WorldWideScience

Sample records for ocean mixed layer

  1. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  2. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  3. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    Science.gov (United States)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  4. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  5. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DeBoyer Montegut, C.; Vialard, J.; Shenoi, S.S.C.; Shankar, D.; Durand, F.; Ethe, C.; Madec, G.

    A global Ocean General Circulation Model (OGCM) is used to investigate the mixed layer heat budget of the Northern Indian Ocean (NIO). The model is validated against observations and shows a fairly good agreement with mixed layer depth data...

  6. Interannual variability of the tropical Indian Ocean mixed layer depth

    Digital Repository Service at National Institute of Oceanography (India)

    Keerthi, M.G.; Lengaigne, M.; Vialard, J.; Montegut, C.deB.; Muraleedharan, P.M.

    , shoaling the MLD (Masson et al. 2002, Qu and Meyers 2005, Du et al. 2005). The seasonal cycle in the southern tropical Indian Ocean has been less 3 investigated. Seasonal shoaling and deepening of the mixed layer in the south-western Tropical Indian...

  7. Southern Ocean Mixed-Layer Seasonal and Interannual Variations From Combined Satellite and In Situ Data

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.

    2017-12-01

    The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.

  8. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  9. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses

    Science.gov (United States)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming

    2018-03-01

    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends

  10. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  11. Mixed layer depth and thermocline climatology of the Arabian Sea and western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.; Bahulayan, N.

    A band of zonally oriented ridge of mixed layer depth and thermocline base extending from African Coast to the Central Indian Ocean is observed between 5 degrees S and 10 degrees S throughout hte year. Mixed layer depth and thermocline base deepen...

  12. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  13. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  14. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  15. Lagrangian mixed layer modeling of the western equatorial Pacific

    Science.gov (United States)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  16. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.

  17. Chlorophyll modulation of mixed layer thermodynamics in a mixed ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    in a mixed-layer isopycnal General Circulation Model – An ... three dimensional ocean circulation theory combined with solar radiation transfer process. 1. .... temperature decrease compared with simulation without chlorophyll (bottom panel).

  18. Chlorophyll modulation of mixed layer thermodynamics in a mixed-layer isopycnal general circulation model - An example from Arabian Sea and Equatorial Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Saito, H.; Muneyama, K.

    and supported by quasi-steady upwelling. Remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS) are used to investigate the chlorophyll modulation of ocean mixed layer thermodynamics in a bulk mixed-layer model, embedded...

  19. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate

    International Nuclear Information System (INIS)

    Baranowski, D B; Malinowski, S P; Flatau, P J

    2011-01-01

    Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.

  20. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  1. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  2. Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    M. Araujo

    2011-01-01

    Full Text Available High-resolution hydrographic observations of temperature and salinity are used to analyze the formation and distribution of isothermal depth (ZT, mixed depth (ZM and barrier layer thickness (BLT in a section of the southwestern Atlantic (0°30´ N–14°00´ S; 31°24´–41°48´ W, adjacent to the northeastern Brazilian coast. Analyzed data consists of 279 CTD casts acquired during two cruises under the Brazilian REVIZEE Program. One occurred in late austral winter (August–October 1995 and another in austral summer (January–April 1997. Oceanic observations are compared to numerical modeling results obtained from the French Mercator-Coriolis Program. Results indicate that the intrusion of subtropical Salinity Maximum Waters (SMW is the major process contributing to the seasonal barrier layer formation. These waters are brought by the South Equatorial Current (SEC, from the subtropical region, into the western tropical Atlantic boundary. During late austral winter southeastern trade winds are more intense and ITCZ precipitations induce lower surface salinity values near the equator. During this period a 5–90 m thick BLT (median = 15 m is observed and BLT > 30 m is restricted to latitudes higher than 8° S, where the intrusion of salty waters between 8°–12.3° S creates shallow mixed layers over deep (ZT ≥ 90 m isothermal layers. During austral summer, shallow isothermal and mixed layers prevail, when northeasterly winds are predominant and evaporation overcomes precipitation, causing saltier waters at the surface/subsurface layers. During that period observed BLT varies from 5 to 70 m and presents thicker median value of 35 m, when comparing to the winter. Furthermore, BLT ≥ 30 m is observed not only in the southernmost part of the study area, as verified during late winter, but in the latitude range 2°–14° S, where near-surface salty waters are transported westward by the

  3. Marine isoprene production and consumption in the mixed layer of the surface ocean - a field study over two oceanic regions

    Science.gov (United States)

    Booge, Dennis; Schlundt, Cathleen; Bracher, Astrid; Endres, Sonja; Zäncker, Birthe; Marandino, Christa A.

    2018-02-01

    Parameterizations of surface ocean isoprene concentrations are numerous, despite the lack of source/sink process understanding. Here we present isoprene and related field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean to investigate the production and consumption rates in two contrasting regions, namely oligotrophic open ocean and the coastal upwelling region. Our data show that the ability of different phytoplankton functional types (PFTs) to produce isoprene seems to be mainly influenced by light, ocean temperature, and salinity. Our field measurements also demonstrate that nutrient availability seems to have a direct influence on the isoprene production. With the help of pigment data, we calculate in-field isoprene production rates for different PFTs under varying biogeochemical and physical conditions. Using these new calculated production rates, we demonstrate that an additional significant and variable loss, besides a known chemical loss and a loss due to air-sea gas exchange, is needed to explain the measured isoprene concentration. We hypothesize that this loss, with a lifetime for isoprene between 10 and 100 days depending on the ocean region, is potentially due to degradation or consumption by bacteria.

  4. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    Science.gov (United States)

    Somavilla, R; González-Pola, C; Fernández-Diaz, J

    2017-09-01

    Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m  decade-1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long-term hydrographic time-series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing.

  5. Mixed layer depth calculation in deep convection regions in ocean numerical models

    Science.gov (United States)

    Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Spence, Paul; Myers, Paul G.

    2017-12-01

    Mixed Layer Depths (MLDs) diagnosed by conventional numerical models are generally based on a density difference with the surface (e.g., 0.01 kg.m-3). However, the temperature-salinity compensation and the lack of vertical resolution contribute to over-estimated MLD, especially in regions of deep convection. In the present work, we examined the diagnostic MLD, associated with the deep convection of the Labrador Sea Water (LSW), calculated with a simple density difference criterion. The over-estimated MLD led us to develop a new tool, based on an observational approach, to recalculate MLD from model output. We used an eddy-permitting, 1/12° regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to test and discuss our newly defined MLD. We compared our new MLD with that from observations, and we showed a major improvement with our new algorithm. To show the new MLD is not dependent on a single model and its horizontal resolution, we extended our analysis to include 1/4° eddy-permitting simulations, and simulations using the Modular Ocean Model (MOM) model.

  6. How ocean lateral mixing changes Southern Ocean variability in coupled climate models

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.

    2016-02-01

    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  7. Ocean barrier layers' effect on tropical cyclone intensification.

    Science.gov (United States)

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  8. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  9. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    Science.gov (United States)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  10. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    Science.gov (United States)

    2016-09-01

    heat and momentum transfer with the ice-ocean interface. These two observations demonstrate the intricate interplay between momentum, heat , and...summer evolution events: 1. Modulated shortwave radiative input to the ocean 2. Shoaled the ocean boundary layer increasing ocean heat storage 3... transfer in a stratified oceanic boundary layer. J. Geophys. Res., 92(C7), 6977–7986, doi:10.1029/JC092iC07p06977. McPhee, M. G., 1992: Turbulent heat

  11. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Role of the ocean mixed layer processes in the response of the North Pacific winter SST and MLD to global warming in CGCMs

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-03-15

    It is investigated how the changes of winter sea surface temperature (SST) and mixed layer depth (MLD) under climate change projections are predicted differently in the North Pacific depending on the coupled general circulation models (CGCMs), and how they are related to the dynamical property of the simulated ocean mixed layer. For this purpose the dataset from eleven CGCMs reported to IPCC's AR4 are used, while detailed analysis is given to the MRI and MIROC models. Analysis of the CGCM data reveals that the increase of SST and the decrease of MLD in response to global warming tend to be smaller for the CGCM in which the ratio of ocean heat transport (OHT) to surface heat flux (SHF), R (=OHT/SHF), is larger in the heat budget of the mixed layer. The negative correlation is found between the changes of OHT and SHF under global warming, which may weaken the response to global warming in the CGCM with larger R. It is also found that the models with low horizontal resolution tend to give broader western boundary currents, larger R, and the smaller changes of SST and MLD under global warming. (orig.)

  13. Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Marcelo Dourado

    2001-01-01

    Full Text Available Time evolution of atmospheric and oceanic boundary layers are described for an upwelling region in the Atlantic Ocean located in Cabo Frio, Brazil (23°00'S, 42°08'W. The observations were obtained during a field campaign carried out by the "Instituto de Estudos do Mar Almirante Paulo Moreira", on board of the oceanographic ship Antares of the Brazilian Navy, between July 7 and 10 of 1992. The analysis shown here was based on 19 simultaneous vertical soundings of atmosphere and ocean, carried out consecutively every 4 hours. The period of observation was characterized by a passage of a cold front that penetrated in Cabo Frio on July 6. During the cold front passage the vertical extension of atmospheric (and oceanic mixed layer varied from 200 m (and 13 m to 1000 m (and 59 m. These changes occurred in the first day of observation and were followed by an increase of 1.2°C in the oceanic mixed layer temperature and by a decrease of 6 K and 6 g/kg in the virtual potential temperature and specific humidity of the atmospheric mixed layer. The short time scale variations in the ocean can be explained in terms of the substitution of cold upwelling water by warm downwelling water regime, as the surface winds shift from pre-frontal NE to post-frontal SSW during the cold front passage in Cabo Frio. The large vertical extent of the atmospheric mixed layer can be explained in terms of an intensification of the thermal mixing induced by the warming of the oceanic upper layers combined with the cooling of the lower atmospheric layers during the cold front passage. An intensification of the mechanical mixing, observed during the cold front passage, may also be contributing to the observed variations in the vertical extent of both layers.A evolução temporal das camadas limites atmosféricas e oceânicas são descritas para a região de ressurgência do Oceano Atlântico localizada em Cabo Frio. As observações foram obtidas durante a campanha de medidas

  14. Mixed-layer carbon cycling at the Kuroshio Extension Observatory

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Cronin, Meghan F.; Sutton, Adrienne J.

    2017-02-01

    Seven years of data from the NOAA Kuroshio Extension Observatory (KEO) surface mooring, located in the North Pacific Ocean carbon sink region, were used to evaluate drivers of mixed-layer carbon cycling. A time-dependent mass balance approach relying on two carbon tracers was used to diagnostically evaluate how surface ocean processes influence mixed-layer carbon concentrations over the annual cycle. Results indicate that the annual physical carbon input is predominantly balanced by biological carbon uptake during the intense spring bloom. Net annual gas exchange that adds carbon to the mixed layer and the opposing influence of net precipitation that dilutes carbon concentrations make up smaller contributions to the annual mixed-layer carbon budget. Decomposing the biological term into annual net community production (aNCP) and calcium carbonate production (aCaCO3) yields 7 ± 3 mol C m-2 yr-1 aNCP and 0.5 ± 0.3 mol C m-2 yr-1 aCaCO3, giving an annually integrated particulate inorganic carbon to particulate organic carbon production ratio of 0.07 ± 0.05, as a lower limit. Although we find that vertical physical processes dominate carbon input to the mixed layer at KEO, it remains unclear how horizontal features, such as eddies, influence carbon production and export by altering nutrient supply as well as the depth of winter ventilation. Further research evaluating linkages between Kuroshio Extension jet instabilities, eddy activity, and nutrient supply mechanisms is needed to adequately characterize the drivers and sensitivities of carbon cycling near KEO.

  15. Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer

    Science.gov (United States)

    Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.

    2018-03-01

    Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.

  16. The atmospheric boundary layer response to the dynamic new Arctic Ocean

    Science.gov (United States)

    Wu, D. L.; Ganeshan, M.

    2016-12-01

    The increasing ice-free area in the Arctic Ocean has transformed its climate system to one with more dynamic boundary layer clouds and seasonal sea ice. During the fall freeze season, the surface sensible heat flux (SSHF) is a crucial mechanism for the loss of excessive ocean heat to the atmosphere, and it has been speculated to play an important role in the recent cloud cover increase and boundary layer (BL) instability observed in the Beaufort and Chukchi seas. Based on multi-year Japanese cruise ship observations from the ice-strengthened R/V Mirai, we are able to characterize the late summer and early fall ocean-BL interactions in this region. Although the BL is found to be well-mixed more than 90% of the time, the SSHF can explain only 10% of the mixed layer height variability. It is the cloud-generated convective turbulence that apparently dominates BL mixing in this ice-free region, which is similar to previous in-situ observations (SHEBA, ASCOS) over sea ice. The SSHF, however, may contribute to BL instability during conditions of uplift (low-pressure), and the presence of the highly stable stratus cloud regime. The efficiency of sensible heat exchange is low during cold air advection (associated with the stratocumulus cloud regime) despite an enhanced ocean-atmosphere temperature difference (ΔT). In general, surface-generated mixing is favored during episodes of high surface wind speeds as opposed to pronounced ΔT. Our analysis suggests a weak local response of the boundary layer stability to the loss of sea ice cover during late summer, which is masked by the strong influence of the large-scale circulation (and clouds). Apart from the fall season, we also studied the Arctic Ocean BL properties during the cold months (Nov-Apr) using multi-year satellite measurements (COSMIC RO). As the boundary layer is typically stable at this time, one might expect major differences in the nature of surface-atmosphere coupling compared to that observed during late

  17. A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget

    Science.gov (United States)

    Caniaux, Guy; Planton, Serge

    1998-10-01

    A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.

  18. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  19. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  20. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  1. Structure of the oceanic mixed layer in western Bay of Bengal during MONEX

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Somayajulu, Y.K.

    layer conditions of the overlying atmosphere. Structure of OML, as delineated with respect to the diurnal variation of temperature with depth, revealed three sub-layers: wave mixed, diurnal thermocline and transition layer. The first two sub...

  2. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification

    Science.gov (United States)

    Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.

    2014-12-01

    A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.

  3. Turbulent Mixing and Vertical Heat Transfer in the Surface Mixed Layer of the Arctic Ocean: Implication of a Cross-Pycnocline High-Temperature Anomaly

    Science.gov (United States)

    Kawaguchi, Yusuke; Takeda, Hiroki

    2017-04-01

    This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.

  4. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dong L.

    2016-10-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain ˜ 10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for better understanding and

  5. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and

  6. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model

    Science.gov (United States)

    Megann, Alex

    2018-01-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution

  7. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  8. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Directory of Open Access Journals (Sweden)

    M. Ganeshan

    2016-10-01

    Full Text Available The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean–atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime, yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure followed by the highly stable (stratus regime. Overall, it can explain  ∼  10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for

  9. Seasonality of Red Sea Mixed-Layer Depth and Density Budget

    Science.gov (United States)

    Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.

    2016-02-01

    The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.

  10. Mixed layer modeling in the East Pacific warm pool during 2002

    Science.gov (United States)

    Van Roekel, Luke P.; Maloney, Eric D.

    2012-06-01

    Two vertical mixing models (the modified dynamic instability model of Price et al.; PWP, and K-Profile Parameterizaton; KPP) are used to analyze intraseasonal sea surface temperature (SST) variability in the northeast tropical Pacific near the Costa Rica Dome during boreal summer of 2002. Anomalies in surface latent heat flux and shortwave radiation are the root cause of the three intraseasonal SST oscillations of order 1°C amplitude that occur during this time, although surface stress variations have a significant impact on the third event. A slab ocean model that uses observed monthly varying mixed layer depths and accounts for penetrating shortwave radiation appears to well-simulate the first two SST oscillations, but not the third. The third oscillation is associated with small mixed layer depths (impact these intraseasonal oscillations. These results suggest that a slab ocean coupled to an atmospheric general circulation model, as used in previous studies of east Pacific intraseasonal variability, may not be entirely adequate to realistically simulate SST variations. Further, while most of the results from the PWP and KPP models are similar, some important differences that emerge are discussed.

  11. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  12. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  13. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  14. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  15. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    -or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.

  16. Impacts of 2009 Typhoons on Seawater Properties and Top Layer Ocean's Structure in the Northwest Pacific Ocean

    International Nuclear Information System (INIS)

    Dayang Siti Maryam Mohd Hanan; Aung, T.; Ejria Saleh

    2015-01-01

    Passing over the ocean surface, typhoon absorbs heat from the sea water as it needs the heat as its fuel. The process is via evaporation of water. Subsequently, the sea surface temperature (SST) in that area will significantly decrease. Due to strong typhoon wind water is evaporated from the surface layer of the ocean, the amount of water mass in that area is lost, but the same amount of salt will remain, causing sea surface salinity (SSS) to increase. Strong winds induced by typhoons will also cause turbulence in the water, causing entrainment, where cold deeper water is brought up to the surface layer of the ocean, which will consequently increase its SSS and change the isothermal layer and mixed layer depth (MLD). Here, isothermal layer means the ocean layer where temperature is almost constant and MLD is the depth where salinity is almost constant. This paper focuses on the effect of typhoons on SST, SSS, isothermal layer and MLD by taking 15 typhoons in the Northwest Pacific throughout 2009 typhoon season (typhoons Lupit and Ketsana are used as examples in results) into consideration. Temperature and salinity data from selected Array of Regional Geostrophic Oceanography (ARGO) floats close to the individual typhoon's track are used in this study. The results showed that SST decreased up to 2.97 degree Celsius; SSS increased up to 0.44 pss and majority of the typhoons showed deepening of isothermal layer (between 39.8 m and 4.6 m) and MLD (between 69.6 and 4.6 m) after the passage of typhoons. Passing of each individual typhoon also removed significant amount of heat energy from the affected area. The highest amount of heat of 841 MJ m -2 to the lowest of 30 MJ m -2 was calculated during the study period. For comparison purpose, an equivalent amount of electrical energy in kWh is also calculated using the amount of heat removed by the typhoons. (author)

  17. Martian Mixed Layer during Pathfinder Mission

    Science.gov (United States)

    Martinez, G. M.; Valero, F.; Vazquez, L.

    2008-09-01

    In situ measurements of the Martian Planetary Boundary Layer (MPBL) encompass only the sur- face layer. Therefore, in order to fully address the MPBL, it becomes necessary to simulate somehow the behaviour of the martian mixed layer. The small-scale processes that happen in the MPBL cause GCM's ([1], [2]) to describe only partially the turbulent statistics, height, convective scales, etc, of the surface layer and the mixed layer. For this reason, 2D and 3D martian mesoscale models ([4], [5]), and large eddy simulations ([4], [6], [7], [8]) have been designed in the last years. Although they are expected to simulate more accurately the MPBL, they take an extremely expensive compu- tational time. Alternatively, we have derived the main turbu- lent characteristics of the martian mixed layer by using surface layer and mixed layer similarity ([9], [10]). From in situ temperature and wind speed measurements, together with quality-tested simu- lated ground temperature [11], we have character- ized the martian mixed layer during the convective hours of Pathfinder mission Sol 25. Mean mixed layer turbulent statistics like tem- perature variance , horizontal wind speed variance , vertical wind speed variance , viscous dissipation rate , and turbu- lent kinetic energy have been calculated, as well as the mixed layer height zi, and the convective scales of wind w? and temperature θ?. Our values, obtained with negligible time cost, match quite well with some previously obtained results via LES's ([4] and [8]). A comparisson between the above obtained mar- tian values and the typical Earth values are shown in Table 1. Convective velocity scale w doubles its counterpart terrestrial typical value, as it does the mean wind speed variances and . On the other hand, the temperature scale θ? and the mean temperature variance are virtually around one order higher on Mars. The limitations of these results concern the va- lidity of the convective mixed layer similarity. This theory

  18. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    Science.gov (United States)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.

  19. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1990-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming

  20. Characteristics of coupled atmosphere-ocean CO2 sensitivity experiments with different ocean formulations

    International Nuclear Information System (INIS)

    Washington, W.M.; Meehl, G.A.

    1991-01-01

    The Community Climate Model at the National Center for Atmospheric Research has been coupled to a simple mixed-layer ocean model and to a coarse-grid ocean general circulation model (OGCM). This paper compares the responses of simulated climate to increases of atmospheric carbon dioxide (CO 2 ) in these two coupled models. Three types of simulations were run: (1) control runs with both ocean models, with CO 2 held constant at present-day concentrations, (2) instantaneous doubling of atmospheric CO 2 (from 330 to 660 ppm) with both ocean models, and (3) a gradually increasing (transient) CO 2 concentration starting at 330 ppm and increasing linearly at 1% per year, with the OGCM. The mixed-layer and OGCM cases exhibit increases of 3.5 C and 1.6 C, respectively, in globally averaged surface air temperature for the instantaneous doubling cases. The transient-forcing case warms 0.7 C by the end of 30 years. The mixed-layer ocean yields warmer-than-observed tropical temperatures and colder-than-observed temperatures in the higher latitudes. The coarse-grid OGCM simulates lower-than-observed sea surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes. Sensitivity in the OGCM after 30 years is much lower than in simulations with the same atmosphere coupled to a 50-m slab-ocean mixed layer. The OGCM simulates a weaker thermohaline circulation with doubled CO 2 as the high-latitude ocean-surface layer warms and freshens and the westerly wind stress decreases. Convective overturning in the OGCM decreases substantially with CO 2 warming. 46 refs.; 20 figs.; 1 tab

  1. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    Science.gov (United States)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  2. Arctic Mixed Layer Dynamics

    National Research Council Canada - National Science Library

    Morison, James

    2003-01-01

    .... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...

  3. Mixing parametrizations for ocean climate modelling

    Science.gov (United States)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    . The high sensitivity of the eddy-permitting circulation model to the definition of mixing is revealed, which is associated with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, usage of the turbulence parameterization instead of PP algorithm leads to increasing circulation velocity in the Gulf Stream and North Atlantic Current, as well as the subpolar cyclonic gyre in the North Atlantic and Beaufort Gyre in the Arctic basin are reproduced more realistically. Consideration of the Prandtl number as a function of the Richardson number significantly increases the modelling quality. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and the Council on the Russian Federation President Grants (grant № MK-3241.2015.5)

  4. Lagrangian pathways of upwelling in the Southern Ocean

    Science.gov (United States)

    Viglione, Giuliana A.; Thompson, Andrew F.

    2016-08-01

    The spatial and temporal variability of upwelling into the mixed layer in the Southern Ocean is studied using a 1/10° ocean general circulation model. Virtual drifters are released in a regularly spaced pattern across the Southern Ocean at depths of 250, 500, and 1000 m during both summer and winter months. The drifters are advected along isopycnals for a period of 4 years, unless they outcrop into the mixed layer, where lateral advection and a parameterization of vertical mixing are applied. The focus of this study is on the discrete exchange between the model mixed layer and the interior. Localization of interior-mixed layer exchange occurs downstream of major topographic features across the Indian and Pacific basins, creating "hotspots" of outcropping. Minimal outcropping occurs in the Atlantic basin, while 59% of drifters outcrop in the Pacific sector and in Drake Passage (the region from 140° W to 40° W), a disproportionately large amount even when considering the relative basin sizes. Due to spatial and temporal variations in mixed layer depth, the Lagrangian trajectories provide a statistical measure of mixed layer residence times. For each exchange into the mixed layer, the residence time has a Rayleigh distribution with a mean of 30 days; the cumulative residence time of the drifters is 261 ± 194 days, over a period of 4 years. These results suggest that certain oceanic gas concentrations, such as CO2 and 14C, will likely not reach equilibrium with the atmosphere before being resubducted.

  5. Stability of mixing layers

    Science.gov (United States)

    Tam, Christopher; Krothapalli, A

    1993-01-01

    The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.

  6. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    Science.gov (United States)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  7. The role stratification on Indian ocean mixing under global warming

    Science.gov (United States)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  8. Acoustic explorations of the upper ocean boundary layer

    Science.gov (United States)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  9. Do swimming animals mix the ocean?

    Science.gov (United States)

    Dabiri, John

    2013-11-01

    Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.

  10. Ocean Mixed Layer Response to Gap Wind Scenarios

    National Research Council Canada - National Science Library

    Konstantinou, Nikolaos

    2006-01-01

    This study focuses on understanding the oceanic response to gap outflow and the air-sea interaction processes during the gap wind event between 26 and 28 February 2004 over the Gulf of Tehuantepec, Mexico. The U.S...

  11. Storm-Driven Mixing and Potential Impact on the Arctic Ocean

    National Research Council Canada - National Science Library

    Yang, Jiayan

    2004-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean...

  12. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    Science.gov (United States)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  13. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-02-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (pollution episodes and the height of the mixed layer. The growth rate of the convective mixed-layer height has a seasonal behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  14. Mixing in straight shear layers

    Science.gov (United States)

    Karasso, P. S.; Mungal, M. G.

    1992-01-01

    Planar laser-induced fluorescence measurements were performed in a liquid plane mixing layer to extract the probability density function (pdf) of the mixture fraction of a passive scalar across the layer. Three Reynolds number (Re) cases were studied, 10,000, 33,000 and 90,000, with Re based on velocity difference and visual thickness. The results show that a non-marching pdf (central hump invariant from edge to edge of the layer) exists for Re = 10,000 but that a marching type pdf characterizes the Re = 33,000 and Re = 90,000 cases. For all cases, a broad range of mixture fraction values is found at each location across the layer. Streamwise and spanwise ramps across the layer, and structure-to-structure variation were observed and are believed to be responsible for the above behavior of the composition field. Tripping the boundary layer on the high-speed side of the splitter plate for each of the above three cases resulted in increased three-dimensionality and a change in the composition field. Average and average mixed fluid compositions are reported for all cases.

  15. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  16. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM

    Science.gov (United States)

    Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming

    2018-03-01

    The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

  17. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    Science.gov (United States)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  18. Boundary Layer Ducting of Low-elevation GNSS Ocean Reflected Signals

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    for the data retrievals and the precision and the accuracy, are of interest for assessing the observational data content.Simulations of the low-elevation ocean reflected GNSS signal reveal a ducting of the signalwhen applying a model of the boundary layer. This effect is presented during varying conditions...... of the sea surface roughness, ocean wind and temperature, density and gradient of the water vapor profile in the boundary layer.The model for the sea surface roughness impedance, wind speed, and rms ocean wave-heightshow a stronger signal damping for a smoother ocean surfaces (sea state 0) compared...... to a rough sea (sea state 4). While the real part of the signal shows the reverse effect. At the same time the reflection zone enhances for rough sea states. Simulations, including a standard atmosphere and a boundary layer, give a significant ducting of the received signal, leading to a much larger...

  19. Variability of the Mixed-Layer Height Over Mexico City

    Science.gov (United States)

    García-Franco, J. L.; Stremme, W.; Bezanilla, A.; Ruiz-Angulo, A.; Grutter, M.

    2018-06-01

    The diurnal and seasonal variability of the mixed-layer height in urban areas has implications for ground-level air pollution and the meteorological conditions. Measurements of the backscatter of light pulses with a commercial lidar system were performed for a continuous period of almost six years between 2011 and 2016 in the southern part of Mexico City. The profiles were temporally and vertically smoothed, clouds were filtered out, and the mixed-layer height was determined with an ad hoc treatment of both the filtered and unfiltered profiles. The results are in agreement when compared with values of mixed-layer height reconstructed from, (i) radiosonde data, and (ii) surface and vertical column densities of a trace gas. The daily maxima of the mean mixed-layer height reach values > 3 km above ground level in the months of March-April, and are clearly lower (behaviour, which is characterized together with the mixed-layer-height anomalies. A clear residual layer is evident from the backscattered signals recorded in days with specific atmospheric conditions, but also from the cloud-filtered mean diurnal profiles. The occasional presence of a residual layer results in an overestimation of the reported mixed-layer height during the night and early morning hours.

  20. Numerical simulations of the stratified oceanic bottom boundary layer

    Science.gov (United States)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory

  1. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  2. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    International Nuclear Information System (INIS)

    Smirnov, A; Alekseev, G; Korablev, A; Esau, I

    2010-01-01

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  3. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  4. Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.

    2017-12-01

    Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at

  5. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  6. One kind of atmosphere-ocean three layer model for calculating the velocity of ocean current

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Z; Xi, P

    1979-10-01

    A three-layer atmosphere-ocean model is given in this paper to calcuate the velocity of ocean current, particularly the function of the vertical coordinate, taking into consideratiln (1) the atmospheric effect on the generation of ocean current, (2) a calculated coefficient of the eddy viscosity instead of an assumed one, and (3) the sea which actually varies in depth.

  7. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  8. PIV measurement of turbulent mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Turbulent mixing layer flow with polymer additives was experimentally investigated by PIV in present paper. The velocity ratio between high and low speed is 4:1 and the Reynolds number for pure water case based on the velocity differences of two steams and hydraulic diameter of the channel ranges from 14667∼73333. Flow field and turbulent quantities of turbulent mixing layer with 200ppm polymer additives were measured and compared with pure water mixing layer flow. It is shown that the dynamic development of mixing layer is greatly influenced by polymer addictives. The smaller vortices are eliminated and the coherent structure is much clearer. Similar with pure water case, Reynolds stress and vorticity still concentrate in a coniform area of central part of mixing layer and the width will increase with the Reynolds number increasing. However, compared with pure water case, the coniform width of polymer additives case is larger, which means the polymer additives will lead to the diffusion of coherent structure. The peak value of vorticity in different cross section will decrease with the development of mixing layer. Compared with pure water case, the vorticity is larger at the beginning of the mixing layer but decreases faster in the case with polymer additives.

  9. Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    C. Dumousseaud

    2010-05-01

    Full Text Available Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1 and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006, led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1 showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.

  10. Geochemical prerequisites of petroleum-gas formation in the Mesozoic-Cenozoic sedimentary layer of the world's oceans

    Energy Technology Data Exchange (ETDEWEB)

    Trotsyuk, V Ya

    1979-05-01

    A summarization is given of the latest material on the geochemistry of trace organic matter of Mesozoic-Cenozoic deposits of the world's oceans, obtained as a result of deep-sea drilling. Trace organic matter was found to be present in the sedimentary layers of the ocean outskirts in amounts near that found in the continental stratosphere, but that content was five times less in the interior region of the oceans. The trace organic matter of deposits in the marginal region of the oceans was found to have a significant petroleum-gas matrix potential with respect to the level of content and composition characteristics. The distribution of organic carbon was found to be uneven in variously aged horizons of the Mesozoic-Cenozoic. The maximum content of organic carbon was noted in the Neogene-Quaternary and lower Cretaceous deposits. An elevated content of trace organic matter was found to be characteristic of the oceanic stratisphere in lithological mixed sediments: terrigenous-carbonate and terrigenous-silicons was 1.5 times greater than the trace organic matter in clays. Fundamental geochemical propagation laws were formulated, possibly for petroleum-gas-bearing sediment basins under the ocean bottom and beyond the shelf. 18 references, 3 figures.

  11. Applied model for the growth of the daytime mixed layer

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1991-01-01

    numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed...... layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained....

  12. Numerical modelling of the atmospheric mixing-layer diurnal evolution

    International Nuclear Information System (INIS)

    Molnary, L. de.

    1990-03-01

    This paper introduce a numeric procedure to determine the temporal evolution of the height, potential temperature and mixing ratio in the atmospheric mixing layer. The time and spatial derivatives were evaluated via forward in time scheme to predict the local evolution of the mixing-layer parameters, and a forward in time, upstream in space scheme to predict the evolution of the mixing-layer over a flat region with a one-dimensional advection component. The surface turbulent fluxes of sensible and latent heat were expressed using a simple sine wave that is function of the hour day and kind of the surface (water or country). (author) [pt

  13. Thermodynamic structure of the Atmospheric Boundary Layer over the Arabian Sea and the Indian Ocean during pre-INDOEX and INDOEX-FFP campaigns

    Directory of Open Access Journals (Sweden)

    M. V. Ramana

    2004-09-01

    Full Text Available Spatial and temporal variability of the Marine Atmospheric Boundary Layer (MABL height for the Indian Ocean Experiment (INDOEX study period are examined using the data collected through Cross-chained LORAN (Long-Range Aid to Navigation Atmospheric Sounding System (CLASS launchings during the Northern Hemispheric winter monsoon period. This paper reports the results of the analyses of the data collected during the pre-INDOEX (1997 and the INDOEX-First Field Phase (FFP; 1998 in the latitude range 14°N to 20°S over the Arabian Sea and the Indian Ocean. Mixed layer heights are derived from thermodynamic profiles and they indicated the variability of heights ranging from 400m to 1100m during daytime depending upon the location. Mixed layer heights over the Indian Ocean are slightly higher during the INDOEX-FFP than the pre-INDOEX due to anomalous conditions prevailing during the INDOEX-FFP. The trade wind inversion height varied from 2.3km to 4.5km during the pre-INDOEX and from 0.4km to 2.5km during the INDOEX-FFP. Elevated plumes of polluted air (lofted aerosol plumes above the marine boundary layer are observed from thermodynamic profiles of the lower troposphere during the INDOEX-FFP. These elevated plumes are examined using 5-day back trajectory analysis and show that one group of air mass travelled a long way from Saudi Arabia and Iran/Iraq through India before reaching the location of measurement, while the other air mass originates from India and the Bay of Bengal.

  14. Distribution of radon and radium in the ocean and its bearing on some oceanographic problems

    International Nuclear Information System (INIS)

    Miyake, Y.; Sugimura, Y.; Saruhashi, K.

    1980-01-01

    Radon and radium contents in seawater near the ocean floor and in the surface layer of the ocean were studied. The results showed a fairly large amount of excess of radon over radium (1520 to 315%) near the ocean floor. The vertical eddy-diffusion coefficient, D, near the seabed was calculated from a vertical distribution of the excess amount of radon. In the surface layer of the ocean, a remarkable deficiency of radon with respect to radium (50 to 70%) was observed. The mass balance of radium in the mixed layer was considered using a box model. The results showed that the residence time of radon in the mixed layer was about 8 days

  15. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  16. Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix

    Science.gov (United States)

    Mackinnon, I. D. R.

    1982-01-01

    High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence SBBSBB. Electron diffraction and imaging techniques show that the basal periodicity is approximately 17 A. Discrete crystals of SBB-type material are typically curved, of small size (less than 1 micron) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of pre-existing material is not yet apparent.

  17. Layered mixing on the New England Shelf in summer

    Science.gov (United States)

    Wang, Jianing; Greenan, Blair J. W.; Lu, Youyu; Oakey, Neil S.; Shaw, William J.

    2014-09-01

    The layered structure of stratification and mixing on the New England Shelf (NES) in summer is examined by analyzing a comprehensive set of observations of hydrography, currents and turbulence. A clear distinction in mixing characteristics between the midcolumn water (consisting of subsurface stratification, middepth weak stratification and lower-layer stratification) and a well-mixed bottom boundary layer (BBL) is revealed. The combination of subtidal Ekman onshore bottom transport and cross-shore density gradient created a lower-layer stratification that inhibited the upward extension of the BBL turbulence. The BBL mixing was related to strong shear generated by bottom stress, and the magnitude and periodic variation of BBL mixing was determined by both the tidal and subtidal flows. Mixing in the midcolumn water occurred under stably stratified conditions and showed correspondence with the occurrence of near-inertial and semidiurnal internal waves. Positive correlations between buoyancy frequency squared (N2) and shear variance (S2), S2 and dissipation rate (ɛ), N2 and ɛ are established in the midcolumn, but not in the BBL. The midcolumn ɛ was reasonably described by a slightly modified MacKinnon-Gregg (MG) model.

  18. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  19. Decadal change of the south Atlantic ocean Angola-Benguela frontal zone since 1980

    Science.gov (United States)

    Vizy, Edward K.; Cook, Kerry H.; Sun, Xiaoming

    2018-01-01

    High-resolution simulations with a regional atmospheric model coupled to an intermediate-level mixed layer ocean model along with multiple atmospheric and oceanic reanalyses are analyzed to understand how and why the Angola-Benguela frontal Zone (ABFZ) has changed since 1980. A southward shift of 0.05°-0.55° latitude decade-1 in the annual mean ABFZ position accompanied by an intensification of + 0.05 to + 0.13 K/100-km decade-1 has occurred as ocean mixed layer temperatures have warmed (cooled) equatorward (poleward) of the front over the 1980-2014 period. These changes are captured in a 35-year model integration. The oceanic warming north of the ABFZ is associated with a weakening of vertical entrainment, reduced cooling associated with vertical diffusion, and a deepening of the mixed layer along the Angola coast. These changes coincide with a steady weakening of the onshore atmospheric flow as the zonal pressure gradient between the eastern equatorial Atlantic and the Congo Basin weakens. Oceanic cooling poleward of the ABFZ is primarily due to enhanced advection of cooler water from the south and east, increased cooling by vertical diffusion, and shoaling of the mixed layer depth. In the atmosphere, these changes are related to an intensification and poleward shift of the South Atlantic sub-tropical anticyclone as surface winds, hence the westward mixed layer ocean currents, intensify in the Benguela upwelling region along the Namibian coast. With a few caveats, these findings demonstrate that air/sea interactions play a prominent role in influencing the observed decadal variability of the ABFZ over the southeastern Atlantic since 1980.

  20. Nomogram for the height of the daytime mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Nyren, K. [Ericsson EriSoft AB, Umeaa (Sweden); Gryning, S.E. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    We present a nomogram that provide information about the general behaviour of the mixed layer at a given location. The nomogram is meant to be a practical and easy to use tool to determine the height of the mixed layer for i.e. weather forecaster, air pollution studies and planning of meteorological experiments. Use of the nomogram is restricted to flat, relatively homogeneous terrain. Inhomogeneous terrain with patch scales of 10 km or more might create organised circulation like i.e. lake breezes. The data represented in the nomogram is computed using a meteorological preprocessor and climatological temperature data for the location. The nomogram is simplified but retain main physical processes that control the evolution of the mixed layer and can be easily constructed for any chosen location on land. Nomogram of the mixed layer behavior at the location of Cabauw, the Netherlands is shown and discussed. (au)

  1. Thin TaC layer produced by ion mixing

    DEFF Research Database (Denmark)

    Barna, Árpád; Kotis, László; Pécz, Béla

    2012-01-01

    in strongly asymmetric ion mixing; the carbon was readily transported to the Ta layer, while the reverse process was much weaker. Because of the asymmetrical transport the C/TaC interface remained sharp independently from the applied fluence. The carbon transported to the Ta layer formed Ta......Ion-beam mixing in C/Ta layered systems was investigated. C 8nm/Ta 12nm and C 20nm/Ta 19nm/C 20nm layer systems were irradiated by Ga+ ions of energy in the range of 2–30keV. In case of the 8nm and 20nm thick C cover layers applying 5–8keV and 20–30keV Ga+ ion energy, respectively resulted...

  2. Constitutive behaviour of mixed mode loaded adhesive layer

    DEFF Research Database (Denmark)

    Högberg, J.L.; Sørensen, Bent F.; Stigh, U.

    2007-01-01

    in the failure process zone. The constitutive behaviour of the adhesive layer is obtained by a so called inverse method and fitting an existing mixed mode cohesive model, which uses a coupled formulation to describe a mode dependent constitutive behaviour. The cohesive parameters are determined by optimizing......Mixed mode testing of adhesive layer is performed with the Mixed mode double Cantilever Bean? specimen. During the experiments, the specimens are loaded by transversal and/or shear forces; seven different mode mixities are tested. The J-integral is used to evaluate the energy dissipation...

  3. The 2008 North Atlantic Spring Bloom Experiment II: Autonomous Platforms and Mixed Layer Evolution

    Science.gov (United States)

    Lee, C. M.; D'Asaro, E. A.; Perry, M.; Fennel, K.; Gray, A.; Rehm, E.; Briggs, N.; Sackmann, B. S.; Gudmundsson, K.

    2008-12-01

    The 2008 North Atlantic Spring Bloom Experiment (NAB08) employed a system of drifting floats, mobile gliders and ship-based measurements to resolve patch-scale physical and biological variability over the 3- month course of an entire bloom. Although both autonomous and ship-based elements were essential to achieving NAB08 goals, the autonomous system provided a novel perspective by employing long-range gliders to repeatedly survey the volume surrounding a drifting Lagrangian float, thus characterizing patch- scale bloom evolution. Integration of physical and biogeochemical sensors (temperature, conductivity, dissolved oxygen, chlorophyll and CDOM fluorescence, light transmission, optical backscatter, spectral light, and nitrate) and development of in situ calibration techniques were required to support this new autonomous approach. Energetic, small-scale eddy activity at the experiment site (southeast of Iceland, near the Joint Global Ocean Flux Study and Marine Light Mixed Layer sites) produced a swift, heterogeneous velocity field that challenged the gliders" operational abilities and drove refinements to the piloting techniques used to maintain float-following surveys. Although intentionally deployed outside of energetic eddies, floats and gliders were rapidly entrained into these features. Floats circulated within eddies near the start and end of the experiment, drifting generally northwest, across the basin, in-between. An eddy sampled late in the deployment provided particularly interesting signatures, with elevated biological signals manifest consistently in one quadrant. As measurements were collected in a parcel-following Lagrangian frame, this suggests energetic small-scale exchange process (such as vertical or lateral mixing) paired with fast-acting biological processes capable of modifying the newly entrained water as it navigates its path around the eddy. Despite this energetic kilometer-scale heterogeneity, broadly distributed platforms appeared to

  4. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  5. Upper mixed layer temperature anomalies at the North Atlantic storm-track zone

    Directory of Open Access Journals (Sweden)

    S. N. Moshonkin

    1995-10-01

    Full Text Available Synoptic sea surface temperature anomalies (SSTAs were determined as a result of separation of time scales smaller than 183 days. The SSTAs were investigated using daily data of ocean weather station "C" (52.75°N; 35.5°W from 1 January 1976 to 31 December 1980 (1827 days. There were 47 positive and 50 negative significant SSTAs (lifetime longer than 3 days, absolute value greater than 0.10 °C with four main intervals of the lifetime repetitions: 1. 4–7 days (45% of all cases, 2. 9–13 days (20–25%, 3. 14–18 days (10–15%, and 4. 21–30 days (10–15% and with a magnitude 1.5–2.0 °C. An upper layer balance model based on equations for temperature, salinity, mechanical energy (with advanced parametrization, state (density, and drift currents was used to simulate SSTA. The original method of modelling taking into account the mean observed temperature profiles proved to be very stable. The model SSTAs are in a good agreement with the observed amplitudes and phases of synoptic SSTAs during all 5 years. Surface heat flux anomalies are the main source of SSTAs. The influence of anomalous drift heat advection is about 30–50% of the SSTA, and the influence of salinity anomalies is about 10–25% and less. The influence of a large-scale ocean front was isolated only once in February-April 1978 during all 5 years. Synoptic SSTAs develop just in the upper half of the homogeneous layer at each winter. We suggest that there are two main causes of such active sublayer formation: 1. surface heat flux in the warm sectors of cyclones and 2. predominant heat transport by ocean currents from the south. All frequency functions of the ocean temperature synoptic response to heat and momentum surface fluxes are of integral character (red noise, though there is strong resonance with 20-days period of wind-driven horizontal heat advection with mixed layer temperature; there are some other peculiarities on the time scales from 5.5 to 13 days. Observed and

  6. The Dynamics of Eddy Fluxes and Jet-Scale Overturning Circulations and its Impact on the Mixed Layer Formation in the Indo-Western Pacific Southern Ocean

    Science.gov (United States)

    LI, Q.; Lee, S.

    2016-12-01

    The relationship between Antarctic Circumpolar Current (ACC) jets and eddy fluxes in the Indo-western Pacific Southern Ocean (90°E-145°E) is investigated using an eddy-resolving model. In this region, transient eddy momentum flux convergence occurs at the latitude of the primary jet core, whereas eddy buoyancy flux is located over a broader region that encompasses the jet and the inter-jet minimum. In a small sector (120°E-144°E) where jets are especially zonal, a spatial and temporal decomposition of the eddy fluxes further reveals that fast eddies act to accelerate the jet with the maximum eddy momentum flux convergence at the jet center, while slow eddies tend to decelerate the zonal current at the inter-jet minimum. Transformed Eulerian mean (TEM) diagnostics reveals that the eddy momentum contribution accelerates the jets at all model depths, whereas the buoyancy flux contribution decelerates the jets at depths below 600 m. In ocean sectors where the jets are relatively well defined, there exist jet-scale overturning circulations (JSOC) with sinking motion on the equatorward flank, and rising motion on the poleward flank of the jets. The location and structure of these thermally indirect circulations suggest that they are driven by the eddy momentum flux convergence, much like the Ferrel cell in the atmosphere. This study also found that the JSOC plays a significant role in the oceanic heat transport and that it also contributes to the formation of a thin band of mixed layer that exists on the equatorward flank of the Indo-western Pacific ACC jets.

  7. Arctic Ocean Model Intercomparison Using Sound Speed

    Science.gov (United States)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  8. Observation of interior and boundary-layer mixing processes due to near-inertial waves in a stratified basin without tides

    Science.gov (United States)

    van der Lee, Eefke; Umlauf, Lars

    2010-05-01

    Near-inertial waves form an important contribution to oceanic energy and shear spectra, and thus play a major role in mixing the ocean's interior. Here, we compare internal-wave mixing processes in the interior of a stratified basin to those occurring on the sloping boundaries. We use the virtually tideless Baltic Sea as a natural laboratory, allowing us to isolate the effect of near-inertial waves that is otherwise (often) overshadowed by internal tides. The measurements presented here consist of moored ADCPs and CTD loggers in the center of the basin and on the slopes, combined with densely spaced shear-microstructure and ADCP cross-slope transects. During summer stratification, a three-layer density structure, with a thermocline and a deeper halocline, was observed with clear signals of downward near-inertial energy propagation after a short wind event. These motions are interpreted as near-inertial wave modes interacting with the sloping topography. Dissipation rates observed in the center of the basin scale with shear and stratification parameters in the way suggested by MacKinnon and Gregg (2003) for the shelf. On the slopes, microstructure transects reveal a periodic near-bed dissipation rate signal and a growing and decaying bottom boundary layer (BBL) thickness; both signals are triggered by near-bottom currents oscillating with a near-inertial frequency. Near-bottom dissipation rates are greatly enhanced compared to the interior, and, due to the straining of lateral density gradients by the cross-slope velocity, mixing is rather efficient, and contributes significantly to the basin-scale mixing.

  9. PIV measurement of turbulent bubbly mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Based on experimental investigation of single-phase turbulent mixing layer flow with polymer additives, bubbly mixing layer was experimentally investigated by PIV. The velocity ratio between high and low speed is 4:1 and the Reynolds number based on the velocity difference of two steams and hydraulic diameter of the channel ranges is 73333. Gas bubbles with about 0.5% gas fraction were injected into pure water mixing layer with/without polymer additives from three different parts at the end of the splitter plate. The comparison between single phase and bubbly mixing layer shows clearly that the dynamic development of mixing layer is great influenced by the bubble injection. Similar with single phase, the Reynolds stress and vorticity still concentrate in a coniform area of central mixing flow field part and the width will increase with increasing the Reynolds number. Mean Reynolds stress will decrease with bubble injection in high Reynolds numbers and the decreasing of Reynolds stress with polymer additives is much more than pure water case.

  10. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    Science.gov (United States)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  11. Variational Data Assimilation for the Global Ocean

    Science.gov (United States)

    2013-01-01

    ocean includes the Geoid (a fixed gravity equipotential surface ) as well as the MDT, which is not known accurately enough relative to the centimeter...scales, including processes that control the surface mixed layer, the formation of ocean eddies, meandering ocean J.A. Cummings (E3) nography Division...variables. Examples of this in the ocean are integral quantities, such as acous^B travel time and altimeter measures of sea surface height, and direct

  12. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R.  W.; Pratt, L.  J.

    2015-01-01

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom

  13. A simple model of the effect of ocean ventilation on ocean heat uptake

    Science.gov (United States)

    Nadiga, Balu; Urban, Nathan

    2017-11-01

    Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.

  14. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    Science.gov (United States)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  15. Low-dimensional analysis, using POD, for two mixing layer-wake interactions

    International Nuclear Information System (INIS)

    Braud, Caroline; Heitz, Dominique; Arroyo, Georges; Perret, Laurent; Delville, Joeel; Bonnet, Jean-Paul

    2004-01-01

    The mixing layer-wake interaction is studied experimentally in the framework of two flow configurations. For the first one, the initial conditions of the mixing layer are modified by using a thick trailing edge, a wake effect is therefore superimposed to the mixing layer from its beginning (blunt trailing edge). In the second flow configuration, a canonical mixing layer is perturbed in its asymptotic region by the wake of a cylinder arranged perpendicular to the plane of the mixing layer. These interactions are analyzed mainly by using two-point velocity correlations and the proper orthogonal decomposition (POD). These two flow configurations differ by the degree of complexity they involve: the former is mainly 2D while the latter is highly 3D. The blunt trailing edge configuration is analyzed by using rakes of hot wire probes. This flow configuration is found to be considerably different when compared to a conventional mixing layer. It appears in particular that the scale of the large structures depends only on the trailing edge thickness and does not grow in its downstream evolution. A criterion, based on POD, is proposed in order to separate wake-mixing layer dominant areas of the downstream evolution of the flow. The complex 3D dynamical behaviour resulting from the interaction between the canonical plane mixing layer and the wake of a cylinder is investigated using data arising from particle image velocimetry measurements. An analysis of the velocity correlations shows different length scales in the regions dominated by wake like structures and shear layer type structures. In order to characterize the particular organization in the plane of symmetry, a POD-Galerkin projection of the Navier-Stokes equations is performed in this plane. This leads to a low-dimensional dynamical system that allows the analysis of the relationship between the dominant frequencies to be performed. A reconstruction of the dominant periodic motion suspected from previous studies is

  16. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    Science.gov (United States)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  17. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    Science.gov (United States)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from

  18. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    International Nuclear Information System (INIS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-01-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO 2 . Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and 2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air/sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO 2 could then be explained as a natural consequence of the connection between the air/sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO 2 . Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation

  19. Upper ocean response to the passage of two sequential typhoons

    Science.gov (United States)

    Wu, Renhao; Li, Chunyan

    2018-02-01

    Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.

  20. Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model

    Science.gov (United States)

    Megann, A.; Nurser, G.

    2014-12-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.

  1. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Science.gov (United States)

    Shang, Xiao-Dong; Liang, Chang-Rong; Chen, Gui-Ying

    2017-06-01

    The spatial distribution of the dissipation rate (ɛ) and diapycnal diffusivity (κ) in the upper ocean of the South China Sea (SCS) is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3 × 10-9 W kg-1 and 2.7 × 10-5 m2 s-1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ɛ > 10-7 W kg-1) and diapycnal diffusivities (κ > 10-4 m2 s-1), induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon-Gregg model used for the continental shelf but different from the Gregg-Henyey scaling used for the open ocean.

  2. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  3. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  4. Laboratory simulations of the atmospheric mixed-layer in flow over complex topography

    Science.gov (United States)

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundar...

  5. Chaotic advection in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Koshel' , Konstantin V; Prants, Sergei V [V.I. Il' ichev Pacific Oceanological Institute, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2006-11-30

    The problem of chaotic advection of passive scalars in the ocean and its topological, dynamical, and fractal properties are considered from the standpoint of the theory of dynamical systems. Analytic and numerical results on Lagrangian transport and mixing in kinematic and dynamic chaotic advection models are described for meandering jet currents, topographical eddies in a barotropic ocean, and a two-layer baroclinic ocean. Laboratory experiments on hydrodynamic flows in rotating tanks as an imitation of geophysical chaotic advection are described. Perspectives of a dynamical system approach in physical oceanography are discussed. (reviews of topical problems)

  6. Ocean-atmosphere interaction and synoptic weather conditions in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    turbances over oceans. On the other hand, these disturbances have an impact on the oceanic mixed layer, causing changes in the SST. This complex feed back process between the sea surface and the atmospheric disturbances is important in deter- mining the life span of the synoptic scale events. (Paul et al 1992). In view ...

  7. Assessing ocean vertical mixing schemes for the study of climate change

    Science.gov (United States)

    Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.

    2014-12-01

    Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our

  8. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  9. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    Science.gov (United States)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  10. The roll-up and merging of coherent structures in shallow mixing layers

    International Nuclear Information System (INIS)

    Lam, M. Y.; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-01-01

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onset and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.

  11. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts

    Science.gov (United States)

    2016-11-10

    Hydrostatic Models Still Capable of Simulating Oceanic Fronts Yalin Fan Zhitao Yu Ocean Dynamics and Prediction Branch Oceanography Division FengYan Shi...OF PAGES 17. LIMITATION OF ABSTRACT Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts? Yalin Fan, Zhitao Yu, and, Fengyan Shi1 Naval...mixed layer and thermocline simulations as well as large scale circulations. Numerical experiments are conducted using hydrostatic (HY) and

  12. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Directory of Open Access Journals (Sweden)

    X.-D. Shang

    2017-06-01

    Full Text Available The spatial distribution of the dissipation rate (ε and diapycnal diffusivity (κ in the upper ocean of the South China Sea (SCS is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3  ×  10−9 W kg−1 and 2.7  ×  10−5 m2 s−1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ε > 10−7 W kg−1 and diapycnal diffusivities (κ > 10−4 m2 s−1, induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon–Gregg model used for the continental shelf but different from the Gregg–Henyey scaling used for the open ocean.

  13. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  14. Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy

    International Nuclear Information System (INIS)

    Gibson, C.H.

    1991-01-01

    Kolmogorov's three universal similarity hypotheses are extrapolated to describe scalar fields like temperature mixed by turbulence. The analogous first and second hypotheses for scalars include the effects of Prandtl number and rate-of-strain mixing. Application of velocity and scalar similarity hypotheses to the ocean must take into account the damping of active turbulence by density stratification and the Earth's rotation to form fossil turbulence. By the analogous Kolmogorov third hypothesis for scalars, temperature dissipation rates χ averaged over lengths r > L K should be lognormally distributed with intermittency factors σ 2 that increase with increasing turbulence energy length scales L O as σ ln r 2 approx = μ θ ln(L O /r). Tests of kolmogorovian velocity and scalar universal similarity hypotheses for very large ranges of turbulence length and timescales are provided by data from the ocean and the galactic interstellar medium. These ranges are from 1 to 9 decades in the ocean, and over 12 decades in the interstellar medium. The universal constant for turbulent mixing intermittency μ θ is estimated from oceanic data to be 0.44±0.01, which is remarkably close to estimates for Kolmorgorov's turbulence intermittency constant μ of 0.45±0.05 from galactic as well as atmospheric data. Extreme intermittency complicates the oceanic sampling problem, and may lead to quantitative and qualitative undersampling errors in estimates of mean oceanic dissipation rates and fluxes. Intermittency of turbulence and mixing in the interstellar medium may be a factor in the formation of stars. (author)

  15. Symmetry Reductions of a 1.5-Layer Ocean Circulation Model

    International Nuclear Information System (INIS)

    Huang Fei; Lou Senyue

    2007-01-01

    The (2+1)-dimensional nonlinear 1.5-layer ocean circulation model without external wind stress forcing is analyzed by using the classical Lie group approach. Some Lie point symmetries and their corresponding two-dimensional reduction equations are obtained.

  16. On the role of atmospheric forcing on upper ocean physics in the Southern Ocean and biological impacts

    Science.gov (United States)

    Carranza, Magdalena M.

    The Southern Ocean (SO) plays a key role in regulating climate by absorbing nearly half of anthropogenic carbon dioxide (CO2). Both physical and biogeochemical processes contribute to the net CO2 sink. As a result of global warming and ozone depletion, westerly winds have increased, with consequences for upper ocean physics but little is known on how primary producers are expected to respond to changes in atmospheric forcing. This thesis addresses the impact of atmospheric forcing on upper ocean dynamics and phytoplankton bloom development in the SO on synoptic storm scales, combining a broad range of observations derived from satellites, reanalysis, profiling floats and Southern elephant seals. On atmospheric synoptic timescales (2-10 days), relevant for phytoplankton growth and accumulation, wind speed has a larger impact on satellite Chl-a variability than surface heat fluxes or wind stress curl. In summer, strong winds are linked to deep mixed layers, cold sea surface temperatures and enhanced satellite chlorophyll-a (Chl-a), which suggest wind-driven entrainment plays a role in sustaining phytoplankton blooms at the surface. Subsurface bio-optical data from floats and seals reveal deep Chl-a fluorescence maxima (DFM) are ubiquitous in summer and tend to sit at the base of the mixed layer, but can occur in all seasons. The fact that wind speed and Chl-a correlations are maximal at zero lag time (from daily data) and incubation experiments indicate phytoplankton growth occurs 3-4 days after iron addition, suggests high winds in summer entrain Chl-a from a subsurface maximum. Vertical profiles also reveal Chl-a fluorescence unevenness within hydrographically defined mixed layers, suggesting the biological timescales of adaptation through the light gradient (i.e. growth and/or photoacclimation) are often faster than mixing timescales, and periods of quiescence between storms are long enough for biological gradients to form within the homogeneous layer in density

  17. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  18. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  19. Light penetration structures the deep acoustic scattering layers in the global ocean.

    KAUST Repository

    Aksnes, Dag L.; Rø stad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M.; Irigoien, Xabier

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  20. Light penetration structures the deep acoustic scattering layers in the global ocean.

    KAUST Repository

    Aksnes, Dag L.

    2017-05-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  1. Meteorological constraints on oceanic halocarbons above the Peruvian Upwelling

    OpenAIRE

    S. Fuhlbrügge; B. Quack; E. Atlas; A. Fiehn; H. Hepach; K. Krüger

    2015-01-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the atmosphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (M...

  2. Simulating and understanding the gap outflow and oceanic response over the Gulf of Tehuantepec during GOTEX

    Science.gov (United States)

    Hong, Xiaodong; Peng, Melinda; Wang, Shouping; Wang, Qing

    2018-06-01

    Tehuantepecer is a strong mountain gap wind traveling through Chivela Pass into eastern Pacific coast in southern Mexico, most commonly between October and February and brings huge impacts on local and surrounding meteorology and oceanography. Gulf of Tehuantepec EXperiment (GOTEX) was conducted in February 2004 to enhance the understanding of the strong offshore gap wind, ocean cooling, vertical circulations and interactions among them. The gap wind event during GOTEX was simulated using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The simulations are compared and validated with the observations retrieved from several satellites (GOES 10-12, MODIS/Aqua/Terra, TMI, and QuikSCAT) and Airborne EXpendable BathyThermograph (AXBT). The study shows that the gap wind outflow has a fanlike pattern expending from the coast and with a strong diurnal variability. The surface wind stress and cooling along the axis of the gap wind outflow caused intense upwelling and vertical mixing in the upper ocean; both contributed to the cooling of the ocean mixed layer under the gap wind. The cooling pattern of sea surface temperature (SST) also reflects temperature advection by the nearby ocean eddies to have a crescent shape. Two sensitivity experiments were conducted to understand the relative roles of the wind stress and heat flux on the ocean cooling. The control has more cooling right under the gap flow region than either the wind-stress-only or the heat-flux-only experiment. Overall, the wind stress has a slightly larger effect in bringing down the ocean temperature near the surface and plays a more important role in local ocean circulations beneath the mixed layer. The impact of surface heat flux on the ocean is more limited to the top 30 m within the mixed layer and is symmetric to the gap flow region by cooling the ocean under the gap flow region and reducing the warming on both sides. The effect of surface wind stress is to induce more cooling

  3. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    Directory of Open Access Journals (Sweden)

    T. Chubb

    2016-01-01

    Full Text Available Cloud physics data collected during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER Pole-to-Pole Observations (HIPPO campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100–200 cm−3 in the southernmost profiles. Sub-micron (0.06  < D <  1 µm aerosol concentrations for the southern profiles were up to 400 cm−3. Analysis of back trajectories and atmospheric chemistry observations revealed that while conditions in the troposphere were more typical of a clean remote ocean airmass, there was some evidence of continental or anthropogenic influence. However, the hypothesis of long-range transport of continental aerosol fails to explain the magnitude of the aerosol and cloud droplet concentration in the boundary layer. Instead, the gale force surface winds in this case (wind speed at 167 m above sea level was  > 25 m s−1 were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  4. Counterintuitive effect of fall mixed layer deepening on eukaryotic new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Sigman, D. M.

    2012-12-01

    -density surface layer, and the 15N/14N of all phytoplankton was low, consistent with assimilation of recycled N. The southernmost station (23°N) had a shallower mixed layer, and eukaryote 15N/14N reflects growth on nitrate. In the subtropics, evidence for the direct supply of nitrate into surface waters in the face of the strong upper ocean stratification has long been sought. Our N isotope results suggest a mechanism by which subsurface nitrate is imported into shallow waters. This interpretation offers a new perspective on the relationship between euphotic zone stratification and nitrate assimilation, implying that significant new production occurs under conditions previously assumed to drive oligotrophy.

  5. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  6. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean

    Science.gov (United States)

    Sommar, J.; Andersson, M. E.; Jacobi, H.-W.

    2010-06-01

    Using the Swedish icebreaker Oden as a platform, continuous measurements of airborne mercury (gaseous elemental mercury (Hg0), divalent gaseous mercury species HgIIX2(g) (acronym RGM) and mercury attached to particles (PHg)) and some long-lived trace gases (carbon monoxide CO and ozone O3) were performed over the North Atlantic and the Arctic Ocean. The measurements were performed for nearly three months (July-September 2005) during the Beringia 2005 expedition (from Göteborg, Sweden via the proper Northwest Passage to the Beringia region Alaska - Chukchi Penninsula - Wrangel Island and in-turn via a north-polar transect to Longyearbyen, Spitsbergen). The Beringia 2005 expedition was the first time that these species have been measured during summer over the Arctic Ocean going from 60° to 90° N. During the North Atlantic transect, concentration levels of Hg0, CO and O3 were measured comparable to typical levels for the ambient mid-hemispheric average. However, a rapid increase of Hg0 in air and surface water was observed when entering the ice-covered waters of the Canadian Arctic archipelago. Large parts of the measured waters were supersaturated with respect to Hg0, reflecting a strong disequilibrium. Heading through the sea ice of the Arctic Ocean, a fraction of the strong Hg0 pulse in the water was transferred with some time-delay into the air samples collected ~20 m above sea level. Several episodes of elevated Hg0 in air were encountered along the sea ice route with higher mean concentration (1.81±0.43 ng m-3) compared to the marine boundary layer over ice-free Arctic oceanic waters (1.55±0.21 ng m-3). In addition, the bulk of the variance in the temporal series of Hg0 concentrations was observed during July. The Oden Hg0 observations compare in this aspect very favourably with those at the coastal station Alert. Atmospheric boundary layer O3 mixing ratios decreased when initially sailing northward. In the Arctic, an O3 minimum around 15-20 ppbV was

  7. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    Science.gov (United States)

    Way, M.J; Del Genio, A.D.; Kelley, M.; Aleinov, I.; Clune, T.

    2015-01-01

    The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone.

  8. Transient effects in unstable ablation fronts and mixing layers in HEDP

    International Nuclear Information System (INIS)

    Clarisse, J-M; Gauthier, S; Dastugue, L; Vallet, A; Schneider, N

    2016-01-01

    We report results obtained for two elementary unstable flow configurations relevant to high energy density physics: the ablation front instability and the Rayleigh–Taylor -instability induced mixing layer. These two flows are characterized by a transience of their perturbation dynamics. In the ablative flow case, this perturbation dynamics transience takes the form of finite-durations of successive linear-perturbation evolution phases until reaching regimes of decaying oscillations. This behaviour is observed in various regimes: weakly or strongly accelerated ablation fronts, irradiation asymmetries or initial external-surface defects, and is a result of the mean-flow unsteadiness and stretching. In the case of the Rayleigh–Taylor-instability induced mixing layer, perturbation dynamics transience manifests itself through the extinction of turbulence and mixing as the flow reaches a stable state made of two stably stratified layers of pure fluids separated by an unstratified mixing layer. A second feature, also due to compressibility, takes the form of an intense acoustic wave production, mainly localized in the heavy fluid. Finally, we point out that a systematic short-term linear-perturbation dynamics analysis should be undertaken within the framework of non-normal stability theory. (paper)

  9. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Jiang, Xiao; Sun, Ke; He, Zhu

    2016-01-01

    The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct

  10. Light penetration structures the deep acoustic scattering layers in the global ocean

    DEFF Research Database (Denmark)

    Aksnes, Dag L.; Rostad, Anders; Kaartvedt, Stein

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna...... distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web....

  11. Shear flow beneath oceanic plates: Local nonsimilarity boundary layers for olivine rheology

    International Nuclear Information System (INIS)

    Yuen, D.A.; Tovish, A.; Schubert, G.

    1978-01-01

    The principle of local similarity, which has been used to model the two-dimensional boundary layers in the oceanic upper mantle, permits calculation of the temperature, velocity, and stress fields with essentially analytic techniques. Finite difference numerical methods are hard pressed to resolve the detail required by the large variation of viscosity between the lithosphere and the asthenosphere. In this paper the local similarity approximation has been justified by quantitatively evaluating the effect of nonsimilarity due to viscous heating, nonlinear temperature- and pressure-dependent rheology, buoyancy, adiabatic cooling, etc. Nonsimilar effects produce only small modifications of the locally similar boundary layers; important geophysical observables such as surface heat flux and ocean floor topography are given to better than 10% by the locally similar solution. A posteriori evaluations of the term neglected in the boundary layer simplification of the complete equations have been conducted on the locally similar temperature and velocity profiles close to the spreading ridge. The boundary layer models are valid to depths of 100 km at 3 m.y. and 10 km at 0.3 m.y

  12. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2016-09-23

    The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.

  13. An isopycnic ocean carbon cycle model

    Directory of Open Access Journals (Sweden)

    K. M. Assmann

    2010-02-01

    Full Text Available The carbon cycle is a major forcing component in the global climate system. Modelling studies, aiming to explain recent and past climatic changes and to project future ones, increasingly include the interaction between the physical and biogeochemical systems. Their ocean components are generally z-coordinate models that are conceptually easy to use but that employ a vertical coordinate that is alien to the real ocean structure. Here, we present first results from a newly-developed isopycnic carbon cycle model and demonstrate the viability of using an isopycnic physical component for this purpose. As expected, the model represents well the interior ocean transport of biogeochemical tracers and produces realistic tracer distributions. Difficulties in employing a purely isopycnic coordinate lie mainly in the treatment of the surface boundary layer which is often represented by a bulk mixed layer. The most significant adjustments of the ocean biogeochemistry model HAMOCC, for use with an isopycnic coordinate, were in the representation of upper ocean biological production. We present a series of sensitivity studies exploring the effect of changes in biogeochemical and physical processes on export production and nutrient distribution. Apart from giving us pointers for further model development, they highlight the importance of preformed nutrient distributions in the Southern Ocean for global nutrient distributions. The sensitivity studies show that iron limitation for biological particle production, the treatment of light penetration for biological production, and the role of diapycnal mixing result in significant changes of nutrient distributions and liniting factors of biological production.

  14. Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; Foltz, G.R.; McPhaden, M.J.; Pous, S.; Montegut , C.deB.

    , Brest Center, Pointe du Diable, B.P. 70 Plouzane 29280, France Corresponding author address: B Praveen Kumar Modelling and Ocean observations Group (MOG) Indian National Centre for Ocean Information Services (INCOIS), Hyderabad. India... SST after the end of El Niño, and to prolong its regional climate impacts (the so-called Indian Ocean “capacitor” effect). Murtugudde et al. (2000) and Du et al. (2009) did not focus on the TRIO region, but showed that a combination of vertical...

  15. Ecological niches of open ocean phytoplankton taxa

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Vogt, Meike; Payne, Mark

    2015-01-01

    We characterize the realized ecological niches of 133 phytoplankton taxa in the open ocean based on observations from the MAREDAT initiative and a statistical species distribution model (MaxEnt). The models find that the physical conditions (mixed layer depth, temperature, light) govern large...... conditions in the open ocean. Our estimates of the realized niches roughly match the predictions of Reynolds' C-S-R model for the global ocean, namely that taxa classified as nutrient stress tolerant have niches at lower nutrient and higher irradiance conditions than light stress tolerant taxa. Yet...

  16. Comparison of organic light emitting diodes with different mixed layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Y.Y.; Siew, W.O. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, T.Y., E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2014-11-03

    A mixed-source thermal evaporation method was used to fabricate organic light emitting diodes (OLEDs) with uniformly mixed (UM), continuously graded mixed (CGM) and step-wise graded, mixed (SGM) light-emitting layers. N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine and Tris-(8-hydroxyquinoline)aluminum were used, respectively, as the hole- and electron-transport materials. As compared to the conventional, heterojunction OLED, the maximum brightness of UM-, CGM- and SGM-OLEDs without charge injection layers were improved by 2.2, 3.8 and 2.1 times, respectively, while the maximum power efficiencies improved by 1.5, 3.2 and 1.9 times. These improvements were discussed in terms of more distributed recombination zone and removal of interfacial barrier. - Highlights: • Fabrication of OLEDs using a mixed-source evaporation technique • Three different types of mixed-host OLEDs with better brightness • Improved electroluminescence and power efficiencies as compared to conventional OLED.

  17. Upper mixed layer temperature anomalies at the North Atlantic storm-track zone

    Science.gov (United States)

    Moshonkin, S. N.; Diansky, N. A.

    1995-10-01

    Synoptic sea surface temperature anomalies (SSTAs) were determined as a result of separation of time scales smaller than 183 days. The SSTAs were investigated using daily data of ocean weather station C (52.75°N; 35.5°W) from 1 January 1976 to 31 December 1980 (1827 days). There were 47 positive and 50 negative significant SSTAs (lifetime longer than 3 days, absolute value greater than 0.10 °C) with four main intervals of the lifetime repetitions: 1. 4-7 days (45% of all cases), 2. 9-13 days (20-25%), 3. 14-18 days (10-15%), and 4. 21-30 days (10-15%) and with a magnitude 1.5-2.0 °C. An upper layer balance model based on equations for temperature, salinity, mechanical energy (with advanced parametrization), state (density), and drift currents was used to simulate SSTA. The original method of modelling taking into account the mean observed temperature profiles proved to be very stable. The model SSTAs are in a good agreement with the observed amplitudes and phases of synoptic SSTAs during all 5 years. Surface heat flux anomalies are the main source of SSTAs. The influence of anomalous drift heat advection is about 30-50% of the SSTA, and the influence of salinity anomalies is about 10-25% and less. The influence of a large-scale ocean front was isolated only once in February-April 1978 during all 5 years. Synoptic SSTAs develop just in the upper half of the homogeneous layer at each winter. We suggest that there are two main causes of such active sublayer formation: 1. surface heat flux in the warm sectors of cyclones and 2. predominant heat transport by ocean currents from the south. All frequency functions of the ocean temperature synoptic response to heat and momentum surface fluxes are of integral character (red noise), though there is strong resonance with 20-days period of wind-driven horizontal heat advection with mixed layer temperature; there are some other peculiarities on the time scales from 5.5 to 13 days. Observed and modelled frequency functions

  18. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    Science.gov (United States)

    Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems

  19. Aluminium in the northwestern Indian Ocean (Arabian Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Upadhyay, S.; SenGupta, R.

    37-52 nM) A pronounced maximum in the surface mixed layer suggests the dissolution of Al from atmospherically derived particles to be the sourec of excess Al in the offshore waters of the Arabian Sea, compared to other oceanic regions...

  20. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  1. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  2. Submesoscale processes promote seasonal restratification in the Subantarctic Ocean

    CSIR Research Space (South Africa)

    Du Plessis, M

    2017-04-01

    Full Text Available Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown...

  3. Effect of surface wave propagation in a four-layered oceanic crust model

    Science.gov (United States)

    Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu

    2017-12-01

    Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.

  4. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  5. When a Slowly Rotating Aquaplanet is Coupled to a Dynamical Ocean

    Science.gov (United States)

    Salameh, J.; Marotzke, J.

    2017-12-01

    Planets orbiting in close distance from their stars have a high probability to be detected, and are expected to be slowly rotating due to strong tidal forces. By increasing the rotation period from 1 Earth-day to 365 Earth-days, we previously found that the global-mean surface temperature of an aquaplanet with a static mixed-layer ocean decreases by up to 27 K. The cooling is attributed to an increase of the planetary albedo with the rotation period, which is associated with the different distributions of the sea ice and the deep convective clouds. However, we had there assumed a fixed mixed-layer depth and a zero oceanic heat transport in the aquaplanet configuration. The limitations of these assumptions in such exotic climates are still unclear. We therefore perform coupled atmosphere-ocean aquaplanet simulations with the general circulation model ICON for various rotation periods ranging from 1 Earth-day to 365 Earth-days. We investigate how the underlying oceanic circulation modifies the mean climate of slowly rotating aquaplanets, and whether the day-to-night oceanic heat transport reduces the surface-temperature gradients and the sea-ice extent.

  6. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    Science.gov (United States)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  7. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    B.K. Mignone; J.L. Sarmiento; R.D. Slater; A. Gnanadesikan [Princeton University, Princeton, NJ (United States). Department of Geosciences

    2003-07-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here an ocean general circulation model (OGCM) is used to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. It was found that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgases in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, a first attempt is made at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnoclineis is estimated. Combining these model results with available tracer data allows a narrowing of the range of allowable mixing in the model, which in turn places important constraints on sequestration efficiency. 35 refs., 1 fig.

  8. Effects of Thermobaricity on Coupled Ice-Mixed Layer Thermodynamics

    National Research Council Canada - National Science Library

    Roth, Mathias

    2003-01-01

    .... This density structure often leads to entrainment and affects both the mixed layer depth and the ice thickness, Thermobaricity, the combined dependence of seawater thermal expansion on temperature...

  9. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  10. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  11. The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation

    Science.gov (United States)

    Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2016-12-01

    Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.

  12. DNS of non-premixed combustion in a compressible mixing layer

    NARCIS (Netherlands)

    Bastiaans, R.J.M.; Somers, L.M.T.; Lange, de H.C.; Geurts, B.J.

    2001-01-01

    The non-premixed reaction of fuel with air in a mixing layer is studied using DNS. The situation is a model for the mixing-controlled combustion in a Diesel engine. We show that the combustion region can be comparably passive with respect to relatively large scale aerodynamic instabilities. However

  13. The Climatological Seasonal Response of the Ocean Mixed Layer in the Equatorial and Tropical Pacific Ocean

    Science.gov (United States)

    1988-03-01

    response of the ocean and the seasonal changes in atmospheric forcing. The pattern of 20 DiSTPIBUTION/ AVAILABILIT Y OF aRS7RACT 21 ABSTRACT SECURITY...Speed with M LD .............................. 50 3.20 Time Rate of Change of Heat in the Water Column at 155 oE Contour Interval is 35W m 2...52 3.21 Dilerence of Net Surface Heating ad Heat .* the Water Column at 155 oE

  14. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  15. Splitting turbulence algorithm for mixing parameterization embedded in the ocean climate model. Examples of data assimilation and Prandtl number variations.

    Science.gov (United States)

    Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay

    2017-04-01

    Prandtl number presents possibility for essential improvement of the TKE attenuation with depth and more realistic water entrainment from pycnocline into the mixed layer. The high sensitivity is revealed of the eddy-permitting circulation stable model solution to the change of the used above mixing parameterizations. This sensitivity is connected with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, assimilation of annual mean climatic buoyancy frequency in equations for TKE and TDF leads to more realistic circulation in the North Atlantic. Variations of Prandtl number made it possible to simulate intense circulation in Beaufort Gyre owing to steric effect during the whole period under consideration. The research was supported by the Russian Foundation for Basic Research (grants №16-05-00534 and 15-05-00557).

  16. High efficiency rubrene based inverted top-emission organic light emitting devices with a mixed single layer

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Lou, Yanhui; Naka, Shigeki; Okada, Hiroyuki

    2010-01-01

    Inverted top-emission organic light emitting devices (TEOLEDs) with a mixed single layer by mixing of electron transport materials (PyPySPyPy and Alq 3 ), hole transport material (α-NPD) and dope material (rubrene) were investigated. Maximum power efficiency of 3.5 lm/W and maximum luminance of 7000 cd/m 2 were obtained by optimizing the mixing ratio of PyPySPyPy:Alq 3 :α-NPD:rubrene=25:50:25:1. Luminance and power efficiency of mixed single layer device were two times improved compared to bi-layer heterojunction device and tri-layer heterojunction device. Lifetime test also shows that the mixed single layer device exhibits longer operational lifetimes of 343 h, which is three times longer than the 109 h for tri-layer device, and two times longer than the 158 h for bi-layer device. In addition, the maximum luminance and power efficiency were obtained at 20,000 cd/m 2 and 7.5 lm/W, respectively, when a TPD layer of 45 nm was capped onto the top metal electrode.

  17. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Science.gov (United States)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  18. Determination of regional heat fluxes from the growth of the mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria)

    1997-10-01

    The distribution of surface sensible heat flux is a critical factor in producing and modifying the mesoscale atmospheric flows, turbulence and evaporation. Parameterizations that assume homogeneous land characteristics are inappropriate to represent the spatial variability often found in nature. One possibility to overcome this problem is to increase the resolution of the model grid which demands unrealistic computing resources and data for model initialization. Area averaged fluxes can be obtained from aircraft measurements. It is essential that the flights are performed at a height where the individual surface features are not felt. A large number of flights and appropriate pattern to meet the task are needed in order to achieve a fair statistics. The mixed layer grows in response to the regional turbulent fluxes including the aggregation and small scale processes. The region of influence in upwind direction is typically 20 times the height of the mixed layer for convective and 100 times the height of the mixed layer for atmospheric near neutral conditions. In this study we determine the regional integrated sensible heat flux from information on the evolution of the mixed layer over the area. The required information to use the method can be derived from wind speed and temperature profiles obtained by radio-soundings when performed frequently enough to provide a reasonably detailed structure of the development of the mixed-layer. The method is applied to estimate the regional heat flux over the NOPEX experimental area for three days during the campaign in 1994. (au)

  19. Impact of Parameterized Lateral Mixing on the Circulation of the Southern Ocean

    Science.gov (United States)

    Ragen, S.; Gnanadesikan, A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is the strongest ocean current in the world, transporting approximately 130 Sv Eastward around Antarctica. This current is often poorly simulated in climate models. It is not clear why this is the case as the Circumpolar Current is affected by both wind and buoyancy. Changes in wind and buoyancy are not independent of each other, however, so determining the effects of both separately has proved difficult. This study was undertaken in order to examine the impact of changing the lateral diffusion coefficient A­redi on ACC transport. A­redi is poorly known and its value ranges across an order of magnitude in the current generation of climate models. To explore these dynamics, a coarse resolution, fully coupled model suite was run with A­redi mixing coefficients of 400 m2/s, 800 m2/s, 1200 m2/s, and 2400 m2/s. Additionally, two models were run with two-dimensional representations of the mixing coefficient based on altimetry. Our initial results indicate that higher values of the lateral mixing coefficient result in the following changes. We see weaker winds over the Southern Ocean as a whole. The high mixing case results in an 8.7% decrease in peak wind stress. We see a 2% weaker transport in the Drake Passage in the highest mixing case compared to the lowest, but an 11% decrease in transport for a zonal average. The change of temperature and salinity with depth with different Redi parameters also shows a significant difference between the Southern Ocean as a whole and the Drake Passage. Our findings seem to suggest that the Drake Passage is not an adequate diagnostic for explaining the differences between different climate models, as processes distant from the passage may play an important role. Observed changes in overturning with an increase in lateral mixing include an increase in northward transport of Antarctic Bottom Water fed by a small diversion of northern deep water inflows. This diversion means that less of the

  20. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  1. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  2. Mixed layer depth trends in the Bay of Biscay over the period 1975-2010.

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    Full Text Available Wintertime trends in mixed layer depth (MLD were calculated in the Bay of Biscay over the period 1975-2010 using the Simple Ocean Data Assimilation (SODA package. The reliability of the SODA database was confirmed correlating its results with those obtained from the experimental Argo database over the period 2003-2010. An iso-thermal layer depth (TLD and an iso-pycnal layer depth (PLD were defined using the threshold difference method with ΔT = 0.5°C and Δσθ = 0.125 kg/m3. Wintertime trends of the MLD were calculated using winter extended (December-March anomalies and annual maxima. Trends calculated for the whole Bay of Biscay using both parameters (TLD and PLD showed to be dependent on the area. Thus, MLD became deeper in the southeastern corner and shallower in the rest of the area. Air temperature was shown to play a key role in regulating the different spatial behavior of the MLD. Negative air temperature trends localized in the southeastern corner coincide with MLD deepening in this area, while, positive air temperature trends are associated to MLD shoaling in the rest of the bay. Additionally, the temperature trend calculated along the first 700 m of the water column is in good agreement with the different spatial behavior revealed for the MLD trend.

  3. Impact of space dependent eddy mixing on large ocean circulation

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Abernathey, R. P.

    2016-02-01

    Throughout the ocean, mesoscale eddies stir tracers such as heat, oxygen, helium, dissolved CO2, affecting their spatial distribution. Recent work (Gnanadesikan et al., 2013) showed that changes in eddy stirring could result in changes of the volume of hypoxic and anoxic waters, leading to drastic consequences for ocean biogeochemical cycles. The parameterization of mesocale eddies in global climate models (GCMs) is two parts, based on the formulations of Redi (1982) and Gent and McWilliams (1990) which are associated with mixing parameters ARedi and AGM respectively. Numerous studies have looked at the sensitivity of ESMs to changing AGM, either alone or in combination with an ARedi parameter taken to be equivalent to the value of the AGM. By contrast the impact of the Redi parameterization in isolation remains unexplored. In a previous article, Pradal and Gnanadesikan, 2014, described the sensitivity of the climate system to a six fold increase in the Redi parameter. They found that increasing the isopycnal mixing coefficient tended to warm the climate of the planet overall, through an increase of heat absorption linked to a destabilization of the halocline in subpolar regions (particularly the Southern Ocean). This previous work varied a globally constant Redi parameter from 400m2/s to 2400m2/s. New estimates from altimetry (Abernathey and Marshall, 2013) better constrain the spatial patterns and range for the ARedi parameter. Does such spatial variation matter, and if so, where does matter? Following Gnanadesikan et al. (2013) and Pradal and Gnanadesikan, 2014 this study examines this question with a suite of Earth System Models.

  4. Observations of the upper ocean response to storm forcing in the South Atlantic Roaring Forties

    Directory of Open Access Journals (Sweden)

    R. Marsh

    1995-10-01

    Full Text Available In the austral summer of 1992–1993 the passage of a storm system drove a strong upper ocean response at 45°S in the mid-South Atlantic. Good in situ observations were obtained. CTD casts revealed that the mixed layer deepened by ~40 m over 4 days. Wind stirring dominated over buoyancy flux-driven mixing during the onset of high winds. Doppler shear currents further reveal this to be intimately related to inertial dynamics. The penetration depth of inertial currents, which are confined to the mixed layer, increases with time after a wind event, matched by a downward propagation of low values of the Richardson number. This suggests that inertial current shear is instrumental in producing turbulence at the base of the mixed layer. Evolution of inertial transport is simulated using a time series of ship-observed wind stress. Simulated transport is only 30–50% of the observed transport, suggesting that much of the observed inertial motion was forced by an earlier (possibly remote storm. Close proximity of the subtropical front further complicates the upper ocean response to the storm. A simple heat balance for the upper 100 m reveals that surface cooling and mixing (during the storm can account for only a small fraction of an apparent ~1 °C mixed layer cooling.

  5. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri

    Science.gov (United States)

    White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.

    2016-01-01

    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.

  6. Role of ocean isopycnal mixing in setting the uptake of anthropogenic carbon

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M. A. S.; Abernathey, R. P.

    2014-12-01

    The magnitude of the isopycnal stirring coefficient ARedi is poorly constrained from data and varies greatly across Earth System Models. This paper documents the impact of such uncertainty on the oceanic carbon cycle. We compare six spatial representations of ARedi. Four constant values (400, 800, 1200 and 2400 m2/s) are used to explore the difference between using the low values found in many models and the higher values seen in observational estimates. Models are also run with two spatially dependent values of ARedi based on altimetry, one which captures the fully two-dimensional structure of the mixing coefficient, the other of which looks at the zonally averaged structure alone. Under global warming significant changes are seen in the biological pump in convective regions, but these changes are largely locally compensated by changes in preformed DIC. Instead, differences in anthropogenic uptake of carbon are largely centered in the tropics, and can be well described in terms of a relatively simple diffusive approximation. Using ideal age as a tracer can give insight into the expected behavior of the models. The rate of oceanic mixing represents a quantitatively significant uncertainty in future projections of the global carbon cycle, amounting to about 20% of the oceanic uptake.

  7. Chlorophyll modulation of mixed layer thermodynamics in a mixed-layer isopycnal General Circulation Model - An example from Arabian Sea and equatorial Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Saito, H.; Muneyama, K.; Frouin, R.

    is influenced not only by local vertical mixing but also by horizontal con- vergence of mass and heat, a mixed layer model must consider both full dynamics due to the use of primitive equations and a parameterization for the vertical mass transfer and related... is dynamically determined without such a con- straint. Instantaneous atmospheric elds are inter- polated from the monthly means. Monthly mean climatology of chlorophyll pigment concentrations were obtained from the Coastal Zone Color Scan- ner (CZCS) from...

  8. Laboratory simulations of the atmospheric mixed layer in flow over complex terrain

    Data.gov (United States)

    U.S. Environmental Protection Agency — A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the...

  9. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  10. Statistical models of global Langmuir mixing

    Science.gov (United States)

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  11. Comparison of mixed layer models predictions with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Faggian, P.; Riva, G.M. [CISE Spa, Divisione Ambiente, Segrate (Italy); Brusasca, G. [ENEL Spa, CRAM, Milano (Italy)

    1997-10-01

    The temporal evolution of the PBL vertical structure for a North Italian rural site, situated within relatively large agricultural fields and almost flat terrain, has been investigated during the period 22-28 June 1993 by experimental and modellistic point of view. In particular, the results about a sunny day (June 22) and a cloudy day (June 25) are presented in this paper. Three schemes to estimate mixing layer depth have been compared, i.e. Holzworth (1967), Carson (1973) and Gryning-Batchvarova models (1990), which use standard meteorological observations. To estimate their degree of accuracy, model outputs were analyzed considering radio-sounding meteorological profiles and stability atmospheric classification criteria. Besides, the mixed layer depths prediction were compared with the estimated values obtained by a simple box model, whose input requires hourly measures of air concentrations and ground flux of {sup 222}Rn. (LN)

  12. Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

    CSIR Research Space (South Africa)

    Tagliabue, A

    2014-04-01

    Full Text Available Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surfacewaters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter...

  13. Assessing and Upgrading Ocean Mixing for the Study of Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.

    2016-12-01

    Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate

  14. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    Science.gov (United States)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  15. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  16. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  17. Mixing process of a binary gas in a density stratified layer

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-09-01

    This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.

  18. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Jurado, Elena; Lohmann, Rainer; Meijer, Sandra; Jones, Kevin C.; Dachs, Jordi

    2004-01-01

    The oceans play an important role as a global reservoir and ultimate sink of persistent organic pollutants (POPs) such as polychlorinated biphenyls congeners (PCBs). However, the physical and biogeochemical variables that affect the oceanic capacity to retain PCBs show an important spatial and temporal variability which have not been studied in detail, so far. The objective of this paper is to assess the seasonal and spatial variability of the ocean's maximum capacity to act as a reservoir of atmospherically transported and deposited PCBs. A level I fugacity model is used which incorporates the environmental variables of temperature, phytoplankton biomass, and mixed layer depth, as determined from remote sensing and from climatological datasets. It is shown that temperature, phytoplankton biomass and mixed layer depth influence the potential PCB reservoir of the oceans, being phytoplankton biomass specially important in the oceanic productive regions. The ocean's maximum capacities to hold PCBs are estimated. They are compared to a budget of PCBs in the surface oceans derived using a level III model that assumes steady state and which incorporates water column settling fluxes as a loss process. Results suggest that settling fluxes will keep the surface oceanic reservoir of PCBs well below its maximum capacity, especially for the more hydrophobic compounds. The strong seasonal and latitudinal variability of the surface ocean's storage capacity needs further research, because it plays an important role in the global biogeochemical cycles controlling the ultimate sink of PCBs. Because this modeling exercise incorporates variations in downward fluxes driven by phytoplankton and the extent of the water column mixing, it predicts more complex latitudinal variations in PCBs concentrations than those previously suggested. - Model calculations estimate the latitudinal and seasonal storage capacity of the surface oceans for PCBs

  19. How does ocean ventilation change under global warming?

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2007-01-01

    Full Text Available Since the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes, Northwest Atlantic, and parts of the Arctic Ocean become younger under global warming. This paper reconciles these apparently contradictory trends, showing that the decreases result from changes in the relative contributions of old deep waters and younger surface waters. Implications for the tropical oxygen minimum zones, which play a critical role in global biogeochemical cycling are considered in detail.

  20. Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.; Vliet, T. van; Cohen Stuart, M.A.; Jongh, H.H.J. de

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  1. Structure of mixed Beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.G.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  2. Assessment of the possible future climatic impact of carbon dioxide increases based on a coupled one-dimensional atmospheric-oceanic model

    International Nuclear Information System (INIS)

    Hunt, B.G.; Wells, N.C.

    1979-01-01

    A radiative-convective equilibrium model of the atmosphere has been coupled with a mixed layer model of the ocean to investigate the response of this one-dimensional system to increasing carbon dioxide amounts in the atmosphere. For global mean conditions a surface temperature rise of about 2 0 K was obtained for a doubling of the carbon dioxide amount, in reasonable agreement with the commonly accepted results of Manabe and Wetherald. This temperature rise was essentially invariant with season and indicates that including a shallow (300 m) ocean slab in this problem does not basically alter previous assessments. While the mixed layer depth of the ocean was only very slightly changed by the temperature increase, which extended throughout the depth of the mixed layer, the impact of this increase on the overall behavior of the ocean warrants further study. A calculation was also made of the temporal variation of the sea surface temperature for three possible carbon dioxide growth rates starting from an initial carbon dioxide content of 300 ppm. This indicated that the thermal inertia of the slab ocean provides a time lag of 8 years in the sea surface temperature response compared to a land situation. This is not considered to be of great significance as regards the likely future climatic impact of carbon dioxide increase

  3. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  4. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6 implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234

    Directory of Open Access Journals (Sweden)

    C. R. Sherwood

    2018-05-01

    Full Text Available We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6, as implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST Subversion repository revision 1234. These include the following: floc dynamics (aggregation and disaggregation in the water column; changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.

  5. Numerical analysis of mixing process of two component gases in vertical fluid layer

    International Nuclear Information System (INIS)

    Hatori, Hirofumi; Takeda, Tetsuaki; Funatani, Shumpei

    2015-01-01

    When the depressurization accident occurs in the Very-High-Temperature Reactor (VHTR), it is expected that air enter into the reactor core. Therefore, it is important to know a mixing process of different kind of gases in the stable or unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to research the mixing process of two component gases and flow characteristics of the localized natural convection, we have carried out numerical analysis using three dimensional CFD code. The numerical model was consisted of a storage tank and a reverse U-shaped vertical slot. They were separated by a partition plate. One side of the left vertical fluid layer was heated and the other side was cooled. The right vertical fluid layer was also cooled. The procedure of numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left vertical fluid layer, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by a steady state analysis. The unsteady state analysis was started when the partition plate was opened. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. The result obtained in this numerical analysis is as follows. The temperature difference of the left vertical fluid layer was set to 100 K. The combination of the mixed gas was nitrogen and argon. After 76 minutes elapsed, natural circulation occurred. (author)

  6. Representing Sheared Convective Boundary Layer by Zeroth- and First-Order-Jump Mixed-Layer Models: Large-Eddy Simulation Verification

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion are studied by means of the mixed-layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered. The

  7. A method to estimate the height of temperature inversion layer and the effective mixing depht

    International Nuclear Information System (INIS)

    Nicolli, D.

    1978-05-01

    A review of the concept PBL or turbulent boundary layer is made as it is understood in meteorology. Some features of the PBL parameterization are also discussed, as well as the methods used to estimate the temperature inversion heights during morning and afternoon hours. The study bases on the assumption of the dry adiabatic lapse rate in the mixing layer that is, water vapor and airborne material are supposed to be homogeneously mixed below the inversion layer or in the effective mixing depth. The mean mixing heights over Rio de Janeiro area respectively about 500m and 1000m at morning and afternoon hours. For Sao Paulo these values are respectively 400m and 1300m at morning and afternoon hours [pt

  8. Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Directory of Open Access Journals (Sweden)

    A. Stickler

    2007-07-01

    Full Text Available We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL air constrained by measurements is used to derive a horizontal gradient (≈5.6 pmol/mol km−1 of CO from the ocean to the rainforest (east to west. This is significantly smaller than that derived from the measurements (16–48 pmol/mol km−1, indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT. The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h−1 increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H2O2 over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (≈0.66 nmol/mol d−1 is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP in the BL of (0.2±5.9 nmol/mol (ocean and (2.4±2.1 nmol/mol (rainforest. The NOP strongly correlates with NO and has a positive tendency in

  9. Numerical simulation of inter-annual variations in the properties of the upper mixed layer in the Black Sea over the last 34 years

    Science.gov (United States)

    Shapiro, Georgy I.; Wobus, Fred; Zatsepin, Andrei G.; Akivis, Tatiana M.; Zanacchi, Marcus; Stanichny, Sergey

    2014-05-01

    The Black Sea is a nearly land-locked basin where a combination of salt and heat budgets results in a unique thermohaline water mass structure. An important feature of the Black Sea is that oxygen is dissolved and rich sea life made possible only in the upper water levels. This is due to a strong pycnocline which cannot be mixed even by strong winds or winter convection (Shapiro, 2008). The upper mixed layer (UML) with a nearly uniform temperature profile and a very sharp seasonal thermocline at its lower boundary develops during the summer season (Sur & Ilyin, 1997). The deepening of the UML has an important effect on the supply of nutrients into the euphotic upper layer from the underlying nutrient-rich water mass. The temperature of the UML at any given location is dependent on the surface heat flux, horizontal advection of heat, the depth and the rate of deepening of the UML. In this study we use a 3D ocean circulation model, NEMO-SHELF (O'Dea et al, 2012) to simulate the parameters of the UML in the Black Sea over the last 34 years. The model has horizontal resolution of 1/12×1/16 degrees and 33 layers in the vertical. The vertical discretization uses a hybrid enveloped s-z grid developed in Shapiro et al. (2012). The model is spun up from climatology (Suvorov et al., 2004); it is forced by the Drakkar Forcing Set v5.2 (Brodeau et al., 2010, Meinvielle et al., 2013) and river discharges from 8 major rivers are included. For each year the model is run from 1st January and the data for the period April to October are used for analysis. The sea surface temperature produced by the model is compared with satellite data ( Modis-Aqua, 2013) to show a good agreement. The model simulations are validated against in-situ observations (BSERP-3, 2004; Piotukh et al., 2011). The analysis is performed for the deep basin where the depth of the sea is greater than 1000m. It clearly shows the inter-annual variations of both the SST and the depth of UML. The depth of UML is

  10. Coastal boundary layers in ocean modelling: an application to the Adriatic Sea

    International Nuclear Information System (INIS)

    Malanotte Rizzoli, P.; Dell'Orto, F.

    1981-01-01

    Boundary layers play an important role in modelling geophysical fluid-dynamical flows, in as much as they constitute regions of ageostrophic dynamics in which the physical balances characterizing the main interior of the water mass break down. A short synopsis is given of important boundary layers in ocean circulation modelling with specific emphasis drawn upon side wall boundary layers, namely those adjacent to the coastlines of the considered basin. Application of boundary layer analysis is thereafter made for one specific phenomenological situation, namely the Northern Adriatic Sea and the problem posed by its wintertime seasonal circulation. The analysis furnishes a mathematical model fo the coastal strip adjacent to the Italian shoreline, treated as a boundary layer in the density field, starting from general model equations valid throughout the interior of the Northern Adriatic. The boundary layer model is consequently used to modify the side wall boundary condition for the interior density field. Related numerical experiments are shown and compared with previous standard experiments in which the boundary layer contribution to the density field has not been considered. (author)

  11. Mixed layer depths via Doppler lidar during low-level jet events

    Science.gov (United States)

    Carroll, Brian; Demoz, Belay; Bonin, Timothy; Delgado, Ruben

    2018-04-01

    A low-level jet (LLJ) is a prominent wind speed peak in the lower troposphere. Nocturnal LLJs have been shown to transport and mix atmospheric constituents from the residual layer down to the surface, breaching quiescent nocturnal conditions due to high wind shear. A new fuzzy logic algorithm combining turbulence and aerosol information from Doppler lidar scans can resolve the strength and depth of this mixing below the jet. Conclusions will be drawn about LLJ relations to turbulence and mixing.

  12. MAPLE prepared heterostructures with oligoazomethine: Fullerene derivative mixed layer for photovoltaic applications

    Science.gov (United States)

    Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.

    2017-09-01

    Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.

  13. Level-set dynamics and mixing efficiency of passive and active scalars in DNS and LES of turbulent mixing layers

    NARCIS (Netherlands)

    Geurts, Bernard J.; Vreman, Bert; Kuerten, Hans; Luo, Kai H.

    2001-01-01

    The mixing efficiency in a turbulent mixing layer is quantified by monitoring the surface-area of level-sets of scalar fields. The Laplace transform is applied to numerically calculate integrals over arbitrary level-sets. The analysis includes both direct and large-eddy simulation and is used to

  14. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    Science.gov (United States)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.

  15. Sodar measurements of the mixed-layer depth over a large city

    Energy Technology Data Exchange (ETDEWEB)

    Shurygin, E.A. [Russia Academy of Sciences, Inst. of Atmospheric Physics, Moscow (Russian Federation)

    1997-10-01

    The results of synchronous sodar`s measurements on a territory of city and suburban area have shown: (a) The types of stratification over centre of the city and periphery considerably differ, and these distinctions are more often displayed in morning and evening transition period. The agreement between types of stratification in the centre and on the periphery was observed in 40% of cases; (b) At equal temperature stratification the mixed-layer depth in centre of the city is about 50-150 m higher at inversions in comparison with a periphery, at advanced convection - these depths are identical; (c) At different stratification between the city and periphery the distinction in the mixed-layer depth can reach 200. (au)

  16. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea

    Science.gov (United States)

    Yang, Bing; Hou, Yijun; Hu, Po; Liu, Ze; Liu, Yahao

    2015-05-01

    Based on observed temperature and velocity in 2005 in northwestern South China Sea, the shallow ocean responses to three tropical cyclones were examined. The oceanic response to Washi was similar to common observations with 2°C cooling of the ocean surface and slight warming of the thermocline resulted from vertical entrainment. Moreover, the wavefield was dominated by first mode near-inertial oscillations, which were red-shifted and trapped by negative background vorticity leading to an e-folding timescale of 12 days. The repeated reflections by the surface and bottom boundaries were thought to yield the successive emergence of higher modes. The oceanic responses to Vicente appeared to be insignificant with cooling of the ocean surface by only 0.5°C and near-inertial currents no larger than 0.10 m/s as a result of a deepened surface mixed layer. However, the oceanic responses to Typhoon Damrey were drastic with cooling of 4.5°C near the surface and successive barotropic-like near-inertial oscillations. During the forced stage, the upper ocean heat content decreased conspicuously by 11.65% and the stratification was thoroughly destroyed by vertical mixing. In the relaxation stage, the water particle had vertical displacement of 20-30 m generated by inertial pumping. The current response to Damrey was weaker than Washi due to the deepened mixed layer and the destroyed stratification. Our results suggested that the shallow water oceanic responses to tropical cyclones varied significantly with the intensity of tropical cyclones, and was affected by local stratification and background vorticity.

  17. In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed

    Science.gov (United States)

    McGillis, Wade

    2013-04-01

    and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.

  18. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  19. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  20. Integrating biogeochemistry and ecology into ocean data assimilation systems

    DEFF Research Database (Denmark)

    Brasseur, Pierre; Gruber, Nicolas; Barciela, Rosa

    2009-01-01

    that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors...... for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements....

  1. Simulation and Visualization of Flows Laden with Cylindrical Nanoparticles in a Mixing Layer

    Directory of Open Access Journals (Sweden)

    Wenqian Lin

    2018-01-01

    Full Text Available The motion of cylindrical particles in a mixing layer is studied using the pseudospectral method and discrete particle model. The effect of the Stokes number and particle aspect ratio on the mixing and orientation distribution of cylindrical particles is analyzed. The results show that the rollup of mixing layer drives the particles to the edge of the vortex by centrifugal force. The cylindrical particles with the small Stokes number almost follow fluid streamlines and are mixed thoroughly, while those with the large Stokes number, centrifugalized and accumulated at the edge of the vortex, are poorly mixed. The mixing degree of particles becomes worse as the particle aspect ratio increases. The cylindrical particles would change their orientation under two torques and rotate around their axis of revolution aligned to the vorticity direction when the shear rate is low, while aligning on the flow-gradient plane beyond a critical shear rate value. More particles are oriented with the flow direction, and this phenomenon becomes more obvious with the decrease of the Stokes number and particle aspect ratio.

  2. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    Science.gov (United States)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  3. Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes

    Directory of Open Access Journals (Sweden)

    F. Fripiat

    2011-09-01

    Full Text Available Silicon isotopic signatures (δ30Si of water column silicic acid (Si(OH4 were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone down to 57° S (northern Weddell Gyre. This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC. δ30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW, the Antarctic Intermediate Water (AAIW, and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the δ30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW δ30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the δ30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers.

  4. The effect of wind mixing on the vertical distribution of buoyant plastic debris

    Science.gov (United States)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  5. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    Science.gov (United States)

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  6. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2017-10-01

    Full Text Available Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either. Filtering criteria were defined according to the change in mixed-layer height (MLH distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for light detection and ranging (lidar-based MLH intercomparisons and ceilometer-network operation, and that sonde-derived boundary layer heights are higher (10–15 % at

  7. Bubble-induced mixing of two horizontal liquid layers with non-uniform gas injection at the bottom

    International Nuclear Information System (INIS)

    Cheung, F.B.; Pedersen, D.R.; Leinweber, G.

    1986-01-01

    During a postulated severe core meltdown accident in an LMFBR, a large amount of sodium coolant may spill into the reactor concrete cavity. A layer of liquid products may form as a result of the sodium-concrete reactions. The liquid product layer, which is highly viscous and much heavier than sodium, separates the concrete from the sodium pool. In general, the downward transport of sodium through the liquid product layer to the unreacted concrete surface, which controls the rate of chemical erosion of the concrete, depends strongly on the agitation induced by gas evolution from the heated concrete. In this study, experiments were conducted to explore the effect of non-uniform gas injection on mixing of two horizontal mutually soluble liquid layers. The liquid in the lower layer was chosen to be more viscous and heavier than the liquid in the upper layer. To simulate the reactor accident situation, gas was injected at the bottom of the liquid-liquid system through a circular hole that covered only the center portion of the bottom surface of the lower liquid layer. The bubble-induced mixing motions were observed and the rate of mixing was measured for different hole sizes and various gas flow rates. The results of this study clearly show that the rate of gas injection is not the only parameter controlling the mixing of the liquid-liquid system. The effect of non-uniform gas injection is important at high gas flow rates. Within the present experimental conditions, the reduction in the overall mixing rate can be as large as a factor of three

  8. Disintegration of fluids under supercritical conditions from mixing layer studies

    Science.gov (United States)

    Okong'o, N.; Bellan, J.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.

  9. First investigation of the microbiology of the deepest layer of ocean crust.

    Directory of Open Access Journals (Sweden)

    Olivia U Mason

    Full Text Available The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W. Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304, and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305. The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip", producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic

  10. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    , embedded in the ocean isopycnal general circulation model (OPYC). A higher abundance of chlorophyll in October than in April in the Arabian Sea increases absorption of solar irradiance and heating rate in the upper ocean, resulting in decreasing the mixed...

  11. Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer

    DEFF Research Database (Denmark)

    Sempreviva, A.M.; Gryning, Sven-Erik

    2000-01-01

    layer over land, but it is nearly constant over a 24-hour cycle. During summer, the mixed layer is higher than during winter. A second inversion was often observed. A case study of the development of the mixed layer over the sea under near-neutral and unstable atmospheric conditions during six...... consecutive days is presented. A zero-order mixed-layer height model is applied. In addition to momentum and heat fluxes the effect of subsidence was found to be important for the evolution of the mixed layer over the sea. The modelled evolution of z(i) compared successfully with measurements. We have...

  12. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  13. Diffusive tunneling for alleviating Knudsen-layer reactivity reduction under hydrodynamic mix

    Science.gov (United States)

    Tang, Xianzhu; McDevitt, Chris; Guo, Zehua

    2017-10-01

    Hydrodynamic mix will produce small features for intermixed deuterium-tritium fuel and inert pusher materials. The geometrical characteristics of the mix feature have a large impact on Knudsen layer yield reduction. We considered two features. One is planar structure, and the other is fuel cells segmented by inert pusher material which can be represented by a spherical DT bubble enclosed by a pusher shell. The truly 3D fuel feature, the spherical bubble, has the largest degree of yield reduction, due to fast ions being lost in all directions. The planar fuel structure, which can be regarded as 1D features, has modest amount of potential for yield degradation. While the increasing yield reduction with increasing Knudsen number of the fuel region is straightforwardly anticipated, we also show, by a combination of direct simulation and simple model, that once the pusher materials is stretched sufficiently thin by hydrodynamic mix, the fast fuel ions diffusively tunnel through them with minimal energy loss, so the Knudsen layer yield reduction becomes alleviated. This yield recovery can occur in a chunk-mixed plasma, way before the far more stringent, asymptotic limit of an atomically homogenized fuel and pusher assembly. Work supported by LANL LDRD program.

  14. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Directory of Open Access Journals (Sweden)

    G. Young

    2016-11-01

    Full Text Available In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110 ± 36 cm−3 over the sea ice to 145 ± 54 cm−3 over the marginal ice zone (MIZ. Downstream over the ocean, Ndrop decreased to 63 ± 30 cm−3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5–1.5 L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( >  800 m over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ

  15. An applied model for the height of the daytime mixed layer and the entrainment zone

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1994-01-01

    A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth......-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence...

  16. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  17. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  18. Numerical simulation of a plane turbulent mixing layer, with applications to isothermal, rapid reactions

    Science.gov (United States)

    Lin, P.; Pratt, D. T.

    1987-01-01

    A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.

  19. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2014-06-25

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  20. Simulation of aerosol nucleation and growth in a turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Attili, Antonio; Alshaarawi, Amjad; Bisetti, Fabrizio

    2014-01-01

    A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.

  1. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    International Nuclear Information System (INIS)

    Mignone, B.K.

    2004-01-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO 2 ). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO 2 into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO 2 through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO 2 outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  2. Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity

    DEFF Research Database (Denmark)

    Adjou, Mohamed; Bendtsen, Jørgen; Richardson, Katherine

    2012-01-01

    Phytoplankton diversity, whether defined on the basis of functional groups or on the basis of numbers of individual species, is known to be heterogeneous throughout the global ocean. The factors regulating this diversity are generally poorly understood, although access to limiting nutrients...... in generating and maintaining diversity, we apply the model to quantify the potential role of zooplankton grazing and ocean transport for the coexistence of competing species and phytoplankton diversity. We analyze the sensitivity of phytoplankton biomass distributions to different types of grazing functional...... responses and show that preferential grazing on abundant species, for example as formulated by the Holling type III grazing function, is a key factor for maintaining species’ coexistence. Mixing and large-scale advection are shown to potentially have a significant impact on the distribution of phytoplankton...

  3. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    Science.gov (United States)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  4. Multi-Decadal Oscillations of the Ocean Active Upper-Layer Heat Content

    Science.gov (United States)

    Byshev, Vladimir I.; Neiman, Victor G.; Anisimov, Mikhail V.; Gusev, Anatoly V.; Serykh, Ilya V.; Sidorova, Alexandra N.; Figurkin, Alexander L.; Anisimov, Ivan M.

    2017-07-01

    Spatial patterns in multi-decadal variability in upper ocean heat content for the last 60 years are examined using a numerical model developed at the Institute of Numerical Mathematics of Russia (INM Model) and sea water temperature-salinity data from the World Ocean Database (in: Levitus, NOAA Atlas NESDIS 66, U.S. Wash.: Gov. Printing Office, 2009). Both the model and the observational data show that the heat content of the Active Upper Layer (AUL) in particular regions of the Atlantic, Pacific and Southern oceans have experienced prominent simultaneous variations on multi-decadal (25-35 years) time scales. These variations are compared earlier revealed climatic alternations in the Northern Atlantic region during the last century (Byshev et al. in Doklady Earth Sci 438(2):887-892, 2011). We found that from the middle of 1970s to the end of 1990s the AUL heat content decreased in several oceanic regions, while the mean surface temperature increased on Northern Hemisphere continents according to IPCC (in: Stocker et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013). This means that the climate-forcing effect of the ocean-atmosphere interaction in certain energy-active areas determines not only local climatic processes, but also have an influence on global-scale climate phenomena. Here we show that specific regional features of the AUL thermal structure are in a good agreement with climatic conditions on the adjacent continents. Further, the ocean AUL in the five distinctive regions identified in our study have resumed warming in the first decade of this century. By analogy inference from previous climate scenarios, this may signal the onset of more continental climate over mainlands.

  5. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  6. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  7. An iterative procedure for estimating areally averaged heat flux using planetary boundary layer mixed layer height and locally measured heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, R. L.; Gao, W.; Lesht, B. M.

    2000-04-04

    Measurements at the central facility of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) are intended to verify, improve, and develop parameterizations in radiative flux models that are subsequently used in General Circulation Models (GCMs). The reliability of this approach depends upon the representativeness of the local measurements at the central facility for the site as a whole or on how these measurements can be interpreted so as to accurately represent increasingly large scales. The variation of surface energy budget terms over the SGP CART site is extremely large. Surface layer measurements of the sensible heat flux (H) often vary by a factor of 2 or more at the CART site (Coulter et al. 1996). The Planetary Boundary Layer (PBL) effectively integrates the local inputs across large scales; because the mixed layer height (h) is principally driven by H, it can, in principal, be used for estimates of surface heat flux over scales on the order of tens of kilometers. By combining measurements of h from radiosondes or radar wind profiles with a one-dimensional model of mixed layer height, they are investigating the ability of diagnosing large-scale heat fluxes. The authors have developed a procedure using the model described by Boers et al. (1984) to investigate the effect of changes in surface sensible heat flux on the mixed layer height. The objective of the study is to invert the sense of the model.

  8. Southern Ocean Phytoplankton in a Changing Climate

    OpenAIRE

    Deppeler, Stacy L.; Davidson, Andrew T.

    2017-01-01

    Phytoplankton are the base of the Antarctic food web, sustain the wealth and diversity of life for which Antarctica is renowned, and play a critical role in biogeochemical cycles that mediate global climate. Over the vast expanse of the Southern Ocean (SO), the climate is variously predicted to experience increased warming, strengthening wind, acidification, shallowing mixed layer depths, increased light (and UV), changes in upwelling and nutrient replenishment, declining sea ice, reduced sal...

  9. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Hardesty R. Michael

    2016-01-01

    Full Text Available A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  10. Bubble-induced mixing of two horizontal liquid layers with non-uniform gas injection at the bottom

    International Nuclear Information System (INIS)

    Cheung, F.B.; Leinweber, G.; Pedersen, D.R.

    1984-01-01

    During a postulated severe core meltdown accident in an LMFBR, a large amount of sodium coolant may spill into the reactor concrete cavity. A layer of liquid products may form as a result of the sodium-concrete reactions. The liquid product layer, which is highly viscous and much heavier than sodium, separates the concrete from the sodium pool. In general, the downward transport of sodium through the liquid product layer to the unreacted concrete surface, which controls the rate of chemical erosion of the concrete, depends strongly on the agitation induced by gas evolution from the heated concrete. In this study, experiments were conducted to explore the effect of non-uniform gas injection on mixing of two horizontal mutually soluble liquid layers. The liquid in the lower layer was chosen to be more viscous and heavier than the liquid in the upper layer. To simulate the reactor accident situation, gas was injected at the bottom of the liquid-liquid system through a circular hole that covered only the center portion of the bottom surface of the lower liquid layer. The bubble-induced mixing motions were observed and the rate of mixing was measured for different hole sizes and for various gas flow rates

  11. SCALE INTERACTION IN A MIXING LAYER. THE ROLE OF THE LARGE-SCALE GRADIENTS

    KAUST Repository

    Fiscaletti, Daniele

    2015-08-23

    The interaction between scales is investigated in a turbulent mixing layer. The large-scale amplitude modulation of the small scales already observed in other works depends on the crosswise location. Large-scale positive fluctuations correlate with a stronger activity of the small scales on the low speed-side of the mixing layer, and a reduced activity on the high speed-side. However, from physical considerations we would expect the scales to interact in a qualitatively similar way within the flow and across different turbulent flows. Therefore, instead of the large-scale fluctuations, the large-scale gradients modulation of the small scales has been additionally investigated.

  12. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2013-09-19

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  13. Fluctuations of a passive scalar in a turbulent mixing layer

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2013-01-01

    The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.

  14. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    Science.gov (United States)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  15. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    Mignone, B.K. [Princeton Univ., NJ (United States). Dept. of Geosciences; Sarmiento, J.L.; Slater, R.D. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Gnanadesikan, A. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Geophysical Fluid Dynamics Lab., NOAA, Princeton, NJ (United States)

    2004-08-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  16. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    Science.gov (United States)

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  17. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation

  18. Vertical mixing and coherent anticyclones in the ocean: the role of stratification

    Directory of Open Access Journals (Sweden)

    I. Koszalka

    2010-01-01

    Full Text Available The role played by wind-forced anticyclones in the vertical transport and mixing at the ocean mesoscale is investigated with a primitive-equation numerical model in an idealized configuration. The focus of this work is to determine how the stratification impacts such transport.

    The flows, forced only at the surface by an idealized wind forcing, are predominantly horizontal and, on average, quasigeostrophic. Inside vortex cores and intense filaments, however, the dynamics is strongly ageostrophic.

    Mesoscale anticyclones appear as "islands" of increased penetration of wind energy into the ocean interior and they represent the maxima of available potential energy. The amount of available potential energy is directly correlated with the degree of stratification.

    The wind energy injected at the surface is transferred at depth through the generation and subsequent straining effect of Vortex Rossby Waves (VRWs, and through near-inertial internal oscillations trapped inside anticyclonic vortices. Both these mechanisms are affected by stratification. Stronger transfer but larger confinement close to the surface is found when the stratification is stronger. For weaker stratification, vertical mixing close to the surface is less intense but below about 150 m attains substantially higher values due to an increased contribution of both VRWs, whose time scale is on the order of few days, and of near-inertial motions, with a time scale of few hours.

  19. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    Science.gov (United States)

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  20. Middle Pleistocene Transition (MPT) in the Eastern Indian Ocean: a 2000 kyr planktic faunal and isotope record from DSDP site 214

    International Nuclear Information System (INIS)

    Gupta, Anil K.; Dhingra, Hitesh

    2004-01-01

    Planktic foraminiferal faunal and isotope data from Deep Sea Drilling Project (DSDP) Site 214 reveal a major change in surface water properties in the eastern Indian Ocean, coinciding with the mid-Pleistocene climate transition (MPT). A comparative study of Globigerinoides sacculifer (a surface dwelling, warm water, mixed layer tropical planktic foraminifera), Globorotalia menardii Complex (a deep dwelling, tropical species group), and Orbulina universa (an intermediate depth warm-water subtropical foraminifera) with the stable isotope record of Globigerinoides ruber suggests a warm, thick mixed layer in the eastern Indian Ocean during,∼ 2000 Kyr to ∼ 900 Kyr. Since,∼ 900 Kyr the surface water mass stratification weakened, and the mixed layer as well as thermocline were shallow. A decrease in the population abundance of Gs. sacculifer, together with a decrease in δ 13 C and increase in δ 18 O values suggest a continuous cool climate and increased surface productivity over the last ∼ 900 Kyr. This coincides with an increased variance in the 400 ∼Kyr component of Earth's eccentricity cycle. (author)

  1. Mixing layer height as an indicator for urban air quality?

    Directory of Open Access Journals (Sweden)

    A. Geiß

    2017-08-01

    Full Text Available The mixing layer height (MLH is a measure for the vertical turbulent exchange within the boundary layer, which is one of the controlling factors for the dilution of pollutants emitted near the ground. Based on continuous MLH measurements with a Vaisala CL51 ceilometer and measurements from an air quality network, the relationship between MLH and near-surface pollutant concentrations has been investigated. In this context the uncertainty of the MLH retrievals and the representativeness of ground-based in situ measurements are crucial. We have investigated this topic by using data from the BAERLIN2014 campaign in Berlin, Germany, conducted from June to August 2014. To derive the MLH, three versions of the proprietary software BL-VIEW and a novel approach COBOLT were compared. It was found that the overall agreement is reasonable if mean diurnal cycles are considered. The main advantage of COBOLT is the continuous detection of the MLH with a temporal resolution of 10 min and a lower number of cases when the residual layer is misinterpreted as mixing layer. We have calculated correlations between MLH as derived from the different retrievals and concentrations of pollutants (PM10, O3 and NOx for different locations in the metropolitan area of Berlin. It was found that the correlations with PM10 are quite different for different sites without showing a clear pattern, whereas the correlation with NOx seems to depend on the vicinity of emission sources in main roads. In the case of ozone as a secondary pollutant, a clear correlation was found. We conclude that the effects of the heterogeneity of the emission sources, chemical processing and mixing during transport exceed the differences due to different MLH retrievals. Moreover, it seems to be unrealistic to find correlations between MLH and near-surface pollutant concentrations representative for a city like Berlin (flat terrain, in particular when traffic emissions are dominant. Nevertheless it is

  2. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio

    2012-03-21

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  3. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2012-01-01

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  4. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    OpenAIRE

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution...

  5. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    Science.gov (United States)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  6. Periodic mixed convection in horizontal porous layer heated from below by isoflux heater

    International Nuclear Information System (INIS)

    Saeid, Nawaf H.; Pop, I.

    2006-01-01

    Numerical study for transient mixed convection in a two-dimensional horizontal porous layer heated from below by a constant heat flux source is carried out in the present paper. The transient thermal field, flow field and average Nusselt number are presented for a wide range of the Peclet number, Pe, for the particular case of Rayleigh number Ra=10x2 and the ratio of heater length to the porous layer thickness A=1, 3 and 5. It is found that for A=3 and A=5 with small values of the Peclet number, the free convection mode is dominated, while for large values, of the Peclet number, the forced convection mode is dominated. However, for moderate values the oscillatory mixed convection is observed and a periodic variation of the average Nusselt number is obtained. When the heater length is equal to the porous layer thickness (A=1) the steady-state results are obtained for the range of Pe=0.01-10. (author)

  7. Mixed layer heat budget of the El Nino in NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Boyin; Xue, Yan; Wang, Hui; Wang, Wanqiu; Kumar, Arun [NOAA, National Climate Data Center, Climate Prediction Center, Asheville, NC (United States)

    2012-07-15

    The mechanisms controlling the El Nino have been studied by analyzing mixed layer heat budget of daily outputs from a free coupled simulation with the Climate Forecast System (CFS). The CFS is operational at National Centers for Environmental Prediction, and is used by Climate Prediction Center for seasonal-to-interannual prediction, particularly for the prediction of the El Nino and Southern Oscillation (ENSO) in the tropical Pacific. Our analysis shows that the development and decay of El Nino can be attributed to ocean advection in which all three components contribute. Temperature advection associated with anomalous zonal current and mean vertical upwelling contributes to the El Nino during its entire evolutionary cycle in accordance with many observational, theoretical, and modeling studies. The impact of anomalous vertical current is found to be comparable to that of mean upwelling. Temperature advection associated with mean (anomalous) meridional current in the CFS also contributes to the El Nino cycle due to strong meridional gradient of anomalous (mean) temperature. The surface heat flux, non-linearity of temperature advection, and eddies associated with tropical instabilities waves (TIW) have the tendency to damp the El Nino. Possible degradation in the analysis and closure of the heat budget based on the monthly mean (instead of daily) data is also quantified. (orig.)

  8. Vertical mixing by Langmuir circulations

    International Nuclear Information System (INIS)

    McWilliams, James C.; Sullivan, Peter P.

    2001-01-01

    Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)

  9. A simple model of the effect of ocean ventilation on ocean heat uptake

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-27

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Series of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.

  10. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein; Mø hl, Malene; Mø ller, Eva Friis; Enghoff-Poulsen, Sø ren; Paulsen, Maria Lund; Solberg, Ingrid; Tang, Kam W.; Tonnesson, Kajsa; Raitsos, Dionysios E.; Nielsen, Torkel Gissel

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  11. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert

    2015-06-11

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  12. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    DEFF Research Database (Denmark)

    Calbet, Albert; Agersted, Mette Dalgaard; Kaartvedt, Stein

    2015-01-01

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform...... upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment...... of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation...

  13. Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

    OpenAIRE

    Fuhlbrügge, Steffen; Quack, Birgit; Atlas, Elliot; Fiehn, Alina; Hepach, Helmke; Krüger, Kirstin

    2016-01-01

    During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. ...

  14. A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun

    2018-05-01

    The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.

  15. Decadal Variability of Total Alkalinity in the North Pacific Ocean

    Science.gov (United States)

    Cross, J. N.; Carter, B. R.; Siedlecki, S. A.; Alin, S. R.; Dickson, A. G.; Feely, R. A.; Mathis, J. T.; Wanninkhof, R. H.; Macdonald, A. M.; Mecking, S.; Talley, L. D.

    2016-02-01

    Recent observations of acidification-driven shoaling of the calcium carbonate saturation horizon in the North Pacific have prompted new interest in carbonate cycling in this region, particularly related to impacts on biogenic calcification at the surface layer. Some estimates project that the impacts of OA on alkalinity cycling are beginning to emerge. Here, we present total alkalinity concentrations along a meridional transect of the North Pacific (WOCE, CLIVAR, and US GO-SHIP line P16N; 152 °W) over a period of three decades. The largest source of variability in alkalinity concentrations is related to North Pacific circulation, particularly in the surface mixed layer. Precise normalization of these data reveal some small spatial and temporal variability in the background. We explore these decadal trends in the context of decadal oscillations, ocean biogeochemical cycles, and global change processes such as ocean acidification.

  16. Carbon and nutrient mixed layer dynamics in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    H. S. Findlay

    2008-10-01

    Full Text Available A coupled carbon-ecosystem model is compared to recent data from Ocean Weather Station M (66° N, 02° E and used as a tool to investigate nutrient and carbon processes within the Norwegian Sea. Nitrate is consumed by phytoplankton in the surface layers over the summer; however the data show that silicate does not become rapidly limiting for diatoms, in contrast to the model prediction and in contrast to data from other temperate locations. The model estimates atmosphere-ocean CO2 flux to be 37 g C m−2 yr−1. The seasonal cycle of the carbonate system at OWS M resembles the cycles suggested by data from other high-latitude ocean locations. The seasonal cycles of calcite saturation state and [CO32-] are similar in the model and in data at OWS M: values range from ~3 and ~120 μmol kg−1 respectively in winter, to ~4 and ~170 μmol kg−1 respectively in summer. The model and data provide further evidence (supporting previous modelling work that the summer is a time of high saturation state within the annual cycle at high-latitude locations. This is also the time of year that coccolithophore blooms occur at high latitudes.

  17. The seasonal cycle of the mixing layer height and its impact on black carbon concentrations in the Kathmandu Valley (Nepal)

    Science.gov (United States)

    Mues, Andrea; Rupakheti, Maheswar; Hoor, Peter; Bozem, Heiko; Münkel, Christoph; Lauer, Axel; Butler, Tim

    2016-04-01

    The properties and the vertical structure of the mixing layer as part of the planetary boundary layer are of key importance for local air quality. They have a substantial impact on the vertical dispersion of pollutants in the lower atmosphere and thus on their concentrations near the surface. In this study, ceilometer measurements taken within the framework of the SusKat project (Sustainable Atmosphere for the Kathmandu Valley) are used to investigate the mixing layer height in the Kathmandu Valley, Nepal. The applied method is based on the assumption that the aerosol concentration is nearly constant in the vertical and distinctly higher within the mixing layer than in the air above. Thus, the height with the steepest gradient within the ceilometer backscatter profile marks the top of the mixing layer. Ceilometer and black carbon (BC) measurements conducted from March 2013 through February 2014 provide a unique and important dataset for the analysis of the meteorological and air quality conditions in the Kathmandu Valley. In this study the mean diurnal cycle of the mixing layer height in the Kathmandu Valley for each season (pre-monsoon, monsoon, post-monsoon and winter season) and its dependency on the meteorological situation is investigated. In addition, the impact of the mixing layer height on the BC concentration is analyzed and compared to the relevance of other important processes such as emissions, horizontal advection and deposition. In all seasons the diurnal cycle is typically characterized by low mixing heights during the night, gradually increasing after sun rise reaching to maximum values in the afternoon before decreasing again. Seasonal differences can be seen particularly in the height of the mixing layer, e.g. from on average 153/1200 m (pre-monsoon) to 241/755 m (monsoon season) during the night/day, and the duration of enhanced mixing layer heights during daytime (around 12 hours (pre-monsoon season) to 8 hours (winter)). During the monsoon

  18. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Science.gov (United States)

    Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.; Queste, Bastien Y.

    2018-03-01

    Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October-2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day-1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations

  19. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Directory of Open Access Journals (Sweden)

    P. M. F. Sheehan

    2018-03-01

    Full Text Available Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October–2 December 2013 glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day−1. During the first part of the deployment (from mid-October until mid-November, results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December, a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source

  20. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  1. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    Science.gov (United States)

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  2. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    Science.gov (United States)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  3. Evaluation of layered and mixed passive treatment systems for acid mine drainage.

    Science.gov (United States)

    Jeen, Sung-Wook; Mattson, Bruce

    2016-11-01

    Laboratory column tests for passive treatment systems for mine drainage from a waste rock storage area were conducted to evaluate suitable reactive mixture, system configuration, effects of influent water chemistry, and required residence time. Five columns containing straw, chicken manure, mushroom compost, and limestone (LS), in either layered or mixed configurations, were set up to simulate the treatment system. The results showed that all of the five columns removed metals of concern (i.e. Al, Cd, Co, Cu, Fe, Ni, and Zn) with a residence time of 15 h and greater. Reaction mechanisms responsible for the removal of metals may include sulfate reduction and subsequent sulfide precipitation, precipitation of secondary carbonates and hydroxides, co-precipitation, and sorption on organic substrates and secondary precipitates. The results suggest that the mixed systems containing organic materials and LS perform better than the layered systems, sequentially treated by organic and LS layers, due to the enhanced pH adjustment, which is beneficial to bacterial activity and precipitation of secondary minerals. The column tests provide a basis for the design of a field-scale passive treatment system, such as a reducing and alkalinity producing system or a permeable reactive barrier.

  4. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  5. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model

    Directory of Open Access Journals (Sweden)

    M. Gehlen

    2006-01-01

    Full Text Available This study focuses on an improved representation of the biological soft tissue pump in the global three-dimensional biogeochemical ocean model PISCES. We compare three parameterizations of particle dynamics: (1 the model standard version including two particle size classes, aggregation-disaggregation and prescribed sinking speed; (2 an aggregation-disaggregation model with a particle size spectrum and prognostic sinking speed; (3 a mineral ballast parameterization with no size classes, but prognostic sinking speed. In addition, the model includes a description of surface sediments and organic carbon early diagenesis. Model output is compared to data or data based estimates of ocean productivity, pe-ratios, particle fluxes, surface sediment bulk composition and benthic O2 fluxes. Model results suggest that different processes control POC fluxes at different depths. In the wind mixed layer turbulent particle coagulation appears as key process in controlling pe-ratios. Parameterization (2 yields simulated pe-ratios that compare well to observations. Below the wind mixed layer, POC fluxes are most sensitive to the intensity of zooplankton flux feeding, indicating the importance of zooplankton community composition. All model parameters being kept constant, the capability of the model to reproduce yearly mean POC fluxes below 2000 m and benthic oxygen demand does at first order not dependent on the resolution of the particle size spectrum. Aggregate formation appears essential to initiate an intense biological pump. At great depth the reported close to constant particle fluxes are most likely the result of the combined effect of aggregate formation and mineral ballasting.

  6. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response

    Science.gov (United States)

    Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.

    2013-04-01

    The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.

  7. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    Science.gov (United States)

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  8. How can we describe the entrainment processes in sheared convective boundary layers?: a large-eddy simulation and mixed-layer theory/model comparison study

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Kim, S.W.

    2006-01-01

    Dry convective boundary layers characterized by a significant wind shear on the surface and at the inversion zone are studied by means of the mixed layer theory. Two different representations of the entrainment zone, each of which has a different closure of the entrainment heat flux, are considered.

  9. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean. Volume 1: Strategic summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-15

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ``technology transfer`` from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean`s response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation.

  10. The role of vertical shear on the horizontal oceanic dispersion

    OpenAIRE

    A. S. Lanotte; R. Corrado; G. Lacorata; L. Palatella; C. Pizzigalli; I. Schipa; R. Santoleri

    2015-01-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of South Mediterranean is investigated by means of observative and model data. In-situ current measurements reveal that vertical velocity gradients in the upper mixed layer decorrelate quite fast (∼ 1 day), whereas basin-scale ocean circulation models tend to overestimate such decorrelation time because of finite resolution effects. Horizontal dispers...

  11. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  12. Dynamics of a Snowball Earth ocean.

    Science.gov (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  13. Simulation of the convective mixed layer in Athens

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H.P. [Risoe National Lab., Roskilde (Denmark)

    1997-10-01

    The region of Athens, Greece, has a highly complicated terrain with irregular coastline and mountains next to the sea. This results in complex flow fields. A case study of a simulation of a sea breeze with the Karlsruhe Atmospheric Mesoscale model KAMM is presented together with remarks on the advection of mixed layer air. The valley of Athens is open to the sea towards the south-west and surrounded by mountains on the other sides. Gaps between the mountains channel the flow into the valley. Simulations were done for 14 September 1994 to compare them with measurements at 6 masts by Risoe during the MEDCAPHOT-TRACE experiment. (au)

  14. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King

    2017-08-01

    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  15. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model study

    Directory of Open Access Journals (Sweden)

    A. Lindenthal

    2013-06-01

    Full Text Available In high-nutrient–low-chlorophyll regions, phytoplankton growth is limited by the availability of water-soluble iron. The eruption of Kasatochi volcano in August 2008 led to ash deposition into the iron-limited NE Pacific Ocean. Volcanic ash released iron upon contact with seawater and generated a massive phytoplankton bloom. Here we investigate this event with a one-dimensional ocean biogeochemical column model to illuminate the ocean response to iron fertilisation by volcanic ash. The results indicate that the added iron triggered a phytoplankton bloom in the summer of 2008. Associated with this bloom, macronutrient concentrations such as nitrate and silicate decline and zooplankton biomass is enhanced in the ocean mixed layer. The simulated development of the drawdown of carbon dioxide and increase of pH in surface seawater is in good agreement with available observations. Sensitivity studies with different supply dates of iron to the ocean emphasise the favourable oceanic conditions in the NE Pacific to generate massive phytoplankton blooms in particular during July and August in comparison to other months. By varying the amount of volcanic ash and associated bio-available iron supplied to the ocean, model results demonstrate that the NE Pacific Ocean has higher, but limited capabilities to consume CO2 after iron fertilisation than those observed after the volcanic eruption of Kasatochi.

  16. Changes in mixed layer depth under climate change projections in two CGCMs

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sang-Wook [Korea Ocean Research and Development Institute, Ansan (Korea); Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences/Global Environmental Laboratory, Seoul (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France)

    2009-08-15

    Two coupled general circulation models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) models, were chosen to examine changes in mixed layer depth (MLD) in the equatorial tropical Pacific and its relationship with ENSO under climate change projections. The control experiment used pre-industrial greenhouse gas concentrations whereas the 2 x CO{sub 2} experiment used doubled CO{sub 2} levels. In the control experiment, the MLD simulated in the MRI model was shallower than that in the GFDL model. This resulted in the tropical Pacific's mean sea surface temperature (SST) increasing at different rates under global warming in the two models. The deeper the mean MLD simulated in the control simulation, the lesser the warming rate of the mean SST simulated in the 2 x CO{sub 2} experiment. This demonstrates that the MLD is a key parameter for regulating the response of tropical mean SST to global warming. In particular, in the MRI model, increased stratification associated with global warming amplified wind-driven advection within the mixed layer, leading to greater ENSO variability. On the other hand, in the GFDL model, wind-driven currents were weak, which resulted in mixed-layer dynamics being less sensitive to global warming. The relationship between MLD and ENSO was also examined. Results indicated that the non-linearity between the MLD and ENSO is enhanced from the control run to the 2 x CO{sub 2} run in the MRI model, in contrast, the linear relationship between the MLD index and ENSO is unchanged despite an increase in CO{sub 2} concentrations in the GFDL model. (orig.)

  17. A Preliminary Investigation of the Effect of Ocean Thermal Energy Conversion (OTEC Effluent Discharge Options on Global OTEC Resources

    Directory of Open Access Journals (Sweden)

    Gérard Nihous

    2018-03-01

    Full Text Available A simple algorithm previously used to evaluate steady-state global Ocean Thermal Energy Conversion (OTEC resources is extended to probe the effect of various effluent discharge methodologies. It is found that separate evaporator and condenser discharges potentially increase OTEC net power limits by about 60% over a comparable mixed discharge scenario. This stems from a relatively less severe degradation of the thermal resource at given OTEC seawater flow rates, which corresponds to a smaller heat input into the ocean. Next, the most practical case of a mixed discharge into the mixed layer is found to correspond to only 80% of the so-called baseline case (mixed discharge at a water depth of initial neutral buoyancy. In general, locating effluent discharges at initial neutral-buoyancy depths appears to be nearly optimal in terms of OTEC net power production limits. The depth selected for the OTEC condenser effluent discharge, however, has by far the greatest impact. Clearly, these results are preliminary and should be investigated in more complex ocean general circulation models.

  18. Strong relationship between DMS and the solar radiation dose over the global surface ocean.

    Science.gov (United States)

    Vallina, Sergio M; Simó, Rafel

    2007-01-26

    Marine biogenic dimethylsulfide (DMS) is the main natural source of tropospheric sulfur, which may play a key role in cloud formation and albedo over the remote ocean. Through a global data analysis, we found that DMS concentrations are highly positively correlated with the solar radiation dose in the upper mixed layer of the open ocean, irrespective of latitude, plankton biomass, or temperature. This is a necessary condition for the feasibility of a negative feedback in which light-attenuating DMS emissions are in turn driven by the light dose received by the pelagic ecosystem.

  19. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans

    Science.gov (United States)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.

    1991-01-01

    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  20. Mixing processes at the subsurface layer in the Amundsen Sea shelf region

    Science.gov (United States)

    Mojica, J.; Djoumna, G.; Francis, D. K.; Holland, D.

    2017-12-01

    In the Amundsen Sea shelf region, mixing processes promote an upward transport of diapycnal fluxes of heat and salt from the subsurface to the surface mixing layer. Here we estimate the diapycnal mixing rates on the Amundsen shelf from a multi-year mooring cluster and five research cruises. By applying fine-scale parameterizations, the mixing rates obtained were higher near the southern end of Pine Island glacier front and exceeded 10-2 m2s-1. The eddy diffusivity increased near the critical latitude (74o 28' S) for semi-diurnal M2 tides, which coincided with near-critical topography on the shelf. This condition favored the generation of internal waves of M2 frequency. The semi-diurnal dynamic enhanced the mixing that potentially affected the heat budget and the circulation of the modified Circumpolar Deep Water. This can be observed in the characteristics of water exchange both below the ice shelves and between the continental shelf and the ice shelf cavities. The location of the critical latitude and critical topography provided favorable conditions for the generation of internal waves. KEYWORDS: Mixing processes, diapycnal fluxes, critical latitude, Circumpolar Deep Water.

  1. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  2. Medium-Index Mixed-Oxide Layers for Use in AR-Coatings

    Science.gov (United States)

    Ganner, Peter

    1986-10-01

    Ttedesign philosophy of MC-AR-Coatings can be divided into two categories: a) Restriction to two film materials, namely one high-index and one low-index material and b) Use of medium-index layers in addition to high- and low-index layers. Both philosophies have advan-tages and drawbacks. In case a) the total number of layers necessary to obtain a required reflectance curve has to be higher. Thus in case of production errors it can be a problem to find out which layer was responsible for a deviation of the measured reflectance from the nominal one. In case b) using more than two materials reduces the total number of layers and consequently, pinpointing the cause of even small production errors is made simpler. Unfortunately there are not many materials commercially available which can be used to make hard, durable and robust films in the medium-index range namely between n=1.65 and n=2.00. In this paper the results of homogeneous mixtures of Alumina (Al203) and Tantala (Ta205) used for EB-gun evaporated medium-index films in AR-coatings is presented. It is shown that by proper adjustment of the weight percentages of the oxide mixture one can get homogeneous films in this index range. A number of design examples show the favourable application of such layers in AR-coatings. Among the most important ones is the well known QHQ-design for BBAR-coatings as well as AR-designs of the multiple half wave type with extended bandwidth. Further applications of the mixed-oxide layers are AR-coatings for cemented optical elements and beam splitters.

  3. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  4. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  5. Physical oceanographic characteristics influencing the dispersion of dissolved tracers released at the sea floor in selected deep ocean study areas

    International Nuclear Information System (INIS)

    Kupferman, S.L.; Moore, D.E.

    1981-02-01

    Scenarios which follow the development in space and time of the concentration field of a dissolved tracer released at the sea floor are presented for a Pacific and two Atlantic study areas. The scenarios are closely tied to available data by means of simple analytical models and proceed in stages from short time and space scales in the immediate vicinity of a release point to those scales characteristic of ocean basins. The concepts of internal mixing time and residence time in the benthic mixed layer, useful for developing an intuitive feeling for the behavior of a tracer in this feature, are introduced and discussed. We also introduce the concept of domain of occupation, which is useful in drawing distinctions between mixing and stirring in the ocean. From this study it is apparent that reliable estimation of mixing will require careful consideration of the dynamics of the eddy fields in the ocean. Another area in which more information is urgently needed is in the relation of deep isopycnal structure and bottom topography to local near-bottom circulation

  6. Copepod faecal pellet transfer through the meso- and bathypelagic layers in the Southern Ocean in spring

    Science.gov (United States)

    Belcher, Anna; Manno, Clara; Ward, Peter; Henson, Stephanie A.; Sanders, Richard; Tarling, Geraint A.

    2017-03-01

    The faecal pellets (FPs) of zooplankton can be important vehicles for the transfer of particulate organic carbon (POC) to the deep ocean, often making large contributions to carbon sequestration. However, the routes by which these FPs reach the deep ocean have yet to be fully resolved. We address this by comparing estimates of copepod FP production to measurements of copepod FP size, shape, and number in the upper mesopelagic (175-205 m) using Marine Snow Catchers, and in the bathypelagic using sediment traps (1500-2000 m). The study is focussed on the Scotia Sea, which contains some of the most productive regions in the Southern Ocean, where epipelagic FP production is likely to be high. We found that, although the size distribution of the copepod community suggests that high numbers of small FPs are produced in the epipelagic, small FPs are rare in the deeper layers, implying that they are not transferred efficiently to depth. Consequently, small FPs make only a minor contribution to FP fluxes in the meso- and bathypelagic, particularly in terms of carbon. The dominant FPs in the upper mesopelagic were cylindrical and elliptical, while ovoid FPs were dominant in the bathypelagic. The change in FP morphology, as well as size distribution, points to the repacking of surface FPs in the mesopelagic and in situ production in the lower meso- and bathypelagic, which may be augmented by inputs of FPs via zooplankton vertical migrations. The flux of carbon to the deeper layers within the Southern Ocean is therefore strongly modulated by meso- and bathypelagic zooplankton, meaning that the community structure in these zones has a major impact on the efficiency of FP transfer to depth.

  7. The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations

    Science.gov (United States)

    Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.

    2002-07-01

    A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed-layer

  8. Ethane ocean on Titan

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  9. Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression

    CSIR Research Space (South Africa)

    Gregor, Luke

    2017-12-01

    Full Text Available understanding with spatially integrated air–sea flux estimates (Fay and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanis- tic understanding, but fail to represent the seasonality of CO2 fluxes in the Southern Ocean... of including coordinate variables as proxies of 1pCO2 in the empirical methods. In the inter- comparison study by Rödenbeck et al. (2015) proxies typi- cally include, but are not limited to, sea surface temperature (SST), chlorophyll a (Chl a), mixed layer...

  10. A Mixed-Layer Model perspective on stratocumulus steady-states in a perturbed climate

    NARCIS (Netherlands)

    Dal Gesso, S.; Siebesma, A.P.; de Roode, S.R.; van Wessem, J.M.

    2013-01-01

    Equilibrium states of stratocumulus are evaluated for a range of free tropospheric conditions in a Mixed-Layer Model framework using a number of different entrainment formulations. The equilibrium states show that a reduced lower tropospheric stability (LTS) and a dryer free troposphere support a

  11. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  12. Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans

    Science.gov (United States)

    Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.

    2016-01-01

    The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i

  13. Heterogeneities in illite/smectite mixed/layers clays: some comments and recollections

    International Nuclear Information System (INIS)

    Johns, W.D.

    1995-01-01

    A review of some studies of heterogeneities, structure and surface in illite/smectite mixed-layer clays of Vienna Basin using X-ray diffraction, high resolution-transmission electron microscopy, infra-red spectroscopy, laser microprobe mass analysis, Auger electron spectroscopy, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy is given. The models of hexyl ammonium ion configuration complexed between silica sheets is discussed. 1 tab., 10 figs., 6 refs

  14. An assessment of ten ocean reanalyses in the polar regions

    Science.gov (United States)

    Uotila, Petteri

    2017-04-01

    Ocean reanalysis (ORA) combines observations either statistically or with a hydrodynamical model, to reconstruct historical changes in the ocean. Global and regional ORA products are increasingly used in polar research, but their quality remains to be systematically assessed. To address this, the Polar ORA Intercomparison Project (PORA-IP) has been established following on from the ORA-IP project (Balmaseda et al. 2015, with other papers in a special issue of Climate Dynamics). The PORA-IP is constituted under the COST EOS initiative with plans to review reanalyses products in both the Arctic and Antarctic, and is endorsed by YOPP - the Year of Polar Prediction project. Currently, the PORA-IP team consists of 21 researchers from 15 institutes and universities. The ORA-IP products with polar physics, such as sea ice, have been updated where necessary and collected in a public database. In addition to model output, available observational polar climatologies are collected and used in the assessments. Due to the extensive variety of products, this database should become a valuable resource outside the PORA-IP community. For a comprehensive evaluation of the ten ORA products (CGLORSv5, ECDA3.1, GECCO2, Glorys2v4, GloSea5_GO5, MOVEG2i, ORAP5, SODA3.3.1, TOPAZ4 and UR025.4) in the Arctic and Southern Oceans several specific diagnostics are assessed. The PORA-IP diagnostics target the following topics: hydrography; heat, salinity and freshwater content; ocean transports and surface currents; mixed layer depth; sea-ice concentration and thickness; and snow thickness over sea ice. Based on these diagnostics, ORA product biases against observed data and their mutual spread are quantified, and possible reasons for discrepancies discussed. So far, we have identified product outliers and evaluated the multi-model mean. We have identified the importance of the atmospheric forcing, air-ocean coupling protocol and sea-ice data assimilation for the product performance. Moreover, we

  15. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  16. Factors controlling the development of phytoplankton blooms in the Antarctic Ocean

    International Nuclear Information System (INIS)

    Sakshaug, Egil; Holm-Hansen, Osmund

    1991-01-01

    A mathematical model describing the development of phytoplankton blooms as a function of the depth of the wind-mixed layer, spectral distribution of light, passage of atmospheric low-pressure systems, size of the initial phytoplankton stock and loss rates is presented. Model runs represent shade-adapted, large-celled, bloom-forming diatoms Periodic deep mixing caused by strong winds may severely retard the development of blooms and frequently abort them before macronutrients are completely exhausted. Moderate depths of mixing (40-50 m) in combination with a moderately large total loss rate (about 0.013h -1 ) can prevent blooms from developing during the brightest time of the year. Complete exhaustion of macronutrients in the upper waters is likely only if the wind-mixed layer is less than 10 m deep, i.e. in very sheltered waters, and also in the marginal ice zone when ice is melting. The authors do not exclude the possibility of control of phytoplankton biomass by iron in ice-free, deep-sea parts of the Antarctic Ocean, but the implied enhancement of export production through addition of iron might be restricted because of limitation by light, i.e. vertical mixing. (author). 32 ref.; 5 figs.; 2 tabs

  17. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    Science.gov (United States)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  18. Coupling Between The North Indian Ocean And The Monsoons: A Model Based Study Of The Thermal Structure Cycling In The Central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, R.K.

    To examine the role of various intervening processes in controlling the upper ocean thermal structure in the central Arabian Sea, a 1-D mixed-layer model based on turbulent closure scheme is forced by atmospheric fluxes and advective heat fluxes...

  19. An analytical solution for the Marangoni mixed convection boundary layer flow

    DEFF Research Database (Denmark)

    Moghimi, M. A.; Kimiaeifar, Amin; Rahimpour, M.

    2010-01-01

    In this article, an analytical solution for a Marangoni mixed convection boundary layer flow is presented. A similarity transform reduces the Navier-Stokes equations to a set of nonlinear ordinary differential equations, which are solved analytically by means of the homotopy analysis method (HAM...... the convergence of the solution. The numerical solution of the similarity equations is developed and the results are in good agreement with the analytical results based on the HAM....

  20. The role of nutricline depth in regulating the ocean carbon cycle.

    Science.gov (United States)

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  1. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  2. A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.

    2012-01-01

    Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly

  3. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  4. Analysis of a PDF model in a mixing layer case

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1996-04-01

    A recent turbulence model put forward by Pope (1991) in the context of PDF modeling has been applied to a mixing layer case. This model solves the one-point joint velocity-dissipation pdf equation by simulating the instantaneous behaviour of a large number of Lagrangian fluid particles. Closure of the evolution equations of these Lagrangian particles is based on diffusion stochastic processes. The paper reports numerical results and tries to analyse the physical meaning of some variables, in particular the dissipation-weighted kinetic energy and its relation with external intermittency. (authors). 14 refs., 7 figs

  5. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  6. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    Science.gov (United States)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity

  7. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    Science.gov (United States)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  8. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  9. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  10. Simulation of annual cycles of phytoplankton, zooplankton and nutrients using a mixed layer model coupled with a biological model

    OpenAIRE

    Troupin, Charles

    2006-01-01

    In oceanography, the mixed layer refers to the near surface part of the water column where physical and biological variables are distributed quasi homogeneously. Its depth depends on conditions at the air-sea interface (heat and freshwater fluxes, wind stress) and on the characteristics of the flow (stratification, shear), and has a strong influence on biological dynamics. The aim of this work is to model the behaviour of the mixed layer in waters situated to the south of Gr...

  11. Abyssal Upwelling and Downwelling and the role of boundary layers

    Science.gov (United States)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  12. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    Science.gov (United States)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  13. A parameterization of the passive layer of a quasigeostrophic flow in a continuously-stratified ocean

    Science.gov (United States)

    Benilov, E. S.

    2018-05-01

    This paper examines quasigeostrophic flows in an ocean that can be subdivided into an upper active layer (AL) and a lower passive layer (PL), with the flow and density stratification mainly confined to the former. Under this assumption, an asymptotic model is derived parameterizing the effect of the PL on the AL. The model depends only on the PL's depth, whereas its Väisälä-Brunt frequency turns out to be unimportant (as long as it is small). Under an additional assumption-that the potential vorticity field in the PL is well-diffused and, thus, uniform-the derived model reduces to a simple boundary condition. This condition is to be applied at the AL/PL interface, after which the PL can be excluded from consideration.

  14. A Two-Timescale Response of the Southern Ocean to Ozone Depletion: Importance of the Background State

    Science.gov (United States)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2016-02-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.

  15. Using an atmospheric boundary layer model to force global ocean models

    Science.gov (United States)

    Abel, Rafael; Böning, Claus

    2014-05-01

    Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non

  16. Atmosphere-Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.

    Science.gov (United States)

    Lau, Ngar-Cheung; Nath, Mary Jo

    2003-01-01

    The influences of El Niño-Southern Oscillation (ENSO) events on air-sea interaction in the Indian-western Pacific (IWP) Oceans have been investigated using a general circulation model. Observed monthly sea surface temperature (SST) variations in the deep tropical eastern/central Pacific (DTEP) have been inserted in the lower boundary of this model through the 1950-99 period. At all maritime grid points outside of DTEP, the model atmosphere has been coupled with an oceanic mixed layer model with variable depth. Altogether 16 independent model runs have been conducted.Composite analysis of selected ENSO episodes illustrates that the prescribed SST anomalies in DTEP affect the surface atmospheric circulation and precipitation patterns in IWP through displacements of the near-equatorial Walker circulation and generation of Rossby wave modes in the subtropics. Such atmospheric responses modulate the surface fluxes as well as the oceanic mixed layer depth, and thereby establish a well-defined SST anomaly pattern in the IWP sector several months after the peak in ENSO forcing in DTEP. In most parts of the IWP region, the net SST tendency induced by atmospheric changes has the same polarity as the local composite SST anomaly, thus indicating that the atmospheric forcing acts to reinforce the underlying SST signal.By analyzing the output from a suite of auxiliary experiments, it is demonstrated that the SST perturbations in IWP (which are primarily generated by ENSO-related atmospheric changes) can, in turn, exert notable influences on the atmospheric conditions over that region. This feedback mechanism also plays an important role in the eastward migration of the subtropical anticyclones over the western Pacific in both hemispheres.

  17. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  18. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagø ien, Espen; Melle, Webjø rn; Kaartvedt, Stein

    2012-01-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  19. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagøien, Espen

    2012-09-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  20. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  1. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    Science.gov (United States)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  2. Local Similarity in the Stable Boundary Layer and Mixing-Length Approaches : Consistency of Concepts

    NARCIS (Netherlands)

    Van de Wiel, B.J.H.; Moene, A.F.; De Ronde, W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  3. Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Ronde, W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  4. Local similarity in the stable boundary layer and mixing-length approaches : consistency of concepts

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Ronde, de W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale zB. Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  5. Scale interactions in a mixing layer – the role of the large-scale gradients

    KAUST Repository

    Fiscaletti, D.

    2016-02-15

    © 2016 Cambridge University Press. The interaction between the large and the small scales of turbulence is investigated in a mixing layer, at a Reynolds number based on the Taylor microscale of , via direct numerical simulations. The analysis is performed in physical space, and the local vorticity root-mean-square (r.m.s.) is taken as a measure of the small-scale activity. It is found that positive large-scale velocity fluctuations correspond to large vorticity r.m.s. on the low-speed side of the mixing layer, whereas, they correspond to low vorticity r.m.s. on the high-speed side. The relationship between large and small scales thus depends on position if the vorticity r.m.s. is correlated with the large-scale velocity fluctuations. On the contrary, the correlation coefficient is nearly constant throughout the mixing layer and close to unity if the vorticity r.m.s. is correlated with the large-scale velocity gradients. Therefore, the small-scale activity appears closely related to large-scale gradients, while the correlation between the small-scale activity and the large-scale velocity fluctuations is shown to reflect a property of the large scales. Furthermore, the vorticity from unfiltered (small scales) and from low pass filtered (large scales) velocity fields tend to be aligned when examined within vortical tubes. These results provide evidence for the so-called \\'scale invariance\\' (Meneveau & Katz, Annu. Rev. Fluid Mech., vol. 32, 2000, pp. 1-32), and suggest that some of the large-scale characteristics are not lost at the small scales, at least at the Reynolds number achieved in the present simulation.

  6. Large deficiency of polonium in the oligotrophic ocean's interior

    Science.gov (United States)

    Kim, Guebuem

    2001-09-01

    The naturally occurring radionuclide 210Po is typically deficient relative to its parent 210Pb in the surface ocean due to preferential removal by biota, while in near equilibrium or excess below the surface mixed layer due to rapid regeneration from sinking organic matter. However, a strikingly large deficit of 210Po is observed in the oligotrophic Sargasso Sea's interior. This argues against the general concept that the removal of reactive elements depends on the population of settling particles. A 210Po mass balance model suggests that rather than downward transport, polonium (proxy for S, Se, and Te) is taken up efficiently by bacteria (i.e., cyanobacteria) and transferred to higher trophic levels (i.e., nekton) in this environment. In contrast, in productive areas of the ocean, sulfur group elements seem to reside in the subsurface ocean for much longer periods as taken up by abundant free-living bacteria (non-sinking fine particles). This study sheds new light on global biogeochemical cycling of sulfur group elements in association with microbial roles, and suggests that 210Po may be useful as a tracer of nitrogen fixation in the ocean.

  7. Seasonal variations of the upper ocean salinity stratification in the Tropics

    Science.gov (United States)

    Maes, Christophe; O'Kane, Terence J.

    2014-03-01

    In comparison to the deep ocean, the upper mixed layer is a region typically characterized by substantial vertical gradients in water properties. Within the Tropics, the rich variability in the vertical shapes and forms that these structures can assume through variation in the atmospheric forcing results in a differential effect in terms of the temperature and salinity stratification. Rather than focusing on the strong halocline above the thermocline, commonly referred to as the salinity barrier layer, the present study takes into account the respective thermal and saline dependencies in the Brunt-Väisälä frequency (N2) in order to isolate the specific role of the salinity stratification in the layers above the main pycnocline. We examine daily vertical profiles of temperature and salinity from an ocean reanalysis over the period 2001-2007. We find significant seasonal variations in the Brunt-Väisälä frequency profiles are limited to the upper 300 m depth. Based on this, we determine the ocean salinity stratification (OSS) to be defined as the stabilizing effect (positive values) due to the haline part of N2 averaged over the upper 300 m. In many regions of the tropics, the OSS contributes 40-50% to N2 as compared to the thermal stratification and, in some specific regions, exceeds it for a few months of the seasonal cycle. Away from the tropics, for example, near the centers of action of the subtropical gyres, there are regions characterized by the permanent absence of OSS. In other regions previously characterized with salinity barrier layers, the OSS obviously shares some common variations; however, we show that where temperature and salinity are mixed over the same depth, the salinity stratification can be significant. In addition, relationships between the OSS and the sea surface salinity are shown to be well defined and quasilinear in the tropics, providing some indication that in the future, analyses that consider both satellite surface salinity

  8. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    Science.gov (United States)

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  9. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  10. The Imaging and Evolution of Seismic Layer 2A Thickness from a 0-70 Ma Oceanic Crustal Transect in the South Atlantic

    Science.gov (United States)

    Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.

    2017-12-01

    Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust 15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at

  11. Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea.

    Science.gov (United States)

    Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François

    2016-12-01

    Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Faster recovery of a diatom from UV damage under ocean acidification.

    Science.gov (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A numerical study on oceanic dispersion and sedimentation of radioactive cesium-137 from Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Higashi, Hironori; Morino, Yu; Ohara, Toshimasa

    2014-01-01

    We discussed a numerical model for oceanic dispersion and sedimentation of radioactive cesium-137 (Cs-137) in shallow water regions to clarify migration behavior of Cs-137 from Fukushima Daiichi Nuclear Power Plant. Our model considered oceanic transport by three dimensional ocean current, adsorption with large particulate matter (LPM), sedimentation and resuspension. The simulation well reproduced the spatial characteristics of sea surface concentration and sediment surface concentration of Cs-137 off Miyagi, Fukushima, and Ibaraki Prefectures during May-December 2011. The simulated results indicated that the adsorption-sedimentation of Cs-137 significantly occurred during strong wind events because the large amount of LPM was transported to upward layer by resuspension and vertical mixing. (author)

  14. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  15. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    Science.gov (United States)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  16. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  17. A mixed-layer model study of the stratocumulus response to changes in large-scale conditions

    NARCIS (Netherlands)

    De Roode, S.R.; Siebesma, A.P.; Dal Gesso, S.; Jonker, H.J.J.; Schalkwijk, J.; Sival, J.

    2014-01-01

    A mixed-layer model is used to study the response of stratocumulus equilibrium state solutions to perturbations of cloud controlling factors which include the sea surface temperature, the specific humidity and temperature in the free troposphere, as well as the large-scale divergence and horizontal

  18. The plane mixing layer between parallel streams of different velocities and different densities

    International Nuclear Information System (INIS)

    Fiedler, H.E.; Lummer, M.; Nottmeyer, K.

    1990-01-01

    The problem investigated is often encountered in technical applications. For its most basic configuration, the plane turbulent mixing layer, we use the notation as sketched in fig. 1. The influence of density inhomogeneities is twofold: (a) via buoyancy effects and (b) via inertia effects. The investigation described were aimed at studying the latter, while the former -- by appropriate choice of parameters - was essentially suppressed. (authors)

  19. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  20. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    Science.gov (United States)

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  1. Simulation of bomb tritium entry into the Atlantic Ocean

    International Nuclear Information System (INIS)

    Sarmiento, J.L.

    1983-01-01

    Tritium is used in a model-calibration study that aimed at developing three-dimensional ocean circulation and mixing models for climate and geochemical simulations. The North Atlantic tritium distribution is modeled using a three-dimensional advective field predicted by a primitive equation ocean circulation model. The effect of wintertime convection is parametrized by homogenizing the tracer to the observed March mixed-layer depth. Mixing is parametrized by horizontal and vertical Fickian diffusivities of 5 x 10 -6 cm 2 s -1 and 0.5 cm 2 s -1 , respectively. The spreading of tritium in the model is dominated by advection in the horizontal, and by wintertime convection and advection in the vertical. The horizontal and vertical mixing provided by the model have negligible effect. A comparison of the model tracer fields with observations shows that most of the basic patterns of the tritium field are repreduced. The model's mean vertical penetration of 543 m in 1972 is comparable to the 592 penetration obtained from the data. The major discrepancy between model and data is an inadequate penetration into deeper portions of the northwestern subtropical gyre main thermoclien. Some of the problem that may contribute to this are identified. A tritium simulation with a smoothed input gives a penetration depth of only 395 m. The smoothing puts a high fraction of the tritium into low-latitude, low-penetration regions such as the equator. This suggests that great care needs to be exercised in using simplified models of tritium observations to predict the behavior of tracers with different input functions, like fossil fuel CO 2

  2. Basin-scale variability in plankton biomass and community metabolism in the sub-tropical North Atlantic Ocean

    Science.gov (United States)

    Harrison, W. G.; Arístegui, J.; Head, E. J. H.; Li, W. K. W.; Longhurst, A. R.; Sameoto, D. D.

    Three trans-Atlantic oceanographic surveys (Nova Scotia to Canary Islands) were carried out during fall 1992 and spring 1993 to describe the large-scale variability in hydrographic, chemical and biological properties of the upper water column of the subtropical gyre and adjacent waters. Significant spatial and temporal variability characterized a number of the biological pools and rate processes whereas others were relatively invariant. Systematic patterns were observed in the zonal distribution of some properties. Most notable were increases (eastward) in mixed-layer temperature and salinity, depths of the nitracline and chlorophyll- a maximum, regenerated production (NH 4 uptake) and bacterial production. Dissolved inorganic carbon (DIC) concentrations, phytoplankton biomass, mesozooplankton biomass and new production (NO 3 uptake) decreased (eastward). Bacterial biomass, primary production, and community respiration exhibited no discernible zonal distribution patterns. Seasonal variability was most evident in hydrography (cooler/fresher mixed-layer in spring), and chemistry (mixed-layer DIC concentration higher and nitracline shallower in spring) although primary production and bacterial production were significantly higher in spring than in fall. In general, seasonal variability was greater in the west than in the east; seasonality in most properties was absent west of Canary Islands (˜20°W). The distribution of autotrophs could be reasonably well explained by hydrography and nutrient structure, independent of location or season. Processes underlying the distribution of the microheterophs, however, were less clear. Heterotrophic biomass and metabolism was less variable than autotrophs and appeared to dominate the upper ocean carbon balance of the subtropical North Atlantic in both fall and spring. Geographical patterns in distribution are considered in the light of recent efforts to partition the ocean into distinct "biogeochemical provinces".

  3. On the annual cycle of the sea surface temperature and the mixed layer depth in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, V.M.; Villanueva, E.E.; Adem, J. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-04-01

    Using an integrated mixed layer model, we carry out a simulation of the annual cycle of the sea surface temperature (SST) and of the mixed layer depth (MLD) in the Gulf of Mexico. We also compute the annual cycle of the entrainment velocity in the deepest region of the Gulf of Mexico. The model is based on the thermal energy equation and on an equation of mechanical and thermal energy balance based on the Kraus-Turner theory; both equation are coupled and are vertically integrated in the mixed layer. The model equations are solved in a uniform grid of 25 km in the Gulf of Mexico, the northwestern region of the Caribbean Sea and the eastern coast of Florida. The surface ocean current velocity and the atmospheric variables are prescribed in the model using observed values. We show the importance of the Ekman pumping in the entrainment velocity. We found that the upwelling plays an important role in increasing the entrainment velocity, producing an important reduction in the SST and diminishing the depth of the mixed layer in the Campeche Bay. In the rest of the Gulf of Mexico the downwelling tends to reduce the entrainment velocity, increasing the SST and the MLD. Comparison of the computed annual cycle of the SST and the MLD with the corresponding observations reported by Robinson (1973) shows a good agreement. In the deepest region of the Gulf of Mexico, the photosynthetic pigment concentration data obtained from the Mexican Pacific Cd-Rom of environmental analysis shows significant correlation with the computed annual cycle of the computed entrainment velocity only in January, April, May, June and September. [Spanish] Usando un modelo integrado en la capa de mezcla hemos obtenido una simulacion del ciclo anual de la temperatura de la superficie del mar (SST), de la profundidad de la capa de mezcla (MLD) en el Golfo de Mexico, asi como el ciclo anual de la velocidad de penetracion vertical turbulenta a traves de la termoclina en la region mas profunda del golfo de

  4. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    Science.gov (United States)

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc

  5. Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

    Directory of Open Access Journals (Sweden)

    S. Fuhlbrügge

    2016-09-01

    Full Text Available During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source–loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.

  6. Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

    Science.gov (United States)

    Fuhlbrügge, Steffen; Quack, Birgit; Atlas, Elliot; Fiehn, Alina; Hepach, Helmke; Krüger, Kirstin

    2016-09-01

    During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) - bromoform, dibromomethane and methyl iodide - together with high-resolution meteorological measurements, Lagrangian transport and source-loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source-loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.

  7. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  8. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, J M; Duarte, Carlos M.; Sala, M. Montserrat; Dachs, Jordi

    2016-01-01

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  9. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean.

    Science.gov (United States)

    Arrieta, Jesús M; Duarte, Carlos M; Sala, M Montserrat; Dachs, Jordi

    2015-01-01

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  10. Out of thin air: Microbial utilization of atmospheric gaseous organics in the surface ocean

    Directory of Open Access Journals (Sweden)

    Jesus M Arrieta

    2016-01-01

    Full Text Available Volatile and semi-volatile gas-phase organic carbon (GOC is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 to 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidising marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  11. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, Jesus

    2016-01-20

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  12. Global oceanic production of nitrous oxide

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  13. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  14. Survey of the mixing-layer experiments WAMIX and NAMIX

    International Nuclear Information System (INIS)

    Sigg, B.; Widmer, S.; Dury, T.V.

    1993-01-01

    A survey is given of work in progress in the Thermal-Hydraulics Laboratory on the water and sodium mixing-layer experiments WAMIX and NAMIX, as well as related developments of computational methods. This report describes the test rigs and experimental techniques, states the objectives of the research programme, presents design requirements for NAMIX together with initial results from WAMIX, and discusses questions of sensitivity of experiments and code calculations to external factors, such as inlet and boundary conditions, and noise. The use of visualisation techniques and Ultrasonic Doppler Anemometry in WAMIX has proved to be very helpful for the design of NAMIX. Furthermore, it is shown that the effect of external factors should be carefully analysed in order to obtain optimum performance of experiments and calculations. (author) 5 figs., 26 refs

  15. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Science.gov (United States)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  16. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    Science.gov (United States)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  17. Semi-convection in the ocean and in stars: A multi-scale analysis

    Directory of Open Access Journals (Sweden)

    Friedrich Kupka

    2015-04-01

    Full Text Available Fluid stratified by gravitation can be subject to a number of instabilities which eventually lead to a flow that causes enhanced mixing and transport of heat. The special case where a destabilizing temperature gradient counteracts the action of a stabilizing gradient in molecular weight is of interest to astrophysics (inside stars and giant planets and geophysics (lakes, oceans as well as to some engineering applications. The detailed dynamics of such a system depend on the molecular diffusivities of heat, momentum, and solute as well as system parameters including the ratio of the two gradients to each other. Further important properties are the formation and merging of well-defined layers in the fluid which cannot be derived from linear stability analysis. Moreover, the physical processes operate on a vast range of length and time scales. This has made the case of semi-convection, where a mean temperature gradient destabilizes the stratification while at the same time the mean molecular gradient tends to stabilize it, a challenge to physical modelling and to numerical hydrodynamical simulation. During the MetStröm project the simulation codes ANTARES and MITgcm have been extended such that they can be used for the simulations of such flows. We present a comparison of effective diffusivities derived from direct numerical simulations. For both stars and the oceanic regimes, the Nusselt numbers (scaled diffusivities follow similar relationships. Semi-convection quickly becomes inefficient, because the formation of layers limits vertical mixing. In contrast to the complementary saltfingering, these layers tend to damp instabilities so that effective diffusivities of salinity (concentration are up to two orders of magnitudes smaller than in the former case.

  18. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  19. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.

    Science.gov (United States)

    Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu

    2015-09-21

    The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.

  20. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    Science.gov (United States)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  1. Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)

    Science.gov (United States)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.

  2. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  3. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  4. Exploring the southern ocean response to climate change

    Science.gov (United States)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  5. Moving Towards Dynamic Ocean Management: How Well Do Modeled Ocean Products Predict Species Distributions?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Becker

    2016-02-01

    Full Text Available Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”, but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE, observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.

  6. Revealing the timing of ocean stratification using remotely sensed ocean fronts

    Science.gov (United States)

    Miller, Peter I.; Loveday, Benjamin R.

    2017-10-01

    Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification.

  7. A Guide to Oceanic Sedimentary Layering.

    Science.gov (United States)

    1983-07-28

    Clarion Fracture Zone: Hi Clipperton Fracture Zone: E9 Panama Basin: W6 San Diego Trough: T10 Santa Monica Basin: P2 NORTH PACIFIC OCEAN, WEST General and...Causeway Miami, FL 33149 67 Attn: F. Tappert Physics Department The University of Rhode Island Kingston, RI 02881 68 Attn: C. Kaufman Department of

  8. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  9. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  10. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  11. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    Science.gov (United States)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  12. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  13. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    Science.gov (United States)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  14. Detailed experimental investigations on flow behaviors and velocity field properties of a supersonic mixing layer

    Science.gov (United States)

    Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei

    2018-03-01

    The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.

  15. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    Science.gov (United States)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  16. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  17. Circulation, retention, and mixing of waters within the Weddell-Scotia Confluence, Southern Ocean: The role of stratified Taylor columns

    Science.gov (United States)

    Meredith, Michael P.; Meijers, Andrew S.; Naveira Garabato, Alberto C.; Brown, Peter J.; Venables, Hugh J.; Abrahamsen, E. Povl; Jullion, Loïc.; Messias, Marie-José

    2015-01-01

    The waters of the Weddell-Scotia Confluence (WSC) lie above the rugged topography of the South Scotia Ridge in the Southern Ocean. Meridional exchanges across the WSC transfer water and tracers between the Antarctic Circumpolar Current (ACC) to the north and the subpolar Weddell Gyre to the south. Here, we examine the role of topographic interactions in mediating these exchanges, and in modifying the waters transferred. A case study is presented using data from a free-drifting, intermediate-depth float, which circulated anticyclonically over Discovery Bank on the South Scotia Ridge for close to 4 years. Dimensional analysis indicates that the local conditions are conducive to the formation of Taylor columns. Contemporaneous ship-derived transient tracer data enable estimation of the rate of isopycnal mixing associated with this column, with values of O(1000 m2/s) obtained. Although necessarily coarse, this is of the same order as the rate of isopycnal mixing induced by transient mesoscale eddies within the ACC. A picture emerges of the Taylor column acting as a slow, steady blender, retaining the waters in the vicinity of the WSC for lengthy periods during which they can be subject to significant modification. A full regional float data set, bathymetric data, and a Southern Ocean state estimate are used to identify other potential sites for Taylor column formation. We find that they are likely to be sufficiently widespread to exert a significant influence on water mass modification and meridional fluxes across the southern edge of the ACC in this sector of the Southern Ocean.

  18. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    Science.gov (United States)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  19. The Role of a Weak Layer at the Base of an Oceanic Plate on Subduction Dynamics

    Science.gov (United States)

    Carluccio, R.; Moresi, L. N.; Kaus, B. J. P.

    2017-12-01

    Plate tectonics relies on the concept of an effectively rigid lithospheric lid moving over a weaker asthenosphere. In this model, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and it has the potential to influence the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Here, we use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and the mantle are either linear viscous or have a more realistic temperature-dependent, visco-elastic-plastic rheology and we vary the properties of the layer at the base of the oceanic lithosphere. Our results show that the presence of a weak layer affects the dynamics of plates, primarily by increasing the subduction speed and also influences the morphology of subducting slab. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself and for thinner and more buoyant layers, the overall effect is reduced. The overall impact of this effects may depend on the effective contrast between the properties of the slab and the weak layer + mantle systems, and so, by the layer characteristics modelled such as its viscosity, density, thickness and rheology. In this study, we show and summarise this impact consistently with the recent seismological constraints and observations, for example, a pile-up of weak material in the bending zone of the subducting plate.

  20. New constraints on terrestrial and oceanic sources of atmospheric methanol

    Directory of Open Access Journals (Sweden)

    D. B. Millet

    2008-12-01

    Full Text Available We use a global 3-D chemical transport model (GEOS-Chem to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML imply that in situ biological production must be the main methanol source in the OML, dominating over uptake from the atmosphere. It follows that oceanic emission and uptake must be viewed as independent terms in the atmospheric methanol budget. We deduce that the marine biosphere is a large primary source (85 Tg a−1 of methanol to the atmosphere and is also a large sink (101 Tg a−1, comparable in magnitude to atmospheric oxidation by OH (88 Tg a−1. The resulting atmospheric lifetime of methanol in the model is 4.7 days. Aircraft measurements in the North American boundary layer imply that terrestrial plants are a much weaker source than presently thought, likely reflecting an overestimate of broadleaf tree emissions, and this is also generally consistent with surface measurements. We deduce a terrestrial plant source of 80 Tg a−1, comparable in magnitude to the ocean source. The aircraft measurements show a strong correlation with CO (R2=0.51−0.61 over North America during summer. We reproduce this correlation and slope in the model with the reduced plant source, which also confirms that the anthropogenic source of methanol must be small. Our reduced plant source also provides a better simulation of methanol observations over tropical South America.

  1. Effects of Mixed Layer Shear on Vertical Heat Flux

    Science.gov (United States)

    2016-12-01

    risks from seawater steric expansion, increased export of fresh water to the Northern Atlantic, ocean conveyor belt inhibition, permafrost melting...and an Autonomous Ocean Flux Buoy (AOFB) designed by Tim Stanton at the Naval Postgraduate School (NPS). 1. Ice-Tethered Profilers The ITP is an...automated, moderately priced, expendable, CTD profiling system designed to be deployed on perennial sea ice in the Arctic Ocean (Figure 8). It was

  2. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  3. ASSESSING THE IMPACT OF WIND SPEED AND MIXING-LAYER HEIGHT ON AIR QUALITY IN KRAKOW (POLAND IN THE YEARS 2014-2015

    Directory of Open Access Journals (Sweden)

    Robert OLENIACZ

    2016-05-01

    Full Text Available The paper discusses the role of wind speed and mixing-layer height in shaping the levels of pollutant concentrations in the air of Krakow (Southern Poland. The hourly averaged measurements of concentrations of selected air pollutants and wind speed values from the period of 2014-2015, recorded at two of the air quality monitoring stations within Krakow (both industrial and urban background were used for this purpose. Temporal variability of mixing-layer height in the area of the monitoring stations was determined using numerical modelling with the CALMET model and the measurements derived from, i.a., two upper air stations. It was found that wind speed and mixing-layer height are in at least moderate agreement with the concentration values for some pollutants. For PM10, PM2.5, NO2, NOx, CO and C6H6 correlation coefficient is of negative value, which indicates that the low wind speed and low mixing-layer height may be the dominant reason for elevated concentrations of these substances in the air, especially in the winter months. Moderate but positive correlation was found between O3 concentrations and analysed meteorological parameters, proving that the availability of appropriate precursors and their inflow from the neighbouring areas have an important role in the formation of tropospheric ozone. On the other hand, in case of SO2, a weak both positive and negative correlation coefficient was obtained, depending on the period and location of the station concerned.

  4. Can small zooplankton mix lakes?

    OpenAIRE

    Simoncelli, S.; Thackeray, S.J.; Wain, D.J.

    2017-01-01

    The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...

  5. The Phenomenom of Ocean Acidification

    Science.gov (United States)

    Weiss, S.

    2017-12-01

    The earth is 70% and is protected by its atmosphere. The atmosphere is made up of several layers. The sunlight penetrates through the atmosphere and warms the earth surface. The earth's surface then in turn emits invisible infrared radiation back. As this radiation moves back up each layer absorbs some of it. Each layer then sends some of this energy back to earth again. When the layer becomes so thin the energy then escapes back into space. When we are adding more carbon dioxide to these layers we are causing the layers to absorb more of the energy and the radiation. This in turn causes the layers to become warmer since fewer radiation moves up through the layers and this energy bounces back to earth increasing the temperatures. The entire planet is taking on more of this energy and hence the temperatures are rising. The ocean plays a big rule in this change. It has prevented some of the CO2 from entering the earth's atmosphere. Oceans absorb about one third of the anthropogenic CO2 causing the phenomenon of ocean acidification and this comes at a huge cost to our marine environments. The CO2 is absorbed on the surface and then transferred into the deeper waters. Which causes it to be stuck for centuries before making its way back into the atmosphere. As the CO2 dissolves in seawater it causes the PH to lower. With a lowered PH water becomes more acidic. The Hydrogen ions decrease and become less active. With this process carbonic acid is formed. The ocean now is more acidic then it has ever been in the past 650,000 years. The increase in acidic levels has caused our marine life to adjust. Acidosis caused by the increase of carbonic acid in the body fluids means a lower pH in the blood. This changes is just the start to many health issues for these organism's.

  6. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  7. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Directory of Open Access Journals (Sweden)

    J. B. Palter

    2010-11-01

    Full Text Available In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC. One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  8. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  9. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    Science.gov (United States)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  10. Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: applications to clay materials for engineered barriers

    International Nuclear Information System (INIS)

    Meunier, A.; Proust, D.; Beaufort, D.; Lajudie, A.; Petit, J.-C.

    1992-01-01

    The clay materials selected for use in the engineered barriers of the French nuclear waste isolation programme are mainly composed of dioctahedral smectite, either bentonite of Wyoming type or kaolinite-smectites most often consist of randomly stacked layers with low and high charges. In the case of the Wyoming-type bentonite, these two differently charged layers do not react in the same way when subjected to hydrothermal alteration. Overall, the low-charge smectite layers react to form high-charge smectite layers + quartz + kaolinite. Then, fixing K ions, the high-charge smectite layers are transformed into illite-smectite mixed-layers (I/S) when the temperature conditions increase. A symmetrical process is observed in natural or experimental hydrothermal conditions when the high-charge smectite layers of I/S minerals react with quartz and/or kaolinite to produce low-charge smectite layers. The chemical properties of the bentonite-engineered barriers clearly depend on the low charge/high charge smectite layer proportion, which is in turn controlled by the temperature-dependent reactions in the vicinity of the waste disposal. Although there are fewer published data on the kaolinite-smectite mixed-layered minerals (K/S), a similar low charge-high charge reaction appears to affect their smectite component. The experimental alteration of K/S leads to the formation of a low-charge beidellite with an increase in the cation-exchange capacity and in the expandability of the clay material. Thus, the properties of the engineered barrier seems to be improved after hydrothermal alteration. (Author)

  11. Anatomy of a metabentonite: nucleation and growth of illite crystals and their colescence into mixed-layer illite/smectite

    Science.gov (United States)

    Eberl, D.D.; Blum, A.E.; Serravezza, M.

    2011-01-01

    The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.

  12. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  13. Controls on turbulent mixing on the West Antarctic Peninsula shelf

    Science.gov (United States)

    Brearley, J. Alexander; Meredith, Michael P.; Naveira Garabato, Alberto C.; Venables, Hugh J.; Inall, Mark E.

    2017-05-01

    The ocean-to-atmosphere heat budget of the West Antarctic Peninsula is controlled in part by the upward flux of heat from the warm Circumpolar Deep Water (CDW) layer that resides below 200 m to the Antarctic Surface Water (AASW), a water mass which varies strongly on a seasonal basis. Upwelling and mixing of CDW influence the formation of sea ice in the region and affect biological productivity and functioning of the ecosystem through their delivery of nutrients. In this study, 2.5-year time series of both Acoustic Doppler Current Profiler (ADCP) and conductivity-temperature-depth (CTD) data are used to quantify both the diapycnal diffusivity κ and the vertical heat flux Q at the interface between CDW and AASW. Over the period of the study, a mean upward heat flux of 1 W m-2 is estimated, with the largest heat fluxes occurring shortly after the loss of winter fast ice when the water column is first exposed to wind stress without being strongly stratified by salinity. Differences in mixing mechanisms between winter and summer seasons are investigated. Whilst tidally-driven mixing at the study site occurs year-round, but is likely to be relatively weak, a strong increase in counterclockwise-polarized near-inertial energy (and shear) is observed during the fast-ice-free season, suggesting that the direct impact of storms on the ocean surface is responsible for much of the observed mixing at the site. Given the rapid reduction in sea-ice duration in this region in the last 30 years, a shift towards an increasingly wind-dominated mixing regime may be taking place.

  14. Linear and Weakly Nonlinear Instability of Shallow Mixing Layers with Variable Friction

    Directory of Open Access Journals (Sweden)

    Irina Eglite

    2018-01-01

    Full Text Available Linear and weakly nonlinear instability of shallow mixing layers is analysed in the present paper. It is assumed that the resistance force varies in the transverse direction. Linear stability problem is solved numerically using collocation method. It is shown that the increase in the ratio of the friction coefficients in the main channel to that in the floodplain has a stabilizing influence on the flow. The amplitude evolution equation for the most unstable mode (the complex Ginzburg–Landau equation is derived from the shallow water equations under the rigid-lid assumption. Results of numerical calculations are presented.

  15. The concept of Ideal Strategy & its realization using White Ocean Mixed Strategy

    OpenAIRE

    Sreeramana Aithal

    2016-01-01

    Strategic planning and decision making have an important role in organizational development and sustainability. Various types of strategies are used in strategic management such as Red ocean strategy, Blue ocean strategy, Green ocean strategy, Purple ocean strategy and Black ocean strategy. These strategies are used in organizations by top level executive managers for long-term organizational sustainability and to face or deviate from the competition. Based on organizational analy...

  16. Geothermal influences on the abyssal ocean

    Science.gov (United States)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and

  17. ONR Ocean Wave Dynamics Workshop

    Science.gov (United States)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  18. Magnetization of lower oceanic crust and upper mantle

    Science.gov (United States)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  19. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    Science.gov (United States)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  20. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  1. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Science.gov (United States)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-12-01

    Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  2. Influence of Subgrade and Unbound Granular Layers Stiffness on Fatigue Life of Hot Mix Asphalts - HMA

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2013-11-01

    Full Text Available The mainly factors studied to predict fatigue life of hot mix asphalt-HMA in flexible pavements are the loading effect, type of test, compaction methods, design parameters of HMA (e.g., particle size and size distribution curve, fine content, type of bitumen and the variables associated with the environment (mainly moisture, temperature, aging. This study evaluated through a computer simulation, the influence of the granular layers and subgrade on the fatigue life of asphalt layers in flexible pavement structures. Mechanics parameters of granular layers of subgrade, base and subbase were obtained using the mathematical equations currently used for this purpose in the world. The emphasis of the study was the city of Bogotá, where the average annual temperature is 14°C and soils predominantly clay, generally experience CBR magnitudes between 1% and 4%. General conclusion: stiffness of the granular layers and subgrade significantly affect the fatigue resistance of HMA mixtures. Likewise, the use of different equations reported in reference literature in order to characterize granular layers may vary the fatigue life between 4.6 and 48.5 times, varying the thickness of the pavement layers in the design.

  3. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  4. Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-08-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS, described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and

  5. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  6. Ocean impact on Nioghalvfjerdsfjorden Glacier, Northeast Greenland

    Science.gov (United States)

    Schaffer, Janin; Kanzow, Torsten; von Appen, Wilken-Jon; Mayer, Christoph

    2017-04-01

    The ocean plays an important role in modulating the mass balance of the Greenland Ice Sheet by delivering heat to the marine-terminating outlet glaciers around Greenland. The largest of three outlet glaciers draining the Northeast Greenland Ice Stream is Nioghalvfjerdsfjorden Glacier (also referred to as 79 North Glacier). Historic observations showed that warm waters of Atlantic origin are present in the subglacial cavity below the 80 km long floating ice tongue of the Nioghalvfjerdsfjorden Glacier and cause strong basal melt at the grounding line, but to date it has been unknown how those warm water enter the cavity. In order to understand how Atlantic origin waters carry heat into the subglacial cavity beneath Nioghalvfjerdsfjorden Glacier, we performed bathymetric, hydrographic, and velocity observations in the vicinity of the main glacier calving front aboard RV Polarstern in summer 2016. The bathymetric multibeam data shows a 500 m deep and 2 km narrow passage downstream of a 310 m deep sill. This turned out to be the only location deep enough for an exchange of Atlantic waters between the glacier cavity and the continental shelf. Hydrographic and velocity measurements revealed a density driven plume in the vicinity of the glacier calving front causing a rapid flow of waters of Atlantic origin warmer 1°C into the subglacial cavity through the 500 m deep passage. In addition, glacially modified waters flow out of the glacier cavity below the 80 m deep ice base. In the vicinity of the glacier, the glacially modified waters form a distinct mixed layer situated above the Atlantic waters and below the ambient Polar water. At greater distances from the glacier this layer is eroded by lateral mixing with ambient water. Based on our observations we will present an estimate of the ocean heat transport into the subglacial cavity. In comparison with historic observations we find an increase in Atlantic water temperatures throughout the last 20 years. The resulting

  7. Models for ecological models: Ocean primary productivity

    Science.gov (United States)

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.

    2016-01-01

    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  8. The use of the k - {epsilon} turbulence model within the Rossby Centre regional ocean climate model: parameterization development and results

    Energy Technology Data Exchange (ETDEWEB)

    Markus Meier, H.E. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden). Rossby Centre

    2000-09-01

    As mixing plays a dominant role for the physics of an estuary like the Baltic Sea (seasonal heat storage, mixing in channels, deep water mixing), different mixing parameterizations for use in 3D Baltic Sea models are discussed and compared. For this purpose two different OGCMs of the Baltic Sea are utilized. Within the Swedish regional climate modeling program, SWECLIM, a 3D coupled ice-ocean model for the Baltic Sea has been coupled with an improved version of the two-equation k - {epsilon} turbulence model with corrected dissipation term, flux boundary conditions to include the effect of a turbulence enhanced layer due to breaking surface gravity waves and a parameterization for breaking internal waves. Results of multi-year simulations are compared with observations. The seasonal thermocline is simulated satisfactory and erosion of the halocline is avoided. Unsolved problems are discussed. To replace the controversial equation for dissipation the performance of a hierarchy of k-models has been tested and compared with the k - {epsilon} model. In addition, it is shown that the results of the mixing parameterization depend very much on the choice of the ocean model. Finally, the impact of two mixing parameterizations on Baltic Sea climate is investigated. In this case the sensitivity of mean SST, vertical temperature and salinity profiles, ice season and seasonal cycle of heat fluxes is quite large.

  9. Climatological distribution of aragonite saturation state in the global oceans

    Science.gov (United States)

    Jiang, Li-Qing; Feely, Richard A.; Carter, Brendan R.; Greeley, Dana J.; Gledhill, Dwight K.; Arzayus, Krisa M.

    2015-10-01

    Aragonite saturation state (Ωarag) in surface and subsurface waters of the global oceans was calculated from up-to-date (through the year of 2012) ocean station dissolved inorganic carbon (DIC) and total alkalinity (TA) data. Surface Ωarag in the open ocean was always supersaturated (Ω > 1), ranging between 1.1 and 4.2. It was above 2.0 (2.0-4.2) between 40°N and 40°S but decreased toward higher latitude to below 1.5 in polar areas. The influences of water temperature on the TA/DIC ratio, combined with the temperature effects on inorganic carbon equilibrium and apparent solubility product (K'sp), explain the latitudinal differences in surface Ωarag. Vertically, Ωarag was highest in the surface mixed layer. Higher hydrostatic pressure, lower water temperature, and more CO2 buildup from biological activity in the absence of air-sea gas exchange helped maintain lower Ωarag in the deep ocean. Below the thermocline, aerobic decomposition of organic matter along the pathway of global thermohaline circulation played an important role in controlling Ωarag distributions. Seasonally, surface Ωarag above 30° latitudes was about 0.06 to 0.55 higher during warmer months than during colder months in the open-ocean waters of both hemispheres. Decadal changes of Ωarag in the Atlantic and Pacific Oceans showed that Ωarag in waters shallower than 100 m depth decreased by 0.10 ± 0.09 (-0.40 ± 0.37% yr-1) on average from the decade spanning 1989-1998 to the decade spanning 1998-2010.

  10. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats

    Science.gov (United States)

    Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G.

    2018-02-01

    The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio-optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy-pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.

  11. Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications

    Science.gov (United States)

    Thirugnanam, Lavanya; Sundara, Ramaprabhu

    2018-06-01

    A combination of favorable composition and optimized anatase/rutile mixed-phase TiO2 (MPTNF)/Hydrogen exfoliated graphene (HEG) composite nanofibers (MPTNF/HEG) and anatase/rutile mixed-phase TiO2/reduced graphene oxide (rGO) composite nanofibers (MPTNF/rGO) have been reported to enhance the electrochemical properties for supercapacitor applications. These composite nanofibers have been synthesized by an efficient route of electrospinning together with the help of easy chemical methods. Both the composites exhibit good charge storage capability with enhanced pseudocapacitance and electric double-layer capacitance (EDLC) as confirmed by cyclic voltammetry studies. MPTNF/HEG composite showed maximum specific capacitance of 210.5 F/g at the current density of 1 A/g, which was mainly due to its availability of the more active sites for ions adsorption on a few layers of graphene wrapped TiO2 nanofiber surface. The synergistic effect of anatase/rutile mixed phase with one dimensional nanostructure and the electronic interaction between TiO2 and few layer graphene provided the subsequent improvement of ion adsorption capacity. Also exhibit excellent electrochemical performance to improve the capacitive properties of TiO2 electrode materials which is required for the development of flexible electrodes in energy storage devices and open up new opportunities for high performance supercapacitors.

  12. Synthesis of ZnO nanowire arrays on ZnO−TiO{sub 2} mixed oxide seed layer for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Anandhan, N., E-mail: anandhan_kn@rediffmail.com [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Thangamuthu, R. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi (India); Mummoorthi, M. [Advanced Materials and Thin Film Physics Lab, Department of Physics, Alagappa University, Karaikudi (India); Ravi, G. [Photonic Crystal Lab, Department of Physics, Alagappa University, Karaikudi (India)

    2016-08-25

    ZnO nanowire arrays (NWAs) were synthesized on ZnO−TiO{sub 2} mixed oxide seeded FTO conducting glass plate by two-step sol-gel and hydrothermal method, respectively. X-ray diffraction patterns reveal the presence of mixed and hexagonal phases in seed layer and NWAs, respectively. Scanning electron microscope images showed that the FTO glass plate is uniformly covered with grains and a few nanorods in seed layer and dense NWAs are vertically grown on the seed layer. The hexagonal structure and high crystal quality have been confirmed by micro Raman spectra. Photoluminescence spectra also present that NWAs have high crystal quality and less atomic defects. UV spectra indicate that NWAs are absorbed more dye molecules and it has the band gap equal to bulk material. The efficiency of ZnO−TiO{sub 2} mixed oxide seed layer and ZnO NWAs is found to be 0.56 and 0.84% respectively. Electrochemical impedance spectra reveal that NWAs DSSC has high charge transfer recombination resistance than the seed layer DSSC. - Highlights: • ZnO nanowire arrays were synthesized by two-step sol-gel and hydrothermal method. • The crystal structure and crystalline quality of films are confirmed by Raman spectra. • The emission properties of films are investigated by photoluminescence spectra. • ZnO nanowire arrays (NWAs) have higher charge transfer recombination resistance. • The conversion efficiency of the seed layer and NWAs is to be 0.56 and 0.84%.

  13. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  14. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models

    Science.gov (United States)

    Jiang, Guo-Qing; Xu, Jing; Wei, Jun

    2018-04-01

    Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.

  15. Second Tesseral Harmonic Torque Due to the DynamicS of the Oceanic Surface Layer as Detected by TOPEX/POSEIDON Altimetry 1993-2000

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vítek, V.; Vojtíšková, M.

    2005-01-01

    Roč. 49, č. 1 (2005), s. 13-22 ISSN 0039-3169 R&D Projects: GA ČR GA205/05/2381 Institutional research plan: CEZ:AV0Z10030501 Keywords : ocean surface layer * variations * tesseral torque Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.656, year: 2005

  16. Characterization of Organic Thin Film Solar Cells of PCDTBT : PC71BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer

    Directory of Open Access Journals (Sweden)

    Vijay Srinivasan Murugesan

    2015-01-01

    Full Text Available The organic thin film solar cells (OTFSCs have been successfully fabricated using PCDTBT : PC71BM with different mixing ratios (1 : 1 to 1 : 8 and the influence of hole transport layer thickness (PEDOT : PSS. The active layers with different mixing ratios of PCDTBT : PC71BM have been fabricated using o-dichlorobenzene (o-DCB. The surface morphology of the active layers and PEDOT : PSS layer with different thicknesses were characterized by AFM analysis. Here, we report that the OTFSCs with high performance have been optimized with 1 : 4 ratios of PCDTBT : PC71BM. The power conversion efficiency (PCE = 5.17% of the solar cells was significantly improved by changing thickness of PEDOT : PSS layer. The thickness of the PEDOT : PSS layer was found to be of significant importance; the thickness of the PEDOT : PSS layer at 45 nm (higher spin speed 5000 rpm shows higher short circuit current density (Jsc and lower series resistance (Rs and higher PCE.

  17. Hydrothermal synthesis of a layered-type W-Ti-O mixed metal oxide and its solid acid activity

    NARCIS (Netherlands)

    Murayama, T.; Nakajima, K.; Hirata, J.; Omata, K.; Hensen, E.J.M.; Ueda, W.

    2017-01-01

    A layered-type W–Ti–O mixed oxide was synthesized by hydrothermal synthesis from an aqueous solution of ammonium metatungstate and titanium sulfate. To avoid the formation of titania, oxalic acid was used as a reductant. Optimized synthesis led to rod-like particles comprised of MO6 (M = W, Ti)

  18. The role of PEG conformation in mixed layers: from protein corona substrate to steric stabilization avoiding protein adsorption

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    2015-03-01

    Full Text Available Although nanoparticles (NPs have been traditionally modified with a single ligand layer, mixture of ligands might help to combine different functionalities and to further engineer the NP surface. A detailed study of the competition between an alkanethiol (11-mercaptoundecanoic acid and SH-PEG for the surface of AuNPs and the resultant behaviors of this model nanoconjugate is presented here. As a result, the physicochemical properties of these conjugates can be progressively tuned by controlling the composition and especially the conformation of the mixed monolayer. This has implications in the physiological stability. The controlled changes on the SH-PEG conformation rather than its concentration induce a change in the stabilization mechanism from electrostatic repulsion to steric hindrance, which changes the biological fate of NPs. Importantly, the adsorption of proteins on the conjugates can be tailored by tuning the composition and conformation of the mixed layer.

  19. A study of the dilution potential of the planetary boundary layer over India and adjoining oceans using radon measurements

    International Nuclear Information System (INIS)

    Rangarajan, C; Eapen, C.D.

    1990-01-01

    A comparison is made of the dilution potential of the Planetary Boundary Layer (PBI) at surface and high altitude locations in India and over the oceans of the Arabian Sea, Bay of Bengal region, using radon as a tracer. The significant difference in the diffusive properties of the PBL at these locations and their variations through the seasons are discussed and the use of these studies for plant siting pointed out. (author)

  20. On the instabilities of supersonic mixing layers - A high-Mach-number asymptotic theory

    Science.gov (United States)

    Balsa, Thomas F.; Goldstein, M. E.

    1990-01-01

    The stability of a family of tanh mixing layers is studied at large Mach numbers using perturbation methods. It is found that the eigenfunction develops a multilayered structure, and the eigenvalue is obtained by solving a simplified version of the Rayleigh equation (with homogeneous boundary conditions) in one of these layers which lies in either of the external streams. This analysis leads to a simple hypersonic similarity law which explains how spatial and temporal phase speeds and growth rates scale with Mach number and temperature ratio. Comparisons are made with numerical results, and it is found that this similarity law provides a good qualitative guide for the behavior of the instability at high Mach numbers. In addition to this asymptotic theory, some fully numerical results are also presented (with no limitation on the Mach number) in order to explain the origin of the hypersonic modes (through mode splitting) and to discuss the role of oblique modes over a very wide range of Mach number and temperature ratio.

  1. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than 9°C is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  2. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  3. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    Science.gov (United States)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  4. The features of chlorophyll concentration long-standing dynamics in the ocean surface layer (comparison of czcs and seawifs data)

    Science.gov (United States)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve biosphere and make its utilization expedient makes imperative to comprehend in depth long-standing dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. However, hard access and large size of the water surface make its investigation labor-consuming. Besides, the dependence of primary production on high variability of hydrophysical phenomena in the ocean (fluctuations of currents, frontal zones, etc.) makes the location of points for measuring the chlorophyll concentration dynamics significant. In this work the long-standing changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years and the SeaWiFS data from 1997 to 2003. It was shown that the average chlorophyll concentration calculated at all investigated area is varied moderately. However when analyzing spatially local trends, it was detected that areas exist with stable rise and fall of chlorophyll concentration. Some interesting features of the long-standing dynamics of chlorophyll concentration several interesting features were found. There are the various directions of long-term trends (constant increase or decrease) that cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings etc.). The next feature is a difference between the trends revealed by using the CZCS data and the trends based on the SeaWiFS data. Thus, the obtained results allow the possibility of identification of the ocean biota role in the global biospheric gas exchange.

  5. Optical properties of mixed phase boundary layer clouds observed from a tethered balloon platform in the Arctic

    International Nuclear Information System (INIS)

    Sikand, M.; Koskulics, J.; Stamnes, K.; Hamre, B.; Stamnes, J.J.; Lawson, R.P.

    2010-01-01

    A tethered balloon system was used to collect data on radiometric and cloud microphysical properties for mixed phase boundary layer clouds, consisting of ice crystals and liquid water droplets during a May-June 2008 experimental campaign in Ny-Alesund, Norway, located high in the Arctic at 78.9 o N, 11.9 o E. The balloon instrumentation was controlled and powered from the ground making it possible to fly for long durations and to profile clouds vertically in a systematic manner. We use a radiative transfer model to analyze the radiometric measurements and estimate the optical properties of mixed-phase clouds. The results demonstrate the ability of instruments deployed on a tethered balloon to provide information about optical properties of mixed-phase clouds in the Arctic. Our radiative transfer simulations show that cloud layering has little impact on the total downward irradiance measured at the ground as long as the total optical depth remains unchanged. In contrast, the mean intensity measured by an instrument deployed on a balloon depends on the vertical cloud structure and is thus sensitive to the altitude of the balloon. We use the total downward irradiance measured by a ground-based radiometer to estimate the total optical depth and the mean intensity measured at the balloon to estimate the vertical structure of the cloud optical depth.

  6. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    Science.gov (United States)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  7. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  8. The concept of Ideal Strategy and its realization using White Ocean Mixed Strategy

    OpenAIRE

    Aithal, Sreeramana

    2016-01-01

    Strategic planning and decision making have an important role in organizational development and sustainability. Various types of strategies are used in strategic management such as Red ocean strategy, Blue ocean strategy, Green ocean strategy, Purple ocean strategy and Black ocean strategy. These strategies are used in organizations by top level executive managers for long term organizational sustainability and to face or deviate from the competition. Based on the organizational analysis, it...

  9. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    Science.gov (United States)

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure function scaling in a Reλ = 250 turbulent mixing layer

    KAUST Repository

    Attili, Antonio

    2011-12-22

    A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor\\'s frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.

  11. Structure function scaling in a Reλ = 250 turbulent mixing layer

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2011-01-01

    A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor's frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.

  12. "Submesoscale Soup" Vorticity and Tracer Statistics During the Lateral Mixing Experiment

    Science.gov (United States)

    Shcherbina, A.; D'Asaro, E. A.; Lee, C. M.; Molemaker, J.; McWilliams, J. C.

    2012-12-01

    A detailed view of upper-ocean velocity, vorticity, and tracer statistics was obtained by a unique synchronized two-vessel survey in the North Atlantic in winter 2012. In winter, North Atlantic Mode water region south of the Gulf Stream is filled with an energetic, homogeneous, and well-developed submesoscale turbulence field - the "submesoscale soup". Turbulence in the soup is produced by frontogenesis and the surface layer instability of mesoscale eddy flows in the vicinity of the Gulf Stream. This region is a convenient representation of the inertial range of the geophysical turbulence forward cascade spanning scales of o(1-100km). During the Lateral Mixing Experiment in February-March 2012, R/Vs Atlantis and Knorr were run on parallel tracks 1 km apart for 500 km in the submesoscale soup region. Synchronous ADCP sampling provided the first in-situ estimates of full 3-D vorticity and divergence without the usual mix of spatial and temporal aliasing. Tracer distributions were also simultaneously sampled by both vessels using the underway and towed instrumentation. Observed vorticity distribution in the mixed layer was markedly asymmetric, with sparse strands of strong anticyclonic vorticity embedded in a weak, predominantly cyclonic background. While the mean vorticity was close to zero, distribution skewness exceeded 2. These observations confirm theoretical and numerical model predictions for an active submesoscale turbulence field. Submesoscale vorticity spectra also agreed well with the model prediction.

  13. Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica

    Science.gov (United States)

    Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon

    2018-03-01

    Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.

  14. Experimental characterization of initial conditions and spatio-temporal evolution of a small Atwood number Rayleigh-Taylor mixing layer

    Energy Technology Data Exchange (ETDEWEB)

    Mueschke, N J; Andrews, M J; Schilling, O

    2005-09-26

    The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.

  15. Ocean Biological Pump Sensitivities and Implications for Climate Change Impacts

    Science.gov (United States)

    Romanou, Anastasia

    2013-01-01

    The ocean is one of the principal reservoirs of CO2, a greenhouse gas, and therefore plays a crucial role in regulating Earth's climate. Currently, the ocean sequesters about a third of anthropogenic CO2 emissions, mitigating the human impact on climate. At the same time, the deeper ocean represents the largest carbon pool in the Earth System and processes that describe the transfer of carbon from the surface of the ocean to depth are intimately linked to the effectiveness of carbon sequestration.The ocean biological pump (OBP), which involves several biogeochemical processes, is a major pathway for transfer of carbon from the surface mixed layer into the ocean interior. About 75 of the carbon vertical gradient is due to the carbon pump with only 25 attributed to the solubility pump. However, the relative importance and role of the two pumps is poorly constrained. OBP is further divided to the organic carbon pump (soft tissue pump) and the carbonate pump, with the former exporting about 10 times more carbon than the latter through processes like remineralization.Major uncertainties about OBP, and hence in the carbon uptake and sequestration, stem from uncertainties in processes involved in OBP such as particulate organicinorganic carbon sinkingsettling, remineralization, microbial degradation of DOC and uptakegrowth rate changes of the ocean biology. The deep ocean is a major sink of atmospheric CO2 in scales of hundreds to thousands of years, but how the export efficiency (i.e. the fraction of total carbon fixation at the surface that is transported at depth) is affected by climate change remains largely undetermined. These processes affect the ocean chemistry (alkalinity, pH, DIC, particulate and dissolved organic carbon) as well as the ecology (biodiversity, functional groups and their interactions) in the ocean. It is important to have a rigorous, quantitative understanding of the uncertainties involved in the observational measurements, the models and the

  16. Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals

    Directory of Open Access Journals (Sweden)

    Lavenia Ratnarajah

    2018-03-01

    Full Text Available The availability of iron controls primary productivity in large areas of the Southern Ocean. Iron is largely supplied via atmospheric dust deposition, melting ice, the weathering of shelf sediments, upwelling, sediment resuspension, mixing (deep water, biogenic, and vertical mixing and hydrothermal vents with varying degrees of temporal and spatial importance. However, large areas of the Southern Ocean are remote from these sources, leading to regions of low primary productivity. Recent studies suggest that recycling of iron by animals in the surface layer could enhance primary productivity in the Southern Ocean. The aim of this review is to provide a quantitative and qualitative assessment of the current literature on pelagic iron recycling by marine animals in the Southern Ocean and highlight the next steps forward in quantifying the retention and recycling of iron by higher trophic levels in the Southern Ocean. Phytoplankton utilize the iron in seawater to meet their metabolic demand. Through grazing, pelagic herbivores transfer the iron in phytoplankton cells into their body tissues and organs. Herbivores can recycle iron through inefficient feeding behavior that release iron into the water before ingestion, and through the release of fecal pellets. The iron stored within herbivores is transferred to higher trophic levels when they are consumed. When predators consume iron beyond their metabolic demand it is either excreted or defecated. Waste products from pelagic vertebrates can thus contain high concentrations of iron which may be in a form that is available to phytoplankton. Bioavailability of fecal iron for phytoplankton growth is influenced by a combination of the size of the fecal particle, presence of organic ligands, the oxidation state of the iron, as well as biological (e.g., remineralization, coprochaly, coprorhexy, and coprophagy and physical (e.g., dissolution, fragmentation processes that lead to the degradation and release of

  17. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  18. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    Science.gov (United States)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  19. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    2011-02-01

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  20. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict

    International Nuclear Information System (INIS)

    Broecker, W.S.; Ledwell, J.R.; Takahashi, T.; Weiss, R.; Merlivat, L.; Memery, L.; Tsung-Hung Peng; Jahne, B.; Otto Munnich, K.

    1986-01-01

    Eddy correlation measurements over the ocean give CO 2 fluxes an order of magnitude or more larger than expected from mass balance or more larger than expected from mass balance measurements using radiocarbon and radon 222. In particular, Smith and Jones (1985) reported large upward and downward fluxes in a surf zone at supersaturations of 15% and attributed them to the equilibration of bubbles at elevated pressures. They argue that even on the open ocean such bubble injection may create steady state CO 2 supersaturations and that inferences of fluxes based on air-sea pCO 2 differences and radon exchange velocities must be made with caution. We defend the global average CO 2 exchange rate determined by three independent radioisotopic means: prebomb radiocarbon inventories; global surveys of mixed layer radon deficits; and oceanic uptake of bomb-produced radiocarbon. We argue that laboratory and lake data do not lead one to expect fluxes as large as reported from the eddy correlation technique; that the radon method of determining exchange velocities is indeed useful for estimating CO 2 fluxes; that supersaturations of CO 2 due to bubble injection on the open ocean are negligible; that the hypothesis that Smith and Jones advance cannot account for the fluxes that they report; and that the pCO 2 values reported by Smith and Jones are likely to be systematically much too high. The CO 2 fluxes for the ocean measured to data by the micrometeorological method can be reconciled with neither the observed concentrations of radioisotopes of radon and carbon in the oceans nor the tracer experiments carried out in lakes and in wind/wave tunnels

  1. Structure of binary mixed polymer Langmuir layers

    NARCIS (Netherlands)

    Bernardini, C.

    2012-01-01

    The possibility of preparing 2D stable emulsions through mixing of homopolymers in a Langmuir monolayer is the core topic of this thesis. While colloid science has achieved well established results in the study of bulk dispersed systems, accounts on properties of mixed monomolecular films are

  2. Deciphering the Temporal and Spatial Complexity in Submarine Canyons in Antarctica: the Role of Mixed Layer Depth in Regulating Primary Production

    Science.gov (United States)

    Carvalho, F.; Kohut, J. T.; Schofield, O.; Oliver, M. J.; Gorbunov, M. Y.

    2016-02-01

    There is a high spatial and temporal variability in the biophysical processes regulating primary productivity in submarine canyons in the West Antarctic Peninsula (WAP). WAP canyon heads are considered biological "hotspots" by providing predictable food resource and driving penguin foraging locations. Because the physiology and composition of the phytoplankton blooms and the physical mechanisms driving them aren't well understood, we aim to characterize the dynamics of the spring phytoplankton bloom at the head of a canyon in the WAP. A 6-year record of Slocum glider deployments is analyzed, corresponding to over 16,000 water column profiles. The mixed layer depth (MLD), determined by the maximum of the buoyancy frequency criteria, was found to be the MLD definition with the highest ecological relevance. The same holds true for other regions in Antarctica such as the Ross and Amundsen Seas. A FIRe sensor on a glider was used to evaluate physiological responses of phytoplankton to canyon dynamics using fluorescence kinetics. Initial results show a spatial influence, with increased photosynthetic efficiencies found at the canyon head. The strongest signal was the seasonal cycle. The shoaling of the MLD in early January results in increased chlorophyll a concentrations and as MLD deepens in mid season due to wind forcing, phytoplankton concentrations decrease, likely due to decreased light availability. A consistent secondary peak in chlorophyll matches a shoaling in MLD later in the growth season. A steady warming and increase in salinity of the MLD is seen throughout the season. Spatial differences were recorded at the head of the canyon and result from the local circulation. Shallower MLD found on the northern region are consistent with a fresher surface ocean (coastal influence) and increased chlorophyll concentrations. The southern region is thought to be more oceanic influenced as intrusions of warm deep water (mUCDW) to the upper water column were recorded

  3. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  4. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  5. Ocean images in music compositions and folksongs

    Science.gov (United States)

    Liu, C. M.

    2017-12-01

    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  6. Measurements within the Pacific-Indian oceans throughflow region

    Science.gov (United States)

    Fieux, M.; Andrié, C.; Delecluse, P.; Ilahude, A. G.; Kartavtseff, A.; Mantisi, F.; Molcard, R.; Swallow, J. C.

    1994-07-01

    Two hydrographic (θ, S, O 2) and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. Marion Dufresne. The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30 S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of northern Indian Ocean origin was present. From the characteristics of the bottom water found in the Lombok basin, the maximum depth of the Java ridge which separates the Lombok basin from the Northwest Australian basin lies around 3650 m. Off Sumba, Savu, Roti and Timor channels a core of low salinity and high oxygen content near-surface water was found in the axis of each channel, which suggests strong currents from the interior Indonesian seas towards the Indian Ocean. The entrance of the deep water flowing in the opposite direction, from the Indian Ocean to the Timor basin, was marked below 1400 m to the sill depth, through an increase of salinity and oxygen content. The flow reversal, observed briefly by a Pegasus direct current profiler in the Timor strait, was located at 1200 m depth. During the southeast monsoon, the net (geostrophic + Ekman) transport calculated on the section Australia-Bali give an estimate of the throughflow between 0 and 500 m of 22 ± 4 × 10 6 m 3 s -1 towards the Indian Ocean, with a concentration of the transport in the upper layers (19 × 10 6 m 3 s -1 in 0-200 m) and

  7. Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    NARCIS (Netherlands)

    Stickler, A.; Fischer, H.; Bozem, H.; Gurk, C.; Schiller, C.; Martinez-Harder, M.; Kubistin, D.; Harder, H.; Williams, J.; Eerdekens, G.; Yassaa, N.; Ganzeveld, L.N.; Sander, R.; Lelieveld, J.

    2007-01-01

    We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL) air constrained by

  8. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    Science.gov (United States)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  9. A Mixed-Valent Molybdenum Monophosphate with a Layer Structure: KMo 3P 2O 14

    Science.gov (United States)

    Guesdon, A.; Borel, M. M.; Leclaire, A.; Grandin, A.; Raveau, B.

    1994-03-01

    A new mixed-valent molybdenum monophosphate with a layer structure KMo 3P 2O 14 has been isolated. It crystallizes in the space group P2 1/ m with a = 8.599(2) Å, b = 6.392(2) Å, c = 10.602(1) Å, and β = 111.65(2)°. The layers [Mo 3P 2O 14] ∞ are parallel to (100) and consist of [MoPO 8] ∞ chains running along limitb→ , in which one MoO 6 octahedron alternates with one PO 4 tetrahedron. In fact, four [MoPO 8] ∞ chains share the corners of their polyhedra and the edges of their octahedra, forming [Mo 4P 4O 24] ∞ columns which are linked through MoO 5 bipyramids along limitc→. The K + ions interleaved between these layers are surrounded by eight oxygens, forming bicapped trigonal prisms KO 8. Besides the unusual trigonal bipyramids MoO 5, this structure is also characterized by a tendency to the localization of the electrons, since one octahedral site is occupied by Mo(V), whereas the other octahedral site and the trigonal bipyramid are occupied by Mo(VI). The similarity of this structure with pure octahedral layer structures suggests the possibility of generating various derivatives, and of ion exchange properties.

  10. Method and apparatus for efficient injection of CO2 in oceans

    Science.gov (United States)

    West, Olivia R.; Tsouris, Constantinos; Liang, Liyuan

    2003-07-29

    A liquid CO.sub.2 injection system produces a negatively buoyant consolidated stream of liquid CO.sub.2, CO.sub.2 hydrate, and water that sinks upon release at ocean depths in the range of 700-1500 m. In this approach, seawater at a predetermined ocean depth is mixed with the liquid CO.sub.2 stream before release into the ocean. Because mixing is conducted at depths where pressures and temperatures are suitable for CO.sub.2 hydrate formation, the consolidated stream issuing from the injector is negatively buoyant, and comprises mixed CO.sub.2 -hydrate/CO.sub.2 -liquid/water phases. The "sinking" characteristic of the produced stream will prolong the metastability of CO.sub.2 ocean sequestration by reducing the CO.sub.2 dissolution rate into water. Furthermore, the deeper the CO.sub.2 hydrate stream sinks after injection, the more stable it becomes internally, the deeper it is dissolved, and the more dispersed is the resulting CO.sub.2 plume. These factors increase efficiency, increase the residence time of CO2 in the ocean, and decrease the cost of CO.sub.2 sequestration while reducing deleterious impacts of free CO.sub.2 gas in ocean water.

  11. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    Science.gov (United States)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable

  12. Interfacial mixing in double-barrier magnetic tunnel junctions with amorphous NiFeSiB layers

    International Nuclear Information System (INIS)

    Chun, B.S.; Ko, S.P.; Hwang, J.Y.; Rhee, J.R.; Kim, T.W.; Kim, Y.K.

    2007-01-01

    Double-barrier magnetic tunnel junctions (DMTJs) comprising Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO x /free layer (CoFe 4/NiFeSiB 2/CoFe 4, CoFe 10, or NiFeSiB 10)/AlO x /CoFe 7/IrMn 10/Ru 60 (nm) have been examined with an emphasis given on understanding the interfacial mixing effects. The DMTJ, consisted of NiFeSiB, shows low switching field and low bias voltage dependence because the amorphous NiFeSiB has lower M S (=800 emu/cm 3 ) and offers smoother interfaces than polycrystalline CoFe. An interesting feature observed in the CoFe/NiFeSiB/CoFe sandwich free layered DMTJ is the presence of a wavy MR transfer curve at high-resistance region. Because the polycrystalline CoFe usually grows into a columnar structure, diamagnetic CoSi, paramagnetic FeSi, and/or diamagnetic CoB might have been formed during the sputter-deposition process. By employing electron energy loss spectrometry (EELS) and Auger electron spectroscopy (AES), we were able to confirm that Si and B atoms were arranged evenly in the top and bottom portions of AlO x /CoFe interfaces. This means that the interfacial mixing resulted in a distorted magnetization reversal process

  13. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  14. /sup 226/Ra in the western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.

    1987-09-01

    /sup 226/Ra profiles have been measured in the western Indian Ocean as part of the 1977-78 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10/sup 0/S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar Basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  15. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  16. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-01-01

    Highlights: ► Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. ► Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. ► Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni–Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  17. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  18. Lateral Mixing

    Science.gov (United States)

    2014-09-30

    negative (right panel c) and the kinetic energy dissipation is larger than that expected from meterological forcing alone (right panel a). This is...10.1002/grl.50919. Shcherbina, A. et al., 2014, The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean., Bull. American Meterological

  19. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Misra, S.; Banerjee, R.

    ). The mixing trend definitely excludes EM1 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5-10% marine pelagic sediment, Weaver, 1991], EM2 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5... are plotted on or close to the mixing line between the average depleted mantle and the Indian Ocean Pelagic sediments, and this mixing line excludes the EM1, EM2 and HIMU (Fig. 12, c, e). The CR, NCIR and SCIR MORBs are closer to the average depleted...

  20. Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign

    Directory of Open Access Journals (Sweden)

    S.-H. Lee

    2011-07-01

    Full Text Available Transport and chemical transformation of well-defined New York City (NYC urban plumes over the North Atlantic Ocean were studied using aircraft measurements collected on 20–21 July 2004 during the ICARTT (International Consortium for Atmospheric Research on Transport and Transformation field campaign and WRF-Chem (Weather Research and Forecasting-Chemistry model simulations. The strong NYC urban plumes were characterized by carbon monoxide (CO mixing ratios of 350–400 parts per billion by volume (ppbv and ozone (O3 levels of about 100 ppbv near New York City on 20 July in the WP-3D in-situ and DC-3 lidar aircraft measurements. On 21 July, the two aircraft captured strong urban plumes with about 350 ppbv CO and over 150 ppbv O3 (~160 ppbv maximum about 600 km downwind of NYC over the North Atlantic Ocean. The measured urban plumes extended vertically up to about 2 km near New York City, but shrank to 1–1.5 km over the stable marine boundary layer (MBL over the North Atlantic Ocean. The WRF-Chem model reproduced ozone formation processes, chemical characteristics, and meteorology of the measured urban plumes near New York City (20 July and in the far downwind region over the North Atlantic Ocean (21 July. The quasi-Lagrangian analysis of transport and chemical transformation of the simulated NYC urban plumes using WRF-Chem results showed that the pollutants can be efficiently transported in (isentropic layers in the lower atmosphere (<2–3 km over the North Atlantic Ocean while maintaining a dynamic vertical decoupling by cessation of turbulence in the stable MBL. The O3 mixing ratio in the NYC urban plumes remained at 80–90 ppbv during nocturnal transport over the stable MBL, then grew to over 100 ppbv by daytime oxidation of nitrogen oxides (NOx = NO + NO2 with mixing ratios on the order of 1 ppbv. Efficient transport of reactive nitrogen species (NOy, specifically nitric

  1. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  2. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Science.gov (United States)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  3. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2011-02-01

    Full Text Available The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  4. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  5. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    OpenAIRE

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  6. Arctic Ocean outflow and glacier–ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland

    Directory of Open Access Journals (Sweden)

    I. A. Dmitrenko

    2017-12-01

    Full Text Available The first-ever conductivity–temperature–depth (CTD observations on the Wandel Sea shelf in northeastern Greenland were collected in April–May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014–2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature–salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean–glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  7. Ocean Circulation and Mixing Relevant to the Global System

    National Research Council Canada - National Science Library

    Gordon, Arnold

    1999-01-01

    .... Arlindo's goal is to resolve the circulation and water mass stratification within the Indonesian Seas in order to formulate a thorough description of the source, spreading patterns, inter-ocean...

  8. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  9. Supported Layered Double Hydroxide-Related Mixed Oxides and Their Application in the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 53, č. 2 (2011), s. 305-316 ISSN 0169-1317 R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.474, year: 2011

  10. The oceanic chemistry of the U- and Th-series nuclides

    International Nuclear Information System (INIS)

    Cochran, J.K.

    1982-01-01

    The subject is discussed under the headings: input and removal of U- and Th-series nuclides in the oceans; uranium (input to the oceans; in the coastal ocean; in the open ocean; in sediment pore water; removal from the oceans; sources and sinks of 234 U in the oceans); thorium (scavenging in the deep sea; 230 Th and 231 Pa balance; removal from the coastal and surface ocean); Ra-226 and Ra-228; radon (in surface waters; near bottom 222 Rn as a tracer for vertical mixing); lead-210; polonium-210. (U.K.)

  11. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world

    Science.gov (United States)

    Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian

    2014-05-01

    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.

  12. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  13. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    Science.gov (United States)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths

  14. Coupling between marine boundary layer clouds and summer-to-summer sea surface temperature variability over the North Atlantic and Pacific

    Science.gov (United States)

    Myers, Timothy A.; Mechoso, Carlos R.; DeFlorio, Michael J.

    2018-02-01

    Climate modes of variability over the Atlantic and Pacific may be amplified by a positive feedback between sea-surface temperature (SST) and marine boundary layer clouds. However, it is well known that climate models poorly simulate this feedback. Does this deficiency contribute to model-to-model differences in the representation of climate modes of variability? Over both the North Atlantic and Pacific, typical summertime interannual to interdecadal SST variability exhibits horseshoe-like patterns of co-located anomalies of shortwave cloud radiative effect (CRE), low-level cloud fraction, SST, and estimated inversion strength over the subtropics and midlatitudes that are consistent with a positive cloud feedback. During winter over the midlatitudes, this feedback appears to be diminished. Models participating in the Coupled Model Intercomparison Project phase 5 that simulate a weak feedback between subtropical SST and shortwave CRE produce smaller and less realistic amplitudes of summertime SST and CRE variability over the northern oceans compared to models with a stronger feedback. The change in SST amplitude per unit change in CRE amplitude among the models and observations may be understood as the temperature response of the ocean mixed layer to a unit change in radiative flux over the course of a season. These results highlight the importance of boundary layer clouds in interannual to interdecadal atmosphere-ocean variability over the northern oceans during summer. The results also suggest that deficiencies in the simulation of these clouds in coupled climate models contribute to underestimation in their simulation of summer-to-summer SST variability.

  15. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  16. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO{sub 2}; Role des tourbillons de meso-echelle oceaniques dans la distribution et les flux air-mer de CO{sub 2} anthropique a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Zouhair, Lachkar

    2007-02-15

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO{sub 2}, CFC-11 and bomb {delta}{sup 14}C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb {delta}{sup 14}C uptake and storage. Yet for CFC-11 and anthropogenic CO{sub 2}, increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a

  17. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  18. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  19. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    Science.gov (United States)

    Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.

    2011-12-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as

  20. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    International Nuclear Information System (INIS)

    Taveira, R M R; Silva, C B da; Pereira, J C F

    2011-01-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ('nibbling') motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Re λ = 120 to Re λ = 160 (da Silva and Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the 'scalar interface' and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by I , in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface 0.1y I /λ to 1y I /λand boosting them as far as -2.5y I /η θ C .