. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Satellite observations.

    Science.gov (United States)

    Guerrero, Raul A; Piola, Alberto R; Fenco, Harold; Matano, Ricardo P; Combes, Vincent; Chao, Yi; James, Corinne; Palma, Elbio D; Saraceno, Martin; Strub, P Ted

    2014-11-01

    Satellite-derived sea surface salinity (SSS) data from Aquarius and SMOS are used to study the shelf-open ocean exchanges in the western South Atlantic near 35°S. Away from the tropics, these exchanges cause the largest SSS variability throughout the South Atlantic. The data reveal a well-defined seasonal pattern of SSS during the analyzed period and of the location of the export of low-salinity shelf waters. In spring and summer, low-salinity waters over the shelf expand offshore and are transferred to the open ocean primarily southeast of the river mouth (from 36°S to 37°30'S). In contrast, in fall and winter, low-salinity waters extend along a coastal plume and the export path to the open ocean distributes along the offshore edge of the plume. The strong seasonal SSS pattern is modulated by the seasonality of the along-shelf component of the wind stress over the shelf. However, the combined analysis of SSS, satellite-derived sea surface elevation and surface velocity data suggest that the precise location of the export of shelf waters depends on offshore circulation patterns, such as the location of the Brazil Malvinas Confluence and mesoscale eddies and meanders of the Brazil Current. The satellite data indicate that in summer, mixtures of low-salinity shelf waters are swiftly driven toward the ocean interior along the axis of the Brazil/Malvinas Confluence. In winter, episodic wind reversals force the low-salinity coastal plume offshore where they mix with tropical waters within the Brazil Current and create a warmer variety of low-salinity waters in the open ocean. Satellite salinity sensors capture low-salinity detrainment events from shelves SW Atlantic low-salinity detrainments cause highest basin-scale variability In summer low-salinity detrainments cause extended low-salinity anomalies.

  14. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  15. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    Science.gov (United States)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths

  16. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  17. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar

    International Nuclear Information System (INIS)

    Yu, Yin; Ma, Yong; Li, Hao; Huang, Jun; Fang, Yu; Liang, Kun; Zhou, Bo

    2014-01-01

    A method for simultaneously obtaining the ocean temperature and salinity based on dual-wavelength Brillouin lidar is proposed in this letter. On the basis of the relationships between the temperature and salinity and the Brillouin shifts, a retrieval model for retrieving the temperature and salinity is established. By using the retrieval model, the ocean temperature and salinity can be simultaneously obtained through the Brillouin shifts. Simulation based on dual-wavelength Brillouin lidar is also carried out for verification of the accuracy of the retrieval model. Results show that the errors of the retrieval model for temperature and salinity are ±0.27 °C and ±0.33‰. (letter)

  18. SPURS: Salinity Processes in the Upper-Ocean Regional Study: THE NORTH ATLANTIC EXPERIMENT

    Science.gov (United States)

    Lindstrom, Eric; Bryan, Frank; Schmitt, Ray

    2015-01-01

    In this special issue of Oceanography, we explore the results of SPURS-1, the first part of the ocean process study Salinity Processes in the Upper-ocean Regional Study (SPURS). The experiment was conducted between August 2012 and October 2013 in the subtropical North Atlantic and was the first of two experiments (SPURS come in pairs!). SPURS-2 is planned for 20162017 in the tropical eastern Pacific Ocean.

  19. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  20. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    Science.gov (United States)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  1. Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean from 2003 to 2006 (NODC Accession 0014672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean. Data from JAMSTEC drifting buoys which were deployed both as...

  2. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    Science.gov (United States)

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  3. Sea surface salinity variability in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B; Murty, V.S.N.; Heffner, D.M.

    (EIO: 5 degrees S- 5 degrees N, 90 degrees-95 degrees E) and Southeastern Arabian Sea (SEAS: 5 degrees-9 degrees N, 72 degrees-76 degrees E) and to compare with the HYbrid Coordinate Ocean Model (HYCOM) simulated SSS for the period from January 2002...

  4. Measurement of ocean temperature and salinity via microwave radiometry

    Science.gov (United States)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1978-01-01

    Sea-surface temperature with an accuracy of 1 C and salinity with an accuracy of 1% were measured with a 1.43 and 2.65 GHz radiometer system after correcting for the influence of cosmic radiation, intervening atmosphere, sea-surface roughness, and antenna beamwidth. The radiometers are a third-generation system using null-balancing and feedback noise injection. Flight measurements from aircraft over bay regions and coastal areas of the Atlantic resulted in contour maps with spatial resolution of 0.5 km.

  5. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Directory of Open Access Journals (Sweden)

    Caroline S Fortunato

    Full Text Available Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33, the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1 the taxonomy of the community changed strongly with salinity, 2 metabolic potential was highly similar across samples, with few differences in

  6. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  7. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  8. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    Science.gov (United States)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  9. Impact of hydrogeological factors on groundwater salinization due to ocean-surge inundation

    Science.gov (United States)

    Yang, Jie; Zhang, Huichen; Yu, Xuan; Graf, Thomas; Michael, Holly A.

    2018-01-01

    Ocean surges cause seawater inundation of coastal inland areas. Subsequently, seawater infiltrates into coastal aquifers and threatens the fresh groundwater resource. The severity of resulting salinization can be affected by hydrogeological factors including aquifer properties and hydrologic conditions, however, little research has been done to assess these effects. To understand the impacts of hydrogeological factors on groundwater salinization, we numerically simulated an ocean-surge inundation event on a two-dimensional conceptual coastal aquifer using a coupled surface-subsurface approach. We varied model permeability (including anisotropy), inland hydraulic gradient, and recharge rate. Three salinization-assessment indicators were developed, based on flushing time, depth of salt penetration, and a combination of the two, weighted flushing time, with which the impact of hydrogeological factors on groundwater vulnerability to salinization were quantitatively assessed. The vulnerability of coastal aquifers increases with increasing isotropic permeability. Low horizontal permeability (kx) and high vertical permeability (kz) lead to high aquifer vulnerability, and high kx and low kz lead to low aquifer vulnerability. Vulnerability decreases with increasing groundwater hydraulic gradient and increasing recharge rate. Additionally, coastal aquifers with a low recharge rate (R ≤ 300 mm yr-1) may be highly vulnerable to ocean-surge inundation. This study shows how the newly introduced indicators can be used to quantitatively assess coastal aquifer vulnerability. The results are important for global vulnerability assessment of coastal aquifers to ocean-surge inundation.

  10. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  11. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.

    Science.gov (United States)

    Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina

    2018-01-01

    Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.

  12. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    Science.gov (United States)

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  13. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz

    Science.gov (United States)

    Marty, Bernard; Avice, Guillaume; Bekaert, David V.; Broadley, Michael W.

    2018-05-01

    Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon-argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5-3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless 40Ar. The low Cl-K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth.

  14. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M

    2017-09-15

    Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sea-ice transport driving Southern Ocean salinity and its recent trends.

    Science.gov (United States)

    Haumann, F Alexander; Gruber, Nicolas; Münnich, Matthias; Frenger, Ivy; Kern, Stefan

    2016-09-01

    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of -0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface waters.

  16. Influence of salinity on bacterioplankton communities from the brazilian rain forest to the coastal Atlantic Ocean

    OpenAIRE

    Silveira, Cynthia Barbosa da; Vieira, Ricardo Pilz; Cardoso, Alexander Machado; Paranhos, Rodolfo Pinheiro da Rocha; Albano, Rodolpho Mattos; Martins, Orlando Bonifácio

    2011-01-01

    BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. MET...

  17. NODC Standard Product: International ocean atlas Volume 4 - Atlas of temperature / salinity frequency distributions (2 disc set) (NCEI Accession 0101473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents more than 80,000 plots of the empirical frequency distributions of temperature and salinity for each 5-degree square area of the North Atlantic...

  18. NODC Standard Product: Experimental Compact Disk NODC-01 Pacific Ocean Temperature-Salinity Profiles (1900-1988) (NODC Accession 0086259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanographic Data Center (NODC) created a compact disk containing over 1.3 million temperature-depth and salinity-depth profiles taken in the Pacific...

  19. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    Science.gov (United States)

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  20. Historical temperature, salinity, oxygen, nutrients and meteorological data collected in the Arctic Ocean and Atlantic Ocean by various countries from 20 Jul 1870 to 17 Jul 1995 (NODC Accession 0085914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, nutrients and meteorological data collected in the Arctic Ocean and Atlantic Ocean by various countries from 1870 to 1995,...

  1. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    Science.gov (United States)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; hide

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  2. On the Balancing of the SMOS Ocean Salinity Retrieval Cost Function

    Science.gov (United States)

    Sabia, R.; Camps, A.; Portabella, M.; Talone, M.; Ballabrera, J.; Gourrion, J.; Gabarró, C.; Aretxabaleta, A. L.; Font, J.

    2009-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission will be launched in mid 2009 to provide synoptic sea surface salinity (SSS) measurements with good temporal resolution [1]. To obtain a proper estimation of the SSS fields derived from the multi-angular brightness temperatures (TB) measured by the Microwave Interferometric Radiometer by Aperture Synthesis (MIRAS) sensor, a comprehensive inversion procedure has been defined [2]. Nevertheless, several salinity retrieval issues remain critical, namely: 1) Scene-dependent bias in the simulated TBs, 2) L-band forward geophysical model function definition, 3) Auxiliary data uncertainties, 4) Constraints in the cost function (inversion), especially in salinity term, and 5) Adequate spatio-temporal averaging. These issues will have to be properly addressed in order to meet the proposed accuracy requirement of the mission: a demanding 0.1 psu (practical salinity units) after averaging in a 30-day and 2°x2° spatio-temporal boxes. The salinity retrieval cost function minimizes the difference between the multi-angular measured SMOS TBs (yet simulated, so far) and the modeled TBs, weighted by the corresponding radiometric noise of the measurements. Furthermore, due to the fact that the minimization problem is both non-linear and ill-posed, background reference terms are needed to nudge the solution and ensuring convergence at the same time [3]. Constraining terms in SSS, sea surface temperature (SST) and wind speed are considered with their respective uncertainties. Moreover, whether SSS constraints have to be included or not as part of the retrieval procedure is still a matter of debate. On one hand, neglecting background reference information on SSS might prevent from retrieving salinity with the prescribed accuracy or at least within reasonable error. Conversely, including constraints in SSS, relying for instance on the climatology, may force the retrieved value to be too close to the reference prior values, thus

  3. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    Science.gov (United States)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  4. The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Numerical simulations.

    Science.gov (United States)

    Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin

    2014-11-01

    A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA) , the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high - frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.

  5. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  6. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  7. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by the...

  8. Salinity and sigma-t data from CTD casts in the TOGA Area - Pacific Ocean from 1994-01-06 to 1995-08-03 (NODC Accession 9600024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and sigma-t data were collected using current meter, pressure gauge, and CTD casts in the TOGA Area - Pacific Ocean from January 6, 1994 to August 3, 1995....

  9. Oceanographic profile temperature, salinity, oxygen, nutrients, and plankton measurements collected using bottle from the Parizeau in the North Pacific Ocean (NODC Accession 0002242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 09/09/04 by Sydney Levitus from the Institute of Ocean Sciences (Sidney, B.C.), digitized...

  10. Oxygen, salinity, and other data from bottle casts in the Northwest Atlantic Ocean from 25 February 1973 to 04 May 1981 (NODC Accession 0000344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oxygen, salinity, temperature, and depth data were collected using bottle casts in the Northwest Atlantic Ocean from February 25, 1973 to May 4, 1981. Data were...

  11. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 05 February 1973 to 19 August 1980 (NODC Accession 0000289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 5, 1973 to August 19, 1980. These...

  12. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  13. Temperature, salinity, and other data from CTD casts in the Indian Ocean and other locations from 19890901 to 19910831 (NODC Accession 9700263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected from CTD casts in the Mediterranean Sea, Indian Ocean, and other locations from 01 September 1989 to 31 August...

  14. Ice-Tethered Profiler observations: Vertical profiles of temperature, salinity, oxygen, and ocean velocity from an Ice-Tethered Profiler buoy system

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains repeated vertical profiles of ocean temperature and salinity versus pressure, as well as oxygen and velocity for some instruments. Data were...

  15. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 07 February 1987 to 18 February 1991 (NODC Accession 0000290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 7, 1987 to February 18, 1991....

  16. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    Science.gov (United States)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  17. Faraday Rotation for SMOS Retrievals of Ocean Salinity and Soil Moisture

    Science.gov (United States)

    El-Nimri, Salem; Le Vine, David M.

    2016-01-01

    Faraday rotation is a change in polarization as radiation propagates from the surface through the ionosphere to the sensor. At L-band (1.4 GHz) this change can be significant and can be important for the remote sensing of soil moisture and ocean salinity from space. Consequently, modern L-band radiometers (SMOS, Aquarius and SMOS) are polarimetric to measure Faraday rotation in situ so that a correction can be made. This is done using the ratio of the third and second Stokes parameters. In the case of SMOS this procedure has produced very noisy estimates. An alternate procedure is reported here in which the total electron content is estimated and averaged to reduce noise.

  18. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    Science.gov (United States)

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  19. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  20. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  1. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.

    Science.gov (United States)

    Horikawa, Keiji; Martin, Ellen E; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-06-29

    Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.

  2. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.

    Science.gov (United States)

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-02

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  3. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes

    Directory of Open Access Journals (Sweden)

    Wenqing Tang

    2018-06-01

    Full Text Available Sea surface salinity (SSS links various components of the Arctic freshwater system. SSS responds to freshwater inputs from river discharge, sea ice change, precipitation and evaporation, and oceanic transport through the open straits of the Pacific and Atlantic oceans. However, in situ SSS data in the Arctic Ocean are very sparse and insufficient to depict the large-scale variability to address the critical question of how climate variability and change affect the Arctic Ocean freshwater. The L-band microwave radiometer on board the NASA Soil Moisture Active Passive (SMAP mission has been providing SSS measurements since April 2015, at approximately 60 km resolution with Arctic Ocean coverage in 1–2 days. With improved land/ice correction, the SMAP SSS algorithm that was developed at the Jet Propulsion Laboratory (JPL is able to retrieve SSS in ice-free regions 35 km of the coast. SMAP observes a large-scale contrast in salinity between the Atlantic and Pacific sides of the Arctic Ocean, while retrievals within the Arctic Circle vary over time, depending on the sea ice coverage and river runoff. We assess the accuracy of SMAP SSS through comparative analysis with in situ salinity data collected by Argo floats, ships, gliders, and in field campaigns. Results derived from nearly 20,000 pairs of SMAP and in situ data North of 50°N collocated within a 12.5-km radius and daily time window indicate a Root Mean Square Difference (RMSD less than ~1 psu with a correlation coefficient of 0.82 and a near unity regression slope over the entire range of salinity. In contrast, the Hybrid Coordinate Ocean Model (HYCOM has a smaller RMSD with Argo. However, there are clear systematic biases in the HYCOM for salinity in the range of 25–30 psu, leading to a regression slope of about 0.5. In the region North of 65°N, the number of collocated samples drops more than 70%, resulting in an RMSD of about 1.2 psu. SMAP SSS in the Kara Sea shows a consistent

  4. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  5. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS Soil Moisture: Retrieval Ensembles

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2015-12-01

    Full Text Available Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV bias correction method for Soil Moisture and Ocean Salinity (SMOS soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration. In contrast, the existing method of Cumulative Distribution Function (CDF matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area and Niger (dry and sandy bare soils, it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

  6. ENSO signals on sea-surface salinity in the eastern tropical pacific ocean

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Full Text Available SIGNAUX DE L’ENSO SUR LA SALINITE DE LA SURFACE DE LA MER DANS L’OCEAN PACIFIQUE TROPICAL ORIENTAL. Nous présentons les variations de la température et de la salinité de surface. Des navires de commerce ont été récemment équipés de thermosalinographes automatiques qui permettent d’échantillonner en continu et de localiser le front de salinité le long de la ligne Panama-Tahiti, séparant les masses d’eaux du golfe de Panama et celles du Pacifique central sud. La variation en latitude de la position du front halin suit la position de la zone de convergence intertropicale des vents du Pacifique. La salinité donne ainsi des informations supplémentaires sur le développement du phénomène El Niño dans le Pacifique tropical. La future transmission par satellite de la salinité de surface permettra de suivre en temps réel la distribution de la salinité de surface qui est étroitement liée aux échanges entre l’océan et l’atmosphère. SEÑALES DEL ENSO SOBRE LA SALINIDAD DE LA SUPERFICIE DEL OCÉANO PACÍFICO ORIENTAL. Presentamos las variaciones de la temperatura y de la salinidad de superficie. Barcos de comercio fueron recientemente equipados con termo-saliógrafos automáticos, los cuales permiten observar un muestreo continuo y ubicar el frente de salinidad en la recta Panamá-Tahiti, la cual separa las masas de agua del golfo de Panamá con las del Pacífico centro Sur. La variación en latitud de la ubicación del frente halino acompaña a la posición de la Zona de Convergencia Intertropical de los vientos del Pacífico. La salinidad proporciona también informaciones adicionales sobre el desarrollo del Fenómeno El Niño en el Pacífico tropical. La futura transmisión por satélite de la salinidad de superficie permitirá el monitoreo en tiempo real de la distribución en tiempo real de la salinidad de superficie, la cual está estrechamente vinculada con los intercambios entre el océano y la atmósfera. Various data

  7. Temperature Data Assimilation with Salinity Corrections: Validation for the NSIPP Ocean Data Assimilation System in the Tropical Pacific Ocean, 1993-1998

    Science.gov (United States)

    Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.

    2003-01-01

    The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.

  8. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  9. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    Science.gov (United States)

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  10. Salinity and physical data from TS probe and thermometer in the Southeast Pacific Ocean from 04 December 1956 to 01 May 1989 (NODC Accession 0000329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity, temperature, and physical data were collected from the AKADEMIK FEDOROV (AKA AKADEMIK FYODOROV), LENA, and OB from December 4, 1956 to May 1, 1989. These...

  11. Temperature, salinity and other parameters from bottle casts in the northeast Pacific Ocean from SWAN from 1965-10-30 to 1966-09-18 (NODC Accession 7000633)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data, barometric pressure, air temperature and surface winds measurements were collected during nine bottle cast at six stations in...

  12. Oceanographic profile plankton, Temperature Salinity and other measurements collected using bottle from various platforms in the South Pacific Ocean from 1997 to 1998 (NODC Accession 0014651)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, nutrients, and other measurements found in the bottle dataset taken from the SNP-1, HUAMANGA (fishing boat) and other platforms in the...

  13. Oceanographic profile plankton, temperature, salinity collected using bottle from various unknown small boats in the South Pacific Ocean from 1981 to 1982 (NODC Accession 0002138)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity and other measurements found in dataset OSD taken from unknown platform(s)in the Coastal S Pacific, Equatorial Pacific and other locations from...

  14. Temperature and salinity data from moored seacat sensors of the Multi-disciplinary Ocean Sensors for Environmental Analyses and Networks (MOSEAN) project 2004-2007 (NODC Accession 0115703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity data were collected by seacat sensors from seven deployments within 2004-2007 on the HALE-ALOHA mooring, a location about 100 km north of...

  15. Temperature, salinity, and other data collected using bottle, CTD, and XBT casts in the Pacific and Atlantic Ocean from 12 April 1960 to 27 October 1999 (NODC Accession 0000214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using bottle, CTD, and XBT casts in the North/South Atlantic Ocean and North/South Pacific Ocean from April 12,...

  16. NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains ocean heat content change, oceanic temperature and salinity changes, and steric sea level change (change in volume without change in mass),...

  17. Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks

    Science.gov (United States)

    Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.

    2018-05-01

    Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.

  18. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    Science.gov (United States)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven

  19. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    Science.gov (United States)

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  20. Monitoring Drought along the Gulf of Mexico and the Southeastern Atlantic Ocean Using the Coastal Salinity Index

    Science.gov (United States)

    Conrads, P. A.; Rouen, L.; Lackstrom, K.; McCloskey, B.

    2017-12-01

    Coastal droughts have a different dynamic than upland droughts, which are typically characterized by agricultural, hydrologic, meteorological, and (or) socio-economic impacts. Drought uniquely affects coastal ecosystems due to changes in salinity conditions of estuarine creeks and rivers. The location of the freshwater-saltwater interface in surface-water bodies is an important factor in the ecological and socio-economic dynamics of coastal communities. The location of the interface determines the freshwater and saltwater aquatic communities, fisheries spawning habitat, and the freshwater availability for municipal and industrial water intakes. The severity of coastal drought may explain changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. To address the data and information gap for characterizing coastal drought, a coastal salinity index (CSI) was developed using salinity data. The CSI uses a computational approach similar to the Standardized Precipitation Index (SPI). The CSI is computed for unique time intervals (for example 1-, 6-, 12-, and 24-month) that can characterize the onset and recovery of short- and long-term drought. Evaluation of the CSI indicates that the index can be used for different estuary types (for example: brackish, oligohaline, or mesohaline), for regional comparison between estuaries, and as an index of wet conditions (high freshwater inflow) in addition to drought (saline) conditions. In 2017, three activities in 2017 will be presented that enhance the use and application of the CSI. One, a software package was developed for the consistent computation of the CSI that includes preprocessing of salinity data, filling missing data, computing the CSI, post-processing, and generating the supporting metadata. Two, the CSI has been computed at sites along the Gulf of Mexico (Texas to Florida) and the Southeastern Atlantic Ocean (Florida to

  1. Detecting the influence of ocean process on the moisture supply for India summer monsoon from Satellite Sea Surface Salinity

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Liu, W. T.; Fore, A.; Hayashi, A.

    2016-02-01

    A strong contrast in the onset of Indian summer monsoon was observed by independent satellites: average rain rate over India subcontinent (IS) in June was more than doubled in 2013 than 2012 (TRMM); also observed are larger area of wet soil (Aquarius) and high water storage (GRACE). The difference in IS rainfall was contributed to the moisture inputs through west coast of India, estimated from ocean wind (OSCAT2) and water vapor (TMI). This is an interesting testbed for studying the role of ocean on terrestrial water cycle, in particular the Indian monsoon, which has tremendous social-economical impact. What is the source of extra moisture in 2013 or deficit in 2012 for the monsoon onset? Is it possible to quantify the contribution of ocean process that maybe responsible for redistributing the freshwater in favor of the summer monsoon moisture supply? This study aims to identify the influence of ocean processes on the freshwater exchange between air-sea interfaces, using Aquarius sea surface salinity (SSS). We found two areas in Indian Ocean with high correlation between IS rain rate and Aquarius SSS: one area is in the Arabian Sea adjacent to IS, another area is a horizontal patch from 60°E to 100°E centered around 10°S. On the other hand, E-P (OAflux, TRMM) shows no similar correlation patterns with IS rain. Based on the governing equation of the salt budget in the upper ocean, we define the freshwater flux, F, from the oceanic branch of the water cycle, including contributions from salinity tendency, advection, and subsurface process. The tendency and advection terms are estimated using Aquarius SSS and OSCAR ocean current. We will present results of analyzing the spatial and temporal variability of F and evidence of and hypothesis on how the oceanic processes may enhance the moisture supply for summer Indian monsoon onset in 2013 comparing with 2012. The NASA Soil Moisture Active Passive (SMAP) has been producing the global soil moisture (SM) every 2-3 days

  2. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the LCM Red in the Alaskan Coastal waters, from the Gerda in the Atlantic Ocean, and from DeSteiguer in the Pacific Ocean (NODC Accession 0002231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen and other profile data received at NODC on 06/10/04 by Olga Baranova, digitized from "William J. Teague, Zachariah R. Hallock, Jan M....

  3. A Radar/Radiometer Instrument for Mapping Soil Moisture and Ocean Salinity

    Science.gov (United States)

    Hildebrand, Peter H.; Hilliard, Laurence; Rincon, Rafael; LeVine, David; Mead, James

    2003-01-01

    The RadSTAR instrument combines an L-band, digital beam-forming radar with an L-band synthetic aperture, thinned array (STAR) radiometer. The RadSTAR development will support NASA Earth science goals by developing a novel, L-band scatterometer/ radiometer that measures Earth surface bulk material properties (surface emissions and backscatter) as well as surface characteristics (backscatter). Present, real aperture airborne L-Band active/passive measurement systems such as the JPUPALS (Wilson, et al, 2000) provide excellent sampling characteristics, but have no scanning capabilities, and are extremely large; the huge JPUPALS horn requires a the C-130 airborne platform, operated with the aft loading door open during flight operation. The approach used for the upcoming Aquarius ocean salinity mission or the proposed Hydros soil mission use real apertures with multiple fixed beams or scanning beams. For real aperture instruments, there is no upgrade path to scanning over a broad swath, except rotation of the whole aperture, which is an approach with obvious difficulties as aperture size increases. RadSTAR will provide polarimetric scatterometer and radiometer measurements over a wide swath, in a highly space-efficient configuration. The electronic scanning approaches provided through STAR technology and digital beam forming will enable the large L-band aperture to scan efficiently over a very wide swath. RadSTAR technology development, which merges an interferometric radiometer with a digital beam forming scatterometer, is an important step in the path to space for an L-band scatterometer/radiometer. RadSTAR couples a patch array antenna with a 1.26 GHz digital beam forming radar scatterometer and a 1.4 GHz STAR radiometer to provide Earth surface backscatter and emission measurements in a compact, cross-track scanning instrument with no moving parts. This technology will provide the first L-band, emission and backscatter measurements in a compact aircraft instrument

  4. Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Grunseich, G.; Subrahmanyam, B.; Murty, V.S.N.; Giese, B.S.

    into the southwestern tropical Indian Ocean. The impact of concomitant La Niña with negative IOD is also large with an intense freshening in the southeastern Arabian Sea and salting off the northern Sumatra coast....

  5. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  6. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    Science.gov (United States)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  7. Autonomous multi-sensor micro-system for measurement of ocean water salinity

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Mortensen, Dennis; Birkelund, Karen

    2008-01-01

    This paper describes the design, fabrication and application of a micro-fabricated salinity sensor system. The theoretical electrochemical behaviour is described using electrical equivalent diagrams and simple scaling properties are investigated analytically and numerically using finite element m...

  8. Temperature, salinity, and oxygen profiles from CTD casts from the OCEANUS and other platforms from the North Atlantic Ocean as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 19 January 1983 to 17 May 1983 (NODC Accession 8600397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and oxygen profiles were collected from CTD casts from the OCEANUS and other platforms in the North Atlantic Ocean from 19 January 1983 to 17...

  9. Temperature and salinity profiles from CTD casts from the KNORR and other platforms from the Indian Ocean and other locations as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 18 September 1978 to 15 October 1980 (NODC Accession 8700008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from CTD casts from the KNORR and other platforms in the Indian Ocean and other locations from 18 September 1978 to...

  10. The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinity.

    Science.gov (United States)

    Zhang, Haoyu; Cheung, S G; Shin, Paul K S

    2014-02-15

    The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (pCO2 at 380, 950, 1250 ppm), temperature (15, 30°C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO2 and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO2 level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO2 reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    M. Araujo

    2011-01-01

    Full Text Available High-resolution hydrographic observations of temperature and salinity are used to analyze the formation and distribution of isothermal depth (ZT, mixed depth (ZM and barrier layer thickness (BLT in a section of the southwestern Atlantic (0°30´ N–14°00´ S; 31°24´–41°48´ W, adjacent to the northeastern Brazilian coast. Analyzed data consists of 279 CTD casts acquired during two cruises under the Brazilian REVIZEE Program. One occurred in late austral winter (August–October 1995 and another in austral summer (January–April 1997. Oceanic observations are compared to numerical modeling results obtained from the French Mercator-Coriolis Program. Results indicate that the intrusion of subtropical Salinity Maximum Waters (SMW is the major process contributing to the seasonal barrier layer formation. These waters are brought by the South Equatorial Current (SEC, from the subtropical region, into the western tropical Atlantic boundary. During late austral winter southeastern trade winds are more intense and ITCZ precipitations induce lower surface salinity values near the equator. During this period a 5–90 m thick BLT (median = 15 m is observed and BLT > 30 m is restricted to latitudes higher than 8° S, where the intrusion of salty waters between 8°–12.3° S creates shallow mixed layers over deep (ZT ≥ 90 m isothermal layers. During austral summer, shallow isothermal and mixed layers prevail, when northeasterly winds are predominant and evaporation overcomes precipitation, causing saltier waters at the surface/subsurface layers. During that period observed BLT varies from 5 to 70 m and presents thicker median value of 35 m, when comparing to the winter. Furthermore, BLT ≥ 30 m is observed not only in the southernmost part of the study area, as verified during late winter, but in the latitude range 2°–14° S, where near-surface salty waters are transported westward by the

  12. Salinity and sigma-t data from moored current meter and CTD casts in the North Pacific Ocean from 1979-08-26 to 1982-06-07 (NODC Accession 8200146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and sigma-t data were collected using moored current meter and CTD casts in the North Pacific Ocean from August 26, 1979 to June 7, 1982. Data were...

  13. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  14. Historical temperature and salinity data collected from 1896-04-22 to 1961-03-26 from the World Ocean and provided by United Kingdom hydrographic office (NODC Accession 0073673)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature and salinity data collected from 1896-04-22 to 1961-03-26 from the World Ocean. Data were digitized from cards provided by United Kingdom...

  15. Salinity, sigma-t, and temperature data from moored current meter and CTD casts in the North Atlantic Ocean from 1981-08-29 to 1981-12-07 (NODC Accession 8300048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity, sigma-t, and temperature data were collected using moored current meter and CTD casts in the North Atlantic Ocean from August 29, 1981 to December 7, 1981....

  16. Surface temperature, salinity, and pCO2 collected by bottle casts during a cruise in the north Atlantic Ocean from 9/3/1991 - 9/22/1991 (NODC Accession 0000113)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperature, salinity, and pCO2 data were collected using bottle casts from METEOR in the North Atlantic Ocean. Data were collected from 03 September 1991 to...

  17. Nutrients, temperature, and salinity from bottle cats in the North Pacific Ocean by the Pacific Research Institute of Fisheries and Oceanography from 27 August 1950 to 17 November 1997 (NODC Accession 0000843)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nutrients, temperature, and salinity data were collected using bottle casts in the North Pacific Ocean from 27 August 1950 to 17 November 1997. Data were submitted...

  18. Temperature and salinity profile data from CTD casts from the NOAA ship WHITING from the North Atlantic Ocean from 5 April 1995 to 1 June 1995 (NODC Accession 9500092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected from CTD cast from the NOAA ship WHITING from the North Atlantic Ocean. Data were collected from 5 April 1995 to...

  19. Sea surface temperatures and salinities from platforms in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and the South China Sea (Nan Hai) from 1896-1950 (NODC Accession 0000506)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface temperatures and salinities were collected in the Barents Sea, Sea of Japan, North Atlantic Ocean, Philippine Sea, Red Sea, and South China Sea (Nan Hai)...

  20. Temperature, salinity, and nutrients data collected from North Atlantic Ocean, White Sea, Mediterranean Sea, Black Sea, and Sea of Azov from 1924-03-19 to 1989-11-19 by multiple Soviet Union institutes (NODC Accession 0077413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and nutrients data collected from North Atlantic Ocean, White Sea, Mediterranean Sea, Black Sea, and Sea of Azov from 1924-03-19 to 1989-11-19...

  1. Salinity dependent hydrogen isotope fractionation in alkenones produced by coastal and open ocean haptophyte algae

    NARCIS (Netherlands)

    M'boule, D.; Chivall, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at

  2. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    Science.gov (United States)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  3. Seasonal variability of salinity and salt transport in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    D’Addezio, J.M.; Subrahmanyam, B.; Nyadjro, E.S.; Murty, V.S.N.

    , University of South Carolina, Columbia, SC 29208 2Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208 3 Department of Physics, University of New Orleans, New Orleans, LA 70148 4Council of Scientific and Industrial... are underrepresented in the literature. The almost 3 year record provided by Aquarius gives us reason to reexamine this seasonally variable region with the aid of this new observational dataset as well as analyze how the satellite-derived SSS compares with the Argo...

  4. Comparative study of salinity tolerance of an oceanic sea skater, Halobates micans and its closely related fresh water species, Metrocoris histrio

    Czech Academy of Sciences Publication Activity Database

    Sekimoto, T.; Osumi, Y.; Shiraki, T.; Kobayashi, A.; Emi, K.; Nakajo, M.; Moku, M.; Košťál, Vladimír; Katagiri, C.; Harada, T.

    2014-01-01

    Roč. 6, č. 14 (2014), s. 1141-1148 ISSN 2150-4091 Institutional support: RVO:60077344 Keywords : ocean ic sea skaters * fresh water halobatinae species * salinity tolerance Subject RIV: ED - Physiology http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49746

  5. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    Science.gov (United States)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  6. Salinity profile data from STD/CTD casts from the ACONA and other platforms from the Atlantic Ocean during the International Decade of Ocean Exploration / North Pacific Experiment (IDOE/NORPAX) project, 20 October to 1976-11-06 (NODC Accession 7800604)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity profile data were collected using STD/CTD casts from ACONA and other platforms in the Pacific Ocean from October 20, 1976 to November 6, 1976. Data were...

  7. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  8. Conductivity, salinity, and other data from GEOLOG FERSMAN and PROFESSOR LOGACHEV using CTD casts in the North Atlantic Ocean from 08 April 1993 to 03 November 1999 (NODC Accession 0000261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conductivity, salinity, transmissivity, pressure, and temperature data were collected from the GEOLOG FERSMAN and PROFESSOR LOGACHEV from April 8,1993 to November 3,...

  9. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  10. Underway pressure, temperature, and salinity data from the MOANA WAVE from the Pacific warm pool in support of the Coupled Ocean-Atmosphere Response Experiment (COARE) from 02 February 1993 to 21 February 1993 (NODC Accession 9600090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pressure, temperature, and salinity data were collected while underway from the MOANA WAVE from the Pacific warm pool. Data were collected in support of the Coupled...

  11. Historical temperature, salinity, oxygen, nutrients, and meteorological data collected by various Russian and former Soviet Union institutions from North Pacific Ocean and Okhotsk Sea from 1930-07-23 to 2004-04-18 (NODC Accession 0083635)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, nutrients, and meteorological data collected by various Russian and former Soviet Union institutions from North Pacific...

  12. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  13. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    Science.gov (United States)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  14. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    Science.gov (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  15. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean.

    Science.gov (United States)

    Lambs, Luc; Mangion, Perrine; Mougin, Eric; Fromard, François

    2016-01-30

    The functioning of mangrove forests found on small coralline islands is characterized by limited freshwater inputs. Here, we present data on the water cycling of such systems located on Europa and Juan de Nova Islands, Mozambique Channel. In order to better understand the water cycle and mangrove growth conditions, we have analysed the hydrological and salinity dynamics of the systems by gauge pressure and isotopic tracing (δ18O and δ2H values). Both islands have important seawater intrusion as measured by the water level change and the high salinities in the karstic ponds. Europa Island displays higher salinity stress, with its inner lagoon, but presents a pluri-specific mangrove species formation ranging from shrub to forest stands. No freshwater signal could be detected around the mangrove trees. On Juan de Nova Island, the presence of sand and detrital sediment allows the storage of some amount of rainfall to form a brackish groundwater. The mangrove surface area is very limited with only small mono-specific stands being present in karstic depression. On the drier Europa Island, the salinity of all the water points is equal to or higher than that of the seawater, and on Juan de Nova the groundwater salinity is lower (5 to 20 PSU). This preliminary study shows that the karstic pothole mangroves exist due to the sea connection through the fractured coral and the high tidal dynamics.

  16. Temperature, salinity, and dissolved oxygen profile data collected via CTD casts from R/V Bell Shimada in the Pacific Ocean along the U.S. West Coast during the West Coast Ocean Acidification cruise 2012 as Part of the North American Carbon Program from September 5, 2012 to September 16, 2012 (NODC Accession 0099810)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One ASCII listing contains 1-dbar averaged CTD data. File cc112.lst contains 1-dbar averaged profiles of pressure, temperature, salinity, and oxygen data. Each...

  17. Temperature and salinity profiles from CTD casts from the ROBERT D. CONRAD from the SW Atlantic (limit-20 W) as part of the International Decade of Ocean Exploration / International Ocean Studies / First Dynamic Response and Kinematics Experiment in the Drake Passage (IDOE/ISOS/FDRAKE) from 1974-01-06 to 1975-03-06 (NODC Accession 7900291)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from CTD casts in the SW Atlantic (limit-20 W) from the ROBERT D. CONRAD from 06 January 1974 to 06 March 1975. Data...

  18. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    Science.gov (United States)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  19. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Science.gov (United States)

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  20. Delta sup(14)C, sigma CO sub(2) salinity of the western Indian Ocean deep waters: Spatial and temporal variations

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, B.L.K.; Bhushan, R.; Narvekar, P.V.

    ppt, as revealed by the GEOSECS data (1977-78). The delta sup(14)C-sigma CO sub(2)-salinity relationships show better correlation in the western sector. High biological productivity induced changes and corrosive deepwaters could account for sigma CO...

  1. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. (NCEI Accession 0157795)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Total Alkalinity fields were estimated from five regional TA relationships presented in Lee et al. 2006, using monthly mean sea surface temperature and...

  2. Ocean current velocity, temperature and salinity collected during 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound, Puerto Rico,...

  3. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from the R/V Thomas G. Thompson in the Pacific Ocean from 2016-03-02 to 2016-04-18 (NCEI Accession 0158483)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in the Pacific ocean on the R/V...

  4. Chlorophyll a, temperature, salinity and other variables collected from surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157812)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains chlorophyll a, temperature, salinity and other variables collected from surface underway observations during the East Coast Ocean...

  5. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  6. Temperature, salinity and transmissivity data from the Alpha Helix in the Arctic Ocean, 2000 - 2004 (NODC Accession 0059005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is calibrated CTD downcast data from five Alpha Helix cruises: HX235, 8/1/2000 - 9/30/2000 HX250, 9/1/2001 - 9/30/2001 HX260, 6/1/2002 - 6/30/2002 HX274,...

  7. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    Science.gov (United States)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  8. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    Science.gov (United States)

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal

  9. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  10. Coincident Retrieval of Ocean Surface Roughness and Salinity Using Airborne and Satellite Microwave Radiometry and Reflectometry Measurements during the Carolina Offshore (Caro) Experiment.

    Science.gov (United States)

    Burrage, D. M.; Wesson, J. C.; Wang, D. W.; Garrison, J. L.; Zhang, H.

    2017-12-01

    The launch of the Cyclone Global Navigation Satellite System (CYGNSS) constellation of 8 microsats carrying GPS L-band reflectometers on 15 Dec., 2016, and continued operation of the L-band radiometer on the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite, allow these complementary technologies to coincidentally retrieve Ocean surface roughness (Mean Square Slope, MSS), Surface Wind speed (WSP), and Sea Surface Salinity (SSS). The Carolina Offshore (Caro) airborne experiment was conducted jointly by NRL SSC and Purdue University from 7-11 May, 2017 with the goal of under-flying CYGNSS and SMOS and overflying NOAA buoys, to obtain high-resolution reflectometer and radiometer data for combined retrieval of MSS, SSS and WSP on the continental shelf. Airborne instruments included NRL's Salinity Temperature and Roughness Remote Scanner (STARRS) L-, C- and IR-band radiometer system, and a 4-channel dual-pol L-band (GPS) and S-band (XM radio) reflectometer, built by Purdue University. Flights either crossed NOAA buoys on various headings, or intersected with specular point ground tracks at predicted CYGNSS overpass times. Prevailing winds during Caro were light to moderate (1-8 m/s), so specular returns dominated the reflectometer Delay Doppler Maps (DDMs), and MSS was generally low. In contrast, stronger winds (1-12 m/s) and rougher seas (wave heights 1-5 m) were experienced during the preceding Maine Offshore (Maineo) experiment in March, 2016. Several DDM observables were used to retrieve MSS and WSP, and radiometer brightness temperatures produced Sea Surface Temperature (SST), SSS and also WSP estimates. The complementary relationship of Kirchoff's formula e+r=1, between radiometric emissivity, e, and reflectivity, r, was exploited to seek consistent estimates of MSS, and use it to correct the SSS retrievals for sea surface roughness effects. The relative performance and utility of the various airborne and satellite retrieval algorithms

  11. An Arctic source for the Great Salinity Anomaly - A simulation of the Arctic ice-ocean system for 1955-1975

    Science.gov (United States)

    Hakkinen, Sirpa

    1993-01-01

    The paper employs a fully prognostic Arctic ice-ocean model to study the interannual variability of sea ice during the period 1955-1975 and to explain the large variability of the ice extent in the Greenland and Iceland seas during the late 1960s. The model is used to test the contention of Aagaard and Carmack (1989) that the Great Salinity Anomaly (GSA) was a consequence of the anomalously large ice export in 1968. The high-latitude ice-ocean circulation changes due to wind field changes are explored. The ice export event of 1968 was the largest in the simulation, being about twice as large as the average and corresponding to 1600 cu km of excess fresh water. The simulations suggest that, besides the above average ice export to the Greenland Sea, there was also fresh water export to support the larger than average ice cover. The model results show the origin of the GSA to be in the Arctic, and support the view that the Arctic may play an active role in climate change.

  12. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  13. A new technique for the estimation of sea surface salinity in the tropical Indian Ocean from OLR

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Subrahmanyam, B.; Tilvi, V.; O'Brien, J.J.

    stream_size 109417 stream_content_type text/plain stream_name J_Geophys_Res_C_109_C12006.pdf.txt stream_source_info J_Geophys_Res_C_109_C12006.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 A new... Ocean. The estimated SSS at 2.5C176 C2 2.5C176 grid on monthly scale is nearer to the WOA98 SSS with lower differences within ±0.5–0.8 away from the coastal region. The estimated SSS also agrees reasonably with the observed SSS along the trans...

  14. Cloud amount/frequency, SALINITY and other data from EL AUSTRAL in the Southern Oceans from 1977-04-21 to 1977-11-12 (NCEI Accession 9200257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Serial data in this accession was collected in Southern Oceans (> 60 degrees South) as part of Global Ocean Data Archeaology and Rescue (GODAR) project...

  15. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  16. Cloud amount/frequency, SALINITY and other data from ORION, FUJI II and other platforms in the Southern Oceans, Indian Ocean and other waters from 1950-01-04 to 1989-03-16 (NODC Accession 9200239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Serial data in this accession was collected in Southern Oceans (> 60 degrees South) as part of Global Ocean Data Archeaology and Rescue (GODAR) project...

  17. Global Temperature and Salinity Profile Programme (GTSPP) Data, 1985-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Temperature-Salinity Profile Programme (GTSPP) develops and maintains a global ocean temperature and salinity resource with data that are both up-to-date...

  18. North Pole Environmental Observatory CTD surveys: Springtime temperature and salinity measurements in the Arctic Ocean by aircraft, 2000 - 2008 (NODC Accession 0057592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The investigators propose to take annual springtime, large-scale airborne surveys of the Arctic Ocean. These surveys will be in two regions: the central Arctic Ocean...

  19. Dissolved oxygen, CDOM, Chl a, temperature, salinity and other variables collected from profile and continuous observations using CTD and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the 2015 East Coast Ocean Acidification (ECOA) Cruise from 2015-06-20 to 2015-07-23 (NCEI Accession 0157080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains CTD profile data of dissolved oxygen, CDOM, chlorophyll a, temperature and salinity data that were collected during the East Coast...

  20. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from 3 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2016-03-13 to 2016-09-13 (NCEI Accession 0158484)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters that were collected during 3 trans-Pacific...

  1. Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov, Murmanets, and Akademik Shokalsky in 1933 - 1962 years from Arctic Ocean, Barents Sea, Bering Sea, Chukchi Sea, East Siberian Sea, Kara Sea, and Laptev Sea (NODC Accession 0108117)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov,Murmanets, and Akademik Shokalsky in...

  2. Chemical, temperature, pressure, and salinity data from bottle and CTD casts in the Arabian Sea as part of the Joint Global Ocean Flux Study / Arabian Sea Process Studies (JGOFS/Arabian) project, from 1995-07-17 to 1995-09-15 (NODC Accession 9800037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, temperature, pressure, and salinity data were collected using bottle and CTD casts from the R/V Thomas G. Thompson in the Arabian Sea. Data were collected...

  3. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Blanche in the Pacific Ocean from 2014-02-01 to 2014-11-26 (NCEI Accession 0132047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 6 trans-Pacific crossings...

  4. Temperature and salinity profiles from CTD casts from the SE Pacific (limit-140 W) from the MELVILLE and other platforms as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 04 March 1977 to 22 May 1977 (NODC Accession 7900209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from CTD casts in the SE Pacific (limit 140 W) from the MELVILLE and other platforms from 04 March 1977 to 22 May...

  5. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Vilano in the Pacific Ocean from 2013-02-01 to 2013-06-06 (NCEI Accession 0132054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 3 trans-Pacific crossings...

  6. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from 4 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2015-03-28 to 2015-12-04 (NCEI Accession 0141304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected during 4 trans-Pacific crossings in...

  7. Temperature profile, salinity, dissolved oxygen, phosphate and other measurements collected using bottle and CTD casts from the New Horizon and NOAA Ship David Starr Jordan in the North East Pacific Ocean as part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 23 March - 2004-07-28 (NODC Accession 0002180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, conductivity, phytoplankton, and other data were collected using CalBOBL, manta net, pairovet, bottle, and CTD...

  8. Temperature and salinity profiles from CTD casts from the SE Pacific (limit-140 W) from the COLUMBUS ISELIN and other platforms as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1977-03-17 to 1977-03-30 (NODC Accession 7900205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profiles were collected from CTD casts in the SE Pacific (limit 140 W) from the COLUMBUS ISELIN and other platforms from 17 March 1977 to 30...

  9. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the Indian Ocean and Southern Oceans from 1994-02-19 to 1994-03-30 (NCEI Accession 0144242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144242 includes discrete sample and profile data collected from DISCOVERY in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  10. Temperature, salinity, and other data from CTD and XCTD casts in the Arctic Ocean from 26 March 1995 to 08 May 1995 (NODC Accession 0000474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, XCTD, and other data were collected in the Arctic Ocean from 26 March 1995 to 08 May 1995. Surface data were collected by CTD. XCTD data were corrected for...

  11. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle from the Iselin Columbus in the Indian Ocean (Somalia Coast) (NODC Accession 0002225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from the COLUMBUS ISELIN in the Indian Ocean. Data were collected from 26 February 1979 to...

  12. WATER TEMPERATURE, SALINITY, and others collected from SeaGlider 573 in South Atlantic Ocean from 2012-09-25 to 2013-02-15 (NCEI Accession 0131501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CSIR-SOCCO Southern Ocean Seasonal Cycle Experiment (SOSCEx) was planned around five cruises to the SAZ between the austral winter of 2012 and the late summer of...

  13. Oceanographic profile temperature, salinity, oxygen and other measurements collected using bottle from multiple platforms in the Atlantic, Pacific, Arctic, Indian Oceans from 1873 to 2005 (NODC Accession 0002738)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this collection are part of the historical profile data collection acquired by the Department of Fisheries and Oceans Marine Environmental Data Service,...

  14. Oceanographic profile temperature, salinity, oxygen, and nutrients measurements collected using bottle and MBT from the A.I. VOEIKOV in the Pacific Ocean (NODC Accession 0002214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle and MBT casts from the A.I. VOEIKOV in the Pacific Ocean. Data were collected...

  15. Temperature, salinity, and nutrients data from CTD and bottle casts in the North Atlantic Ocean from 01 April 1969 to 31 August 1995 (NODC Accession 0000426)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected from the CHARLES DARWIN and other vessels in the Atlantic Ocean from 01 April 1969 to 31 August 199. CTD data include...

  16. WATER TEMPERATURE, SALINITY, and others collected from Seaglider574 in South Atlantic Ocean from 2012-09-20 to 2013-02-15 (NCEI Accession 0131762)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CSIR-SOCCO Southern Ocean Seasonal Cycle Experiment (SOSCEx) was planned around five cruises to the SAZ between the austral winter of 2012 and the late summer of...

  17. Beaufort Gyre hydrographic data: Temperature, salinity and transmissivity data from the Louis S St. Laurent in the Arctic Ocean, 2003 - 2008 (NODC Accession 0058268)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The major goal of the observational program is to determine the variability of different components of the Beaufort Gyre fresh water (ocean and sea ice) system and...

  18. Oceanographic profile temperature, salinity, and oxygen measurements collected from BLUE FIN in the North Atlantic Ocean from 1988 to 1993 (NODC Accession 0002230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using CTD casts from the BLUE FIN in the North Atlantic Ocean. Data were collected from 26 September 1988 to 18...

  19. Arctic Freshwater Switchyard Project: Spring temperature and Salinity data collected by aircraft in the Arctic Ocean, May 2006 - May 2007 (NODC Accession 0057319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A program to study freshwater circulation (sea ice + upper ocean) in the "freshwater switchyard" between Alert (Ellesmere Island) and the North Pole. The project...

  20. Temperature, salinity, nutrient, primary production, and meteorological data collected by bottle in the South Pacific Ocean from 1/16/1962 - 8/2/1964 (NODC Accession 0000092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and other data were collected using net and bottle casts from the HUAYAIPE and ST JUDE in the South Pacific Ocean. Data were...

  1. Temperature and salinity profile data from CTD casts by the National Ocean Service's Navigation Response Team No. 2, January - May 2001 (NODC Accession 0000646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected by the National Ocean Service's Response Team No. 2 in the Gulf of Mexico from 25 January 2001 to 05 May 2001. Data include...

  2. Oceanographic profile Biomass, temperature salinity and other measurements collected using bottle from Alpha Helix in the Pacific Ocean from 1976 (NODC Accession 0002070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and meteorological data were collected using bottle casts from the ALPHA HELIX in the Pacific Ocean. Data were collected from 06...

  3. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  4. Teaching of the subject "density difference caused by salinity", one of the reasons that plays role in the occurrence of currents in straits, seas and oceans by the use of a teaching material

    Science.gov (United States)

    Gumussoy, Verim

    2015-04-01

    Large masses of moving water in seas and oceans are called currents. Root causes of currents are steady winds that occur due to the global atmospheric system and the density differences caused by different heat and salinity levels of water masses. Different feeding and evaporation characteristics of seas and oceans result in salinity and density levels. As a result, subsurface currents occur in straits where seas with different salinity and density levels meet and in the nearby seas. The Bosporus in Istanbul where I live and the school I am working at is has these subsurface currents. In the Black Sea where the rivers the Danube, Dnieper, Don, Yesilirmak, Kizilirmak and Sakarya flow into and the evaporation level is less due to the latitude effect, salinity level is less compared to Marmara and Aegean Seas. As Marmara Sea has higher salt amount than Black Sea, there is a great density difference between these two seas. Marmara Sea has a higher concentration of salt and therefore a higher density than Black Sea. And this leads to occurrence of subsurface currents in the Bosporus. I get my students to carry out a small demonstration to help them understand the occurrence of ocean currents and currents in the seas and the Bosporus by the use of a material. We need very simple materials to carry out this demonstration. These are an aquarium, a bowl, water, salt, dye and a mixer. The demonstration is carried out as follows: we put water, salt and dye in the bowl and mix it well. The salt will increase the density of the water and the dye will help distinguish the salty water. Then we put tap water half way to the aquarium and pour the mixture in the bowl to the aquarium slowly. As a result, the colored salty water sinks down due to its higher density, setting an example of a subsurface current. Natural events occur in very long periods by great dynamic systems, making understanding of them difficult. It is important to use different kinds of materials that address to

  5. Temperature, salinity profiles and associated data collected in the Southern Oceans in support of the Global Ocean Ecosystem Dynamics project, 2001-04 to 2001-08 (NODC Accession 0001097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill (Euphausia...

  6. Temperature and salinity profiles from CTD casts from the PASSAT and other PLATFORMS from the North Pacific Ocean in support of the Integrated Global Ocean Services System (IGOSS) from 01 March 1991 to 31 March 1991 (NODC Accession 9100071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the PASSAT and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  7. Temperature, salinity, conductivity, and other measurements collected in the Northern Ocean as part of the Arctic Experiment in 1994 (NODC Accession 0002728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Investigation of thermohaline circulation in Nordic Seas, hydrography and pathways of Atlantic water summer Arctic experiments

  8. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  9. Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The synoptic gridded Global Temperature and Salinity Profile Programme (SG-GTSPP) provides world ocean 3D gridded temperature and salinity data in monthly increment...

  10. Oceanographic temperature, salinity, oxygen and other measurements collected using bottle various platforms in the North Atlantic ocean from 1958 to 1960 (NODC Accession 0014335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Baltimore Harbor Study performed under contract between the John Hopkins University and the Department of Research and Education of the State of Maryland during July...

  11. NODC Standard Product: International ocean atlas Volume 7 - 36 year time series (1963-1998) of zooplankton, temperature and salinity in the White Sea (NCEI Accession 0099242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present study is based on marine physical and biological observations since 1961. The data on zooplankton has been collected since 1963 in the vicinity of the...

  12. Temperature, salinity, oxygen, beam attenuation coefficient, and pressure measurements collected using CTD in the global ocean from 1990 to 1998 (NODC Accession 0002369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and Transmissometer data from JGOFS Programs: Equatorial Pacific (EqPac), Antarctic Polar Front Zone (APFZ), North Atlantic Bloom Experiment (NABE), Arabian Sea...

  13. Oceanographic profile temperature, salinity, and meteorology measurements collected using MRB from moored buoy in the Tropical Indian Ocean from 2003-2008 (NODC Accession 0046088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) array July 1993 - September 2008. RAMA is a new observational network...

  14. Water temperature, salinity, and surface meteorology measurements collected from the Tropical Moored Buoys Array in the equatorial oceans from November 1977 to March 2017. (NODC Accession 0078936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Tropical Moored Buoy Array Program is a multi-national effort to provide data in real-time for climate research and forecasting. Major components include...

  15. Temperature, salinity, oxygen and other parameter profile data collected by CTD in the NW Atlantic Ocean by Woods Hole Oceanographic Institution, Feb-Mar 1990 (NODC Accession 9100130)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data was collected by the R/V COLUMBUS ISELIN in NW Atlantic (limit-40 W) during the Amazon Shelf Sediment Study (AMASSEDS) from February to March 1990. The data...

  16. Oceanographic profile Temperature, Salinity, and pressure measurements collected using profiling floats in the World Ocean from 1950 to 2006 (NODC Accession 0010599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Oceanographic Data Center (NODC) operates the Global Argo Data Repository (GADR) as the long-term archive for the International Global Argo Project...

  17. Penaeid Shrimp Salinity Gradient Tank Study 2005-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...

  18. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    Science.gov (United States)

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  19. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  20. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2011-01-04 to 2011-02-06 (NCEI Accession 0143947)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143947 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans (>...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2012-11-28 to 2013-01-04 (NCEI Accession 0143950)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143950 includes discrete sample and profile data collected from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  2. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 1996-03-17 to 1996-05-20 (NODC Accession 0116640)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116640 includes discrete sample and profile data collected from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans (> 60...

  3. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from RRS JAMES COOK in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2009-02-03 to 2009-03-03 (NODC Accession 0110379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110379 includes discrete sample and profile data collected from RRS JAMES COOK in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans...

  4. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2008-12-26 to 2009-01-30 (NODC Accession 0110254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110254 includes discrete sample and profile data collected from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans (>...

  5. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-11-28 to 2011-02-05 (NODC Accession 0108155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108155 includes discrete sample and profile data collected from POLARSTERN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (>...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2007-12-16 to 2008-01-27 (NCEI Accession 0143932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143932 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans (>...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 1993-02-06 to 1993-03-18 (NCEI Accession 0143944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143944 includes discrete sample and profile data collected from DISCOVERY in the Indian Ocean, South Atlantic Ocean and Southern Oceans (> 60...

  8. World Ocean Atlas 2005, Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  9. Carbon dioxide, temperature, and salinity collected via surface underway survey in the East Coast of the United States (northwestern Atlantic Ocean) during the Ocean Margins Program cruises (NODC Accession 0083626)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0083626 includes underway chemical and physical data collected from COLUMBUS ISELIN, ENDEAVOR, GYRE, OCEANUS, and SEWARD JOHNSON in the North Atlantic...

  10. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum : A compensating effect between Agulhas Current changes and salinity variations?

    NARCIS (Netherlands)

    Simon, Margit H.; Gong, Xun; Hall, Ian R.; Ziegler, Martin; Barker, Stephen; Knorr, Gregor; van der Meer, Marcel T J; Kasper, Sebastian; Schouten, Stefan

    2015-01-01

    The import of relatively salty water masses from the Indian Ocean to the Atlantic is considered to be important for the operational mode of the Atlantic Meridional Overturning Circulation (AMOC). However, the occurrence and the origin of changes in this import behavior on millennial and

  11. Salt exchange in the Indian-Atlantic Ocean Gateway since the Last Glacial Maximum: A compensating effect between Agulhas Current changes and salinity variations?

    NARCIS (Netherlands)

    Simon, M.H.; Gong, X.; Hall, I.R.; Ziegler, M.; Barker, S.; Knorr, G.; van der Meer, M.T.J.; Kasper, S.; Schouten, S.

    2015-01-01

    The import of relatively salty water masses from the Indian Ocean to the Atlantic is considered to be important for the operational mode of the Atlantic Meridional Overturning Circulation (AMOC). However, the occurrence and the origin of changes in this import behavior on millennial and

  12. Vertical distribution of temperature, salinity and density in the upper 500 metres of the north equatorial Indian Ocean during the north-east monsoon period

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Jayaraman, R.

    In the 4th and 5th scientific cruises of INS KISTNA under the Indian Programme of IIOE, five sections were worked out in the North Equatorial Indian Ocean during Jan-Feb 1963. Using the physical oceanographic data collected in these cruises...

  13. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  14. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2015-12-17 to 2016-01-13 (NCEI Accession 0157011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157011 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean...

  15. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 1992-11-01 to 1992-12-08 (NODC Accession 0115024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115024 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean...

  16. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2002-11-24 to 2003-01-23 (NODC Accession 0108068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108068 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 2007-12-15 to 2008-02-23 (NODC Accession 0109903)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109903 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and...

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-02-19 to 2011-04-23 (NODC Accession 0109933)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109933 includes discrete sample and profile data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from KNORR in the North Atlantic Ocean, South Atlantic Ocean and Southern Oceans from 1983-10-07 to 1984-02-19 (NODC Accession 0117503)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117503 includes chemical, discrete sample, physical and profile data collected from KNORR in the North Atlantic Ocean, South Atlantic Ocean and...

  20. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0112347)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112347 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  1. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0113547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113547 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  2. Geographic variation in the relationships of temperature, salinity or sigma sub t versus plant nutrient concentrations in the world ocean. [silicic acid, nitrate, and phosphate concentration

    Science.gov (United States)

    Kamykowski, D.; Zentara, S. J.

    1985-01-01

    A NODC data set representing all regions of the world ocean was analyzed for temperature and sigma-t relationships with nitrate, phosphate or silicic acid. Six cubic regressions were for each ten degree square of latitude and longitude containing adequate data. World maps display the locations that allow the prediction of plant nutrient concentrations from temperature or sigma-t. Geographic coverage improves along the sequence: nitrate, phosphate, and silicic acid and is better for sigma-t than for temperature. Contour maps of the approximate temperature of sigma-t at which these nitrients are no longer measurable in a parcel of water are generated, based on a percentile analysis of the temperature or sigma-t at which less than a selected amount of plant nutrient occurs. Results are stored on magnetic tape in tabular form. The global potential to predict plant nutrient concentrations from remotely sensed temperature of sigma-t and to emphasize the latitudinally and longitudinally changing phytoplankton growth environment in present and past oceans is demonstrated.

  3. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters

    International Nuclear Information System (INIS)

    Knauth, L.P.; Beeunas, M.A.

    1986-01-01

    deltaD and delta 18 O values have been determined for fluid inclusions in 45 samples of Permian halite. The inclusions are enriched in 18 O relative to the meteoric water line but are depleted in D relative to ocean water. Inclusions with the more positive delta-values coincide with the isotopic compositions expected for evaporating sea water which follows a hooked trajectory on a deltaD-delta 18 O diagram. Inclusions with more negative delta-values may represent more highly evaporated sea water but probably reflect synsedimentary or diagenetic mixing to those of a modern evaporite pan to indicate that Permian sea water was isotopically similar to modern sea water. Connate evaporite brines can have negative delta-values because of the probable hooked isotope trajectory of evaporating sea water and/or synsedimentary mixing of evaporite brines with meteoric waters. (author)

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1987-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Salinity data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  5. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1992-present, Sea Surface Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Salinity data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  6. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from WAKATAKA MARU in the North Atlantic Ocean, North Pacific Ocean and South Atlantic Ocean from 2011-06-10 to 2011-12-06 (NCEI Accession 0157428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157428 includes Surface underway, chemical, meteorological and physical data collected from WAKATAKA MARU in the North Atlantic Ocean, North Pacific...

  8. Temperature and salinity profiles from CTD casts from NOAA Ship MILLER FREEMAN and other PLATFORMS from the North Pacific Ocean and North Atlantic Ocean in support of the Integrated Global Ocean Services System (IGOSS) from 1991-10-01 to 1991-10-31 (NODC Accession 9100209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from NOAA Ship MILLER FREEMAN and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were...

  9. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 1990-02-22 to 1990-04-16 (NODC Accession 0000183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0000183 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean, South...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 1994-01-26 to 1994-04-27 (NODC Accession 0115152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115152 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific...

  11. Temperature and salinity profiles from CTD casts from the OKEAN and other PLATFORMS from the North Pacific Ocean, North Atlantic Ocean, and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 01 July 1989 to 31 July 1989 (NODC Accession 8900256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the OKEAN and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  12. Temperature and salinity profiles from CTD casts from the OKEAN and other PLATFORMS from the North Pacific Ocean, North Atlantic Ocean, and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 01 May 1989 to 31 May 1989 (NODC Accession 8900179)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the OKEAN and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  13. Temperature and salinity profiles from CTD casts from NOAA Ship THOMAS JEFFERSON and other PLATFORMS from the North/South Pacific Ocean, North Atlantic Ocean, and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 1991-11-01 to 1991-11-30 (NODC Accession 9100243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from NOAA Ship THOMAS JEFFERSON and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2009-12-29 to 2010-12-20 (NCEI Accession 0156926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156926 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  15. Temperature and salinity profiles from CTD casts from the OKEAN and other PLATFORMS from the North Pacific Ocean, North Atlantic Ocean, and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 01 December 1988 to 31 December 1988 (NODC Accession 8900007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the OKEAN and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-12-31 to 2013-12-19 (NCEI Accession 0163187)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163187 includes chemical, meteorological, physical and surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  17. Water temperature, salinity, oxygen and other data collected from NOAA Ship Ka'imimoana and Moana Wave in the North Pacific Ocean from 1988-10-30 to 1989-11-29 (NODC Accession 9100012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Ocean Time-series data in this accession were collected as part of World Ocean Circulation Experiment (WOCE) conducted by Marine Laboratory, University of...

  18. Temperature, salinity, and nutrients data from CTD and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from multiple platforms from 1963-04-30 to 1999-02-15 (NODC Accession 0000418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected from the Arctic Ocean, North Atlantic Ocean, and North Pacific from multiple platforms from 30 April 1963 to 15 February...

  19. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from MOORINGS in the North Pacific Ocean from 1998-06-22 to 2004-11-23 (NODC Accession 0100079)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100079 includes chemical, time series and underway - surface data collected from MOORINGS in the North Pacific Ocean and South Pacific Ocean from...

  20. Temperature, salinity, nutrients, and other data from CTD and bottle casts in the Southern Ocean (> 60 South) from the R/V NATHANIEL B. PALMER from 14 September 1994 to 12 October 1994 (NODC Accession 0000481)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report includes the primary ocean station data collected in the Pacific sector of the Southern Ocean during cruise 9405 of the Nathaniel B. Palmer. The cruise...

  1. World Ocean Atlas 2013 (NCEI Accession 0114815)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2013 (WOA13) is a set of objectively analyzed (1 degree grid and 1/4 degree grid) climatological fields of in situ temperature, salinity, dissolved...

  2. Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Science.gov (United States)

    LeVine, David M.; Lagerloef, G. S. E.; Torrusio, S.

    2012-01-01

    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate.

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-30 to 2005-11-20 (NCEI Accession 0148772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148772 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-22 (NCEI Accession 0144533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144533 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-31 to 2005-12-26 (NCEI Accession 0144531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144531 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-21 (NCEI Accession 0148771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148771 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean, South Pacific Ocean and others from 2007-02-04 to 2007-03-16 (NCEI Accession 0144252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144252 includes Surface underway data collected from ROGER REVELLE in the Indian Ocean, South Pacific Ocean, Southern Oceans (> 60 degrees South)...

  8. Carbon dioxide, temperature, salinity, and other variables collected via surface underway survey from Volunteer Observing Ship AURORA AUSTRALIS in the Southern Oceans (> 60 degrees South) from 1992-10-19 to 2001-12-12 (NODC Accession 0081031)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface and Atmospheric fCO2 measurements in the Southern Ocean during the VOS Project line onboard the oceanographic ship Aurora Australis.

  9. Temperature, salinity, and nutrients data from CTD and bottle casts in the Arctic, North Atlantic, North Pacific Oceans from the TELEOST and other platforms from 01 August 1960 to 22 April 2000 (NODC Accession 0000496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected in the Arctic, North Atlantic, and Pacific Oceans from the TELEOST and other platforms from 01 August 1960 to 22 April...

  10. Oceanographic water temperature and salinity profiles from CTD casts collected aboard the Navigation Response Team 6 in the Pacific Ocean from 2004-10-07 to 2005-07-19 (NODC Accession 0002666)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using CTD casts in the Northeast Pacific Ocean from the NAVIGATION RESPONSE TEAM 6 from 07 October 2004 to 19 July 2005. Data...

  11. Temperature and salinity profiles from CTD casts from the VALDIVIA and other PLATFORMS from a World-Wide Distribution in support of the Integrated Global Ocean Services System (IGOSS) from 01 April 1991 to 30 April 1991 (NODC Accession 9100087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the VALDIVIA and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  12. Temperature, salinity, and nutrients data from bottle, CTD, MBT, and XBT casts in the Arctic Ocean and other locations from the PARIZEAU and other platforms from 01 August 1924 to 15 November 1997 (NODC Accession 0000518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, MBT, and XBT data were collected from the PARIZEAU and other platforms in the Arctic Ocean and other locations from 01 August 1924 to 15 November 1997....

  13. Temperature, salinity, and nutrients data from CTD, MBT, and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from the SACKVILLE and other platforms from 1928-05-12 to 1998-11-03 (NODC Accession 0000448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, MBT, bottle and other data were collected in the Arctic, North Atlantic, and North Pacific Oceans from the SACKVILLE and other platforms from 12 May 1928 to 03...

  14. Temperature, salinity, and nutrients data from bottle, CTD, and XBT casts from the JOHN P. TULLY and other vessels in the North Atlantic and North Pacific Oceans from 03 August 1959 to 01 July 2001 (NODC Accession 0000664)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, and XBT data were collected in the North Atlantic and North Pacific Oceans from the John P. Tully and other vessels from 03 August 1959 to 01 July 2001....

  15. Temperature, salinity, and nutrients data from bottle, CTD, and XBT casts in the Arctic, North Atlantic, and North Pacific Oceans from the ANTON DOHRN and other platforms from 02 July 1916 to 28 January 1999 (NODC Accession 0000677)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, and XBT data were collected in the Arctic, North Atlantic, and North Pacific Oceans from the ANTON DOHRN and other vessels from 02 July 1916 to 28...

  16. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from PROFESSOR MULTANOVSKIY in the North Atlantic Ocean from 1993-09-11 to 1993-11-21 (NCEI Accession 0143931)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143931 includes discrete sample and profile data collected from PROFESSOR MULTANOVSKIY in the North Atlantic Ocean from 1993-09-11 to 1993-11-21....

  17. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the North Pacific Ocean from 1985-08-04 to 1985-09-07 (NCEI Accession 0143394)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143394 includes discrete sample and profile data collected from THOMAS G. THOMPSON in the North Pacific Ocean from 1985-08-04 to 1985-09-07 and...

  18. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the North Pacific Ocean from 1993-05-13 to 1993-05-30 (NODC Accession 0115496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115496 includes chemical, discrete sample, physical and profile data collected from Hakuho Maru in the North Pacific Ocean from 1993-05-13 to...

  19. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 1999-08-13 to 1999-08-31 (NODC Accession 0115603)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115603 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 1999-08-13 to 1999-08-31...

  20. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the POLARSTERN in the South Atlantic Ocean from 1989-09-06 to 1989-10-30 (NODC Accession 0116645)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116645 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean from 1989-09-06 to...

  1. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from HEALY in the Arctic Ocean and Beaufort Sea from 2003-09-11 to 2003-10-18 (NODC Accession 0115676)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115676 includes biological, chemical, discrete sample, optical, physical and profile data collected from HEALY in the Arctic Ocean and Beaufort Sea...

  2. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from FRANKLIN in the Indian Ocean from 1996-05-07 to 1996-05-31 (NCEI Accession 0143942)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143942 includes discrete sample and profile data collected from FRANKLIN in the Indian Ocean from 1996-05-07 to 1996-05-31. These data include...

  3. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from CHARLES DARWIN in the Indian Ocean from 1987-11-12 to 1987-12-17 (NCEI Accession 0157468)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157468 includes chemical, discrete sample, physical and profile data collected from CHARLES DARWIN in the Indian Ocean from 1987-11-12 to 1987-12-17....

  4. Temperature, salinity, and oxygen profiles from bottle casts in the North Atlantic Ocean by the Ukrainian Scientific Centre of the Ecology of Sea from 25 November 1983 to 15 February 1990 (NODC Accession 0000434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle and other data were collected from the North Atlantic Ocean from 25 November 1983 to 15 February 199. Data were collected by the Ukrainian Scientific Centre...

  5. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the North Atlantic Ocean from 1998-04-23 to 1998-06-01 (NODC Accession 0113536)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113536 includes biological, chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1998-04-23...

  6. Temperature and salinity profiles from CTD casts from the VALKIRIYA and other PLATFORMS from a World-Wide Distribution in support of the Integrated Global Ocean Services System (IGOSS) from 01 February 1991 to 28 February 1991 (NODC Accession 9100049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the VALKIRIYA and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the South Pacific Ocean from 2013-10-25 to 2013-12-20 (NCEI Accession 0163186)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163186 includes chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the South Pacific Ocean from 2013-10-25 to...

  8. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 01/03/2012 (NCEI Accession 0083185)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  9. Temperature and salinity profiles from CTD casts from the ARGOS and other PLATFORMS from a World-Wide Distribution in support of the Integrated Global Ocean Services System (IGOSS) from 01 November 1989 to 30 November 1989 (NODC Accession 8900297)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the ARGOS and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  10. Temperature, salinity, and water chemistry data from quarterly surface transects of the Comprehensive Environmental Monitoring Program at the Ocean Thermal Energy Conversion plant in Keahole, Island of Hawaii 1993-2016 (NCEI Accession 0156452)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and Technology park in Kailua-Kona on...

  11. Temperature, salinity, and water chemistry data from quarterly bottom transects of the Comprehensive Environmental Monitoring Program at the Ocean Thermal Energy Conversion plant in Keahole, Island of Hawaii 1993-2007 (NCEI Accession 0156980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona on...

  12. Temperature, salinity, and nutrients profiles from bottle, CTD, MBT, and XBT casts in the Arctic Ocean and other locations from the WALTHER HERWIG and other platforms from 12 May 1928 to 04 December 1999 (NODC Accession 0000517)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle, CTD, MBT, and XBT data were collected from the WALTHER HERWIG in the Arctic Ocean and other locations from 12 May 1928 to 04 December 1999. Data include...

  13. Oceanographic temperature and salinity profile data from bottle and CTD casts aboard multiple platforms in the South Atlantic Ocean from 1995-01-04 to 1998-12-19 (NCEI Accession 0143331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle and CTD data collected in the Southwestern Atlantic Ocean during fisheries research cruises organized by the Instituto Nacional de Investigacion y Desarrollo...

  14. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the OCEAN RESEARCHER I in the Philippine Sea from 1991-06-26 to 1991-07-04 (NODC Accession 0115598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115598 includes chemical, discrete sample, physical and profile data collected from OCEAN RESEARCHER I in the Philippine Sea from 1991-06-26 to...

  15. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from OCEAN RESEARCHER I in the Philippine Sea from 1990-10-11 to 1990-10-15 (NODC Accession 0115600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115600 includes chemical, discrete sample, physical and profile data collected from OCEAN RESEARCHER I in the Philippine Sea from 1990-10-11 to...

  16. Salinity and other variables collected from Surface underway observations using not applicable and other instruments from unknown platforms in various oceans and seas World-Wide from 1965-01-01 to 1994-12-31 (NCEI Accession 0157055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157055 includes Surface underway, chemical and physical data collected from unknown platforms in the Arctic Ocean, Barents Sea, Bay of Biscay, Indian...

  17. Dissolved oxygen, nutrients, pH, salinity, and temperature collected by several instruments from CHOFU MARU in the Northwest Pacific Ocean from 16 January 1993 to 11 June 1995 (NODC Accession 0000040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and other data were collected using bottle, CTD, and XBT casts from the CHOFU MARU in the Northwest Pacific Ocean. Data were...

  18. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 2003-06-26 to 2003-07-21 (NODC Accession 0115682)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115682 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 2003-06-26 to 2003-07-21...

  19. Temperature, salinity, and water chemistry data from the Comprehensive Environmental Monitoring Program of the Ocean Thermal Energy Conversion plant at Keahole, Island of Hawaii, from shallow and deep intake pipes during 1982-2016 (NODC Accession 0001623)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona on...

  20. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted since 1999-10-04

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  1. Temperature, salinity, and optical characteristics data from NOAA Office of Ocean Exploration Operation Deep Scope cruise in the Gulf of Mexico, August 7-17, 2004 (NODC Accession 0001965)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession includes physical, chemical, optical and ocean color measurements, video and still photography data collected during the Operation Deep Scope cruise,...

  2. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 2001-06-20 to 2001-07-15 (NODC Accession 0115601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115601 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 2001-06-20 to 2001-07-15...

  3. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  4. Real-time profile data assembled by Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP) and submitted on 11/23/2004 (NCEI Accession 0001907)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles reported for the world oceans in near real-time from the Global...

  5. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the South Pacific Ocean from 2006-01-30 to 2006-03-14 (NODC Accession 0115593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115593 includes chemical, discrete sample, physical and profile data collected from KNORR in the South Pacific Ocean from 2006-01-30 to 2006-03-14...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from FRANKLIN in the Indian Ocean from 1995-09-13 to 1995-10-14 (NCEI Accession 0143397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143397 includes discrete sample and profile data collected from FRANKLIN in the Indian Ocean from 1995-09-13 to 1995-10-14 and retrieved during...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from ATLANTIS II in the North Atlantic Ocean from 1981-06-12 to 1981-07-08 (NODC Accession 0117713)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117713 includes chemical, discrete sample, physical and profile data collected from ATLANTIS II in the North Atlantic Ocean from 1981-06-12 to...

  8. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the DISCOVERY in the North Atlantic Ocean from 1989-07-16 to 1989-08-10 (NODC Accession 0113532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113532 includes chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1989-07-16 to...

  9. Temperature and salinity profiles from CTD casts from the PARIZEAU and other PLATFORMS from a World-Wide distribution in support of the Integrated Global Ocean Services System (IGOSS) from 01 October 1988 to 31 October 1988 (NODC Accession 8800296)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from the PARIZEAU and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected by US...

  10. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from HEALY in the Arctic Ocean and Beaufort Sea from 2004-07-18 to 2004-08-26 (NODC Accession 0113548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113548 includes biological, chemical, discrete sample, optical, physical and profile data collected from HEALY in the Arctic Ocean and Beaufort Sea...

  11. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the North Atlantic Ocean from 1986-04-24 to 1986-05-18 (NODC Accession 0117678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117678 includes chemical, discrete sample, physical and profile data collected from KNORR in the North Atlantic Ocean from 1986-04-24 to 1986-05-18...

  12. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AURORA AUSTRALIS in the Indian Ocean from 1991-09-25 to 1991-10-27 (NODC Accession 0116370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116370 includes chemical, discrete sample, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean from 1991-09-25 to...

  13. Temperature, salinity, species identification, nutrient profiles and meteorological data collected by bottle and net in the Northwest Pacific Ocean from 6/10/1975 - 8/5/1975 (NODC Accession 0000194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, species identification, and other data were collected using net and bottle casts from the RYOFU MARU in the Northwest Pacific Ocean....

  14. Temperature and salinity profile data collected from CTD casts by the National Institute of Oceanography (NIO), India, in the Bay of Bengal and Indian Ocean from October 01, 1983 to August 05, 1996 (NODC Accession 0055417)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical data were collected from CTD casts from the Bay of Bengal and Indian Ocean. Data were collected from October 1983 to August 1996. Data were collected and...

  15. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THALASSA in the North Atlantic Ocean from 2004-06-04 to 2004-07-06 (NODC Accession 0113918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113918 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean from 2004-06-04 to...

  16. Delayed CTD and XBT data assembled and submitted by the Canada Department of Fisheries and Oceans (DFO) for the Global Temperature-Salinity Profile Program (GTSPP), dates range from 06/08/1979 - 05/25/2010 (NODC Accession 0065272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Integrated Science Data Management (ISDM) office processes oceanographic profiles for the world oceans and submits these data to the Global Temperature and...

  17. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ENDEAVOR in the North Atlantic Ocean from 1991-03-28 to 1991-04-21 (NODC Accession 0113988)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113988 includes chemical, discrete sample, physical and profile data collected from ENDEAVOR in the North Atlantic Ocean from 1991-03-28 to...

  18. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the Indian Ocean from 1995-01-06 to 1995-02-21 (NCEI Accession 0160543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160543 includes biological, chemical, discrete sample, physical and profile data collected from DISCOVERY in the Indian Ocean from 1995-01-06 to...

  19. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NEW HORIZON in the North Pacific Ocean from 1980-08-10 to 1980-09-03 (NODC Accession 0116707)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116707 includes chemical, discrete sample, physical and profile data collected from NEW HORIZON in the North Pacific Ocean from 1980-08-10 to...

  20. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the South Atlantic Ocean from 1992-12-22 to 1993-02-01 (NCEI Accession 0144287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144287 includes discrete sample and profile data collected from DISCOVERY in the South Atlantic Ocean from 1992-12-22 to 1993-02-01. These data...

  1. Temperature, salinity, species identification, nutrient profiles and meteorological data collected by bottle, CTD, and plankton net on multiple cruises in the Pacific Ocean and South China Sea from 10/15/1970 - 02/13/1987 (NODC Accession 0000088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, species identification, and other data were collected from XIANG YANG HONG 14 and other platforms using net, bottle, and CTD casts in the Pacific Ocean...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-20 (NCEI Accession 0148773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148773 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-23 (NCEI Accession 0148774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148774 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-31 to 2008-10-27 (NCEI Accession 0148763)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148763 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-18 (NCEI Accession 0148767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148767 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-01 to 2006-12-27 (NCEI Accession 0144535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144535 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-07-01 (NCEI Accession 0144343)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144343 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-19 (NCEI Accession 0144354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144354 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-30 to 2008-10-28 (NCEI Accession 0144348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144348 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-22 (NCEI Accession 0144528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144528 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-07 to 2002-12-23 (NCEI Accession 0144356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144356 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-24 (NCEI Accession 0144349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144349 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-12-31 to 2014-12-20 (NCEI Accession 0144532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144532 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-02 to 2006-12-26 (NCEI Accession 0148764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148764 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-12-29 to 2003-11-30 (NCEI Accession 0144351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144351 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-12-31 to 2013-11-15 (NCEI Accession 0144529)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144529 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-23 to 2002-12-23 (NCEI Accession 0148766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148766 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-01-01 to 2014-12-20 (NCEI Accession 0145200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0145200 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2003-01-01 to 2003-12-29 (NCEI Accession 0148770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148770 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-01 to 2011-12-19 (NCEI Accession 0148765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148765 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  1. Finescale Structure of the Temperature-Salinity Relationship

    National Research Council Canada - National Science Library

    Polzin, Kurt L; Ferrari, Raffaele

    2005-01-01

    The long term goal of this project is to understand the processes that establish the temperature-salinity relationship in the ocean, with emphasis on the interplay between advection at the large scale...

  2. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  3. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  4. Remote Sensing of Salinity and Overview of Results from Aquarius

    Science.gov (United States)

    Le Vine, D. M.; Dinnat, E. P.; Meissner, T.; Wentz, F.; Yueh, S. H.; Lagerloef, G. S. E.

    2015-01-01

    Aquarius is a combined active/passive microwave (L-band) instrument designed to map the salinity of global oceans from space. The specific goal of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the sea surface salinity (SSS) field of the open ocean (i.e. away from land). The instrumentation has been designed to provide monthly maps with a spatial resolution of 150 km and an accuracy of 0.2 psu

  5. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from USCGC POLAR SEA in the South Pacific Ocean and Southern Oceans from 1994-02-04 to 1994-02-10 (NODC Accession 0116062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116062 includes chemical, discrete sample, physical and profile data collected from USCGC POLAR SEA in the South Pacific Ocean and Southern Oceans...

  6. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2005-01-22 to 2005-04-06 (NODC Accession 0108100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108100 includes discrete sample and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (> 60 degrees South)...

  7. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2008-02-10 to 2008-04-16 (NODC Accession 0108154)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108154 includes discrete sample and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (> 60 degrees South)...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans from 2006-03-21 to 2006-04-04 (NODC Accession 0108070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108070 includes chemical, discrete sample, physical and profile data collected from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans...

  9. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from unknown platforms in the South Pacific Ocean and Southern Oceans from 2010-12-28 to 2014-02-21 (NCEI Accession 0160574)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160574 includes chemical, discrete sample, physical and profile data collected from unknown platforms in the South Pacific Ocean and Southern Oceans...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans from 2009-09-16 to 2009-10-09 (NODC Accession 0112845)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112845 includes discrete sample and profile data collected from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans (> 60 degrees...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2006-12-31 (NCEI Accession 0157276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157276 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean,...

  12. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2001-03-05 to 2001-04-17 (NODC Accession 0108096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108096 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2010-04-05 to 2010-05-16 (NODC Accession 0109927)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109927 includes discrete sample and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2010-04-05 to...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, thermosalinographs and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans from 2009-03-11 to 2009-04-17 (NCEI Accession 0157275)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157275 includes Surface underway, chemical and physical data collected from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans (> 60...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, thermosalinographs and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans from 2008-01-02 to 2008-02-17 (NCEI Accession 0157284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157284 includes Surface underway, chemical and physical data collected from JAMES CLARK ROSS in the South Atlantic Ocean and Southern Oceans (> 60...

  16. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the SONNE in the North Atlantic Ocean and South Atlantic Ocean from 2000-11-28 to 2000-12-27 (NODC Accession 0115599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115599 includes chemical, discrete sample, physical and profile data collected from SONNE in the North Atlantic Ocean and South Atlantic Ocean from...

  17. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Kaiyo in the North Pacific Ocean and South Pacific Ocean from 1997-11-29 to 1997-12-25 (NODC Accession 0112363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112363 includes chemical, discrete sample, physical and profile data collected from Kaiyo in the North Pacific Ocean and South Pacific Ocean from...

  18. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2007-11-28 to 2008-02-04 (NODC Accession 0108067)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108067 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (>...

  19. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from METEOR in the North Atlantic Ocean and South Atlantic Ocean from 2009-10-26 to 2009-11-23 (NODC Accession 0109918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109918 includes discrete sample and profile data collected from METEOR in the North Atlantic Ocean and South Atlantic Ocean from 2009-10-26 to...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean and South Atlantic Ocean from 2002-10-13 to 2002-11-16 (NODC Accession 0113890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113890 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean and South Atlantic Ocean from...

  1. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 1996-02-20 to 1996-03-31 (NODC Accession 0115012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115012 includes discrete sample and profile data collected from MARION DUFRESNE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2006-01-02 to 2006-03-12 (NODC Accession 0109922)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109922 includes chemical, discrete sample, optical, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans...

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2016-01-11 to 2016-03-15 (NCEI Accession 0163181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163181 includes chemical, discrete sample, optical, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans...

  4. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2004-12-23 to 2005-02-17 (NODC Accession 0108076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108076 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  5. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean and South Atlantic Ocean from 1981-03-28 to 1981-04-23 (NODC Accession 0116646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116646 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean and South Atlantic Ocean from...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OCEANUS in the North Atlantic Ocean and South Atlantic Ocean from 1988-07-23 to 1988-09-01 (NODC Accession 0117675)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117675 includes chemical, discrete sample, physical and profile data collected from OCEANUS in the North Atlantic Ocean and South Atlantic Ocean from...

  7. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from LAURENCE M. GOULD in the Gulf of Guinea, South Atlantic Ocean and Southern Oceans from 2006-03-23 to 2010-11-02 (NCEI Accession 0144979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144979 includes discrete sample and profile data collected from LAURENCE M. GOULD in the Gulf of Guinea, South Atlantic Ocean and Southern Oceans...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the EDWIN LINK in the North Atlantic Ocean and South Atlantic Ocean from 1996-04-15 to 1996-05-16 (NODC Accession 0113539)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113539 includes chemical, discrete sample, physical and profile data collected from EDWIN LINK in the North Atlantic Ocean and South Atlantic Ocean...

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2003-06-04 to 2003-08-11 (NODC Accession 0108061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108061 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2008-02-04 to 2008-03-17 (NODC Accession 0108118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108118 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 1986-06-27 to 1986-12-14 (NODC Accession 0116642)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116642 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (>...

  12. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean and South Atlantic Ocean from 1990-10-04 to 1990-10-27 (NODC Accession 0116643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116643 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean and South Atlantic Ocean from...

  13. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 1990-11-17 to 1990-12-30 (NODC Accession 0117676)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117676 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (>...

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2007-02-04 to 2007-03-17 (NODC Accession 0108119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108119 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  15. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from RRS JAMES COOK in the South Atlantic Ocean and Southern Oceans from 2010-03-19 to 2010-04-24 (NODC Accession 0108069)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108069 includes discrete sample and profile data collected from RRS JAMES COOK in the South Atlantic Ocean and Southern Oceans (> 60 degrees...

  16. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-12-17 to 2003-02-14 (NODC Accession 0113608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113608 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  17. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AURORA AUSTRALIS in the Indian Ocean and South Pacific Ocean from 1994-12-13 to 1995-02-01 (NODC Accession 0115020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115020 includes chemical, discrete sample, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean and South Pacific Ocean from...

  18. Dissolved inorganic carbon, alkalinity, temperature, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2012-03-06 (NCEI Accession 0157351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157351 includes chemical, discrete sample, physical and profile data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean, Southern...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the MELVILLE in the North Atlantic Ocean and South Atlantic Ocean from 1989-01-23 to 1989-04-12 (NODC Accession 0115014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115014 includes chemical, discrete sample, physical and profile data collected from MELVILLE in the North Atlantic Ocean and South Atlantic Ocean...

  20. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 2008-02-23 to 2008-03-15 (NODC Accession 0117496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117496 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2004-11-17 to 2004-12-09 (NODC Accession 0112263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112263 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2006-08-25 to 2006-10-29 (NODC Accession 0108157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108157 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (>...

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 1996-01-05 to 1996-03-10 (NODC Accession 0115155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115155 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the South Pacific Ocean, Southern Oceans...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the South Pacific Ocean and Southern Oceans from 2005-01-06 to 2005-02-19 (NCEI Accession 0144243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144243 includes Surface underway data collected from ROGER REVELLE in the South Pacific Ocean and Southern Oceans (> 60 degrees South) from...

  5. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2002-03-04 to 2002-04-09 (NODC Accession 0108097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108097 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the North Pacific Ocean and South Pacific Ocean from 1991-08-13 to 1991-09-01 (NODC Accession 0115591)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115591 includes chemical, discrete sample, physical and profile data collected from Hakuho Maru in the North Pacific Ocean and South Pacific Ocean...

  7. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from STENA ARCTICA in the South Atlantic Ocean and Southern Oceans from 1989-02-14 to 1989-03-17 (NODC Accession 0113893)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113893 includes chemical, discrete sample, physical and profile data collected from STENA ARCTICA in the South Atlantic Ocean and Southern Oceans...

  8. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ROGER REVELLE in the South Pacific Ocean and Southern Oceans from 2005-01-09 to 2005-02-19 (NODC Accession 0108095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108095 includes discrete sample and profile data collected from ROGER REVELLE in the South Pacific Ocean and Southern Oceans (> 60 degrees South)...

  9. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and others from 1993-04-04 to 1993-05-09 (NODC Accession 0115004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115004 includes chemical, discrete sample, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean,...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to 2004-01-24 (NCEI Accession 0144250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144250 includes Surface underway data collected from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to...

  11. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from METEOR in the North Atlantic Ocean and South Atlantic Ocean from 2006-06-06 to 2006-07-09 (NODC Accession 0108078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108078 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean and South Atlantic Ocean from...

  12. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the SHIRASE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 1992-12-03 to 1993-03-19 (NODC Accession 0113597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113597 includes biological, chemical, discrete sample, physical and profile data collected from SHIRASE in the Indian Ocean, South Pacific Ocean and...

  13. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the North Pacific Ocean and South Pacific Ocean from 1992-10-06 to 1993-04-13 (NODC Accession 0115156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115156 includes chemical, discrete sample, physical and profile data collected from KNORR in the North Pacific Ocean and South Pacific Ocean from...

  14. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the South Atlantic Ocean and South Pacific Ocean from 1990-01-23 to 1990-03-08 (NODC Accession 0115021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115021 includes chemical, discrete sample, physical and profile data collected from METEOR in the South Atlantic Ocean and South Pacific Ocean from...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THALASSA in the North Atlantic Ocean and South Atlantic Ocean from 1999-07-12 to 1999-09-22 (NODC Accession 0113601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113601 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean and South Atlantic Ocean...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2007-02-16 to 2007-03-26 (NODC Accession 0112269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112269 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean from 1994-01-04 to 1994-03-21 (NODC Accession 0115157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115157 includes Surface underway, discrete sample and profile data collected from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean...

  18. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean, South Atlantic Ocean and Strait of Gibraltar from 2013-03-20 to 2013-05-22 (NODC Accession 0114434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114434 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean, South Atlantic Ocean and...

  19. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 1995-07-17 to 1995-09-02 (NCEI Accession 0144339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144339 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, North Atlantic Ocean and others from 2007-12-03 to 2008-08-05 (NCEI Accession 0157407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157407 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, North Atlantic Ocean,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2016-02-08 to 2016-03-15 (NCEI Accession 0157333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157333 includes Surface underway, chemical, meteorological and physical data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from TANGAROA in the South Pacific Ocean, Southern Oceans and Tasman Sea from 2015-01-05 to 2015-12-23 (NCEI Accession 0157326)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157326 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the South Pacific Ocean, Southern Oceans...

  3. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from TANGAROA in the Indian Ocean, South Pacific Ocean and others from 1999-02-02 to 1999-02-28 (NCEI Accession 0155958)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155958 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the Indian Ocean, South Pacific Ocean,...

  4. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 1998-03-28 to 1998-05-23 (NODC Accession 0113595)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113595 includes discrete sample and profile data collected from POLARSTERN in the South Atlantic Ocean and Southern Oceans (> 60 degrees South)...

  5. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-01-02 to 1993-02-10 (NODC Accession 0115753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115753 includes discrete sample and profile data collected from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-01-02 to...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2012-01-05 to 2012-02-12 (NCEI Accession 0143949)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143949 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-01-11 to 2005-02-24 (NODC Accession 0108153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108153 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean, South Pacific Ocean and...

  8. Temperature, salinity, oxygen and nutrients bottle and CTD data collected in the northern North Atlantic, Nordic and Arctic Seas from 1901 to 2011 (NODC Accession 0105532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen and nutrients bottle and CTD data collected in the Arctic Ocean, Barents Sea, Greenland Sea, Kara Sea, North Atlantic Ocean,...

  9. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  10. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  11. Oceanographic profile temperature and salinity data using underway CTD, collected by the Graduate School of Oceanography, University of Rhode Island, cruise KN200-2, North Atlantic Ocean, 2011-03 (NODC Accession 0115494)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of 81 Underway CTD (UCTD) casts in the region north of Flemish Cap. The UCTD is an un-pumped profiling CTD, manufactured by the Oceanscience...

  12. Eastward and northward components of ocean current, temperature, salinity and ice analysis collected from industry sponsored moorings in the Chukchi Sea, Alaska from 2008-09-08 to 2016-10-13 (NCEI Accession 0164964)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirteen moorings sites throughout the northeastern Chukchi Sea shelf were occupied in various combinations for eight field years, 2008-2016. Two separate taut line...

  13. Conductivity, temperature, depth, and salinity from NOAA Ship ALBATROSS IV and other platforms from the Northwest Atlantic Ocean (limit-40 W) and others from 1992-03-03 to 1996-06-25 (NODC Accession 9600124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrochemical, hydrophysical, and other data were collected from NOAA Ship ALBATROSS IV from March 3, 1992 to June 25, 1996. Data were submitted by Dr. David...

  14. Temperature and salinity profile data collected by bottle on multiple cruises in the Baltic Sea, Baffin Bay, Davis Strait, the North Atlantic Ocean, and the North Sea from 02 January 1985 to 13 November 1989 (NODC Accession 0000056)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and nutrients data were collected using bottle casts from DANA and other platforms in Baffin Sea, Baltic Sea, Davis Strait, North Sea, and North...

  15. Temperature, salinity, oxygen, and phosphate profiles collected by CTD or bottle in the World-wide Oceans from 11/4/1902 to 12/17/1998 (NODC Accession 0000198)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, meteorological, and nutrients data were collected using CTD and bottle casts from the HOLLAND and other platforms in a world wide distribution....

  16. Temperature, salinity, oxygen, nutrients and productivity profile data from THOMAS G. THOMPSON Cruise 001, 19651014 to 19651207 in the Caribbean Sea and the northeastern tropical Pacific Ocean (NODC Accession 7100507)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a copy of University of Washington Department of Oceanography Technical Report No. 249, Physical, chemical, and productivity data from a...

  17. Carbon dioxide, temperature, salinity and other variables collected via time series profile monitoring from Kairei, MIRAI and NATSUSHIMA in the North Pacific Ocean from 1999-05-28 to 2008-10-26 (NODC Accession 0100115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100115 includes chemical, discrete bottle, physical and time series profile data collected from Kairei, MIRAI and NATSUSHIMA in the North Pacific...

  18. Oceanographic profile temperature, salinity, and oxygen measurements collected using CTD/XBT from NOAA Ship Ronald H. Brown in the Pacific Ocean from 2007 to 2008 (NODC Accession 0046077)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — XBT/CTD profile comparison data from the oceanographic line P18 2007/2008. XBT Deployments XBTs provided by Prof. Dean Roemmich of SIO were dropped during the cruise...

  19. Oceanographic profile temperature and salinity data using underway CTD, collected by the Graduate School of Oceanography, University of Rhode Island, cruise EN492, North Atlantic Ocean, 2011-04 to 2011-05 (NODC Accession 0116845)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of 79 Underway CTD (UCTD) casts in the region north of Flemish Cap. The UCTD is an un-pumped profiling CTD, manufactured by the Oceanscience...

  20. Temperature and salinity data collected by XCTD in the Arctic Ocean from the USS L. Mendel Rivers in October 2000 and USS Honolulu in October 2003 (NODC Accession 0119953)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  1. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from METEOR, POSEIDON and others in the North Atlantic Ocean from 1995-10-02 to 2009-11-25 (NODC Accession 0100064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100064 includes chemical, physical, time series and underway - surface data collected from METEOR, POSEIDON, TALIARTE and VICTOR HENSEN in the North...

  2. Temperature, salinity, nutrients, oxygen, pH, and other measurements collected using bottle, CTD, XCTD, BT, from Kofu, Ryofu, Keifu, and other platforms in the Pacific Ocean and Sea of Japan during 2004 (NODC Accession 0002643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data Report of Oceanographic and Marine Meteorological Observations, No. 95, Jan-Dec. 2004. The Japan Meteorologial Agency(JMA) has been carrying out oceanographic...

  3. Cloud amount/frequency, SALINITY and other data from WEATHERBIRD II in the NW Atlantic and North Atlantic Ocean from 1988-01-15 to 1990-12-27 (NODC Accession 9300073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bottle data in this accession was collected in NW Atlantic (limit-40 W) between January 15, 1988 and December 27, 1990 as part of HYDROSTATION "S" project using...

  4. Temperature, salinity, pressure, and other data from current meter and CTD casts in the NE Atlantic Ocean as part of the Subduction Accelerated Research Initiative (ARI) project, from 1991-05-18 to 1993-06-14 (NODC Accession 9700245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of...

  5. Water temperature, salinity, and other data collected from R/V Thomas G. Thompson in Pacific Ocean near San Diego, California from 2016-02-13 to 2016-02-19 (NCEI Accession 0161328)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Beginning in 2011 the University National Oceanographic Laboratory System (UNOLS) began a program of Chief Scientist training cruises to introduce prospective early...

  6. Temperature, salinity, sigma-T, and pressure profile CTD data from R/V MELVILLE and GLACIER in the Southern Oceans (> 60 degrees South) from 19860304 to 19860331 (NODC Accession 9100082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The observations were carried out from two vessels. One, the icebreaker Glacier, operated within the sea ice out to the vicinity of the ice edge. The second vessel,...

  7. Water temperature, salinity, and other data from CTD taken from the RV Sikuliaq in the Pacific Ocean between San Diego, California and Manzanillo, Mexico from 2016-12-21 to 2017-01-13 (NCEI Accession 0164968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains data from R/V Sikuliaq cruise SKQ201617S to the eastern tropical north pacific oxygen deficient zone. The objective of the cruise was to study...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the LE NOROIT in the North Atlantic Ocean and South Atlantic Ocean from 1995-09-09 to 1995-10-11 (NODC Accession 0115686)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115686 includes biological, chemical, discrete sample, physical and profile data collected from LE NOROIT in the North Atlantic Ocean and South...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and South Pacific Ocean from 2010-01-06 to 2010-09-17 (NODC Accession 0115170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115170 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the North Pacific Ocean and...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1996-10-21 to 1996-11-23 (NCEI Accession 0157233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157233 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1997-02-02 to 1997-02-17 (NCEI Accession 0157416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157416 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  12. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2005-09-04 to 2005-09-26 (NODC Accession 0108087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108087 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  13. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2007-06-06 to 2007-07-03 (NODC Accession 0108090)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108090 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Micro-porous membrane equilibrator and other instruments from SOYO-MARU in the North Pacific Ocean, Philippine Sea and South Atlantic Ocean from 2012-04-10 to 2012-11-30 (NCEI Accession 0157371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157371 includes Surface underway, chemical, meteorological and physical data collected from SOYO-MARU in the North Pacific Ocean, Philippine Sea and...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from CONTSHIP WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 2007-09-22 to 2007-11-10 (NODC Accession 0080968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0080968 includes Surface underway, chemical, meteorological and physical data collected from CONTSHIP WASHINGTON in the North Pacific Ocean and South...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 1998-01-21 to 1998-12-28 (NODC Accession 0081003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081003 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NODC Accession 0108123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108123 includes Surface underway, discrete sample and profile data collected from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2007-01-17 to 2007-02-26 (NODC Accession 0112331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112331 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  19. Temperature and salinity profiles from CTD casts from NOAA Ship OREGON II and other PLATFORMS from the North Atlantic Ocean and other sea areas in support of the Integrated Global Ocean Services System (IGOSS) from 1992-01-01 to 1992-01-31 (NODC Accession 9200041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and other data were collected from NOAA Ship OREGON II and other PLATFORMS in support of the Integrated Global Ocean Services System (IGOSS). Data were collected...

  20. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, PAR Sensor and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean and Southern Oceans from 1997-11-25 to 1997-12-08 (NCEI Accession 0157301)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157301 includes Surface underway, biological, chemical, optical and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean and...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 1995-01-13 to 1995-04-02 (NODC Accession 0115764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115764 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-01-14 to 2004-02-26 (NODC Accession 0112283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112283 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-01-20 to 2004-02-06 (NODC Accession 0112210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112210 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-06-16 to 2004-08-13 (NODC Accession 0112212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112212 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  5. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific Ocean from 2009-02-03 to 2009-03-24 (NODC Accession 0108082)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108082 includes chemical, discrete sample, physical and profile data collected from SOUTHERN SURVEYOR in the North Pacific Ocean and South Pacific...

  6. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 2002-06-07 to 2002-07-04 (NODC Accession 0115586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115586 includes chemical, discrete sample, physical and profile data collected from METEOR in the Caribbean Sea, North Atlantic Ocean and South...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and Calcium collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South Pacific Ocean from 1979-04-01 to 1982-06-30 (NODC Accession 0000180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000180 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-10-10 to 2001-12-06 (NODC Accession 0115281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115281 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-30 (NCEI Accession 0157463)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157463 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2002-10-01 to 2002-11-27 (NODC Accession 0115283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115283 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  11. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Thin film type equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the POLARSTERN in the North Atlantic Ocean and South Atlantic Ocean from 1995-11-09 to 1995-12-01 (NODC Accession 0112941)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112941 includes chemical, meteorological, physical and underway - surface data collected from POLARSTERN in the North Atlantic Ocean and South...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-08-07 to 1993-10-05 (NODC Accession 0112229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112229 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2010-07-06 to 2010-08-22 (NODC Accession 0109921)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109921 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from MIRAI in the Indian Ocean and Southern Oceans from 2013-01-06 to 2013-02-15 (NCEI Accession 0156925)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156925 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the Indian Ocean and Southern...

  15. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MARION DUFRESNE in the Indian Ocean, Mozambique Channel and Southern Oceans from 2004-01-03 to 2004-02-09 (NODC Accession 0113572)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113572 includes biological, chemical, discrete sample, optical, physical and profile data collected from MARION DUFRESNE in the Indian Ocean,...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-04-13 to 1993-06-11 (NODC Accession 0112228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112228 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  17. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship DISCOVERER in the North Pacific Ocean and South Pacific Ocean from 1992-09-06 to 1992-12-08 (NODC Accession 0000193)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0000193 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the North Pacific Ocean and South Pacific...

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean and South Pacific Ocean from 1992-02-24 to 1992-05-19 (NODC Accession 0117498)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117498 includes biological, chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2010-03-08 to 2010-04-17 (NODC Accession 0108156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108156 includes chemical, discrete sample, physical and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South...

  20. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 1998-12-29 to 1999-02-01 (NODC Accession 0112349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112349 includes biological, chemical, discrete sample, meteorological, physical and profile data collected from MIRAI in the North Pacific Ocean and...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1993-07-05 to 1993-09-02 (NODC Accession 0115008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115008 includes chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and...

  2. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THOMAS WASHINGTON in the North Pacific Ocean and South Pacific Ocean from 1991-08-31 to 1991-10-01 (NODC Accession 0115174)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115174 includes chemical, discrete sample, physical and profile data collected from THOMAS WASHINGTON in the North Pacific Ocean and South Pacific...

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-08-03 to 2013-10-01 (NCEI Accession 0157363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157363 includes chemical, discrete sample, physical and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South...

  4. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-01-07 to 2002-02-16 (NODC Accession 0112354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112354 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  5. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2000-12-27 to 2001-02-08 (NODC Accession 0112353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112353 includes biological, chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from L'ATALANTE in the North Pacific Ocean and South Pacific Ocean from 1994-11-05 to 1994-11-29 (NCEI Accession 0157470)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157470 includes Surface underway, chemical, meteorological and physical data collected from L'ATALANTE in the North Pacific Ocean and South Pacific...

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-02-13 to 1993-03-19 (NODC Accession 0115158)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115158 includes biological, chemical, discrete sample, physical and profile data collected from L'ATALANTE in the North Atlantic Ocean and South...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-08-08 to 1994-10-06 (NODC Accession 0112339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112339 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  10. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 1999-11-21 to 1999-12-27 (NODC Accession 0112351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112351 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  11. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2006-11-01 to 2006-11-30 (NODC Accession 0108089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108089 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  12. Dissolved inorganic carbon, alkalinity, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the ANTEA in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2007-09-03 to 2007-09-24 (NODC Accession 0108091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108091 includes chemical, discrete sample, physical and profile data collected from ANTEA in the Gulf of Guinea, North Atlantic Ocean and South...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2005-06-15 to 2005-08-12 (NODC Accession 0112215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112215 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-01-19 to 2001-03-09 (NODC Accession 0115321)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115321 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2014-12-02 to 2015-02-01 (NCEI Accession 0157620)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157620 includes biological, chemical, discrete sample, optical, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2003-07-14 to 2003-08-01 (NODC Accession 0112282)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112282 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-04-13 to 1994-06-11 (NODC Accession 0112230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112230 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2005-07-08 to 2005-07-28 (NODC Accession 0112288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112288 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from KNORR in the North Atlantic Ocean and South Atlantic Ocean from 1987-11-24 to 1989-04-12 (NODC Accession 0117501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117501 includes chemical, discrete sample, meteorological, physical and profile data collected from KNORR in the North Atlantic Ocean and South...

  20. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 1982-12-01 to 1983-02-18 (NODC Accession 0116706)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116706 includes chemical, discrete sample, physical and profile data collected from KNORR in the Caribbean Sea, North Atlantic Ocean and South...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Pacific Ocean and others from 1995-03-17 to 1995-04-27 (NCEI Accession 0157358)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157358 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Pacific...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2001-01-30 to 2002-01-13 (NCEI Accession 0157365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157365 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2004-01-20 to 2005-01-25 (NCEI Accession 0157327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157327 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 1997-01-12 to 1998-01-09 (NCEI Accession 0157323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157323 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Pacific Ocean, Southern...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, North Pacific Ocean and others from 2000-02-15 to 2001-01-25 (NCEI Accession 0157250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157250 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, North Pacific...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean and Southern Oceans from 2016-02-21 to 2016-08-04 (NCEI Accession 0160570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160570 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean and...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2013-11-18 to 2014-12-25 (NCEI Accession 0157374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157374 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 1996-05-04 to 1997-01-08 (NCEI Accession 0157413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157413 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the North Pacific Ocean, South Atlantic Ocean and others from 2002-01-18 to 2003-01-01 (NCEI Accession 0157376)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157376 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the North Pacific Ocean, South...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 2000-01-15 to 2000-08-14 (NODC Accession 0081005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081005 includes Surface underway, chemical, meteorological, optical and physical data collected from MARION DUFRESNE in the Indian Ocean and Southern...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from KNORR and MELVILLE in the North Atlantic Ocean and South Atlantic Ocean from 1987-11-23 to 1989-04-19 (NCEI Accession 0157692)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157692 includes chemical, discrete sample, physical and profile data collected from KNORR and MELVILLE in the North Atlantic Ocean and South Atlantic...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Atlantic Ocean and South Atlantic Ocean from 1991-07-11 to 1991-09-02 (NODC Accession 0115225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115225 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Atlantic Ocean and South...

  13. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1992-08-16 to 1992-10-21 (NODC Accession 0115003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115003 includes chemical, discrete sample, physical and profile data collected from JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2008-01-17 to 2008-02-28 (NODC Accession 0112334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112334 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ANTARES in the North Atlantic Ocean and South Atlantic Ocean from 2009-03-20 to 2010-08-06 (NODC Accession 0114477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114477 includes Surface underway, chemical, meteorological and physical data collected from ANTARES in the North Atlantic Ocean and South Atlantic...

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2015-01-04 to 2015-10-18 (NCEI Accession 0157344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157344 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-07-18 to 2013-10-02 (NODC Accession 0117699)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117699 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NCEI Accession 0157449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157449 includes Surface underway, chemical, meteorological and physical data collected from MIRAI in the Bering Sea, North Pacific Ocean and South...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2002-06-25 to 2002-08-01 (NODC Accession 0112204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112204 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2003-06-25 to 2003-08-07 (NODC Accession 0112208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112208 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1992-08-07 to 1992-10-05 (NODC Accession 0112227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112227 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2006-06-30 to 2006-07-20 (NODC Accession 0112292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112292 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean and South Pacific Ocean from 2007-06-06 to 2007-07-24 (NODC Accession 0112295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112295 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean and South...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and South Pacific Ocean from 2008-06-17 to 2008-08-03 (NODC Accession 0112336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112336 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and South...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2006-01-13 to 2006-02-22 (NODC Accession 0112290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112290 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1997-09-12 to 1997-11-07 (NODC Accession 0115286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115286 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-07-04 to 2004-07-21 (NODC Accession 0112285)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112285 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1998-09-16 to 1998-11-13 (NODC Accession 0115280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115280 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  9. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the L'ATALANTE in the Coral Sea, North Pacific Ocean and South Pacific Ocean from 1994-09-23 to 1994-10-29 (NODC Accession 0111870)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0111870 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the Coral Sea, North Pacific Ocean and South...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2008-01-22 to 2008-03-04 (NODC Accession 0112297)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112297 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2002-01-17 to 2002-03-06 (NODC Accession 0115278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115278 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2000-09-20 to 2000-11-04 (NODC Accession 0115288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115288 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean and South Pacific Ocean from 2007-01-18 to 2007-03-12 (NODC Accession 0112294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112294 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean and South...

  14. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the SONNE in the Caribbean Sea, North Atlantic Ocean and South Atlantic Ocean from 2003-05-25 to 2003-06-13 (NODC Accession 0116705)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116705 includes chemical, discrete sample, physical and profile data collected from SONNE in the Caribbean Sea, North Atlantic Ocean and South...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2011-05-15 to 2011-08-26 (NODC Accession 0115178)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115178 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  16. Salinity anomaly as a trigger for ENSO events.

    Science.gov (United States)

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  17. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-01-03 to 2013-11-15 (NCEI Accession 0157348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157348 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-12-30 to 2015-12-27 (NCEI Accession 0148769)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148769 includes Surface underway, chemical, meteorological and physical data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2008-01-09 to 2008-08-06 (NCEI Accession 0157386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157386 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-12-22 to 2007-12-30 (NCEI Accession 0157245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157245 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-22 to 2011-12-11 (NCEI Accession 0157336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157336 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2012-03-14 to 2012-09-02 (NCEI Accession 0157397)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157397 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-12-17 to 2006-12-15 (NCEI Accession 0157311)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157311 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 1999-03-06 to 2000-02-10 (NCEI Accession 0157370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157370 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-02 to 2011-01-16 (NCEI Accession 0157259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157259 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-01-28 to 2005-12-12 (NCEI Accession 0157262)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157262 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South...

  8. Estuarine Salinity Zones in US East Coast, Gulf of Mexico, and US West Coast from 1999-01-01 to 1999-12-31 (NCEI Accession 0127396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These unprojected (geographic coordinates) 3-Zone Average Annual Salinity Digital Geographies are based on analysis of long-term salinity data for 147 estuaries of...

  9. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from JOHN P. TULLY in the North Pacific Ocean, Papahānaumokuākea Marine National Monument and South Pacific Ocean from 1994-09-06 to 1994-11-10 (NODC Accession 0115011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115011 includes chemical, discrete sample, physical and profile data collected from JOHN P. TULLY in the North Pacific Ocean, Papahānaumokuākea...

  10. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  11. Watermass structure in the western Indian Ocean: Part 1. Watermasses and their thermohaline indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sastry, J.S.; Premchand, K.; Murty, C.S.

    The concept of "Indian Ocean Common Watermass" is introduced and its characteristics are defined. The temperature-salinity structures which would result when one, two or more watermasses of different temperature and salinity characteristics...

  12. Temperature profile data from STD/CTD casts from the MELVILLE from the Indian Ocean for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project, 06 December 1977 to 21 April 1978 (NODC Accession 8200055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MELVILLE from the Indian Ocean from December 6, 1977 to April 21, 1978. Data were...

  13. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  14. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  15. Freshwater salinization syndrome on a continental scale.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Pace, Michael L; Utz, Ryan M; Haq, Shahan; Gorman, Julia; Grese, Melissa

    2018-01-23

    Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity. Copyright © 2018 the Author(s). Published by PNAS.

  16. Temperature, salinity, conductivity, pressure, transmissivity measurements collected using CTD from the Alpha Helix in the Chukchi Sea during 1996 (NODC Accession 0061042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, conductivity, pressure, and transmissivity data gathered by CTD from the Alpha Helix (cruise HX194), September 1996

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback Whale National Marine Sanctuary, North Pacific Ocean and South Pacific Ocean from 2008-02-02 to 2008-11-16 (NODC Accession 0081043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081043 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship KA'IMIMOANA in the Hawaiian Islands Humpback...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Cap San Lorenzo in the English Channel, North Atlantic Ocean and South Atlantic Ocean from 2016-01-29 to 2016-07-27 (NCEI Accession 0160551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160551 includes Surface underway, chemical, meteorological and physical data collected from Cap San Lorenzo in the English Channel, North Atlantic...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2005-05-25 to 2005-07-02 (NODC Accession 0108081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108081 includes chemical, discrete sample, physical, profile and underway - surface data collected from MIRAI in the Bismarck Sea, North Pacific...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 2012-12-06 to 2014-02-11 (NCEI Accession 0160546)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160546 includes Surface underway, chemical, meteorological and physical data collected from S.A. AGULHAS II in the Gulf of Guinea, North Atlantic...