WorldWideScience

Sample records for ocean energy industrial

  1. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  2. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  3. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  4. Energy industry

    Science.gov (United States)

    Staszak, Katarzyna; Wieszczycka, Karolina

    2018-04-01

    The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.

  5. Energy from rivers and oceans

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role energy from rivers and oceans may have in the energy future of the US. The topics discussed in the chapter include historical aspects of using energy from rivers and oceans, hydropower assessment including resources, technology and costs, and environmental and regulatory issues, ocean thermal energy conversion including technology and costs and environmental issues, tidal power, and wave power

  6. Energy Industry

    National Research Council Canada - National Science Library

    Butler, James; Bekbenbetov, Marat; Coffman, Katherine; Davies, Kirk; Farrar, Michael R; Fletcher, Scott N; Hall, Robert; Kljajic, Senad; Koprucu, Feza; Leek, Kevin

    2007-01-01

    ... technologies and use of alternative fuels. Specifically, the national energy policy should lead to one air quality standard for automobile emissions, articulate a clear position on reducing greenhouse gas emissions, increase the diversity...

  7. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  8. Industry and energy; Industrie et energie

    Energy Technology Data Exchange (ETDEWEB)

    Birules y Bertran, A.M. [Ministere des Sciences et de la Technologie (Spain); Folgado Blanco, J. [Secretariat d' Etat a l' Economie, a l' Energie et aux PME du Royaume d' Espagne (Spain)

    2002-07-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  9. Ocean Thermal Extractable Energy Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Ascari, Matthew [Lockheed Martin Corporation, Bethesda, MD (United States)

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  10. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...

  11. Handbook of Ocean Wave Energy

    DEFF Research Database (Denmark)

    This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment...... of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners...... in the wave energy sector. •Offers a practice-oriented reference guide to the field of ocean wave energy •Presents an overview as well as a deeper insight into wave energy converters •Covers both the economic and engineering aspects related to ocean wave energy conversion...

  12. Life cycle assessment of ocean energy technologies

    OpenAIRE

    UIHLEIN ANDREAS

    2015-01-01

    Purpose Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply. Methods...

  13. Energy prospects for industry

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, P P; Roberts, G F.I.; Thomas, V E; Davies, D; Crow, L M

    1983-01-01

    Contents: Electricity today and tomorrow; Gas--supply prospects for the future; Petroleum based energy--the UK perspective; Future markets for coal; Flexibility--the key to Dunlop's energy strategy; Energy conservation in Alcan; Present and future energy patterns in Courtaulds PLC; New energy technology for the quarrying industry.

  14. Panorama 2011: Ocean renewable energies

    International Nuclear Information System (INIS)

    Demoulin, P.; Vinot, S.

    2011-01-01

    Our society is looking increasingly to renewable energy sources in the face of the energy and environmental challenges with which it is grappling. As far as ocean renewable energies are concerned, a wide range of technologies is currently being experimented with, including wind power and energy derived from waves and tidal currents. They are all at varying levels of maturity, and bring with them very different technical and economic challenges. (author)

  15. Energy conservation in industry

    International Nuclear Information System (INIS)

    Pembleton, P.

    1992-01-01

    Energy Conservation in Industry is the first number in the Energy and Environmental Series of the Industrial and Technological Information Bank (INTIB). The Series supersedes the INECA Journal and reflects the broader information programme undertaken by INTIB. The present number of the Series contains contributions from three major international databases and five topic-specific sources, including three United Nations Organizations. The present publication consists of a recent technical report on a current topic: reducing energy loss in four industrial sectors and improving energy conservation through waste-heat recovery, followed by two sections containing abstracts of technical materials

  16. Industry and energy

    International Nuclear Information System (INIS)

    Birules y Bertran, A.M.; Folgado Blanco, J.

    2002-01-01

    This document is the provisional version of the summary of the debates of the 2433. session of the European Union Council about various topics relative to the industry and the energy. The energy-related topics that have been debated concern: the government helps in coal industry, the internal electricity and gas market, the trans-European energy networks, the bio-fuels in transportation systems, the energy charter, the pluri-annual energy program, and the green book on the security of energy supplies. (J.S.)

  17. Forest industries energy research

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. C.

    1977-10-15

    Data on energy use in the manufacturing process of the wood products industry in 1974 are tabulated. The forest industries contributed 10% of New Zealand's factory production and consumed 25% of all industrial energy (including that produced from self-generated sources such as waste heat liquors and wood wastes) in that year. An evaluation of the potential for savings in process heat systems in existing production levels is shown to be 3% in the short, medium, and long-term time periods. The industry has a high potential for fuel substitution in all sectors. The payback periods for the implementation of the conservation measures are indicated.

  18. Finnish industry's energy requirement

    International Nuclear Information System (INIS)

    Punnonen, J.

    2000-01-01

    Industry uses around half of the electricity consumed in Finland. In 1999, this amounted to 42.3 TWh and 420 PJ of fuel. Despite the continual improvements that have been made in energy efficiency, energy needs look set to continue growing at nearly 2% a year. Finnish industrial output rose by some 5.5% in 1999. In energy-intensive sectors such as pulp and paper, output rose by 3.4%, in the metal industry by 4%, and in the chemical industry by 3.1%. Growth across Finnish industry is largely focused on the electrical and electronics industries, however, where growth last year was 24.3% The Finnish forest products industry used a total of 26.1 TWh of electricity last year, up 1% on 1998. This small increase was the result of the industry's lower-than-average operating rate in the early part of the year The metal industry used 7.2 TWh of electricity, an increase of 5.8% on 1998. Usage in the chemical industry rose by 2% to 5.2 TWh. Usage by the rest of industry totalled 3.8 TWh, up 2.3% on 1998. All in all, industry's use of electricity rose by 2% in 1999 to 42,3 TWh. Increased demand on industry's main markets in Europe will serve to boost industrial output and export growth this year. This increased demand will be particularly felt in energy-intensive industries in the shape of an increased demand for electricity. Overall, electricity demand is expected to grow by 3% this year, 1% more than industry's longterm projected electricity usage growth figure of 2%. The structure of industry's fuel use in Finland has changed significantly over the last 25 years. Oil, for example, now accounts for only some 10% of fuel use compared to the 40% typical around the time of the first oil crisis. Oil has been replaced by biofuels, peat, and natural gas. The pulp and paper industry is the largest industrial user of renewable energy sources in Finland, and uses wood-related fuels to cover nearly 70% of its fuel needs

  19. SI-Ocean Strategic technology agenda for the ocean energy sector: From development to market

    OpenAIRE

    MAGAGNA DAVIDE; TZIMAS Evangelos; HANMER Clare; BADCOCK-BROE Abbie; MACGILLIVRAY Andy; JEFFREY Henry; RAVENTOS Alex

    2014-01-01

    This paper focuses on the development of the ocean energy sector, identifying the necessary steps that are required in order to facilitate the development and deployment of ocean energy technologies towards the formation of a viable and successful industry. Europe, in particular the Atlantic Arc region, has a vast wave and tidal energy resource, which could supply a significant part of the European electricity demand and play an important role in the future European energy mix. The ...

  20. 2002 Industry Studies: Energy

    Science.gov (United States)

    2002-01-01

    Information technologies have facilitated the rapid growth of electronic market places across the energy industry for trading energy commodities, such as...and information technology industry has further increased the importance of abundant, low-cost, and reliable electric power. Recently, public...California, the country has recently slowed its efforts to make electricity markets more competitive. Recommendations. Unless some technological “silver bullet

  1. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  2. Ocean Sustainability Issues Are Focus of Industry Gathering

    Science.gov (United States)

    Showstack, Randy

    2013-05-01

    How can industry operate in the oceans sustainably? Is there a broadly agreed upon definition of sustainability? How can industry and others deal with conflicting uses in the oceans? These were among the questions explored at a recent ocean industry leadership conference that brought together several hundred participants from business, nongovernmental organizations, and governments from around the world.

  3. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  4. Handbook of ocean wave energy

    CERN Document Server

    Kofoed, Jens

    2017-01-01

    This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.

  5. Ocean energy. Tide and tidal power

    Energy Technology Data Exchange (ETDEWEB)

    Finkl, Charles W. [Coastal Planning and Engineering, Inc., Boca Raton, FL (United States); Charlier, Roger H.

    2009-07-01

    Engineers' dreams and fossil energy replacement schemes can come true. Man has been tapping the energy of the sea to provide power for his industries for centuries. Tidal energy combined with that of waves and marine winds rank among those most successfully put the work. Large scale plants are capital intensive but smaller ones, particularly built in China, have proven profitable. Since the initiation of the St Malo project in France, similar projects have gone into active service where methods have been devised to cut down on costs, new types of turbines developed and cost competitiveness considerably improved. Tidal power has enormous potential. The book reviews recent progress in extracting power from the ocean, surveys the history of tidal power harnessing and updates a prior publication by the author. (orig.)

  6. Ocean thermal-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G; Niblett, C; Walker, L

    1983-03-01

    Ocean thermal-energy conversion (OTEC) is a novel 'alternative' energy technology that has created much interest in a number of countries; namely, the USA, Japan, France, Sweden, Holland, India and most recently, the UK. In particular, the first three of these have had programmes to develop the required technology. However, most interest has been centred in the USA, where the current hiatus in Federal funding provides a timely opportunity to assess progress. This paper offers a survey of the prevailing position there; outlining the outstanding technical and associated problems, and likely future developments. Non-USA programmes are only mentioned to contrast them with the American position. At present, it does not appear that OTEC plants will be commercially viable on a widespread basis even in the tropics. This is particularly true of the larger plants (400 MWe, MWe = megawatts of electrical energy, the final output of a power station) towards which the American programme is ultimately geared. There does seem to be a strong possibility that small OTEC plants, around 40 MWe or less, can be commercial in certain circumstances. This would be possible when one or, preferably, more of the following conditions are met: (i) where a land-based rather than 'at sea' plant is possible, (ii) where alternative energy supplies are at a premium, i.e. islands or regions without indigenous energy supplies, and (iii) where conditions are such that an OTEC plant could operate in conjunction with either or both an aquaculture or desalination plant.

  7. Creating and building an ocean renewable energy cluster for Canada

    International Nuclear Information System (INIS)

    Protter, N.

    2005-01-01

    The Ocean Renewable Energy Group (OREG) is a collaboration between Canadian Industry, academia and government that provides leadership to advocate for and accelerate the development of a Canadian ocean renewable energy sector that can serve domestic needs and reach a global market. Approaches to ocean renewable energy were reviewed in this PowerPoint presentation. It was noted that no market leader in ocean renewable energy has emerged, but that the industry has the potential for a more rapid adoption curve than the wind power industry. The integration of ocean renewable energy with offshore wind power production was discussed, as well as hydrogen production, remote electrification, and the production of potable water through desalination. Various incentives and international demonstration projects were reviewed and the goals of OREG were outlined. The forming of strategic alliances with other global organizations was discussed, as well as OREG's plans to contribute to the education of sources of capital to facilitate the commercialization of Canadian technologies. It was noted that pilot plants are planned with BC Hydro in 2007. Issues concerning environmental assessments were discussed. It was suggested that as the cost of traditional generation rises, investment in ocean energy development may reduce risks to investors and ratepayers. Issues concerning funding were examined and the OREG strategy and action plan was reviewed. Research and development themes were outlined. It was suggested that British Columbia's ocean energy regime provides a unique competitive advantage, as did natural winds for Denmark in the early 1980s. Pioneer sites and the creation of a supportive climate were discussed, as well as issues concerning regulators and grid connection investment. A supply chain was outlined and details of various companies involved in ocean energy development were presented. refs., tabs., figs

  8. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  9. Energy's role in industrial competitiveness

    International Nuclear Information System (INIS)

    1993-01-01

    At a conference on the role of energy in industrial competitiveness, papers were presented on the energy consumer's perspective on energy issues in the mineral and food industries, global perspectives on the role of energy in industrial competitiveness, a supplier's perspective on energy issues in the oil/gas and electric industries, perspectives on environmental issues including climate change, and international partnerships for industrial competitiveness, notably in the former Soviet Union and eastern Europe. Separate abstracts have been prepared for 15 papers from this conference

  10. California Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  11. Ocean energy: key legal issues and challenges

    International Nuclear Information System (INIS)

    Wright, Glen; Rochette, Julien; O'Hagan, Anne Marie; De Groot, Jiska; Leroy, Yannick; Soininen, Niko; Salcido, Rachael; Castelos, Montserrat Abad; Jude, Simon; Kerr, Sandy

    2015-01-01

    Ocean energy is a novel renewable energy resource being developed as part of the push towards a 'Blue Economy'. The literature on ocean energy has focused on technical, environmental, and, increasingly, social and political aspects. Legal and regulatory factors have received less attention, despite their importance in supporting this new technology and ensuring its sustainable development. In this Issue Brief, we set out some key legal challenges for the development of ocean energy technologies, structured around the following core themes of marine governance: (i) international law; (ii) environmental impacts; (iii) rights and ownership; (iv) consenting processes; and (v) management of marine space and resources. (authors)

  12. Ocean floor mounting of wave energy converters

    Science.gov (United States)

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  13. Energy End-Use : Industry

    NARCIS (Netherlands)

    Banerjee, R.; Gong, Y; Gielen, D.J.; Januzzi, G.; Marechal, F.; McKane, A.T.; Rosen, M.A.; Es, D. van; Worrell, E.

    2012-01-01

    The industrial sector accounts for about 30% of the global final energy use and accounts for about 115 EJ of final energy use in 2005. 1Cement, iron and steel, chemicals, pulp and paper and aluminum are key energy intensive materials that account for more than half the global industrial use. There

  14. Energy economy in Nordic industry

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P H; Finnedal, B H

    1980-01-01

    The employment, economic and energetic situation in various industrial branches and their importance for industry as a whole is mapped for Nordic countries. Future Nordic energy projects can base their attempts to decrease energy costs per unit on this report. In food and stimulants industry, chemical, glass and ceramic industry over 90% energy is used for processing while in steel- and metal-industry the processing consumes only about 25%. Rentability of new investments in energy saving should be considered in these branches against investments in automation, new equipment etc. Common Nordic energy-saving projects can provide much better energy economy. For instance 4% of USA energy which had formerly been used in drying processes is drastically decreased and if the USA result can be transferred to Nordic conditions DKr 160 million can be save. Prospective common projects are process-types like drying, spray-drying, heat treatments of mineral proproducts, and evaporation.

  15. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  16. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  17. Industrial energy conservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, P.S.; Williams, M.A. (eds.)

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  18. Industrial Energy Conservation Technology

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  19. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  20. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  1. Forest industries energy reserch: summary

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G C

    1976-01-01

    The forest industries, which contribute 10% of New Zealand's factory production and consume 25% of all industrial energy (including self-generated sources such as waste liquors and wood wastes), were closely investigated to determine the extent to which imported energy sources can be substituted by local sources and savings made in the specific energy consumption of the industry's products. Issues considered as fundamental to the study were conservation of the nation's fossil fuels; nuclear power should be considered only after full study of its implications; restraints on the growth of energy demands; a greater emphasis on renewable energy resources; and new energy-intensive industries must account for the environmental and social costs of providing the energy. The study was commenced in February 1975 and involved a series of visits to all the major plants and a few representative smaller plants. Energy balances for all the major plants were prepared and are published in the text of the report. The forest-based industries have developed from a large number of small scattered sawmills, drawing from indigenous resources into a few large industrial units which are capital-intensive and produce a wide variety of products serving the home and export markets. They fall into four categories, roughly as follows: large integrated units; intermediate-size integrated mills; sawmills and chip plants; and manufacturing.

  2. Taxation of the energy industries

    International Nuclear Information System (INIS)

    Armstrong, G.

    1995-01-01

    Taxation of the energy industries is an issue of major importance for each energy sector. This has always been the situation for the primary fossil fuel sectors but, with corporatization and privatization, is now also an issue for the electricity supply industry. This article examines the most significant forms of taxation affecting the major industry sectors, namely secondary taxation, corporate taxation and, as a consequence of the corporatization and privatization of the electricity supply industry, surrogate taxation as it affects that industry. While essentially considering secondary taxation, the paper also reviews corporate and surrogate taxes. Tax exemptions for various energy sector activities such as mining operations, exploration and rehabilitation related activities are outlined. It is considered that there is insufficient evidence of the influence of taxation and other factors on electricity pricing. 2 tabs

  3. Save energy - for industry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article is an interview with Glenn Bjorklund, Vice President of SCalEd (Southern California Edison). The variations in Californian power demand and public electricity consumption habits are explained, together with types of power source used in electricity production. Questions are posed concerning SCalEd's energy saving strategy. The political implications of electricity charge changes are discussed. The planned energy resources for 1982-1992 are given with nuclear power being the largest contributor. (H.J.P./G.T.H.)

  4. Energy from industrial wastewater

    International Nuclear Information System (INIS)

    Cangas Rodriguez, J.

    2011-01-01

    The reduction of energy consumption and optimization of operating costs are issues of great relevance to many companies. Under certain conditions it is possible to integrate these objectives within a modern and intelligent treatment of effluents. Through the recovery of heat energy of water recycling and the minimization of the cost of waste collection and treatment can optimize operational costs and reduce the overall environmental impact of the plant. (Author)

  5. Canadian wind energy industry directory

    International Nuclear Information System (INIS)

    1996-01-01

    The companies and organizations involved, either directly or indirectly, in the wind energy industry in Canada, are listed in this directory. Some U.S. and international companies which are active or interested in Canadian industry activities are also listed. The first section of the directory is an alphabetical listing which includes corporate descriptions, company logos, addresses, phone and fax numbers, e-mail addresses and contact names. The second section contains 54 categories of products and services associated with the industry

  6. Creating and building an ocean renewable energy cluster for Canada. Paper no. IGEC-1-137

    International Nuclear Information System (INIS)

    Protter, N.

    2005-01-01

    OREG (Ocean Renewable Energy Group) is a collaboration between Canadian industry, academia, and government. It provides leadership to advocate for and accelerate the development of a Canadian ocean renewable energy sector that can serve domestic needs and reach a global market. (author)

  7. Energy Industry 2004

    Science.gov (United States)

    2004-01-01

    distribution technologies as well as hydrogen power sources currently more mature than fuel cells. As dual-fuel vehicles become more common, market ...a nation’s ability to wield its economic, diplomatic, informational and military instruments of power. Ensuring the security of America’s energy...caused some instability of the electric market that was highlighted by California’s electricity crisis in 2000- 2001. These realities make policies

  8. Process Industry and Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Over a period of two years the NAP's Special Interest Group Energy (SIG-E) has dedicated itself to studying the way in which the process industry and its supply chain has been dealing with energy as a theme. In the past it was strongly believed that many opportunities were left unused and that different forms of cooperation inside the chain should contribute to accelerated improvement of energy efficiency in the process industry. Sixteen companies that are actively involved in the entire value chain have scrutinised their daily situation wondering how to operate more successfully. With approximately one quarter of total energy consumption the Dutch process industry is a major player in reaching national energy and climate objectives by 2020. The objective (improve energy efficiency by 2% annually) is as ambitious as that 'business as usual' is insufficient. A drastic change in how matters are approached is thus essential. The question is how to proceed? By analysing energy projects, in-depth interviews with decision makers in the industry, through literature searches and by organising lectures inside and outside the sector, SlG-E has been able to develop a true picture of the mechanisms concerning energy-related investments. Two major points of interest have been energy-oriented tendering (demand side) and the market introduction of innovations (supply side). The main problems of 'how to do more in the energy domain' is: (a) the process industry is insufficiently familiar with the capabilities of the supply chain, and (b) the supply chain is insufficiently aware of the questions that exist in the process industry. Therefore, the links in the value chain understand each other poorly. The answer to this problem is compound and consists of more interaction between the process industry and the supply chain (machine constructors, engineering firms and consultancies, education and research). As for the process industry: (a) Make improved energy

  9. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  10. Energy recovery from rivers and oceans

    International Nuclear Information System (INIS)

    2009-01-01

    This book gathers the different projects, systems and technologies allowing to recover the energy from rivers, ocean streams, waves and tides with their economic interest. Content: project of swell and waves energy recovery: Pelamis and Searev projects, buoys and breaking systems; streams and tidal energy: horizontal axis and vertical axis turbines, oscillating column and hydraulic systems; kinematic chains of energy generation systems; terrestrial hydro-energy: small-scale hydro-power, French regulation, opening of energy markets, renewable energy law, the French Pope and Lema laws, exploitation permits, markets and perspectives; small hydro-power technologies: turbines, generator, multiplier; R and D trends: turbines, engines, control systems, combined energies and uses; low-fall technology; duct-embedded systems; other technologies. (J.S.)

  11. Ocean energy systems. Quarterly report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  12. Industrial view of Hydrogen Energy

    International Nuclear Information System (INIS)

    Francois Jackow

    2006-01-01

    Industrial Gases Companies have been mastering Hydrogen production, distribution, safe handling and applications for several decades for a wide range of gas applications. This unique industrial background positioned these companies to play a key role in the emerging Hydrogen Energy market, which can rely, at early stage of development, on already existing infrastructure, logistics and technical know-how. Nevertheless, it is important to acknowledge that Hydrogen Energy raised specific challenges which are not totally addressed by industrial gas activities. The main difference is obviously in the final customer profile, which differs significantly from the qualified professional our industry is used to serve. A non professional end-user, operating with Hydrogen at home or on board of his family car, has to be served with intrinsically safe and user-friendly solutions that exceed by far the industrial specifications already in place. Another significant challenge is that we will need breakthroughs both in terms of products and infrastructure, with development time frame that may require several decades. The aim of this presentation is to review how a company like Air Liquide, worldwide leader already operating more than 200 large hydrogen production sites, is approaching this new Hydrogen Energy market, all along the complete supply chain from production to end-users. Our contributions to the analysis, understanding and deployment of this new Energy market, will be illustrated by the presentation of Air Liquide internal development's as well as our participation in several national and European projects. (author)

  13. Proceedings of the Ocean Industries BC conference : the next wave. Online ed.

    International Nuclear Information System (INIS)

    2006-01-01

    Ocean Industries BC is a non-profit society that aims to promote the responsible development of British Columbia's ocean industries by working to ensure that people and businesses in British Columbia obtain the maximum possible benefits from the opportunities presented by new developments in the region. This conference discussed recent developments in both the natural gas, nuclear and petroleum industries. Renewable energy source development was also discussed. Helicopters and submarines used by various industries were reviewed, as well as new technologies for modelling. New developments in oceanography and basin research were also presented, as well as various modelling approaches now used by researchers in the petroleum industry. Issues concerning the construction of liquefied natural gas (LNG) facilities were also discussed. The conference featured 23 presentations, of which 1 has been catalogued separately for inclusion in this database. refs., tabs., figs

  14. Can industry afford solar energy

    Science.gov (United States)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  15. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  16. Energy consumption in France's industry. Conjuncture note

    International Nuclear Information System (INIS)

    2015-04-01

    Energy consumption in the industry represents today 1/5 of France's end-use energy consumption. Gas and electricity are the most consumed and represent 2/3 of the overall. The 5 most energy consuming industries are the following: paper and cardboard industry, food industry, rubber, plastic and other non-metallic mineral products industry, metallurgy and chemical industry. The reduction of the industry's energy consumption is explained by the decline of production, but above all by the energy efficiency improvement of the sector. Technological innovations in production means have indeed led to reduce energy consumption

  17. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  18. Effects of energy policy on industry

    Energy Technology Data Exchange (ETDEWEB)

    Carling, A; Dargay, J; Oettinger, C; Sohlman, A

    1978-06-01

    This report contains results from a number of studies of energy consumption in Swedish manufacturing industries and of the sensitivity of different industrial sectors to energy taxation and other kinds of energy policy measures. These studies have been concentrated to three energy-intensive sectors, namely the pulp and paper industry; mining and metal production (especially iron mines and the steel industry); and the brick, cement, and lime industry.

  19. Ocean energy researchers information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on ocean energy systems. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. Only high-priority groups were examined. Results from 2 groups of researchers are analyzed in this report: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  20. Ocean energies not yet full speed ahead

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    With about 71% of the earth's surface covered with oceans, could 'blue coal' constitute our biggest and surest source of energy? Some day, perhaps. But there's still much to do. There are four major categories of these energies: - tidal power; - wave power; - marine current power; - ocean thermal energy conversion, linked to the circulation of water bodies of different temperatures. Two other types of energies may be added to these: algae power, which is more of a specific form of marine agriculture, and osmotic power, which takes advantage of salinity. With its 24 turbines and installed generating capacity of 240 MW, the venerable Rance tidal power plant on the northern coast of Brittany is still both the oldest and most powerful in the world today. But like all dams, the Rance dam has affected the balance of the ecosystem, including silting up of the estuary and impacts on fish and bird life. These concerns have the British, among others, hesitating to launch an ambitious project for a giant tidal power plant with 216 turbines and 8.6 GW of installed generating capacity in Severn, Scotland. Wave energy yet to be demonstrated Powering an electric generator with the movement of the waves is an attractive idea and there is no lack of projects, but many will be left behind on the strand. There are two ways to capture the energy of the waves. Oscillating systems are one of them. Equipped with pneumatic or hydraulic cylinders and installed on buoys, these wave-activated systems transmit their energy to a generator. Other cylinder systems installed on manmade dikes are activated by the undertow. There are also ocean swell capture systems below the sea floor that send drive land-based turbines. All of these concepts are under development, but none has truly been demonstrated. A marine transposition of onshore and offshore wind turbines, marine current turbines are more conventional. Since water is 800 times denser than air, weak currents (about 3 meters per second) are

  1. Promoting energy conservation in China's metallurgy industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Zhili

    2017-01-01

    China is undergoing rapid industrialization and urbanization, with consequent dramatic increase in energy demand. Given energy scarcity, environmental pollution, energy security and energy cost constraints, energy conservation will be the major strategy in China's transition to a low-carbon economy. Since the metallurgy industry is a main sector of energy consumption, the efficiency of energy conservation in this industry will affect the future prospects of energy savings. This paper analyzes the energy conservation potential of China's metallurgy industry. First, seemingly unrelated regression method is applied to investigate the relationship between energy relative price, R&D input, enterprise ownership structure, enterprise scale and energy intensity of the metallurgy industry. Then, based on the SUR results, we use the scenario analysis method to predict energy consumption and savings potential in the industry in different scenarios. This paper provides references for China's government and metallurgy industry in formulating relevant energy conservation policies. - Highlights: • Seemingly unrelated regression method is applied to analyze the energy intensity of metallurgy industry. • We use the scenario analysis method to predict energy consuming and energy saving of Chinese metallurgy industry. • Provide references for China's government and metallurgy industry in formulating relevant energy conservation policies.

  2. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  3. Ocean thermal energy conversion: Perspective and status

    Science.gov (United States)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  4. Energy shocks and detecting influential industries

    International Nuclear Information System (INIS)

    Kang, Dongsuk; Lee, Duk Hee

    2017-01-01

    An industry's relationship of supply and demand with the energy sector can be a critical factor in the stability of its economic performance. Furthermore, the patterns of industry dependence on energy industries can be a major characteristic of entire industrial structure. This research evaluates industries' impact scores for their overall influence on other industries and vulnerability to supply and demand shocks from the energy sector. The study utilizes a sample of Korea's industrial input–output tables from 2010 to 2012. Using a chain of complementary methodologies, this study finds that among four clusters, energy, services, and raw materials are key members that can spread energy shocks to other industries. Therefore, governments need to prepare effective energy efficiency policies for these target industries. - Highlights: • We analyze an industry's impact score of its vulnerability to energy shock and inter-industrial effects. • We utilize the sample of input-output tables in Korea from 2010 to 2012. • We implement simulation, PCA, TOPSIS, cluster analysis about energy shock and industrial trades. • Subsectors of energy, services, raw material are subject to energy shock and influential to others. • These bridge industries can be targets that require policies for effective energy efficiency.

  5. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  6. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  7. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  8. Fifteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This year's conference, as in the past, allows upper-level energy managers, plant engineers, utility representatives, suppliers, and industrial consultants to present and discuss novel and innovative ideas on how to reduce costs effectively and improve utilization of resources. Papers are presented on topics that include: Win-win strategies for stability and growth and future success, new generation resources and transmission issues, industry and utilities working together, paper industry innovations, improving energy efficiency, industrial customers and electric utilities regulations, industrial electro technologies for energy conservation and environmental improvement, advances in motors and machinery, industrial energy audits, industrial energy auditing, process improvements, case studies of energy losses, and industrial heat pump applications. Individual papers are indexed separately

  9. Energy conservation in mechanical industry; Maitrise de l`energie dans les industries mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The workshop is composed of 12 communications on the theme of energy consumption, conservation and management in industry, and more especially in metal industry: evaluation of the energy savings potential in the French industry; official energy diagnosis procedure in buildings; the French national gas utility policy for energy conservation and economical performance in industry; energy conservation with speed variators for electric motors; energy audits and energy metering for conservation objectives. Examples of energy efficient systems or energy audits in various industrial sectors (compressed air, industrial buildings, heat treatments, curing...) are also presented. The electric power quality EDF`s contract is also discussed

  10. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  11. Supporting industries energy and environmental profile

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  12. Restructuring the energy industry: A financial perspective

    International Nuclear Information System (INIS)

    Abrams, W.A.

    1995-01-01

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs

  13. The Industrial Engineer and Energy and Environment

    Directory of Open Access Journals (Sweden)

    Sirichan Thongprasert

    2009-02-01

    Full Text Available Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  14. The Industrial Engineer and Energy and Environment

    OpenAIRE

    Sirichan Thongprasert

    2009-01-01

    Industries have always been a major consumer of energy and a major source of greenhouse gas emissions, causing environmental problems. Concerns about the impact of industries on the environment have led industries to change or adapt their methodologies to be more efficient and environmentally responsible. This article explains the impact that has on the industrial engineer.

  15. The industrial energy consumption in 2003

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The statistics present the industry's energy consumption and composition, and the development from 1973 to 2003. In this period the composition of the energy consumption has changed considerably: a decrease in the consumption of liquid fuels and an increase in the consumption of natural gas and electric power. The energy consumption in the Danish industry decreased with almost 9 % from 2001 to 2003. This relatively large decrease was mainly due to the closing down of a steel factory. In the wood industry the energy consumption decreased with 36 % from 2001 to 2003, while the energy consumption in the electronics industry increased. (ln)

  16. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  17. Modern industrial society and energy

    International Nuclear Information System (INIS)

    Gang, Chang Sun; Kim, Tae Yu; Moon, Sang Heup; Lee, Hwa Yeong; Han, Min Gu; Hyeon, Byeong Gu

    1992-03-01

    This book starts with introduction and covers modern society and energy, economy and energy, energy system(nonrecurring energy-coal, oil, natural gas, atomic energy and renewable energy), and future energy. It explains in detail essence of energy, energy trend of the world and Korea, definition of resources, energy policy, characteristics of coal, combustion of coal, refinement of oil, oil products, development of atomic energy, necessity and problem of atomic energy, solar energy, sunlight generation system, fuel cell system, and fusion reactor development.

  18. Energy and economic growth in industrializing countries

    Energy Technology Data Exchange (ETDEWEB)

    Samouilidis, J E; Mitropoulos, C S

    1984-07-01

    This paper investigates some aspects of the interrelated paths of economic growth and energy demand, in the case of an industrializing economy, through the use of numerous econometric models. Translog functions have helped establish that income and price elasticities of energy, two critical parameters in the energy-economy interaction, exhibit falling trends with time. The value share of the industrial sector is strongly associated with both energy demand and energy intensity. Any increase in the former will lead to amplified increases in the latter, rendering the continuation of past trends in industrial expansion questionable under conditions of high energy costs. Substitution among capital, labor and energy does take place, though to a limited extent, as indicated by the aggregate measure of energy/non-energy substitution elasticity. All findings appear to suggest that energy policymaking, in an industrializing country like Greece, will be of low effectiveness until certain structural changes in the economy are realized.

  19. Industry's energy specialists find strength in numbers

    Energy Technology Data Exchange (ETDEWEB)

    Bell, K W

    1978-09-08

    While national energy conservation measures have lost the urgency they assumed during the oil crisis, they remain just as valid. Energy managers' groups offer industry a way of achieving significant savings, but they do need support from Government, the energy supply industries and other organisations.

  20. Electrical design for ocean wave and tidal energy systems

    CERN Document Server

    Alcorn, Raymond

    2013-01-01

    Provides an electrical engineering perspective on offshore power stations and their integration to the grid. With contributions from a panel of leading international experts, this book is essential reading for those working in ocean energy development and renewable energy.

  1. New Hampshire / Southern Maine Ocean Uses Atlas: Industrial sector

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Uses Atlas Project is an innovative partnership between the Coastal Response Research Center (CRRC) and NOAA's Office of Ocean and Coastal Resource...

  2. The sequestration switch. Removing industrial CO2 by direct ocean absorption

    International Nuclear Information System (INIS)

    Ametistova, Lioudmila; Briden, James; Twidell, John

    2002-01-01

    This review paper considers direct injection of industrial CO 2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO 2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO 2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration

  3. Corporate Social Responsibility (CSR) and energy industry

    International Nuclear Information System (INIS)

    Landhaeusser, Werner; Hildebrandt, Alexandra

    2016-01-01

    What means Corporate Social Responsibility (CSR) in the energy industry? A rising energy demand with limited natural resources pose utilities, industry and consumers with new challenges. This book follows an interdisciplinary approach and for the first time brings together debates and findings from industry, science, politics, culture and media. Because the energy transition can only succeed if it is comprehensible for the individual and fragmented perspectives and interests are merged. [de

  4. Canada's voluntary industrial energy conservation programme

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Jr., C. A.

    1979-07-01

    The organization of the voluntary industrial energy conservation program is described. There are 15 industrial sectors in the program and the plan implemented by the sectors including individual companies, trade associations, industry task forces, task force coordinating committee, and government is described. Targets for attack are mainly housekeeping projects, energy efficiency in retrofitting, and new processes. Problems are identified. It is concluded that compiled total performance has essentially achieved its target of 12% improved energy efficiency two years ahead of schedule. (MCW)

  5. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation

    DEFF Research Database (Denmark)

    Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim

    2017-01-01

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...

  6. Promoting energy efficiency in Egyptian industry

    International Nuclear Information System (INIS)

    Selim, M.H.

    1990-01-01

    The energy situation in Egypt is characterized by a rather high energy demand, a high annual increase in energy consumption, inefficient utilization of energy, and heavily subsidized energy prices. Energy efficiency is therefore considered to be a matter of top priority, as it would lead to substantial savings. A national policy for efficient use of energy in industry has been outlined, including the establishment of an Industrial Energy Conservation Centre (IECC), the training and upgrading of energy management specialists, and the introduction of energy efficiency technologies in industrial plants. In this article the assistance that international organizations and donors can give to energy efficiency programmes is demonstrated. The results obtained so far are discussed and the lessons, findings and experience gained are outlined. (author). 1 tab

  7. Renewable energy technologies and the European industry

    International Nuclear Information System (INIS)

    Whiteley, M.; Bess, M.

    2000-01-01

    The European renewable energy industry has the potential to be a world leader. This has been achieved within the European region for specific technologies, through a set of policy activities at a national and regional level, driven primarily by employment, energy self-sufficiency and industrial competitiveness. Using the experience gained in recent years, European industry has the opportunity to continue to expand its horizons on a worldwide level. Through the use of the SAFIRE rational energy model, an assessment has been made of the future penetration of renewable energy within Europe and the effects on these socio-economic factors. In conjunction with these outputs, assessments of the worldwide markets for wind, photovoltaics, solar thermal plant and biomass have been assessed. A case study of the Danish wind industry is used as a prime example of a success story from which the learning opportunities are replicated to other industries, so that the European renewable energy industry can achieve its potential. (orig.)

  8. The industrial energy consumption in 1999

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The Danish industrial energy consumption in 1999 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 1999 based on each group of branches and energy category, the energy consumption in 1997 for each group of branches and the percentage distribution on energy category, and the fuel and energy consumption of motor vehicles in 1999 based on each group of branches. (SM)

  9. Energy and the English Industrial Revolution.

    Science.gov (United States)

    Wrigley, E A

    2013-03-13

    Societies before the Industrial Revolution were dependent on the annual cycle of plant photosynthesis for both heat and mechanical energy. The quantity of energy available each year was therefore limited, and economic growth was necessarily constrained. In the Industrial Revolution, energy usage increased massively and output rose accordingly. The energy source continued to be plant photosynthesis, but accumulated over a geological age in the form of coal. This poses a problem for the future. Fossil fuels are a depleting stock, whereas in pre-industrial time the energy source, though limited, was renewed each year.

  10. Current and future industrial energy service characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  11. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  12. Industry: doing with less energy

    International Nuclear Information System (INIS)

    Wuerzen, D. von

    1981-01-01

    The existing energy sources have one thing in common: They will keep decreasing although the demand for energy is steadily increasing. There are only two ways out of this dilemma: either the energy consumers economize rigorously or a powerful alternative energy is decided upon as soon as possible. All other solutions discussed can delay the time when no more energy is available, but they cannot prevent an energy breakdown. (orig.) [de

  13. European energy policy and Italian industry

    International Nuclear Information System (INIS)

    Cardinale, A.; Verdelli, A.

    2008-01-01

    The competitiveness of the Italian industry is very sensitive to the rising costs of energy. The European energy policy, if intended as an additional constraint, could deteriorate the situation. It could be, however, a good opportunity for the Italian industry to become more independent from fossil fuels, through an innovatory project at country level [it

  14. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  15. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  16. The industrial energy consumption in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The Danish industrial energy consumption in 2001 is presented in tables. The tables include: the development in the energy consumption, the amount of employees in each of the main branches, fuel consumption, the fuel and energy consumption in 2001 based on each group of branches and energy category, and the emission of CO 2 . (LN)

  17. Energy conservation status in Taiwanese food industry

    International Nuclear Information System (INIS)

    Ma, Chih-Ming; Chen, Ming-Hue; Hong, Gui-Bing

    2012-01-01

    The food industry in Taiwan is labor intensive, the cost of raw materials is high, and there is much product diversification. Although this industry is primarily small and medium scale, it is a large user of electricity in Taiwan's manufacturing sector. The concentration of greenhouse gases (GHGs) from manufacturing activities and vehicle emissions has increased remarkably. Energy audits are a basic and direct means by which energy efficiency can be improved, energy consumption reduced, and carbon dioxide emissions inhibited. This work summarizes the energy saving potential of 76 firms and the energy savings implemented by 23 firms as determined by energy audit tracking and from the on-line energy declaration system in Taiwan's food industry. The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings and opportunities for improving the efficiency of the food industry. - Highlights: ► This work summarizes the energy saving potential and the energy savings implemented in food industry. ► The results of this study can serve as a benchmark for developing a quantified list in terms of potential energy savings. ► The opportunities for improving the efficiency of the food industry can be a reference.

  18. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1998-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  19. Transforming and Building the Future Energy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Vernon

    1999-12-31

    The petroleum industry is experiencing unprecedented change: increasing competition within a global context, deregulation in the European gas market, technological innovation that will fundamentally alter the economics of the industry. Sustainable Development, the challenge of balancing the Financial, Social and Environmental demands: collectively these demands are fundamentally altering the future shape of the industry. In this presentation the author describes his perspectives on the impact of change on the future shape of the energy industry in the years to come

  20. Energy use in the food manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, A.C.; Earle, M.D.

    1980-01-01

    A survey was conducted to find the level of energy consumption in the food manufacturing industry, which is the food processing industry excluding meat, dairy, and brewing. Data were used from 74 factories. The manufacturing industry was divided into 14 industry groups and the 4 major energy consumers were found to be fruit and vegetable processing, sugar refining, animal feed production, and bread and pastry baking. The present report summarizes results from the survey. It determined the following: the sources of energy used by the insu industry and the annual consumption of each energy form; the consumption of fuel and electricity in the production of the various manufactured food products; the minimum practical energy requirement for processing the various food products; and the potential for conservation and the methods for achieving savings.

  1. A review of ocean energy converters, with an Australian focus

    Directory of Open Access Journals (Sweden)

    Chris Knight

    2014-08-01

    Full Text Available The requirement to move away from carbon based fossil fuels has led to a renewed interest in unconventional energy sources. Of interest in this article are ocean waves and current and tidal flows. This paper reviews the numerous options for ocean energy conversion systems that are currently available. A basic nomenclature for the variety of systems is utilized to classify the devices. A variety of issues including competing use, boating, fishing, commercial shipping and tourism are discussed with respect to impacts on and from ocean renewable energy.

  2. Co-ordination Action on Ocean Energy (CA-OE)

    DEFF Research Database (Denmark)

    Tedd, James; Frigaard, Peter

    In October 2004, the Co-ordination Action on Ocean Energy (CA-OE) was launched, co-financed by the European Commission, under the Renewable Energy Technologies priority within the 6th Framework programme, contract number 502701, chaired by Kim Nielsen, Rambøll, Denmark. The project involves 41...... partners. In general the public is not aware of the development of ocean energy and its exploitation. There is a need to make a united effort from the developers and research community to present the various principles and results in a coordinated manner with public appeal. The main objectives of the Co......-ordination Action on Ocean Energy are: To develop a common knowledge base necessary for coherent research and development policiesTo bring a co-ordinated approach within key areas of ocean energy research and development.To provide a forum for the longer term marketing of promising research developments...

  3. Food industry hungry for energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, D

    1989-04-01

    The United Kingdom food and drink industry is a significant user of energy. Energy use figures are given showing the breakdown in terms of different sectors of the industry and also in terms of the fuel used. Four energy monitoring and target setting demonstration projects are outlined at factories typical of their type in different sectors. The projects have resulted in a much greater awareness by management in the factories involved of energy consumption and waste. Examples are given of improved energy efficiency and consequent energy savings which have resulted from this awareness. (U.K.).

  4. Fostering renewable energy integration in the industry

    International Nuclear Information System (INIS)

    Galichon, Ines; Dennery, Pierre; Julien, Emmanuel; Wiedmer, Damien; Brochier, Jean Baptiste; Martin, Etienne; Touokong, Benoit; Paunescu, Michael; Philibert, Cedric; ); Gerbaud, Manon; Streiff, Frederic; Petrick, Kristian; Bucquet, Coraline; Jager, David de; )

    2017-03-01

    Renewable energy (RE) integration in the industry is already widespread worldwide. Beyond GHG emissions reduction, it brings direct operational, economical and non-financial benefits to industrial players in a changing energy environment. ENEA Consulting published the results of a study on the integration of RE in the industry conducted in partnership with Kerdos Energy for the International Energy Agency Renewable Energy Technology Deployment (IEA-RETD) who operates under the legal framework of the International Energy Agency. This study aims to provide inspiration and state-of-the-art applications of RE in the industry (identification of more than 200 projects worldwide), present best practices and key developments of such projects for industrial players (21 detailed case studies); and formulate policy recommendations for policy makers and provide lessons learned for industrial actors to make RE integration a widespread practice in the industry globally. Different integration schemes are possible, from simple and investment-light projects to more complex integration projects which can lead to core production processes adaptation. RE integration in industrial assets brings direct benefits to industrial players to better operate their assets, such as energy costs reduction and energy prices hedging, and improved energy supply reliability. Nevertheless, various barriers still hinder full RE development in the industry. However, industrial players and policy makers have a wide array of options to overcome them. Eight issues have been identified that can tilt an industrial actor towards or away from deploying RE production assets in its facilities. Thus, third party energy production schemes represent a significant opportunity for industrial players who lack the equity capital / cash needed to develop RE projects. Similarly, new shorter-term contractual schemes that fit better with industrial players' and third party energy producers' constraints are being developed

  5. Energy for Japan's new industrial frontier

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G

    1983-06-01

    Systematic responses by the Japanese government and industry to the successive oil crises of the 1970s are yielding remarkable results; instead of the most vulnerable and technologically-dependent energy system in the world, Japanese industry is emerging as one of the world's most energy-efficient and a major source of the most advanced energy technologies. By the end of the century, if best available prognoses on fusion power technology prove close to accurate, Japan's energy industry will have assumed a technological leadership akin to that of its steel industry today. Significant energy conservation has been achieved by concerted efforts to promote less energy-intensive industries and by advances in technology and equipment for reducing energy consumption in key industries. In 1980, the Japanese government set targets for the development of new energy sources for the coming decade, which, if realized, will contribute substantially to a three-fold increase in non-petroleum energy supply by 1990, and a further doubling of alternative energy supplies by the end of the century. By the year 2000, Japanese reliance on petroleum is expected to decline from 88% in 1977 to 74.9%.

  6. Industrial energy management; Betriebliches Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, D.

    2007-07-01

    Effective and successful energy and facility management uses a holistic view in which the life cycles of plants and buildings are considered, plus efficient controlling and reporting. The challenge is not in short-term cost reduction but in ensuring long-term effects. This requires management strategies which make use of synergy effects by means of interdisciplinary measures. Main topics: management of energy utilization, energy conversion and energy supply. (GL)

  7. Present day problems concerning the energy industry

    International Nuclear Information System (INIS)

    Hecker, G.

    1978-01-01

    Problems of the regional energy supply industry touching directly the energy supply utilities (e.g. territorial reform, power prices) are discussed. In a survey on the overall energy situation in the FRG as seen by energy supply utilities, the following conclusions are drawn: 1) The electricity supply industry is in the favourite position to make the required structural changes by utilizing primary energy for generating electric power. It offers - via electric energy - an effective opportunity for substituting oil. 2) The electricity supply industry alone will be in a position to use nuclear energy during the next few decades. A decision in favour of nuclear energy must not be at disposal to make oneself momentarily politically popular. This indispensable decision results exclusively from our responsibility for the future of our national economy and thus our society. (orig./HP) [de

  8. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  9. Coordinated Action on Ocean Energy (CA-OE)

    DEFF Research Database (Denmark)

    Frigaard, Peter

    The present paper summarises the outcome of a two day workshop (WS1) held at Aalborg University, Denmark, april 5th to 6th 2005 under the title: Modelling of Ocean Energy Systems.......The present paper summarises the outcome of a two day workshop (WS1) held at Aalborg University, Denmark, april 5th to 6th 2005 under the title: Modelling of Ocean Energy Systems....

  10. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  11. The organization of the energy industry

    International Nuclear Information System (INIS)

    Pearson, L.F.

    1981-01-01

    The subject is covered in chapters, entitled: introduction; machinery of government; the Department of Energy (history, Ministers and structure, including relevant references to the atomic energy programme); the tools of public expenditure control; unofficial government; the energy industry (covering the work of the UK Atomic Energy Authority and the nuclear industry, the national organizations for coal, gas, oil and electricity, research bodies, interest and cause groups, Europe, political groups, mutual relationships); major policy issues (generally as set out in Green Papers, White Papers, consultative documents and reports of ad hoc committees); policy definition and development; the origins of policy; the future of energy policy. (U.K.)

  12. Industrial energy economy, national and international aspects

    International Nuclear Information System (INIS)

    1993-01-01

    VDI-report 1061 contains the papers given on the Conference of the same name in Essen on the 22 and 23.6.1993. German industry suffers not only from high wage and on-cost but high, energy costs as well. Waste disposal problems and impending taxes on wages are the cause of these difficulties. The EC believes that competition between energy supplies may help to reduce energy costs. This report deals with cost-efficient energy supply for the German industry and books at the background of this scenario. This industry puts forward its wishes and demands to politicians and energy economy. Representatives of energy suppliers discuss energy supplies, demand, availability, safety of supplies, competitiveness, quality and environmental aspects. The influence of energy costs and environmental taxation on the industrial and economic future of Germany and the situation in the Eastern States of Germany are a further subject of discussion. The views of the EC commission, the industry and the energy suppliers on energy transports across the EC are discussed as well. (orig./UA) [de

  13. Energy consumption 2005 with Danish industry

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The energy consumption in the Danish industries decreased with 4% from 2003 to 2005. The consumption of liquid fuels and district heat decreased with 27% and 21%, respectively. The consumption of solid fuels increased with 13%. The aim of the statistics is to elucidate the industry's energy consumption and its composition. The statistics present the development in the industry from 1973 to 2005, in which period the composition of the energy consumption has changed significantly. Especially, consumption of liquid fuels has decreased and consumption of gas and electricity has increased. (ln)

  14. The Ocean Food and Energy Farm Project

    Science.gov (United States)

    Wilcox, Howard A.

    1976-01-01

    This three-phase, 15-year project is designed to explore and develop the ability to raise the grant California kelp and other marine organisms for food, fuels, fertilizers and plastics in the temperate and tropical oceans. The needed technology is established, but the economic feasibility is yet to be determined. (BT)

  15. 77 FR 32994 - Bureau of Ocean Energy Management

    Science.gov (United States)

    2012-06-04

    ... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is... development; (2) renewable energy; and (3) marine minerals. A Notice of Availability for the Draft PEIS was... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...

  16. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  17. US Energy Industry Financial Developments

    International Nuclear Information System (INIS)

    1992-09-01

    In the second quarter of 1992, the financial performance of the US petroleum industry continued to deteriorate, as weakening domestic economic growth slowed the demand for refined petroleum products. Net income for 119 petroleum companies--including 19 major oil and gas producers--declined 2 percent between the second quarter of 1991 and the second quarter of 1992, and was down 35 percent for the first 6 months of 1992. Unless otherwise stated, all quarterly comparisons relate to the second quarter of 1992 versus the second quarter of 1991. Weak margins reduce downstream earnings; higher prices increase oil and gas production earnings; industry downsizing improves financial results; oil and gas drilling remains depressed; cool spring helps gas companies but disappoints electric utilities

  18. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A. [Washington International Energy Group, Washington, DC (United States)

    1997-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  19. The emerging global energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, A [Washington International Energy Group, Washington, DC (United States)

    1998-12-31

    The global focus of the electric power industry was discussed. The shift from small regional monopolies to internationally competitive firms has been the driving force for change in industrial or market structures. The financial forces behind these changes were examined. The changes at the firm level and the implications of these changes for the North American market were explored. Changes in the North American market have influenced and are influenced by changes in international markets. The well established public and private monopolies in North America have been slow to welcome competition. However, with growing pressure from consumers, North America is becoming a major leader of global market trends. The following predictions regarding a deregulated electric power industry can be made with some confidence: (1) prices will fall, (2) customer choice will become a reality, (3) debt ridden public dinosaurs are not likely to survive, and (4) the same big firms in international markets will be the dominant players in the North American market. Canadian companies were warned that unless they can compete on equal terms with their American competitors, they may find themselves at a disadvantage in the new, competitive market.

  20. Enabling technologies for industrial energy demand management

    International Nuclear Information System (INIS)

    Dyer, Caroline H.; Hammond, Geoffrey P.; Jones, Craig I.; McKenna, Russell C.

    2008-01-01

    This state-of-science review sets out to provide an indicative assessment of enabling technologies for reducing UK industrial energy demand and carbon emissions to 2050. In the short term, i.e. the period that will rely on current or existing technologies, the road map and priorities are clear. A variety of available technologies will lead to energy demand reduction in industrial processes, boiler operation, compressed air usage, electric motor efficiency, heating and lighting, and ancillary uses such as transport. The prospects for the commercial exploitation of innovative technologies by the middle of the 21st century are more speculative. Emphasis is therefore placed on the range of technology assessment methods that are likely to provide policy makers with a guide to progress in the development of high-temperature processes, improved materials, process integration and intensification, and improved industrial process control and monitoring. Key among the appraisal methods applicable to the energy sector is thermodynamic analysis, making use of energy, exergy and 'exergoeconomic' techniques. Technical and economic barriers will limit the improvement potential to perhaps a 30% cut in industrial energy use, which would make a significant contribution to reducing energy demand and carbon emissions in UK industry. Non-technological drivers for, and barriers to, the take-up of innovative, low-carbon energy technologies for industry are also outlined

  1. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  2. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  3. Energy efficient technologies for the mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Klein, B.; Bamber, A.; Weatherwax, T.; Dozdiak, J.; Nadolski, S.; Roufail, R.; Parry, J.; Roufail, R.; Tong, L.; Hall, R. [British Columbia Univ., Vancouver, BC (Canada). Centre for Environmental Research in Minerals, Metals and Materials, Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining in British Columbia is the second largest industrial electricity consumer. This presentation highlighted methods to help the mining industry reduce their energy requirements by limiting waste and improving efficiency. The measures are aimed at optimizing energy-use and efficiency in mining and processing and identifying opportunities and methods of improving this efficiency. Energy conservation in comminution and beneficiation is a primary focus of research activities at the University of British Columbia (UBC). The objective is to reduce energy usage in metal mines by 20 per cent overall. Open pit copper, gold and molybdenum mines are being targeted. Projects underway at UBC were outlined, with particular reference to energy usage, recovery and alternative energy sources; preconcentration; reducing energy usage from comminution in sorting, high pressure grinding rolls and high speed stirred mills; Hydromet; other energy efficient technologies such as control and flotation; and carbon dioxide sequestration. Studies were conducted at various mining facilities, including mines in Sudbury, Ontario. tabs., figs.

  4. French industry and the energy conservation challenge

    Energy Technology Data Exchange (ETDEWEB)

    Serpette, M.

    1979-07-01

    The general position of France and its energy conservation objectives; the action taken by the government to stimulate this policy; and government cooperation with industrial circles and the action of industry itself are discussed. It is observed that the potential for future energy savings are smaller in France than in other countries because consumptions are already down to minimal levels. Consumption patterns in France are illustrated. (MCW)

  5. Energy Industry Powers CTE Program

    Science.gov (United States)

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  6. Setting SMART targets for industrial energy use and industrial energy efficiency

    NARCIS (Netherlands)

    Rietbergen, M.G.|info:eu-repo/dai/nl/14111634X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2010-01-01

    Industrial energy policies often require the setting of quantitative targets to reduce energy use and/or greenhouse gas emissions. In this paper a taxonomy has been developed for categorizing SMART industrial energy use or greenhouse gas emission reduction targets. The taxonomy includes volume

  7. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  8. Technological trends in energy industry

    International Nuclear Information System (INIS)

    Martin Moyano, R.

    1995-01-01

    According to the usual meaning, technological trends are determined by main companies and leading countries with capacity for the development and marketing of technology. Presently, those trends are addressed to: the development of cleaner and more efficient process for fossil fuels utilization (atmospheric and pressurized fluidized beds, integrated gasification in combined cycle, advanced combined cycles, etc), the development of safer and more economic nuclear reactors; the efficiency increase in both generation and utilisation of energy, including demand side management and distribution automation; and the reduction of cost of renewable energies. Singular points of these trends are: the progress in communication technologies (optical fibre, trucking systems, etc.); the fuel cells; the supercritical boilers; the passive reactors; the nuclear fusion; the superconductivity; etc. Spain belongs to the developed countries but suffer of certain technology shortages that places it in a special situation. (Author)

  9. Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands

    International Nuclear Information System (INIS)

    Osorio, Andrés F.; Arias-Gaviria, Jessica; Devis-Morales, Andrea; Acevedo, Diego; Velasquez, Héctor Iván; Arango-Aramburo, Santiago

    2016-01-01

    Small islands face difficult challenges to guarantee energy, freshwater and food supply, and sustainable development. The urge to meet their needs, together with the mitigation and adaptation plans to address climate change, have led them to develop renewable energy systems, with a special interest in Ocean Thermal Energy Conversion (OTEC) in tropical islands. Deep Ocean Water (DOW) is a resource that can provide electricity (through OTEC in combination with warm surface water), low temperatures for refrigeration, and nutrients for food production. In this paper we propose an Ocean Technology Ecopark (OTEP) as an integral solution for small islands that consists of an OTEC plant, other alternative uses of DOW, and a Research and Development (R&D) center. We present an application of OTEP to San Andres, a Colombian island that meets all the necessary conditions for the implementation of OTEC technology, water desalinization, and a business model for DOW. We present the main entrance barriers and a four-stage roadmap for the consolidation and sustainability of the OTEP. - Highlights: • Small islands face problems such as development, energy, freshwater and food supply. • Tropical islands with access to deep ocean water can use OTEC all year round. • An Ocean Ecopark is proposed as an integral solution for San Andrés Island, Colombia. • The Ecopark consists of OTEC, desalinization, SWAC, greenhouses, and R&D activities. • This article discusses entrance barriers and presents a four-stage roadmap

  10. Energy efficient industrialized housing research program

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  11. Energy usage in the rubber industry

    Energy Technology Data Exchange (ETDEWEB)

    Soederstroem, M.

    1980-01-01

    The rubber industry has several energy-intensive steps, such as mastication of natural rubber, mixing and extrusion, and vulcanization. Opportunities for energy savings would be available with a continuous mixing process, heat recovery from cooling waters, and abandonment of thermal conduction in vulcanization. 6 figures. (DCK)

  12. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  13. Energy-economical optimization of industrial sites

    International Nuclear Information System (INIS)

    Berthold, A.; Saliba, S.; Franke, R.

    2015-01-01

    The holistic optimization of an industrial estate networks all electrical components of a location and combines energy trading, energy management and production processes. This allows to minimize the energy consumption from the supply network and to relieve the power grid and to maximize the profitability of the industrial self-generation. By analyzing the potential is detected and the cost of optimization solution is estimated. The generation-side optimization is supported through demand-side optimization (demand response). Through a real-time optimization the of Use of fuels is managed, controlled and optimized. [de

  14. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  15. Navigating a sea of values: Understanding public attitudes toward the ocean and ocean energy resources

    Science.gov (United States)

    Lilley, Jonathan Charles

    In examining ocean values and beliefs, this study investigates the moral and ethical aspects of the relationships that exist between humans and the marine environment. In short, this dissertation explores what the American public thinks of the ocean. The study places a specific focus upon attitudes to ocean energy development. Using both qualitative and quantitative methods, this research: elicits mental models that exist in society regarding the ocean; unearths what philosophies underpin people's attitudes toward the ocean and offshore energy development; assesses whether these views have any bearing on pro-environmental behavior; and gauges support for offshore drilling and offshore wind development. Despite the fact that the ocean is frequently ranked as a second-tier environmental issue, Americans are concerned about the state of the marine environment. Additionally, the data show that lack of knowledge, rather than apathy, prevents people from undertaking pro-environmental action. With regard to philosophical beliefs, Americans hold slightly more nonanthropocentric than anthropocentric views toward the environment. Neither anthropocentrism nor nonanthropocentrism has any real impact on pro-environmental behavior, although nonanthropocentric attitudes reduce support for offshore wind. This research also uncovers two gaps between scientific and public perceptions of offshore wind power with respect to: 1) overall environmental effects; and 2) the size of the resource. Providing better information to the public in the first area may lead to a shift toward offshore wind support among opponents with nonanthropocentric attitudes, and in both areas, is likely to increase offshore wind support.

  16. Fourteenth National Industrial Energy Technology Conference: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    Presented are many short articles on various aspects of energy production, use, and conservation in industry. The impacts of energy efficient equipment, recycling, pollution regulations, and energy auditing are discussed. The topics covered include: New generation sources and transmission issues, superconductivity applications, integrated resource planning, electro technology research, equipment and process improvement, environmental improvement, electric utility management, and recent European technology and conservation opportunities. Individual papers are indexed separately

  17. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  18. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  19. Energy Savings from Industrial Water Reductions

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  20. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    Science.gov (United States)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  1. 76 FR 21712 - Meeting of the Ocean Research and Resources Advisory Industry Sub-Panel

    Science.gov (United States)

    2011-04-18

    ... creative problem-solving to overcome impediments to industry progress toward deploying operational projects... held at the Consortium for Ocean Leadership, 1201 New York Avenue, NW., 4th Floor, Washington, DC 20005...

  2. Emerging energy-efficient industrial technologies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if

  3. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon; Shahzad, Muhammad Wakil

    2017-01-01

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination

  4. The US textile industry: An energy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  5. Energy indicators; Energiekennzahlen in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Mauch, W. [Technische Univ. Muenchen (Germany); Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Layer, G. [Forschungsstelle fuer Energiewirtschaft (FfE), Muenchen (Germany); Schneider, J. [Ogreb-Institut fuer Kraftwerke, Cottbus (Germany). Abt. Prozessforschung und Energetik; Ministerium fuer Umwelt, Naturschutz, Energie und Reaktorsicherheit, Berlin (Germany); Bundeswirtschaftsministerium, Bonn (Germany). Energieabteilung

    2004-07-01

    Indicators of the energy requirements of industrial plants, production processes and products provide criteria for evaluating resource consumption, emissions and saving potential. Energy indicators are used as base data for energy concepts and holistic energy balances in the framework of the exchange of information on best available techniques. The following contribution describes a methodology for the determination of energy indicators for industrial production plants. On this basis, it then analyses a number of example processes, i.e. manufacture of mineral chips and asphalt, provision of compressed air, and flue gas dedusting. (orig.) [German] Kennzahlen ueber den Energiebedarf von industriellen Anlagen, Herstellungsverfahren und Erzeugnissen liefern Kriterien zur Beurteilung des Ressourcenaufwands, der Emissionen und Einsparpotenziale. Als Basisdaten fuer Energiekonzepte und ganzheitliche Bilanzierungen eingesetzt dienen Energiekennzahlen dem Informationsaustausch ueber die besten verfuegbaren Techniken. Nachfolgend wird die methodische Vorgehensweise zur Ermittlung von Kennzahlen fuer industrielle Produktionsanlagen beschrieben. Auf dieser Basis werden beispielhaft die Mineralsplitter- und Asphaltherstellung sowie die Druckluftbereitstellung und -entstaubung analysiert. (orig.)

  6. Embodied energy use in China's industrial sectors

    International Nuclear Information System (INIS)

    Liu Zhu; Geng Yong; Lindner, Soeren; Zhao Hongyan; Fujita, Tsuyoshi; Guan Dabo

    2012-01-01

    As the world’s top energy consumer, China is facing a great challenge to solve its energy supply issue. In this paper energy use from all industrial sectors in China’s economy of 2007 was explored by conducting an extended environmental input–output analysis. We compare the energy consumption embodied in the final demand for goods and services from 29 sectors with the energy demand required for the actual production process in each sector. Two different viewpoints for sectoral energy use have been presented: energy use is directly allocated to the producer entity, and energy use is reallocated to sector’s supply chain from consumption perspective. Our results show that considerable amount of energy use is embodied in the supply chain, especially for “Construction” and “Other Service Activities” sectors, which is not detected if energy use is allocated on a production basis. When further dividing embodied energy consumption into direct energy consumption and indirect energy consumption, total indirect energy consumption is much higher than that of total direct energy consumption, accounting for 80.6% of total embodied energy consumption in 2007. Our results provide a more holistic picture on sectoral energy consumption and therefore can help decision-makers make more appropriate policies. - Highlights: ► A hybrid IO-LCA model was employed to analyze China’s energy use at sectoral level. ► A case study on China’s sectoral energy consumption is done. ► Construction and service sectors are actually energy intensive from the supply chain perspectives. ► Upstream and downstream ectoral collaboration along the whole supply chain is necessary. ► Energy conservation policies should be based upon a comprehensive analysis on sectoral energy use.

  7. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  8. Application of Blue Ocean Strategy to Chinese 3G Mobile Telecom Industry

    OpenAIRE

    Wang, Zang; Yang, Jin Wei

    2010-01-01

    The purpose of this study was to apply “Blue Ocean” strategy to Chinese 3G mobile telecom industry. Chinese 3G mobile telecom industry is a rapidly growing multiple industry which served a lot of services to customers. The thesis tries to find whether all services are important to Chinese 3G operators’ competiveness and how to create a blue ocean for Chinese 3G operators, help Chinese 3G operators to find their core service from the customers’ opinion and create a new blue ocean industry of m...

  9. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  10. Energy conservation: motors in industry; Maitrise de l`energie: les moteurs dans l`industrie

    Energy Technology Data Exchange (ETDEWEB)

    Lavoine, O.; David, A. [Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    1996-12-31

    The Electricite de France demand side management policy towards industry is particularly aimed at reducing industry`s power consumption from electric motors through the use of electronic speed variators which may induce mean energy savings of 25 percent. Pumps, fans and compressors, amounting to two-third of the total electric motor energy consumption, are the main application fields for electronic variators. EDF proposes technical and energy diagnosis and audits in industrial plants in order to evaluate the possibility and potential of electronic variator introduction

  11. Department of Energy workshops on industrial energy conservation reporting

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Douglas G.

    1979-01-01

    A voluntary industrial energy-conservation program was initiated and now includes 50 trade organizations representing over 3,000 companies. Their current reporting system is an effort to respond to the Energy Policy and Conservation Act requirements, as now modified by the National Energy Conservation Policy Act. DOE's Office of Industrial Programs held six workshops in various key locations between November 1978 and February 1979 to enable energy managers to develop ideas and make suggestions that would improve the current and future energy-reporting programs. This report is a summary of the wide range of recommendations that the workshop participants offered as a means of meeting the NECPA requirements and the criticism of the current reporting program. It also reflects industry's views on potential approaches to future reporting. (MCW)

  12. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  13. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  14. Interpreting the implied meridional oceanic energy transport in AMIP

    International Nuclear Information System (INIS)

    Randall, D.A.; Gleckler, P.J.

    1993-09-01

    The Atmospheric Model Intercomparison Project (AMIP) was outlined in Paper No. CLIM VAR 2.3 (entitled open-quote The validation of ocean surface heat fluxes in AMIP') of these proceedings. Preliminary results of AMIP subproject No. 5 were also summarized. In particular, zonally averaged ocean surface heat fluxes resulting from various AMIP simulations were intercompared, and to the extent possible they were validated with uncertainties in observationally-based estimates of surface heat fluxes. The intercomparison is continued in this paper by examining the Oceanic Meridional Energy Transport (OMET) implied by the net surface heat fluxes of the AMIP simulations. As with the surface heat fluxes of the AMIP simulations. As with the surface heat fluxes, the perspective here will be very cursory. The annual mean implied ocean heat transport can be estimated by integrating the zonally averaged net ocean surface heat flux, N sfc , from one pole to the other. In AGCM simulations (and perhaps reality), the global mean N sfc is typically not in exact balance when averaged over one or more years. Because of this, an important assumption must be made about changes in the distribution of energy in the oceans. Otherwise, the integration will yield a non-zero transport at the endpoint of integration (pole) which is not physically realistic. Here the authors will only look at 10-year means of the AMIP runs, and for simplicity they assume that any long term imbalance in the global averaged N sfc will be sequestered (or released) over the global ocean. Tests have demonstrated that the treatment of how the global average energy imbalance is assumed to be distributed is important, especially when the long term imbalances are in excess of 10 W m -2 . However, this has not had a substantial impact on the qualitative features of the implied heat transport of the AMIP simulations examined thus far

  15. Industry fights energy tax; UK Negotiates agreement

    International Nuclear Information System (INIS)

    Roberts, M.

    1996-01-01

    Europe''s energy-intensive industries have banded together to attack the European Commission''s latest proposal for a carbon-energy tax. Instead of passing a new directive--which the commission has been trying to do for five years--it now wants to expand existing duties on mineral oils to cover coal, natural gas, and electricity. The commission also aims to increase the mineral oil duties. Energy-intensive industries--including producers of chemicals, cars, cement, lime, iron, steel, and other metals--say the plans would destroy their competitiveness. They say they are improving energy efficiency voluntarily and urge the commission to focus on liberalizing Europe''s gas and electricity markets, which would reduce prices

  16. 3.4 Environmental impacts: energy industry

    International Nuclear Information System (INIS)

    2004-01-01

    The subchapter 3.4 'Environmental impact of the energy industry' of the 7th state of the environment report analyzes the current situation in Austria and briefly describes the following aspects: environmental policy targets, uniform taxation of energy, use of renewable energy sources, efficient use of energy, energy input, electricity supply and input, energy input into space heating and air conditioning systems, and renewable energy. In 2002, the input of final energy was risen by about 5 % in comparison to 1998. During this period, the largest increments in final energy inputs were recorded in the mobility sector with + 9.4 %, and in the private households sector with + 8.3 % . The goods production sector showed a slight decrease of about 1.3 % between 1998 and 2002. The 'goods production', 'mobility' and 'private households' sectors combined require about 87 % of the total final energy input. The final energy input for space heating and hot water in 2001 was 5.7 % above the input in 1998. Energy supply from renewable energy sources rose by about 13.8 % in 2002 compared to 1998. Domestic electricity consumption (excluding consumption for pumped-storage systems) in 2002 was about 10.5 % above consumption in 1998. Physical imports and physical exports in 2002 increased about 32 % and 8.6 % correspondingly compared to 1999. (nevyjel)

  17. Graphene for energy solutions and its industrialization

    Science.gov (United States)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  18. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  19. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  20. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  1. Improving energy efficiency in industrial energy systems an interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs

    CERN Document Server

    Thollander, Patrik

    2012-01-01

    Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discuss

  2. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  3. Characterizing emerging industrial technologies in energy models

    Energy Technology Data Exchange (ETDEWEB)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  4. Ocean thermal energy: concept and resources, history and perspectives

    International Nuclear Information System (INIS)

    Nihous, Gerard

    2015-10-01

    Two articles address the possibility of exploiting a higher than 20 degrees temperature difference between ocean surfaces and 1 km deep waters to produce electricity. The first article describes the operation principle in closed cycle and briefly presents the open cycle approach. The global energetic assessment is discussed. The author analyses available thermal resources in relationship with the main ocean streams. He outlines that the design of an ocean thermal energy project requires the acquisition and knowledge of a lot of data, modelling and simulations. In the second article, the author notices that past experiments highlighted the difficulties of implementation of the concept. He notably evokes works performed by Georges Claude during the 1920's, projects elaborated at the end of the 20. century, the realisation of a mini OTEC (Ocean Thermal Energy Conversion) station in Hawaii, the OTEC-1 project, a Japanese project in Nauru, the test of a suspended cold water duct, the net power producing experiment in the USA. Perspectives and costs are finally briefly discussed, and recent and promising projects briefly evoked (notably that by DCNS and Akuo Energy in Martinique)

  5. Renewable energy recovery through selected industrial wastes

    Science.gov (United States)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  6. Incentives for solar energy in industry

    Science.gov (United States)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  7. Energy efficiency in buildings, industry and transportation

    Science.gov (United States)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  8. On the dynamics of a novel ocean wave energy converter

    KAUST Repository

    Orazov, B.

    2010-11-01

    Buoy-type ocean wave energy converters are designed to exhibit resonant responses when subject to excitation by ocean waves. A novel excitation scheme is proposed which has the potential to improve the energy harvesting capabilities of these converters. The scheme uses the incident waves to modulate the mass of the device in a manner which amplifies its resonant response. To illustrate the novel excitation scheme, a simple one-degree of freedom model is developed for the wave energy converter. This model has the form of a switched linear system. After the stability regime of this system has been established, the model is then used to show that the excitation scheme improves the power harvesting capabilities by 2565 percent even when amplitude restrictions are present. It is also demonstrated that the sensitivity of the device\\'s power harvesting capabilities to changes in damping becomes much smaller when the novel excitation scheme is used. © 2010 Elsevier Ltd. All rights reserved.

  9. Energy use in the marine transportation industry. Task I. Industry summary. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-11

    Task 1 of an energy study of ship transportation systems to identify the various operating or service sectors of the marine transportation industry and determine the numbers and types of vessels, their operating characteristics and energy consumption, is presented. The analysis includes all powered water-borne craft with the exception of those owned or operated by a government and fixed offshore production platforms. The approach is described. The broad sectors covered are: the ocean shipping, the Great Lakes, the coastal shipping, offshore, inland waterways, and the fishing and miscellaneous sectors. Recreational boats are covered. Information in the appendices covers marine fuel consumption calculations, essential trade routes, conversion factors, and merchant vessels of the US. (MCW)

  10. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  11. Energy change in the industrial society

    International Nuclear Information System (INIS)

    Hebeler, Timo; Hendler, Reinhard; Proelss, Alexander; Reiff, Peter

    2014-01-01

    The present volume contains the speeches and discussion reports of the 29th Trier colloquium on the environmental and techniques law, which was dedicated to the theme ''Energy change in the industrial society''. The goal a the colloquium consisted, to work out central questions of the energy change and also to look beyond the legal field. The documented speeches deal mainly with the promotional system of the renewal-energy law and its need for reform, whereby this topic is discussed from legal, economic, and business perspective. A further main topic form questions of planning. Hereby it deals both with the regulation of the increased use of renewable energies in zoning and land-use planning and with the network expansion including public participation. Object of the discussion are also the providing of the base load by conventional power plants as well as legal questions of the compensation and load balancing in the connection of off-shore facilities.

  12. E-commerce and the energy industry

    International Nuclear Information System (INIS)

    Davis, C.; Biedenharn, J.

    2000-01-01

    The impact of e-commerce on the future of the energy industry is examined, and the size and scope of business-to-business e-commerce activities are explored. Identification of e-commerce needs in relation to sales and purchasing requirements, and the selection of the e-commerce course and considerations to be taken into account in introducing e-commerce into a business are discussed

  13. E-commerce and the energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; Biedenharn, J. [Global Energy Assets, Inc. (United States)

    2000-01-01

    The impact of e-commerce on the future of the energy industry is examined, and the size and scope of business-to-business e-commerce activities are explored. Identification of e-commerce needs in relation to sales and purchasing requirements, and the selection of the e-commerce course and considerations to be taken into account in introducing e-commerce into a business are discussed.

  14. Energy conservation in the EC glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1994-12-31

    The data presented in this survey are based mainly on a recent study, performed by the Energy Technology Support Unit ETSU. Harwell Laboratory, United Kingdom, in the context of the EC-Thermie programme. Also, use has been made of a paper `Glass Manufacture, energy and CO{sub 2}-emissions`, presented by G.J. Copley of the British Glass Manufacturers Confederation, Sheffield, United Kingdom, presented at the Thermie Seminar in Wiesbaden, 1992. A third source of information has been the data collected by the CPIV, the European Glass Manufacturers Federation on the present and future economic situation of the EC Glass Industry. (orig.)

  15. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  16. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Park, Jae Won; Kim, Hyung Jin; Kim, Jun Yeon; Lee, Jae Sang; Yeo, Sun Mog; Lee, Ji Ah

    2008-05-01

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  17. Brazil's energy industry in a crisis

    International Nuclear Information System (INIS)

    Sangmeister, H.

    1988-01-01

    In volume 8/1986 of this periodical, Brazil's moving away from the program for the building and expansion of a national nuclear power industry had been reported on back of foreign currencies and urgently necessary saving measures of the public means influence not only the construction of nuclear power plants, they also decay instruments in other areas of energy industry. In the area of electric power, some nationalisations have already taken place and in petroleum supply, the need for imports is increasing again. Furthermore, there is reason to believe that some of the energy-political solutions which Brazil had chosen as answers to the petroleum price shocks of 1973/74 and 1979/80 are likely to lead to some considerable problems in the near future. In the middle of these crises in which Brazil's energy industry has been for some time now, there is nonetheless one spectacular event. Brazil's President, Mr. Jose Sarney, announced the command of the nuclear cycle by means of national technology. (orig.) [de

  18. Ocean zoning for conservation, fisheries and marine renewable energy: assessing trade-offs and co-location opportunities.

    Science.gov (United States)

    Yates, Katherine L; Schoeman, David S; Klein, Carissa J

    2015-04-01

    Oceans, particularly coastal areas, are getting busier and within this increasingly human-dominated seascape, marine biodiversity continues to decline. Attempts to maintain and restore marine biodiversity are becoming more spatial, principally through the designation of marine protected areas (MPAs). MPAs compete for space with other uses, and the emergence of new industries, such as marine renewable energy generation, will increase competition for space. Decision makers require guidance on how to zone the ocean to conserve biodiversity, mitigate conflict and accommodate multiple uses. Here we used empirical data and freely available planning software to identified priority areas for multiple ocean zones, which incorporate goals for biodiversity conservation, two types of renewable energy, and three types of fishing. We developed an approached to evaluate trade-offs between industries and we investigated the impacts of co-locating some fishing activities within renewable energy sites. We observed non-linear trade-offs between industries. We also found that different subsectors within those industries experienced very different trade-off curves. Incorporating co-location resulted in significant reductions in cost to the fishing industry, including fisheries that were not co-located. Co-location also altered the optimal location of renewable energy zones with planning solutions. Our findings have broad implications for ocean zoning and marine spatial planning. In particular, they highlight the need to include industry subsectors when assessing trade-offs and they stress the importance of considering co-location opportunities from the outset. Our research reinforces the need for multi-industry ocean-zoning and demonstrates how it can be undertaken within the framework of strategic conservation planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The industrial development of atomic energy

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    Countries with large stock of fissile material and producing large quantity of nuclear pure 235 U and 239 Pu are able to allocate part of the stock to non military research. For countries with low stock of fissile material, all the stock is allocated to military research. An economical and technical solution has to be find to dedicate a part of fissile material to non military research and develop the atomic energy industry. It stated the industrial and economical problems and in particular the choice between the use of enriched fuel with high refining cost or depleted fuel with low production cost. It discusses of four possible utilizations of the natural resources: reactors functioning with pure fissile material ( 235 U or 239 Pu) or concentrated material ( 235 U mixed with small quantities of 238 U after an incomplete isotopic separation), breeder reactors functioning with enriched material mixed with 238 U or Thorium placed in an appropriate spatial distribution to allow neutrons beam to activate 238 U or Thorium with the regeneration of fissile material in 239 Pu, reactors using natural uranium or low enriched uranium can also produce Plutonium with less efficiency than breeder reactors and the last solution being the use of natural uranium with the only scope of energy production and no production of secondary fissile material. The first class using pure fissile material has a low energy efficiency and is used only by large fissile material stock countries to accumulate energy in small size fuel for nuclear engines researches for submarines and warships. The advantage of the second class of reactors, breeder reactors, is that they produce energy and plutonium. Two type of breeder reactor are considered: breeder reactor using pure fissile material and 238 U or breeder reactor using the promising mixture of pure fissile material and Thorium. Different projects are in phase of development in United States, England and Scotland. The third class of reactor using

  20. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  1. Emerging energy-efficient technologies for industry

    International Nuclear Information System (INIS)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-01-01

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market

  2. The petrochemical industry and its energy use. Prospects for the Dutch energy intensive industry

    International Nuclear Information System (INIS)

    Gielen, D.J.; Vos, D.; Van Dril, A.W.N.

    1996-04-01

    The current state and the future of the Dutch petrochemical industry are discussed. First, its current energy use, technology and its markets are analysed. Competitiveness of Dutch and Western European producers compared to foreign producers is shown. Main technological developments and other key issues (e.g. environmental issues) are discussed. Based on this analysis, a future scenario is derived for petrochemical industrial energy use for the period 2000-2015. This case study can be divided into an analysis of the current situation (Chapter 2-6) and alternatives for production and energy consumption of the Dutch petrochemical industry within its Western European context (Chapter 7-11). Chapter 2 analyses the current production structure and the historical developments. Chapter 3 discusses current technologies. Chapter 4 analyses markets for Dutch petrochemical products. Chapter 5 analyses the industry economics in the Netherlands in terms of costs and revenues. Chapter 6 provides information on institutional factors that influence industrial activities. Chapter 7 discusses global competition with special emphasis on competition for the European market. Chapter 8 analyses potential technology shifts. In Chapter 9, data from the preceding chapters on markets, competition, structure and technology are combined to compare competing production options. This is followed by a sensitivity analysis in Chapter 10. Based on a production volume forecast and the development of energy intensity of production, energy consumption of the Dutch petrochemical industry is forecast in Chapter 11. Finally, Chapter 12 provides conclusions and policy recommendations. 24 figs., 48 tabs., 103 refs., 2 appendices

  3. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  4. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    International Nuclear Information System (INIS)

    Adas, H.; Taher, A.

    2005-01-01

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  5. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  6. Impact of energy on industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmel, R

    1981-02-01

    The equation of growth relates the growth of output Q to the growth of the production factors capital K, labor L, and energy flow E. It can be solved in zero order approximation with respect to time, if one assumes that the characteristic properties of the industrial system are not changed by human creativity and that the economy is far from its thermodynamic limits to growth. Then Q must be a unique function of K, L and E. The integral of the equation of growth with the calculated, factor-dependent elasticities of production yields the production function q.e*exp/left brace/a/sub o/(2-(l+e)/k)+a/sub o/c/sub t/(l/e-1)/right brace/, with q, k, l and e being the relative values of Q, K, L, and E; a/sub o/ and c/sub t/ are the two free parameters of the theory. For given factor inputs, the GNP and the output of the industrial sector of West Germany and the output of the sector ''Industries'' of the United States are calculated for the years 1960-78. Deviations of theory from reality are generally less than 5%. The influence of energy prices on factor inputs and growth is discussed.

  7. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  8. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    Science.gov (United States)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  9. Institutional framework changes in Brazil's energy industries

    International Nuclear Information System (INIS)

    De Almeida, E.; Queiroz Pinto JR, H.

    2009-01-01

    The liberalization of the Brazilian energy sector in the 1990's was meant to drastically reduce the role of the State in the sector. This reform has not had the desired results. Private investment could not guarantee the expansion of the Brazilian energy sector at the necessary speed. The first half of this decade has been marked by problems of electricity supply and a rather timid role of private investment in boosting energy supply. During the second half of the decade, liberal reform of the energy sector in Brazil has gone through major adjustments, marked by the search for a new compromise between the role of the State and the private sector. This paper highlights the institutional evolution of Brazil's energy or industries and tries to show how risk for public and private investment has been reduced by the adoption of new institutional and economic mechanisms of coordination. In the current institutional framework, the State plays an important role in coordinating the investment process for the expansion of supply. The pace of investment in Brazil in the energy sector has accelerated significantly after the adoption of the new coordination mechanisms. (authors)

  10. Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower

    Science.gov (United States)

    Elfikky, Niazi

    Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output

  11. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Science.gov (United States)

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... CONTACT: Mr. Charles Llenza, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy...

  12. Competitive assessment of the US: Renewable energy equipment industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report is a competitive assessment of the U.S. renewable energy equipment industry. The contents include: Definition of technologies; Industry characteristics; Historical perspectives; Industry performance; Trends and projections; The world marketplace; and Issues and options.

  13. Geophysical potential for wind energy over the open oceans.

    Science.gov (United States)

    Possner, Anna; Caldeira, Ken

    2017-10-24

    Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m -2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m -2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  14. Energy's role in industrial competitiveness: An overview

    International Nuclear Information System (INIS)

    Bruneau, A.A.

    1993-01-01

    Canadian exports are fundamentally dominated by raw materials, and the manufacturers and producers of these materials are inherently large consumers of energy. The access to reliable indigenous energy reserves at relatively low costs has played a significant role in Canada's competitiveness. Nevertheless, this competitiveness exists in a commercial environment in which practices are undergoing profound changes, attributable to the low relative value of raw materials on world markets where there are many competitors. In addition, recycling is increasingly influencing the demand and the price of products. Trade in manufactured goods has increased over the past few years, which has an effect on energy demand and on requirements related to the quality of supply. It is increasingly evident that the value of information products will increase more rapidly than the value of products made from materials, and that those information products will be the principal foundation of future wealth. At the same time, energy and fuel sectors are subject to profound change following environmental restrictions, questions regarding sustainable development, technological advances, modification of institutions, and political changes. An examination of the principal sectors of the Canadian energy system shows different degrees of development in each and different capabilities for making positive contributions to the competitiveness of the industries they serve. The protective monopoly supply of power is seen as one factor inhibiting competitiveness

  15. Novel ocean energy permanent magnet linear generator buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, K.; Agamloh, E.B.; Jouanne, A. von; Wallace, A.K.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Schacher, A. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-3211 (United States); Chan, P.; Sweeny, B. [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331-3211 (United States)

    2006-07-15

    This paper describes the research, design, construction and prototype testing process of a novel ocean energy direct drive permanent magnet linear generator buoy. The buoy employs the vertical component of the motion of ocean waves to power a linear generator. The generator consists of a permanent magnet field system (mounted on the central translator shaft) and an armature, in which the power is generated (mounted on the buoy). The translator shaft is anchored to the sea floor, and the buoy/floater moves armature coils relative to the permanent magnet translator to induce voltages. The electrical and mechanical structures of the buoy generator are provided, along with performance characteristics, including voltage, current and developed power. (author)

  16. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    Science.gov (United States)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  17. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  18. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  19. Studying fish near ocean energy devices using underwater video

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL; Cullinan, Valerie I.

    2017-09-18

    The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish or not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.

  20. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Science.gov (United States)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  1. Examples of industrial achievements. [Energy economies

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Several examples are presented of industrial units concerned by energy economies. The problem, the solution, the energy savings and the financial balance are given for each following case: recuperation of smoke from two glass furnaces with continuous heat and power production; a new type of heating furnace for non-ferrous ingots; heating furnace with smoke recuperation; high-power boiler for very wet barks; smokes to supply heat to buildings and for a dryer; heat pump drying of plaster squares; air-conditioning of a workshop by recuperation on a furnace; dehydration of fodder and beetroot pulp with a straw generator; microprocessor-controlled hot water recuperation in cheese-making; electronic speed regulation for electronic motors.

  2. Pollution and energy management in tanning industry

    International Nuclear Information System (INIS)

    Zaman, N.U.

    2005-01-01

    Tanning industry uses a number of chemicals such as Common Salt, Lime (Calcium Hydroxide), Sodium Sulfide and Basic Chromium Sulfate etc. During process, only a part of the chemical is consumed and the rest ends up in the effluent as pollutant. This paper deals with the techniques, locally developed or published in literature to recycle these chemicals and also discusses some energy saving techniques which can be used in tanning industry. Basic Chromium Sulfate (BCS) is one of the expensive chemicals used in 'Chrome Tanning'. By precipitating d filtering basic chromium sulfate, the recovery is nearly complete and the effluent obtained contains less than 1ppm Chromium. Dried raw hides contain up to 15% sodium chloride (w/w) and this can be removed in solid form by using mechanical brushes and can be re-used. The recovered salt contains foreign matter as impurities. After dissolution in water, the salt solution is filtered through cartridge filters and can be used in pickle bath. Liming slurry containing sodium sulfide is wasted as it contains fleshing and hair etc. A self cleaning 'J' type screen has no moving parts and removes fleshing and hair from the lime suspension. 'Counter Current Washing Technique,' reduces the wash water quantity by a factor of five to six. Air born pollution generated during buffing and dyeing can be captured by properly designed air filters. The solvents released in atmosphere during dyeing and finishing can be recovered by absorption. Fat, gelatin and protein can be recovered from waste fleshing. In tanning industry, drying of hides is the major consumer of thermal energy. Hot air can be produced by steam, hot water or solar energy. Advantages and disadvantages of these options are discussed. Wastage of thermal energy in dryers can be reduced by improving the existing designs. Hot water for tanning purposes can be generated by recovering waste heat present in the boiler flue gases. Boiler efficiency can also be improved by cycling heat

  3. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  4. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Science.gov (United States)

    2012-09-05

    ...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...

  5. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2017-10-16

    This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.

  6. Industrial aspects of nuclear energy: French experience

    International Nuclear Information System (INIS)

    Lebreton, G.

    1986-11-01

    France decides to develop nuclear energy on a wide scale about 12 years ago. To cope with this ambitious program, the roles have been distributed within a very cohesive organization, as follows: EDF, the french national electricity utility is owner, prime contractor, and plant operator. The Atomic Energy Commission, CEA performs part of the research and development work, and supplies the necessary technical support to the safety authorities. A few leading industrial firms design and build the major parts of the nuclear power plants. Among them is Framatome, which is responsible for the design, manufacture, erection, and startup of nuclear steam supply systems (the NSSSs), and related auxiliaries. Alsthom is responsible for the supply of the turbine and its auxiliaries. It would not be proper to describe the French nuclear industry without focussing our attention on the care given to transfer of technology. Technology transfer agreements can take several forms, but local factors have to be taken into account. These forms are discussed in this paper. A typical and highly significant example (KNU 9-10 project) is given

  7. Comparative risk assessment in the energy industry

    International Nuclear Information System (INIS)

    Hamilton, L.D.

    1981-01-01

    This paper covers four approaches to risk assessment in the energy industry. The first is a comparison of the primary fuel cycles - coal and nuclear - standardized to 1 GW(e) power-plant year; this gives the societal risk of the production of a standardized amount of electricity. An example from underground coal mining is given to show how these estimates for the fuel cycles were made. The second approach is a comparison of the societal and individual occupational risks for different energy cycles per GWy(e). The third approach is a comparison of the societal and individual occupational risks of four different types of photovoltaic cell manufacture; this is an example of an intratechnology comparison. The fourth approach is a risk accounting method of analysis which estimates occupational health impacts for fabrication, construction, operation, and maintenance of energy technologies, and which, through an input-output model of the national economy, includes system-wide impacts as well as direct impacts of building and operating energy facilities

  8. Opportunities in Canada's growing wind energy industry

    International Nuclear Information System (INIS)

    Lovshin Moss, S.; Bailey, M.

    2006-01-01

    Investment in Canada's wind sector is projected to reach $8 billion by 2012, and growth of the sector is expected to create over 16,000 jobs. Canada's wind energy capacity grew by 54 per cent in 2005 alone, aided in part by supportive national policies and programs such as the Wind Power Production Incentive (WPPI); the Canadian Renewable Conservation Expense (CRCE) and Class 43.1 Capital Cost Allowance; and support for research and development. Major long-term commitments for clean power purchases, standard offer contracts and renewable portfolio standards in several provinces are encouraging further development of the wind energy sector. This paper argued that the development of a robust Canadian wind turbine manufacturing industry will enhance economic development, create opportunities for export; and mitigate the effects of international wind turbine supply shortages. However, it is not known whether Canadian wind turbine firms are positioned to capitalize on the sector's recent growth. While Canada imports nearly all its large wind turbine generators and components, the country has technology and manufacturing strengths in advanced power electronics and small wind systems, as well as in wind resource mapping. Wind-diesel and wind-hydrogen systems are being developed in Canada, and many of the hybrid systems will offer significant opportunities for remote communities and off-grid applications. Company partnerships for technology transfer, licensing and joint ventures will accelerate Canada's progress. A recent survey conducted by Industry Canada and the Canadian Wind Energy Association (CanWEA) indicated that the total impact of wind energy related expenditures on economic output is nearly $1.38 billion for the entire sector. Annual payroll for jobs in Canada was estimated at $50 million, and substantial employment growth in the next 5 years is expected. Canada offers a strong industrial supply base capable of manufacturing wind turbine generators and

  9. Experimental ocean acidification alters the allocation of metabolic energy.

    Science.gov (United States)

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  10. Geophysical Potential for Wind Energy over the Open Oceans

    Science.gov (United States)

    Possner, A.; Caldeira, K.

    2017-12-01

    Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  11. Early onset of industrial-era warming across the oceans and continents.

    Science.gov (United States)

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  12. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-10-03

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States.

  13. How energy efficiency fails in the building industry

    International Nuclear Information System (INIS)

    Ryghaug, Marianne; Sorensen, Knut H.

    2009-01-01

    This paper examines how energy efficiency fails in the building industry based on many years of research into the integration of energy efficiency in the construction of buildings and sustainable architecture in Norway. It argues that energy-efficient construction has been seriously restrained by three interrelated problems: (1) deficiencies in public policy to stimulate energy efficiency, (2) limited governmental efforts to regulate the building industry, and (3) a conservative building industry. The paper concludes that innovation and implementation of new, energy-efficient technologies in the building industry requires new policies, better regulations and reformed practices in the industry itself

  14. Policy modeling for industrial energy use

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the

  15. Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs

    International Nuclear Information System (INIS)

    Thollander, Patrik; Danestig, Maria; Rohdin, Patrik

    2007-01-01

    The most extensive action targeting the adoption of energy efficiency measures in small- and medium-sized manufacturing industries in Sweden over the past 15 years was project Highland. This paper presents an evaluation of the first part of this local industrial energy programme, which shows an adoption rate of more than 40% when both measures that have already been implemented and measures that are planned to be implemented are included. A comparison between this programme and another major ongoing programme for the Swedish energy-intensive industry indicates that the approach used in project Highland aimed at small- and medium-sized industries is an effective way to increase energy efficiency in the Swedish industry. The major barriers to energy efficiency among the firms were related to the low priority of the energy efficiency issue

  16. Energy conservation in industry; Energibesparelser i erhvervslivet

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, M. (Dansk Energi Analyse A/S (Denmark)); Maagoee Petersen, P. (Viegand and Maagoee ApS (Denmark))

    2010-02-15

    The report describes the completed survey and the methodology used for the analysis of energy saving opportunities and potentials for processing technologies and equipment in the industry. The report also includes a total of fourteen technology descriptions, of which eleven relate to end use of energy, while the three descriptions are for cross-technologies. The technology descriptions analyse any significant savings opportunities in the processing technologies concerned and work out the potentials of 'here and now' cost savings, with 2, 4 and 10-year payback time, respectively. The survey makes it possible to prioritize the instruments with the shortest payback times. The total savings potential for the eleven end-use technologies is estimated to be 10% at 2 years of payback time, 15% at four year payback time, and 32% at the 10 year payback time. The percentage potential is somewhat greater for the end-use technologies using electricity than the end-use which mainly uses fuel. That the potential is less for fuel-based end-use technologies may be explained by the fact that they are key processes that are regularly upgraded to increase product quality, to reduce production time and waste, etc. Such improvements also help to save energy and means that further improvements are relatively expensive. (ln)

  17. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  18. Energy saving in the shipping industry; Energiebesparing in de scheepvaart

    Energy Technology Data Exchange (ETDEWEB)

    Gilijamse, J.; Van Wijngaarden, W.

    2010-01-15

    The German shipping industry pays much attention to sustainability and efficiency. More strict international environmental requirements often encourage shipping companies to incite shipbuilders towards innovation. Yet some shipbuilders are consciously adopting a frontrunner's role in developing prototypes of energy efficient ships. In addition to the return of modern versions of sailing ships these projects also entail hydrogen, wind energy and new materials, but also exploring the ocean with satellites to gather detailed information used for optimizing the itinerary. [Dutch] Er is in de Duitse scheepsbouwindustrie veel aandacht voor duurzaamheid en efficientie. Strengere internationale milieu-eisen zijn vaak aanleiding voor rederijen om scheepsbouwers tot innovatie aan te zetten. Maar enkele reders nemen bewust een voorlopersrol en ontwikkelen prototypes van energie-efficientere schepen. Naast de terugkeer van moderne versies van zeilschepen gaat het hierbij om projecten met waterstof, windenergie en nieuwe materialen, maar ook om het verkennen van de oceaan met satellieten om nauwkeurige gegevens te vergaren voor de optimalisatie van vaarroutes.

  19. Energy efficiency opportunity guide in the lime industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The lime industry processes limestone, an abundant inorganic mineral, for metallurgical, industrial and chemical, environmental, and construction applications. The energy the industry uses results in greenhouse gas emissions and the Canadian Lime Institute, in collaboration with Natural Resources Canada, sponsored the development of this guidebook which is intended to provide ideas for saving energy in the lime industry. This document is a practical source of information and can be used to develop self-audit and evaluation techniques to monitor energy usage. The report first provides an overview of the lime industry, then presents its energy costs. General energy efficiency methodologies are highlighted and, in conclusion, advice on improving energy efficiency in general and specifically for lime industry operations is given. This guidebook provides useful information for lime industry operators who are trying to improve the energy efficiency of their operations.

  20. Harnessing the potential - Atlantic Canada's oil and gas industry : Newfoundland Ocean Industries special releases or publications

    International Nuclear Information System (INIS)

    1998-07-01

    A comprehensive overview of Atlantic Canada's oil and gas industry is presented, demonstrating the importance of oil and gas resources and their related industries to Atlantic Canada. The objective of the report is to provide a basis for a strategy to optimize opportunities within the region from the oil and gas sector. The report reviews the current status of the industry, including the region's resource potential and the oil and gas developments currently underway. The evolution of the oil and gas industry is discussed in terms of value chain components. A broad assessment of the region's supply, labour force, infrastructure, training, and research and development capabilities is presented, followed by a description of the industry's potential, its regulatory framework and the barriers and constraints affecting industry development. Appendices contain a chronological history of major events in Atlantic Canada's oil and gas industry (Appendix A); and overview of the Atlantic Accord and the Canada-Nova Scotia Accord's equalization offset provisions (Appendix B); a value chain matrix, detailing some 60 categories of industry requirements and a capsule assessment of the region's ability to meet them (Appendix C); and a listing of research and development institutions in Atlantic Canada, including their areas of specialization (Appendix D)

  1. Open cycle ocean thermal energy conversion system structure

    Science.gov (United States)

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  2. Selected legal and institutional issues related to Ocean Thermal Energy Conversion (OTEC) development

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, V. P.

    1979-06-01

    Ocean Thermal Energy Conversion (OTEC), an attractive alternative to traditional energy sources, is still in the early stages of development. To facilitate OTEC commercialization, it is essential that a legal and institutional framework be designed now so as to resolve uncertainties related to OTEC development, primarily involving jurisdictional, regulatory, and environmental issues. The jurisdictional issues raised by OTEC use are dependent upon the site of an OTEC facility and its configuration; i.e., whether the plant is a semipermanent fixture located offshore or a migrating plant ship that provides a source of energy for industry at sea. These issues primarily involve the division of authority between the Federal Government and the individual coastal states. The regulatory issues raised are largely speculative: they involve the adaptation of existing mechanisms to OTEC operation. Finally, the environmental issues raised center around compliance with the National Environmental Policy Act (NEPA) as well as international agreements. 288 references.

  3. Analysis of Energy Industry Upgrading in Northeast China

    Science.gov (United States)

    Liu, Xiao-jing; Ji, Yu-liang; Guan, Bai-feng; Jing, Xin

    2018-02-01

    Promoting regional economic growth and realizing the transformation of the mode of economic growth are in industrial upgrading essence The product is a carrier that represents a series of links of production, management and marketing behind the enterprise, and is a comprehensive reflection of the knowledge and ability of a country or region. Based on the industrial spatial structure, this paper visualizes the industrial space in Northeast China from 2005 to 2015, analyzes the comparative advantages of the energy industry in Northeast China, and examines the status quo of the upgrade of the energy industry according to the industrial upgrading status. Based on the industrial spatial structure, Industry intensity in the industrial space, put forward the future direction of the energy industry upgrade and upgrade path.

  4. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  5. Industrial energy thrift scheme. Report No. 16. Energy use in the knitting industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The knitting industry includes organizations concerned with hosiery, other weft knitted goods and warp-knitting and in some cases also with subsequent dyeing and finishing of knitted goods. In 1976, the industry had 116,000 employees located at approximately 600 sites, mostly in the East Midlands. The total energy consumption of the industry in 1976 was estimated to be 12,180 TJ. Sites with dyeing and finishing interests could save 15% of their energy. The major sources of savings (6%) are by recovering process heat which is currently wasted and from better process control. Other significant savings (5%) are possible from better control, maintenance and insulation of boilers and pipes. Attention to better housekeeping, to controlling draughts and to space heating generally could account for a further 3.5% saving in energy. Sites without dyeing and finishing interests could save 13% of the total energy used by this group. The most important opportunities are better control of space heating (5.5%) and better control and insulation of boilers, pipes and services (5%). These sites have fewer opportunities to recover heat from processes (2%) than where dyeing and finishing takes place but opportunities do exist.

  6. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  7. Integrating energy and environmental management in wood furniture industry.

    Science.gov (United States)

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  8. Integrating Energy and Environmental Management in Wood Furniture Industry

    Science.gov (United States)

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  9. Oceans of Opportunity. Harnessing Europe's largest domestic energy resource

    International Nuclear Information System (INIS)

    Fichaux, N.; Wilkes, J.

    2009-09-01

    Europe's offshore wind potential is enormous and able to power Europe seven times over. Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU's electricity whilst avoiding 200 million tonnes of CO2 emissions each year. EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 - what the wind energy industry has achieved on land can be repeated at sea. EWEA's proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Strong political support and action from Europe's policy-makers will allow a new, multi-billion euro industry to be built. This new industry will deliver thousands of green collar jobs and a new renewable energy economy and establish Europe as world leader in offshore wind power technology. A single European electricity market with large amounts of wind power will bring affordable electricity to consumers, reduce import dependence, cut CO2 emissions and allow Europe to access its largest domestic energy source.

  10. Fish energy budget under ocean warming and flame retardant exposure.

    Science.gov (United States)

    Anacleto, Patrícia; Figueiredo, Cátia; Baptista, Miguel; Maulvault, Ana Luísa; Camacho, Carolina; Pousão-Ferreira, Pedro; Valente, Luísa M P; Marques, António; Rosa, Rui

    2018-07-01

    Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ± 0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future

  11. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  12. Energy supply technologies. Hydro, ocean, wave and tidal

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.; Larsen, Hans [Risoe National Lab. - DTU (Denmark)

    2007-11-15

    This chapter presents an overview of current hydro, ocean, wave and tidal initiatives. Large hydro remains one of the lowest-cost generating technologies, although environmental constraints, resettlement impacts and the limited availability of sites have restricted further growth in many countries. Large hydro supplied 16 % of global electricity in 2004, down from 19 % a decade ago. Large hydro capacity totalled about 720 GW worldwide in 2004 and has grown historically at slightly more than 2 % annually. China installed nearly 8 GW of large hydro in 2004, taking the country to number one in terms of installed capacity (74 GW). With the completion of the Three Gorges Dam, China will add some 18.2 GW of hydro capacity in 2009. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic benefits of hydro include improved flood control and water supply. The socio-economic cost of hydro includes displacements and submergence. Further hydro can improve peak-capacity management. Ocean currents, some of which runs close to European coasts, carry a lot of kinetic energy. Part of this energy can be captured by sub-marine windmills and converted into electricity. These are more compact than the wind turbines used on land, simply because water is much denser than air. The main European countries with useful current power potential are France and the UK. Ocean tides are driven by the gravitational pull of the moon. With one high tide every 12 hours, a tidal power plant can operate for only four or five hours per cycle, so power from a single plant is intermittent. A suitably-designed tidal plant can, however, operate as a pimped storage system, using electricity during periods of low demand to store energy that can be recovered later. The only large, modern example of a tidal power plant is the 240 MW La Rance plant, built in France in the 1960s, which represents 91 % of the world tidal power capacity. Wave energy can be seen as

  13. Sustainable development of new energy vehicle industry in China

    Science.gov (United States)

    Li, Mingyang; Li, Lingzhi

    2018-03-01

    The new energy vehicle industry in China has developed rapidly in recent years, but there is still a gap in core technology. Some problems are brought the adverse effect on it, such as imperfect infrastructures, imperfect systems in market access and regulatory, single channels for marketing and low acceptance among consumer. Based on the development of new energy vehicle industry home and abroad, this paper puts forward some problems of new energy vehicles industry in China, then offers some feasible suggestions.

  14. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  15. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  16. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  17. Major energy users and reforms of the German energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffenberger, W

    1994-06-01

    There is a historic tradition of industrial autoproduction of electricity in Germany. Major energy users in the past used to be and today often still are autoproducers of electric power. The public utility sector, according to present legal standards, operates in a framework that protects local and regional monopolies. The large consumers and autoproducers are an important countervailing power in the whole system of the electricity supply industry. Electric utilities (EU) in Germany are semi-public or private enterprises of a wide variety of size. The large producer utilities operate the high voltage grid on the basis of private contracts. Regional distribution companies mostly without a considerable share in production often in cooperation with local distributors deliver electricity (el) in the non-urban areas whereas mostly city owned EU supply the large cities often on the basis of considerable parts of autoproduction and often also with a considerable share of el produced in cogeneration plants. The equilibrium between the parts of this system in the past was ensured by a legal framework protecting local monopolies as well as long term contracts between producers and distributors. Deregulation trends inherent in European legislation on competition have threatened this stability. In the first phase resistance against a more competitive order seemed unanimous. In the meantime however the different actors had time to rethink their position: The European Council has now proposed a more moderate regulation. The German Government has made a proposal for some important changes in the Energy Law and connected passages in the Competition Law, which would introduce some more competitive elements into the system without anticipating the results of a competitive process.

  18. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  19. The impact of energy efficiency interventions on industry – the Industrial Energy Efficiency Project in South Africa

    CSIR Research Space (South Africa)

    Hartzenburg, A

    2015-10-01

    Full Text Available The IEE Project was set up in 2010 to help transform the energy-use patterns of South African industry by means of energy management systems and energy systems optimisation. Through IEE Project implementation, around 100 industry plants have saved 1...

  20. Energy conservation in pulp and paper industry: some thoughts

    Energy Technology Data Exchange (ETDEWEB)

    Sadawarte, N. S.; Prasad, A. K.; Khanolkar, V. D.; Shenoy, S. C.

    1980-03-15

    The pulp and paper industry is highly energy intensive. In view of the spiralling fuel prices and rising power costs, there is an urgent need to conserve energy through better management of various operations in the industry, from the optimal utilization of the forest residues to the shipment of the final product. The total energy concept, e.g., energy generation, distribution and utilization in Indian paper industry is discussed. The need for an energy audit is emphasized and the formats of energy reporting forms are included. Short and long term measures to be enforced to achieve energy savings in the pulp and paper mills are outlined. Some important energy conservation approaches are also discussed. Factors affecting energy efficiency in a pulp and paper mill are reviewed. Some areas where sustained R and D efforts should be focused to make the paper industry nearly self-sufficient in energy generation and utilization are also given. It is essential to have a National Energy Policy clearly defining achievable targets of energy conservation for industry. The Indian paper industry could advantageously form its own committee to review the operation of the various mills in the country and come out with concrete solutions for higher energy efficiency and more effective conservation of energy.

  1. Gap analysis of industrial energy management systems in Slovenia

    International Nuclear Information System (INIS)

    Pusnik, Matevz; Al-Mansour, Fouad; Sucic, Boris; Gubina, A.F.

    2016-01-01

    Industrial energy management systems, which comprise software solutions, upfront services, and ongoing monitoring and management, enable industrial companies to actively manage their energy consumption and energy procurement activities. Energy management systems are usually tailored to the specific industrial needs but may offer limited functionalities, mostly as a result of different identified gaps (process simplifications, improper measurement points, a lack of motivation, etc.). A survey was conducted in order to analyse the gaps and use of energy management systems in Slovenian industry. The results of the survey presented in this paper demonstrate that the use of energy management systems in industry is recognised as a potential competitive advantage by most of the addressed companies. Furthermore, motivation was highlighted as an important prerequisite for process and structural improvements and reported to be thus far insufficiently addressed. Furthermore, the importance of strong cooperation with actors at different levels of industry, namely the executive and shop floor levels, is addressed. In the conclusion, possibilities for new opportunities in the exploitation of energy efficiency through the use of industrial energy management systems are discussed. - Highlights: • Investigating gaps and evaluation of EMS use in Slovenian industry. • Analysis based on the developed self-assessment tool 3EMT. • Existing EMS do not include all the requirements for the industrial operations. • Constructive cooperation between all stakeholders is of crucial importance.

  2. Pulp and Paper Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  3. ENERGY MANAGEMENT INNOVATION IN THE US SKI INDUSTRY

    Science.gov (United States)

    Ski areas represent a unique opportunity to develop innovative energy management practices in an industrial setting. Through a unique synergy of onsite generation, preferably by renewable sources and innovative technologies, and the energy storage potential of exis...

  4. Wind energy development as a part of Poland's industrial development

    DEFF Research Database (Denmark)

    Stoerring, Dagmara; Hvelplund, Frede Kloster

    2003-01-01

    The paper concludes with recommendations on how to make wind energy development a part of the industrial development in Poland by introducing renewable energy support mechanisms to improve the conditions for companies to develop wind technology in Poland....

  5. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  6. Energy efficiency opportunities within the powder coating industry

    Energy Technology Data Exchange (ETDEWEB)

    Osbeck, Sofie; Bergek, Charlotte; Klaessbo, Anders (Swerea IVF AB, Moelndal (Sweden)), e-mail: anders.klassbo@swerea.se; Thollander, Patrik; Rohdin, Patrik (Dept. of Management and Engineering, Linkoeping Univeristy, Linkoeping (Sweden)); Harvey, Simon (Dept. of Energy and Environment, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2011-06-15

    A new challenge to reduce energy usage has emerged in Swedish industry because of increasing energy costs. Energy usage in the Swedish powder coating industry is about 525 GWh annually. This industry has a long and successful record of working towards reduced environmental impact. However, they have not given priority to energy saving investments. Electricity and LPG, for which end-user prices are predicted to increase by as much as 50 - 60% by 2020, are the main energy carriers used in the plants. This paper presents the results of two detailed industrial energy audits conducted with the aim of quantifying the energy efficiency potential for the Swedish powder coating industry. Energy auditing and pinch analysis methods were used to identify possible energy housekeeping measures and heat exchanging opportunities. The biggest users of energy within the plants are the cure oven, drying oven and pre-treatment units. The energy use reduction by the housekeeping measures is 8 - 19% and by thermal heat recovery an additional 8 - 13%. These measures result in an average energy cost saving of 25% and reduction of carbon dioxide emissions of 30%. The results indicate that the powder coating industry has a total energy efficiency potential of at least 20%

  7. Identifying blocks to boost industrial development indispensable to energy transition

    International Nuclear Information System (INIS)

    2012-11-01

    For different sectors (biomass energy, fossil and geothermal energies, nuclear energies, solar energy, marine, hydraulic and wind energies, energies in transports, construction, industries and agriculture, prospective and education, grids and storage), this report gives a brief overview of the present status and problematic, and briefly presents the main issues to be solved to develop these sectors within the perspective of energy transition and sustainable development

  8. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  9. DE-EE0000319 Final Technical Report [National Open-ocean Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Skemp, Susan

    2013-12-29

    -viable fashion presents a variety of challenges. Beyond the technology itself (and, especially, the effects on the technology of the harsh oceanic environment), it is important to consider the possible environmental impacts of commercial-scale implementation of oceanic energy extraction. Further, because such implementation represents a completely new undertaking, the human resources required do not exist, so education and training programs are critical to eventual success. This project, establishing a national open-ocean energy laboratory, was designed to address each of these three challenges in a flexible framework allowing for adaptive management as the project proceeded. In particular: the technology challenge, including resource assessment, evolved during the project to recognize and address the need for a national testing facility in the ocean for small-scale prototype MRE systems developed by industry; the environmental challenge became formalized and expanded during the permitting process for such a testing facility; and the human resources/societal challenges, both in terms of the need for education and training and in terms of public acceptance of MRE, stimulated a robust outreach program far beyond that originally envisioned at SNMREC. While all of these activities at SNMREC are ongoing, a number of significant milestones (in addition to the contributions listed in the appendices) were achieved under the auspices of this award. These include: Planning and site selection for the first-phase test facility, offshore of Dania Beach, FL, including some equipment for the facility, submission of an Interim Policy Lease Application to the U.S. Department of Interior’s Bureau of Ocean Energy Management (BOEM), and completion of an Environmental Assessment by BOEM and a positive Consistency Determination by the State of Florida; Measurements using acoustic profilers of the current structure and variability in the vicinity of the site under a variety of weather conditions

  10. The status of energy conservation in Taiwan's cement industry

    International Nuclear Information System (INIS)

    Su, Te-Li; Chan, David Yih-Liang; Hung, Ching-Yuan; Hong, Gui-Bing

    2013-01-01

    The cement industry represents one of the most energy intensive sectors in Taiwan. Energy audits are the direct tools which are employed to help reduce energy consumption. The objectives of energy audits are to establish energy audit systems, provide on-site energy audit service and reduce production cost. This study summarized the energy savings implemented in Taiwan's cement industry; the data were obtained from the on-line Energy Declaration System in 2010. The total implemented energy savings amounted to 68,512 kilo liter of crude oil equivalent (KLOE). The energy audit group audited seven Taiwanese cement plants in 2011 and revealed an energy saving potential of 2571.6 MWh of electricity and 1002.8 KLOE of thermal energy. The total potential energy saving was 1708.5 KL of crude oil equivalent (KLOE), equivalent to a 4560 t reduction in CO 2 emissions, representing the annual CO 2 absorption capacity of a 122 ha forest plantation. - Highlights: • This study summarizes the energy savings implemented in Taiwan's cement industry from the on-line Energy Declaration System. • The energy audit group audited seven Taiwanese cement plants in 2011 and revealed energy saving potential was 1708.5 KLOE. • This work aims to examine what Taiwan has done and also describes the current status in cement industry. • In addition, some potential energy conservation opportunities or measures are revealed in this paper

  11. Energy and Production Planning for Process Industry Supply Chains

    OpenAIRE

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  12. Transition of Russian energy industry to a market economy

    International Nuclear Information System (INIS)

    Makarov, A.

    1992-01-01

    The Russian energy industry by totality of politic, social and economic circumstances has entered into the sharpest crisis. Development of energy industry has practically ceased, it has appeared a decline in electricity , oil and coal production. However it has been accumulated a vast intact potential for energy conservation and the change of energy consuming equipment in USSR by the best models of the world could reduce the present annual consumption by about 500 millions.tonnes of coal equivalent

  13. EU energy policies achievement by industries in decentralized areas

    Science.gov (United States)

    Destro, Nicola; Stoppato, Anna; Benato, Alberto; Schiro, Fabio

    2017-11-01

    Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees) for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  14. EU energy policies achievement by industries in decentralized areas

    Directory of Open Access Journals (Sweden)

    Destro Nicola

    2017-01-01

    Full Text Available Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  15. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  16. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  17. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  18. Plants as a raw material for industry and energy; Pflanzen fuer Industrie und Energie

    Energy Technology Data Exchange (ETDEWEB)

    Pude, Ralf [Bonn Univ. (Germany); Werner, Antje; Vollrath, Birgit [Bayerische Landesanstalt fuer Weinbau und Gartenbau (LWG), Veitshoechheim (Germany); Goedeke, Katja [Thueringer Landesanstalt fuer Landwirtschaft, Jena (Germany)

    2012-06-21

    Dwindling fossil resources, perceptible climatic change as well as an increased environmental awareness allow a reflection to energy crops and industrial crops. In order to explain the renewable resources by means of examples and illustrations, and in order to maintain an overview on the variety of renewable resources, the Agency for Renewable Ressources (Guelzow, Federal Republic of Germany) has published this brochure. The range and variety of use capacities of renewable resources are discussed. Cultural technical applications on cultivation and harvesting of crops round off the issue.

  19. Model Effectiviteit Instrumenten-Energiebesparing Industrie (MEI-Energie)

    NARCIS (Netherlands)

    Wijk JJ van; Engelen RFJM; Ros JPM; LAE

    2001-01-01

    Within the context of the Kyoto Protocol insight into industrial energy savings and the influence of policy instruments is desirable, both for the past and the future. By virtue of its legal central policy analysis function, the RIVM is currently developing an energy-saving model for industrial

  20. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hayden, H. Wayne [Metals Manufacture Process and Controls Technology, Inc., Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Robert E. [R.E. Moore Associates, Maricopa, AZ (United States); Headrick, William L. [R.E. Moore Associates, Maricopa, AZ (United States)

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  1. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  2. Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance

    Directory of Open Access Journals (Sweden)

    Weiwei Liu

    2016-08-01

    Full Text Available Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

  3. Analisis Permintaan Energi Listrik Pada Industri Mebel Di Kota Pekanbaru

    OpenAIRE

    ', Permansyah; Chalid, Nursiah; ', Taryono

    2015-01-01

    This study aims to determine the effect of the furniture industry costumers and the value of production of the electric energy demand in the furniture industry in Pekanbaru and to determine the most dominant variable affecting the demand for electrical energy on the furniture industry in the City of Pekanbaru, Riau. The analysis of the data used in this research is quantitative deskriptive model of multiple linear regression model. Result of this study were obtained from questioner (primary) ...

  4. Developing finance to meet energy industry challenge

    International Nuclear Information System (INIS)

    Morphett, C.

    1994-01-01

    The role of commercial financial institutions in the development of the world's oil and gas industry are charted in this article. Banks and other institutions have been lending money to the oil industry since the late 1920s. In the early days loans were short-term, but as the oil and gas industries have developed, using deeper wells and more complex technology, financial needs too have expanded. Better forecasting of future recovery levels, and a better understanding of reservoir characteristics has meant that lending institutions have advanced funds against projected oil revenues, with repayments due only as oil production comes on-line. (UK)

  5. Harnessing the Ocean's Power : Energy from Waves and Currents (Part I)

    OpenAIRE

    Yukihisa, Washio; Japan Marine Science and Technology Center

    1985-01-01

    The oceans are a potential source of renewable and pollution-free energy of particular importance to Japan. In this Issue we look at current development work to harness wave energy for power generation.

  6. Challenges and Strength of Current Industrial Energy Efficiency Management Practices in Steam Industries

    Science.gov (United States)

    Nkosi, S. B.; Pretorius, J. H. C.

    2017-07-01

    The aim of this study is to achieve greater output by examining the existing way of coordinating the determined attempts of Steam Industries in South Africa to successfully reach a sustainable industrial development by using energy source adequately in a more competent way. Furthermore into the study we look at obstacles that prevent and those that leads to maximum utilization of energy management measures and also highlights the effects of implementing cheap available energy source in South Africa. The investigation and analysis have shown that energy is not well managed in Steam Industries and that the use of energy is minimized and not fully utilized due to poor management and lack of knowledge. Another detection was that lack of government structured and strategic measures of implementing and motivating the use of energy effectively. The effective and rational use of available power by Steam Industries in South Africa is a key player in developing a sustainable industrial development. The use of energy efficiency management strategies has contributed an increase in economic and improve environmentally friendly in the industrial sector. The slow pace adoption of energy saving and cost effective management programmes are negatively impacting on the benefits to Steam Industries in South Africa. In conclusion the study finds that the economy can be boosted by implementing energy efficiency management programmes and environmentally friendly. These will also stabilize the negative impact of energy raising prices.

  7. Spanish leadership in marine renewable energies. The project Ocean Lider; Liderazgo espanol en energias renovables oceanicas. El proyecto Ocean Lider

    Energy Technology Data Exchange (ETDEWEB)

    Amante, J.

    2012-07-01

    The Cenit-e Ocean Lider project is an ambitious R+D technological initiative promoted by a consortium of companies with a strong research capability which addresses the challenge of developing the necessary technologies to set up integrated large scale installations that can harness energies of marine renewable sources, such as waves, tidal currents and wind. Ocean Lider developed knowledge and technologies would provide some new power plant concepts, devices, structures, data acquisition and site characterization systems, vessels, etc. In this way, some new technologies for harnessing ocean energy generation, distribution and transmission would be developed and sized according to a large scale scheme, to make this hybrid harvest (wave, current and wind) as profitable as possible. (Author)

  8. Opportunity knocks - the sustainable energy industry and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Price, B.; Keegan, P. [International Institute for Energy Conservation, Washington, DC (United States)

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  9. RENEWABLE ENERGY BETWEEN AGRICULTURE AND INDUSTRY

    Directory of Open Access Journals (Sweden)

    Diana GROSU

    2013-01-01

    Full Text Available The paper aims to present the evolution of renewable energy in the entire world, including Moldova and Romania as states that tend to reach their micro- and macro-economic objectives. One of the most important goal remains thedevelopment of renewable energy from agricultural waste and so the energy coming from natural sources such assolar, wind or water without air pollution. As a conclusion, the solution to obtain this renewable energy is to attractfinancial resources from EU or USA investors.

  10. The competitive environment of the North American energy marketing industry

    International Nuclear Information System (INIS)

    Tonkin, S.L.

    1999-01-01

    Various issues regarding U.S. wholesale energy marketing were discussed with particular emphasis on how energy marketing is changing industries in North America. In 1998, the energy industry reported a growth in revenue of 26 per cent despite declining natural gas prices. It was emphasized that several major competitive issues need to be addressed by industry competitors in order to operate in this unpredictable market. These issues include profitability, market volatility and mergers and acquisitions. This paper presented a list of the top 10 North American Energy marketers in 1998. Although the number of marketers in the energy sector continues to grow, it is expected that the numbers will decline significantly within three years. This will be due mostly to the continuation of major mergers and acquisitions. It was concluded that in general, energy marketing may become an even more attractive industry because of increasing operating margins. 5 tabs., 2 figs

  11. Measuring industrial energy efficiency: Physical volume versus economic value

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  12. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  13. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  14. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  15. Wind energy in industrial areas. Results of an attitude survey

    International Nuclear Information System (INIS)

    Schoolderman, J.A.; Huiberts, R.G.J.

    2000-06-01

    The feasibility of installing wind turbines in industrial parks in the Netherlands has been investigated. An overview is given of possibilities and constraints to fit in wind turbines in industrial areas, based on the results of a literature study, a market consultation of sectoral organizations, representatives of local industrial circles and industrial experts in the field of renewable energy. Also a telephone survey was carried out among 130 entrepreneurs in the Netherlands to determine their attitudes towards the use of sustainable energy and wind energy in industrial parks. The results of the attitude study are published in this report. The main report is a separate report for which a separate abstract has been prepared. The intermediate results were discussed at a meeting (23 February 2000), in which representatives from the industry, provinces, municipalities and the government participated

  16. Industrial energy efficiency: A policy perspective

    International Nuclear Information System (INIS)

    Chandler, W.U.

    1990-01-01

    Policies that promote energy efficiency can work; but potential energy savings are unlikely to be realized without effective policy leadership. This article discusses the opportunities in several countries for increasing energy efficiency. Both ''open'' and centrally planned economies could be much more energy efficient. In the United States, for example, the government needs to stimulate energy efficiency. This could be done by sponsoring research to develop new processes, creating favourable financial conditions for investment in efficiency, and making the advantages of energy efficiency technologies better known. International collaboration in sponsoring research and transfer technologies could be of the greatest importance in improving energy efficiency in countries with centrally planned economies, including the Soviet Union, as well as in developing countries. Favourable conditions for achieving both economic development and environmental protection can be created through cooperation on the international level. (author). 24 refs, 4 tabs

  17. Energy Reporting Practices among Top Energy Intensive Industries in Malaysia

    Science.gov (United States)

    Tasrip, N. E.; Mat Husin, N.; Alrazi, B.

    2016-03-01

    This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.

  18. Renewable energies - Industrials, produce your own electricity

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2016-01-01

    As a public bidding has been launched at the initiative of the French government on self-consumption in industrial and office building sites, this article discusses this issue of self-production and consumption, and its perspectives. Professionals and individuals could be interested in the recent evolutions as it was before more interesting to sell the produced photovoltaic electricity to EDF than to consume it. Some industries (warehouses, supermarkets, oil production, and airport) have already implemented this solution, and its development could boost the use of photovoltaic panels

  19. New industrial park energy supply (NIPES) conceptual design: executive summary

    International Nuclear Information System (INIS)

    1984-01-01

    The NIPES concept was originally envisioned as an energy supply source for new industrial plants in new industrial parks. However, the concept is readily adaptable to a combination of new and existing industrial plants. The concept is intended to minimize the problems associated with the use of coal in industrial applications as well as to improve the efficiency of energy utilization. Information is presented concerning a description of the NIPES concept; application of NIPES concept to Lake Charles, Louisiana; coal-fired plant design; nuclear plant design; thermal transmission system design; financial analysis; capital cost estimates; and results of financial analysis

  20. Energy efficiency opportunities in the brewery industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  1. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  2. Energy transition: which opportunities for the French industry?

    International Nuclear Information System (INIS)

    Bousson, Guillaume; Pouzeratte, Francois; Pierret, Christian; Bensasson, Bruno; Bouttes, Jean-Paul; Bouygues, Olivier; Durdilly, Robert; Geoffron, Patrice; Ladoucette, Philippe de; Lepercq, Thierry; Maillard, Dominique; Rosier, Philippe; Sauquet, Philippe

    2014-05-01

    Regulatory requirements introduced by the new policy of energy transition will force the French industry to look for alternatives to oil and coal. Within this context, this publication contains contributions proposed by industrial and academic experts which aim at discussing how the French industry can seize the opportunity of energy transition to strengthen itself. The authors discuss the issue of competitiveness, the role of de-carbonated electricity, the context of energy transition in France, the evolutions and transformations of the energy market. They also outline the lack of an energy vision in France, the role of the electricity grid as a vector of energy transition, and the fact that the debate on energy transition did not result in concrete solutions

  3. Industrial energy efficiency: Achieving success in a difficult environment

    Energy Technology Data Exchange (ETDEWEB)

    Castellow, Carl

    2010-09-15

    Energy use and the resulting environmental impacts are major points of concern for the world in the 21st century. Opinions that define the challenges of sustainable energy options are as diverse as the proposed solutions. The industrial sector is a key area both from the standpoint of the amount of energy consumed and the magnitude of the energy options that exist there. However, history has shown that success in the industrial energy sector requires careful planning and consideration of the unique challenges of the manufacturing environment.

  4. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Lovdal, Nicolai, E-mail: nicolai.lovdal@iot.ntnu.n [Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Neumann, Frank, E-mail: frank@wave-energy-centre.or [Wave Energy Centre, Av. Manuel Maia, 36, r/c Dto., 1000-201 Lisboa (Portugal)

    2011-03-15

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: {yields} Industry barriers identified as access to capital and supportive political schemes. {yields} International entrepreneurship is used to overcome industry barriers. {yields} Start-ups in emerging energy industries 'shop' national support schemes. {yields} Future research to provide policy advice should adapt to the international reality. {yields} Research based on a worldwide survey of wave and tidal energy device developers.

  5. Internationalization as a strategy to overcome industry barriers-An assessment of the marine energy industry

    International Nuclear Information System (INIS)

    Lovdal, Nicolai; Neumann, Frank

    2011-01-01

    Research on conditions to develop new innovations within emerging renewable energy industries is often done with a national focus. However, recent research on international entrepreneurship has revealed that firms operate on international levels very early in their life time. Thus, based on former research on international entrepreneurship and case examples, we build the propositions that firms in the marine energy industry use internationalization as a strategy to overcome industry barriers. Our primary source of data is a unique dataset from a global survey of all the companies in the marine energy industry who are aiming to commercialize a wave or tidal energy device. This paper is organized in two steps: first we identified the most challenging industry barriers perceived by companies. Second we use these to form propositions which we assess through empirical data. The two most challenging barriers perceived by the companies are need for capital and need for supportive political schemes. Our findings reveal that internationalization certainly is a common strategy to access capital and attractive support schemes in foreign countries. The early internationalization has implications for researchers, managers and policy makers. - Research highlights: → Industry barriers identified as access to capital and supportive political schemes. → International entrepreneurship is used to overcome industry barriers. → Start-ups in emerging energy industries 'shop' national support schemes. → Future research to provide policy advice should adapt to the international reality. → Research based on a worldwide survey of wave and tidal energy device developers.

  6. New approaches for improving energy efficiency in the Brazilian industry

    Directory of Open Access Journals (Sweden)

    Paulo Henrique de Mello Santana

    2016-11-01

    Full Text Available The Brazilian government has been promoting energy efficiency measures for industry since the eighties but with very limited returns, as shown in this paper. The governments of some other countries dedicated much more effort and funds for this area and reached excellent results. The institutional arrangements and types of programmes adopted in these countries are briefly evaluated in the paper and provide valuable insights for several proposals put forward here to make more effective the Brazilian government actions directed to overcome market barriers and improve energy efficiency in the local industry. The proposed measures include the creation of Industrial Assessment Centres and an executive agency charged with the coordination of all energy efficiency programmes run by the Federal government. A large share of the Brazilian industry energy consumption comes from energy-intensive industrial branches. According to a recent survey, most of them have substantial energy conservation potentials. To materialize a fair amount of them, voluntary targets concerning energy efficiency gains should start to be negotiated between the Government and associations representing these industrial branches. Credit facilities and tax exemptions for energy-efficient equipment’s should be provided to stimulate the interest of the entrepreneurs and the setting-up of bolder targets.

  7. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  8. Pennsylvania's Energy Curriculum for the Secondary Grades: Industrial Arts.

    Science.gov (United States)

    Wighaman, Paul F.; Zimmerman, Earl R.

    Compiled in this guide are 23 previously published documents for use by secondary school industrial arts teachers who want to incorporate energy studies into their curricula. Over half of the entries describe energy-related projects such as fireplaces, solar water heaters, and solar ovens. Other materials presented address the place of energy in…

  9. The Next Frontier to Realize Industrial Energy Efficiency

    NARCIS (Netherlands)

    Worrell, E.

    2011-01-01

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. In the near future, energy efficiency is

  10. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  11. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  12. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  13. Preliminary determination of the energy potential of ocean currents along the southern coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andrea; Beluco, Alexandre; de Almeida, Luiz Emilio B. [Inst. Pesquisas Hidraulicas, Univ. Fed Rio Grande do Sul, Porto Alegre (Brazil)

    2013-07-01

    The ocean can be a strategic alternative for obtaining energy supplies, both from ocean waves as from sea currents and tides. Among these features, the power generation projects based on ocean currents are still under development. Generating energy from ocean can have great impact on the Brazilian energy grid, since Brazil has a vast coastline, with more than 9,000 km long, with potential for generating energy from ocean currents not fully estimated. This article presents a preliminary determination of the energy potential for power generation from ocean currents along the coast of Rio Grande do Sul, the southernmost state of Brazil, and also presents notes that contribute to the characterization of the system of ocean currents in the region. The data used were obtained in two areas near Tramandai, allowing the determination of velocities and directions of the currents on a seasonal basis. The maximum speeds obtained rarely exceed 0.750 m/s, while the average speeds do not exceed 0.200 m/s. A relationship with the prevailing winds in the region was identified. Unfortunately, the results do not allow optimism about the power generation from ocean currents on the southern coast of Brazil, at least over the continental shelf.

  14. Waste energy boosts tomato industry at distillery

    Energy Technology Data Exchange (ETDEWEB)

    McColl, J

    1989-04-01

    A trial project aimed at using waste hot water from the cooling process at a Scottish whisky distillery to heat a glasshouse for tomato production is described. Later developments have involved the installation of a waste heat boiler to make use of the heat from the still burner flue gases. Steam from the boiler is used within the distillery and to supplement the glasshouse system. The payback within the distillery industry has been excellent, but tomato production, though continuing, was adversely affected by severe cutbacks in distillery production in the early eighties. Recently further significant savings have been made in the distillery industry by the installation of a regenerative burner in one of the stills and thermo-compressors in the cooling tower condensers to produce low pressure steam which can be fed back into the system. (U.K.).

  15. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  16. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  17. Cleanroom energy benchmarking in high-tech and biotech industries

    International Nuclear Information System (INIS)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    Energy Technology Data Exchange (ETDEWEB)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  19. CREATIV: Research-based innovation for industry energy efficiency

    International Nuclear Information System (INIS)

    Tangen, Grethe; Hemmingsen, Anne Karin T.; Neksa, Petter

    2011-01-01

    Improved energy efficiency is imperative to minimise the greenhouse gas emissions and to ensure future energy security. It is also a key to continued profitability in energy consuming industry. The project CREATIV is a research initiative for industry energy efficiency focusing on utilisation of surplus heat and efficient heating and cooling. In CREATIV, international research groups work together with key vendors of energy efficiency equipment and an industry consortium including the areas metallurgy, pulp and paper, food and fishery, and commercial refrigeration supermarkets. The ambition of CREATIV is to bring forward technology and solutions enabling Norway to reduce both energy consumption and greenhouse gas emissions by 25% within 2020. The main research topics are electricity production from low temperature heat sources in supercritical CO 2 cycles, energy efficient end-user technology for heating and cooling based on natural working fluids and system optimisation, and efficient utilisation of low temperature heat by developing new sorption systems and compact compressor-expander units. A defined innovation strategy in the project will ensure exploitation of research results and promote implementation in industry processes. CREATIV will contribute to the recruitment of competent personnel to industry and academia by educating PhD and post doc candidates and several MSc students. The paper presents the CREATIV project, discusses its scientific achievements so far, and outlines how the project results can contribute to reducing industry energy consumption. - Highlights: → New technology for improved energy efficiency relevant across several industries. → Surplus heat exploitation and efficient heating and cooling are important means. → Focus on power production from low temperature heat and heat pumping technologies. → Education and competence building are given priority. → The project consortium includes 20 international industry companies and

  20. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  1. Energy and water for tomorrow's industrial society

    International Nuclear Information System (INIS)

    Koschnick, H.

    1975-01-01

    The president of the association of communual undertakings gives reasons for the necessity of the development of an own concept in energy policy and energy economical questions, outlines the most important aspects resulting from his outlook and designs a concept for the integrated energy supply of cities and populated areas by means of an interconnected system. The decisive problem is the realization of the just participators in such an interconnecting system under fair and non-discriminating conditions. The possible power concentration of energy centres (nuclear parks) is indicated. Finally, recommendations as to the solving of financing problems in building power plants are given and the present private income trends are critically examined. (GG/LH) [de

  2. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  3. The electricity industry and 'Energy 2000'

    International Nuclear Information System (INIS)

    Niederberger, A.

    1991-01-01

    The action programme 'Energy 2000', presented by Federal Councillor Ogi as a result of the agreements of last September, aims, on the one hand, for a stabilization of power consumption until the turn of the century, and, on the other hand, for an extension of domestic production, to which a contribution should also be made by renewable energy sources, particularly photovoltaic power. The Swiss electricity producers are prepared to make their contribution to the realization of these ambitious objectives. (orig.) [de

  4. Energy saving in industrial varnishing techniques

    International Nuclear Information System (INIS)

    Kirst, W.

    1978-01-01

    The search for more effective varnishing techniques and better varnish surfaces and the increasing consideration of environmental protection, energy and raw materials conservation have helped to promote electron beam hardening. Also the development of high-solid varnishes have brought about the following improvements: Better quality of the varnish surface, possible saving of one layer in multilayer coatings, reduced emission in the waste air of the spray booth, conservation of valuable raw materials and energy. (orig.) [de

  5. Energy Efficiency in the Mediterranean Building Industry

    International Nuclear Information System (INIS)

    Thibault, H.L.; El Habib, El Andaloussi

    2011-01-01

    Despite the alerts that have been sounded since 1992, as international conferences aimed at curbing global warming have come and gone, and despite the plans for reducing the use of fossil fuel resources that call for the moderation of energy consumption, few actions or incentive measures (and even fewer directives) have actually been developed to act on the demand for energy. Yet, as Henri-Luc Thibault and El Habib El Andaloussi show here, some very concrete measures can have major effects in this area. This is the case with everything relating to the improvement of energy efficiency in building, where housing conditions, the housing stock and related energy consumption (heating, air-conditioning etc.) are concerned. Thibault and El Andaloussi show the potential impact of such measures in the Mediterranean region. Basing themselves on the work of the 'Plan Bleu' organization, which has worked out a revolutionary scenario for the energy field in the countries of the southern and eastern Mediterranean (to 2030), they begin by recalling the importance of buildings in regional energy consumption and the various levers that might be used to reduce that consumption (regulation, materials, efficiency of machinery etc.). In such a scenario, the potential for energy savings in this sector would seem considerable. Moreover, this would enable a substantial decrease in greenhouse gas emissions to be achieved, and would also have very positive effects in terms of job creation. In conclusion, the authors point out the need for investment over 20 years, depending on the particular country concerned, to put in place the five flagship measures of energy saving, which would be genuine investments for the future.. (authors)

  6. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  7. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  8. Industrial relocation and energy consumption: Evidence from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Yin Haitao

    2011-01-01

    With economic development and the change of industrial structure, industrial relocation is an inevitable trend. In the process of industrial relocation, environmental externality and social cost could occur due to market failure and government failure. Little attention has been paid to this issue. In this paper, we address it with a theoretical analysis and an empirical investigation on the relationship between China's industrial relocation in the early 1990s and energy consumption which is the primary source of CO 2 emission, an environmental externality that causes increasing concerns. The macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). Using fixed-effect regression model and simulation method, we provide an empirical support to this argument. In order to further reduce environmental externalities and social cost in the process of industrial relocation, we provide policy suggestions as follows: First, strengthen the evaluation of environmental benefits/costs; Second, pay more attention to the coordinated social-economic development; Third, avoid long-lived investment in high-carbon infrastructure in areas with industries moved in; Fourth, address employment issue in the areas with industries moved out. - Research highlights: → Little attention has been paid to the linkage between industrial relocation and environmental externality. → Our macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). → Using fixed-effect regression model and simulation method, we find a positive link between China's industrial relocation in the early 1990s and energy saving. → Policy suggestions to further reduce environmental externalities and social cost in the process of industrial relocation are discussed.

  9. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  10. The Energy Industry Law - legislative deficits or appropriate legal instrument

    International Nuclear Information System (INIS)

    Boerner, B.

    1986-01-01

    Conclusion: The job of the Energy Industry Law is to secure for the government the necessary influence without endangering the private enterprise structure of the power supply industry. The Energy Industry Law has achieved satisfactory results. For it is in no way obvious that a different system would have achieved lower prices or a level of capacity more exactly tuned to sales. The powers of objection and prohibition contained in Sect. 4 of the Energy Industry Law are limited to (all) circumstances which influence the reliability and cheapness of supply. These powers should not be used to promote a nuclear power phaseout, introduce renewable energy sources, promote the protection of the environment, to counter the demand for cheapness of supply, to enforce power-heat cogeneration and to enforce decentralisation. (orig./HSCH) [de

  11. Application of the geothermal energy in the industrial processes

    International Nuclear Information System (INIS)

    Popovska-Vasilevska, Sanja

    2001-01-01

    In the worldwide practice, the geothermal energy application, as an alternative energy resource, can be of great importance. This is especially case in the countries where exceptional natural geothermal potential exists. Despite using geothermal energy for both greenhouses heating and balneology, the one can be successfully implemented in the heat requiring industrial processes. This kind of use always provides greater annual heat loading factor, since the industrial processes are not seasonal (or not the greater part of them). The quality of the geothermal resources that are available in Europe, dictates the use within the low-temperature range technological processes. However, these processes are significantly engaged in different groups of processing industries. But, beside this fact the industrial application of geothermal energy is at the beginning in the Europe. (Original)

  12. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  13. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.

  14. Waste Material Management: Energy and materials for industry

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  15. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  16. Energy and emission analysis for industrial motors in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Rahim, N.A.; Ping, H.W.; Jahirul, M.I.; Mekhilef, S.; Masjuki, H.H.

    2009-01-01

    The industrial sector is the largest user of energy in Malaysia. Industrial motors account for a major segment of total industrial energy use. Since motors are the principle energy users, different energy savings strategies have been applied to reduce their energy consumption and associated emissions released into the atmosphere. These strategies include using highly efficient motors, variable speed drive (VSD), and capacitor banks to improve the power factor. It has been estimated that there can be a total energy savings of 1765, 2703 and 3605 MWh by utilizing energy-efficient motors for 50%, 75% and 100% loads, respectively. It was also found that for different motor loads, an estimated US$115,936 US$173,019 and US$230,693 can be saved in anticipated energy costs. Similarly, it is hypothesized that a significant amount of energy can be saved using VSD and capacitor banks to reduce speed and improve the power factor, thus cutting energy costs. Moreover, a substantial reduction in the amount of emissions can be effected together with the associated energy savings for different energy savings strategies. In addition, the payback period for different energy savings strategies has been found to be reasonable in some cases.

  17. Industrial Energy Mapping: THERMCYC WP6

    DEFF Research Database (Denmark)

    Huang, Baijia; Bühler, Fabian; Holm, Fridolin Müller

    these natural resources. Solar can supply heat at temperatures up to 100°C, geothermal energy can supply heat at temperatures up to 90 °C and air/water average around 2°C during colder seasons and 17 °C in warmer seasons. When looking across all the sectors there are two major energy sources. One of them origi......, the accessible heat from three natural energy sources is also included in the evaluation. The quantification of the potential waste heat is based on a number of approaches such as, professional experience within Viegand Maagøe, input from project partners, theoretical calculations, case studies, input from...... suppliers, input from end-users etc. It must be emphasized that the total energy consumption used in this study covers all end-users and utility companies and therefore the total energy consumption can be higher than what can be found in other statistic. By including both utility companies and end...

  18. International cooperation for rational use of energy in industry

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Papers discussed the experiences of OLADE, IEA and EEC member countries in the field of rational use of energy in a number of industrial sectors, such as textiles; generation, transmission and distribution of electricity; iron and steel; non-ferrous metals; cement; and sugar. Instruments and technologies for rational use of energy in industry were also discussed as well as possibilities for international cooperation in this field.

  19. Energy and Environmental Challenges for the Japanese Automotive Industry

    OpenAIRE

    Sperling, Daniel

    2000-01-01

    The turn of the century is proving to be a period of turmoil and uncertainty for the automotive industry. The industry confronts growing worldwide demands for greater environmental quality, but now benefits from an emerging technological revolution that provides them with the tools to respond effectively to those demands. Rapid innovation is occurring in lightweight materials, various ICE powertrain enhancements made possible by computer controls, energy conversion processes, energy storage, ...

  20. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  1. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  2. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  3. Potential for energy-conserving capital equipment in UK industries

    Energy Technology Data Exchange (ETDEWEB)

    Fawkes, S D

    1986-01-01

    A summary is given of recent research into the potential for energy-conserving capital equipment in UK industries. The research had significant findings regarding the feasibility of achieving low-energy scenarios. It also stressed the importance of site specific factors in inhibiting incremental technical change such as that common in energy-conservation investments, developed a soft systems model of energy-management activities and investigated current progress and management styles in the brewing, malting, distilling and dairy sectors.

  4. Energy and Process Assessment Protocol for Industrial Buildings

    Science.gov (United States)

    2007-05-01

    condenser surfaces of fouling 6.31 Raise evaporator or lower condenser water temperature 6.2 Optimize chiller sequencing 6.33 Use two-speed or...F increase in CHW supply setpoint the chiller compression motor load will DECREASE 1.5 percent. This is a zero cost ECO. 3.5 Decrease Conden. CTW...energy assessments, universities conducting energy assessment, and Energy Service Performance Contractors) perform Industrial and Energy Optimization

  5. The energy industries reorganization in the economic globalization

    International Nuclear Information System (INIS)

    Amouroux, J.M.

    2003-01-01

    The author wonders on the energy supply evolution since thirty years and more specially the fossil fuels industries reconstruction. The energy panorama has been completely modified by a serial of processes which stopped the nuclear energy expansion and replaced the fossil fuels in the front of the energy scene. The processes are examined to evaluate the consequences of theses transformations on the model of economic development developed by the capitalism. (A.L.B)

  6. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Science.gov (United States)

    2013-12-06

    ... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors; Proposed... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors AGENCY... proposes energy conservation standards for a number of different groups of electric motors that DOE has not...

  7. Siting study for small platform-mounted industrial energy reactors

    International Nuclear Information System (INIS)

    1975-07-01

    Utilizing an existing 313 MW(t) ship propulsion reactor design, a concept has been formulated for a floating platform-mounted nuclear plant and an evaluation has been made to determine reductions in construction time and cost achievable by repetitive platform construction in a shipyard. Concepts and estimates are presented for siting platform-mounted nuclear plants at the location of industrial facilities where the nuclear plants would furnish industrial process heat and/or electrical power. The representative industrial site designated for this study is considered typical of sites that might be used along the extensive network of navigable canals adjacent to the ocean and is similar to potential sites along the inland waterways of the United States

  8. Waste energy recovery in the industry in the ECE region

    International Nuclear Information System (INIS)

    1985-01-01

    In the ECE region industry accounts for about 44 per cent of total final energy consumption, 50-55 per cent of which is ''lost''. Since the early 1970s the efficiency of energy use has improved by 5 or 6 percentage points. The potential for further cost-effective savings is estimated at 10 to 20 percentage points, depending on the type of industrial activity, kind of waste energy, availability of outlets, investment strategies, awareness of the significantly improved technical possibilities and degree of co-operation between energy specialists and production engineers, equipment manufacturers, and industrial sectors at the national and international levels. The present publication argues the case for secondary energy recovery (SER) by end-users and international co-operation in technical, economic, environmental and methodological fields. It is based on data compiled by the secretariat of the Economic Commission for Europe on 1 June 1984 and given general distribution. Refs, figs and tabs

  9. Survey on alternative energy for industrial processes in Indonesia

    International Nuclear Information System (INIS)

    Masduki, B.; Sukarsono, R.; Wardaya; Suryawan, I.

    1997-01-01

    In consequence of the national industrial development, it is necessary to supply a lot of energy. This paper presented a discussion about the option of supplying nuclear processed heat as alternative energy sources for industry especially in Java island. The electrical energy requirement can be estimated rising. The stock and the requirement of energy in Indonesia is unbalance. If the oil production rate is constant, such as that of today, it can be estimated that the oil stock would be over in 20 years. The country is trying to difertify its source of energy and reduce its dependence on oil. High Temperature Reactor (HTR) produces electric and also heat at various temperature in the form of steam and gas. Heat processes from a high temperature reactor, could be used in industry for supplying heat for coal hidroforming, gasification of coal, metal annealing, petrochemical hydrogenation, distillation, purification of petrochemicals, evaporation, water heat, etc. (author). 8 refs, 1 fig., 5 tabs

  10. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  11. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    International Nuclear Information System (INIS)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors

  12. New Industrial Park Energy Supply (NIPES): a method of efficiently supplying energy to a community of industrial users

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    The New Industrial Park Energy Supply (NIPES) concept allows the use of coal by small as well as large industrial users. The NIPES concept consists of a system of Energy Supply Stations groups of cogeneration plants) and steam transmission lines that supplies process heat and electricity to multiple existing and/or new users in an industrial park(s) setting. The Energy Supply Stations grow along with the industrial park(s) as new industries are attracted by a reliable reasonably priced energy source. The growth of the Energy Supply Stations over a period of years allows the introduction of new energy sources and technologies as they become established. This report describes the generic NIPES concept and the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. A ten-year process steam load growth scenario is developed including both new and existing industrial users. During the initial years of the growth scenario, process steam is supplied to the industrial users by several coal-fired plants. Later, as the process steam load develops, a two-unit nuclear plant is integrated into the specific NIPES system. An evaluation is also performed for a NIPES system consisting of all coal-fired plants. The specific NIPES system is compared to: (1) individual user owned oil-fired facilities for existing industrial users; and (2) individual user owned coal-fired facilities for new industrial plants. A financial analysis is performed to determine the total economic advantages associated with the NIPES system: savings in a steam costs for industrial users, potential return on investment for investors.

  13. Development of renewable energies in the building industry and in the industry in general

    International Nuclear Information System (INIS)

    2008-01-01

    This third issue of the international DERBI conference has permitted to decipher the international actuality of renewable energies, to position the French national projects in this thriving context, and to discover the recent technological innovations. Californian companies were invited to this conference for a comparison of the policies in favor of renewable energy sources on both sides of the Atlantic ocean. This document gathers the transparencies presented at this conference and dealing with technologies, products, projects and realization in the following domains: solar cooling, biomass power plants, photovoltaic power plants and advances in photovoltaic engineering, solar thermal energy, thermodynamic solar power plants, architecture, renewable energies and the Eco-Building European project, biofuels, wood fuels, wind power and small wind power, geothermal energy. Presentations deal also with the financing of renewable energy projects, the competencies, employment and training, the numerical dimension, and the automation in the renewable energies domain. (J.S.)

  14. Survey of employment in the UK wind energy industry

    International Nuclear Information System (INIS)

    Jenkins, G.

    1997-01-01

    A survey of employment in the UK wind energy industry has been carried out. It related to the financial years 1993-4 and 1994-5. A questionnaire was sent to all organisations working in wind energy in the UK. Some 249 replies were received. The paper reports on the findings regarding overall employment in the industry, employment in the major sectors of the industry, jobs by type of organisation, the major employers, the location of jobs, and the overall impact on employment in the UK economy. (Author)

  15. French energy policy and gas industry

    International Nuclear Information System (INIS)

    Mandil, C.

    1994-01-01

    The 111th annual conference of the French gas association was held in Paris from the 20 to 23 September 1994. This year's conference was very well attended, beating even the record attendance levels of 1993, both at the technical sessions and the accompanying international exhibition. As tradition dictates, this November issue of Gaz d'Aujourd'hui is entirely given over to a comprehensive report on the conference. The speeches made by top gas industry executives have been fully transcribed along with the discussions which took place following these speeches. This issue also includes a report on the workshop and marketing sessions at the conference while a list of the winners of the Innovation competition, which takes place every two years when the exhibition is in Paris, provides a rundown of the competing products. (author)

  16. Do urbanization and industrialization affect energy intensity in developing countries?

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2013-01-01

    Against a backdrop of concerns about climate change, peak oil, and energy security issues, reducing energy intensity is often advocated as a way to at least partially mitigate these impacts. This study uses recently developed heterogeneous panel regression techniques like mean group estimators and common correlated effects estimators to model the impact that income, urbanization and industrialization has on energy intensity for a panel of 76 developing countries. In the long-run, a 1% increase in income reduces energy intensity by − 0.45% to − 0.35%. Long-run industrialization elasticities are in the range 0.07 to 0.12. The impact of urbanization on energy intensity is mixed. In specifications where the estimated coefficient on urbanization is statistically significant, it is slightly larger than unity. The implications of these results for energy policy are discussed. - Highlights: ► The impact of urbanization and industrialization on energy intensity is modeled. ► Use recently developed heterogeneous panel regression techniques ► The model is tested on a panel of developing countries. ► Income has a negative impact on energy intensity. ► Industrialization has a positive impact on energy intensity

  17. The energy consumption in the ceramic tile industry in Brazil

    International Nuclear Information System (INIS)

    Ciacco, Eduardo F.S.; Rocha, Jose R.; Coutinho, Aparecido R.

    2017-01-01

    The ceramic industry occupies a prominent place in the Brazilian industrial context, representing about 1.0% in the GDP composition. On the other hand, it represent about 1.9% of all energy consumed in the country, and 5.8% of the energy consumed in the Brazilian industrial sector in 2014. Regarding the power consumption by the ceramic industry, most is derived from renewable sources (firewood), followed by use of fossil fuels, mainly natural gas (NG). This study was conducted to quantify the energy consumption in the production of ceramic tiles (CT), by means of experimental data obtained directly in the industry and at every step of the manufacturing process. The step of firing and sintering has the highest energy consumption, with approximately 56% of the total energy consumed. In sequence, have the atomization steps with 30% and the drying with 14%, of total energy consumption in the production of ceramic tiles, arising from the use of NG. In addition, it showed that the production of ceramic tiles by wet process has energy consumption four times the dry production process, due to the atomization step.

  18. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  19. Subjects of the energy industry under yen appreciation; Endakaka ni okeru energy sangyo no kadai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This paper studied effects of yen appreciation on the Japanese economy and changes in energy demand when assuming the medium-term yen appreciation trend, and subjects in the energy industry. The paper also refers to the trend of the Asian material industry largely influencing the energy supply/demand, the risk hedge problem of the exchange, and international cooperation and business development of the energy industry. The energy industry is extremely high in public interest and is rice of the industry. Therefore, the development of the business has focused on the domestic market. However, such a recognition is forced to be changed by waves of the worldwide deregulation. Discussions on foreign/domestic price differences caused by high yen and a series of deregulation policy in the energy industry affected thereby may be concrete signs. The subject in the energy industry under the yen appreciation is that the energy industry will be close to common sense in general industrial circles and change to an industry which is strong and internationally competitive enough to brave the exchange variation. 101 refs., 104 figs., 31 tabs.

  20. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  1. The modern trends in energy and nuclear industry of Kazakhstan

    International Nuclear Information System (INIS)

    Kenzhemurat, D.; Sergey, K.; Timur, A.

    2000-01-01

    Kazakhstan has in perspective the potential to be self-sufficient in energy resources and also to export such resources to other countries. This article describes the energy sector of Kazakhstan, the perspectives of the development the energy and nuclear industry and shows the problems and methods of its solutions. The energy sector of Kazakhstan has diversified sources of energy resources. The open market of electricity will generate the investments and direct them to the development for more efficiency use of these resources. Rehabilitation of old power stations and their modernisation will allow to cover the future needs of Kazakhstan. The nuclear industry of Kazakhstan has the infrastructure, high-qualified staff, enterprises, reactors and investments for the development. The energy policy of the Republic of Kazakhstan is directed to find the balance between different sources of energy to decrease the emissions of greenhouse gas. (author)

  2. Marine energies. Industries are hunting costs

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2015-01-01

    While a map locates various offshore hydro-kinetic energy projects at the vicinity of Scottish and French coasts, offshore wind farms (North Sea and Mediterranean sea) and also temperature differential marine plant in Martinique, this article discusses the technical and therefore economic challenges faced by the development of marine energies. They are related to the marine environment (wind, swell, currents). These strength requirements concern hydro-kinetic machines as well as floating wind turbines which must be balanced to resist to wind and swell (the Nenuphar project is evoked). Issues of performance and efficiency are present in the Nemo project in Martinique which exploits a rather small temperature differential. Other technological challenges concern the transport of this offshore production of electricity to the ground while reducing losses. For all these aspects, the article mentions the main French actors, notably DCNS, Alstom, and the start-up MPrime Innovation

  3. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.; Arbic, Brian K.; Chassignet, Eric P.; Coward, Andrew C.; Maltrud, Mathew; Merryfield, William J.; Srinivasan, Ashwanth; Varghese, Anson

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between

  4. Potential environmental effects of energy conservation measures in northwest industries

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  5. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Science.gov (United States)

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency and..., Office of Energy Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence...

  6. Efficient use of energy: investment practice in industry; Effiziente Energienutzung: Investitionspraxis in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Kuster, J. [BHP - Brugger, Hanser und Partner AG, Zuerich (Switzerland); Zweiacker, J.-F. [Rapp AG Ingenieure und Planer, Biel (Switzerland); Rosch, M. [Consulting Verfahrenstechnik, Allschwil (Switzerland)

    2000-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on drying processes used in industry and possible ways of promoting investment in measures to increase the efficient use of energy. The energy consumption of dehydration and drying processes used in industry is examined and the savings potential for these processes estimated. Examples of the processes investigated are given and figures for the energy consumption for dehydration and drying processes in several different industrial sectors are quoted. The report then examines, on the one hand, the factors that hem innovations in this area and, on the other, those that promote them. Further, the report looks into which reasons are responsible for the realisation or non-realisation of technically and economically viable solutions for improving the energy-efficiency of the dehydration and drying processes.

  7. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  8. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  9. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  10. Software systems for energy control in the English industry

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    Monitoring and targeting software systems have proved to be valuable tools for energy control, permitting to save five to ten percent of energy. The article reviews the systems that are presently available in England and illustrates how these systems are successfully used in practice in small (British Telecom) and middle large (Charles Wells Brewery) industrial applications. (A.S.)

  11. Facts about industrial energy conservation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, William A.

    1979-07-01

    The story of energy conservation in the US with particular emphasis on industry is presented. Then, the energy conservation program in General Motors including organization, plant guidelines, communication and motivation techniques, successful case histories, and some concepts for future savings is described in detail. (MCW)

  12. Response by the energy industry to the Kyoto agreement

    International Nuclear Information System (INIS)

    Lynch, M.C.

    2000-01-01

    The Kyoto agreement has called for an appropriate response by the energy industry to the perceived problem of global warming. However, while governments are justify in researching low-probability energy technologies to solve uncertain problems, the private sector has non such luxury. The experience of oil crises in the '70s should be a good lesson [it

  13. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  14. Energy Supply System for Industrial Poultry Houses

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-04-01

    Full Text Available The gas engine driven carbon dioxide heat pump designed for providing the heat, cold and electricity for industrial poultry house is proposed. The scheme differs from the known by using recuperative heat exchanger installed between the exhaust air duct of poultry house and heat pump evaporator and the heat curtain installed on the air duct after the evaporator. The air coming into the poultry house after the regenerative heat exchanger is supplied to the heat pump gas cooler. The heat pump produces heat of the required parameters of the input air and water for watering of poultry, space heating, etc. Heat pump compressor is driven by gas engine (GPA, by natural gas or biogas. The part of the gas-piston engine heat is used for adjusting the optimal heat pump mode and for regeneration of the absorbent in an evaporative cooler. The proposed technical solution of the above scheme provides a higher COP of the heat pump. Installing of heat curtain does not require the use of non-freezing solution to prevent icing of the air outlet of heat pump evaporator. The latter allows producing, besides electric power and heat, still cold (with the use off the adsorption-refrigerating machine and provide drying air inlet evaporative cooler (if necessary.

  15. Strategic aspects of exploiting geothermal energy for industrial purposes

    International Nuclear Information System (INIS)

    Ludviksson, V.

    1992-01-01

    Geothermal energy is widely used in Iceland for space heating swimming pools and snow melting systems as well as for greenhouses and soil heating and aquaculture. Its contribution to the standard of living in Iceland is very substantial. The industrial applications are, however, fewer today than anticipated twenty years ago. This paper considers some of the socio-economic reasons for that. Although geothermal energy is generally a cost competitive source of energy, it is site limited and does not by itself provide sufficient economic incentive to attract manufacturing or process industries. This generally requires another, locally available production factor offering further competitive advantage to justify greenfield investments. World economic slow-downs, and structural problems in many process industries after the energy crisis of the seventies have reduced interest for investments in energy intensify industries world wide. While public sector initiative motivated by technological possibilities was instrumental for developing geothermal resources in the past, time has now come for private sector initiative, led by market interest, to identify and exploit opportunities for using geothermal energy for industrial purposes. National and local governments must, however, provide the appropriate incentives to stimulate such developments

  16. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  17. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  18. THE COSTS OF THE ELECTRICAL ENERGY IN THE ALUMINIUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    Cilianu Marian

    2012-07-01

    Full Text Available The economic crisis has given the opportunity to reconsider the use of resources, so the subject of competitive advantage has become actual. In the aluminium industry the cost of electrical energy is critical not only for competitive reasons but for the mere existence and performance of numerous production facilities . Several ways of resisting the pressure of high energy costs have been experimented the most promising being those based on different forms of public-private partnership/co-operation. In many countries the big industrial producers benefit from a special treatment concerning the energy acquisition and are supported by the government in order to remain competitive.

  19. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  20. Nuclear industry and production of energy: arguments for a discussion

    International Nuclear Information System (INIS)

    Sorin, F.

    2004-01-01

    This article reviews the advantages of nuclear energy (nuclear energy increases the energy autonomy of France, provides cheap energy, does not generate greenhouse effect gases and concerns an exporting high-tech industry that generates qualified jobs and added-value to French industry) and highlights its ability to fill the gap before renewable energies are efficient and reliable to produce large amounts of electric power and to face the present and future challenges like the progressive running dry of fossil energy sources or the compliance with the Kyoto agreement. The 2 controversial issues: the consequences of a terrorist attack on a nuclear facility and what to do with radioactive wastes are for the first one exaggerated in public opinion (some figures and facts concerning the resistance of the concrete containment that encloses a PWR type reactor are given in this article) and for the second the disposal in deep underground storage sites appears to be a solution. (A.C.)

  1. Economic analysis of waste-to-energy industry in China.

    Science.gov (United States)

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  3. Energy Conservation Projects to Benefit the Railroad Industry

    Energy Technology Data Exchange (ETDEWEB)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  4. Energy Efficiency Practices: Assessment of Ohrid Hotel Industry

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko

    2016-01-01

    This paper provides information on the extent how the hotel industry in Ohrid meets the energy efficiency practices in terms of the current level of involvement. By undertaking an online survey in three, four and five-star hotels, the study assesses the attitudes and willingness of hotel managers concerning applying energy efficiency and environmental protection concepts and practices. Moreover, it investigates various determinants of energy consumption, like: solid waste management, resource...

  5. Ingerop - Energy activities and industry - General brochure 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Ingerop is a leading player in France and a major player internationally in engineering and consulting in sustainable mobility, energy transition and living environment and in major issues of today and tomorrow. The industrial engineering provided by Ingerop in France and for export, provides a response to customer expectations, integrating more and more the theme of sustainable development. Faced with a growing demand for electricity both in the world and in Europe Ingerop made the energy sector its priority development. The controlled use of energy (energy efficiency, renewable energy) is an ongoing challenge for Ingerop. The group continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad until the decommissioning phases in France and abroad. Ingerop continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad to decommissioning in France and abroad. Ingerop strengthens its expertise in new energy with new projects in biomass boilers and heat networks. The group has profound geothermal skills in heating networks or fatal energy recovery, permitting them to intervene with local authorities such as farmers, from feasibility studies to commissioning and assisting project management with technical studies. The expertise acquired by the group Ingerop in the 1990's, through the construction of fifty data centers on behalf of SFR, enables a significant experience going back twenty years. Furthermore, development continued on the design of more energy-efficient projects and ensuring increasingly high reliability. This brochure presents Ingerop's skills and main references in its four domains of intervention: energy industry (operation in nuclear environment, conventional power plants, new energy technologies, data centers), other industries, infrastructures, and building industry

  6. The patterns of energy use in the chemical industry

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1997-01-01

    This paper was sculpted from a report commissioned by the Department of Energy to assess the impact of proposed energy taxes on energy use by the US chemical industry. The discussion of energy taxes is eliminated here, however the broader discussion of the impact of energy prices on energy use is retained. The US chemical industry is currently the world leader by many important measures, such as technology contributions and employment. This leadership traces to a slate of advantages: science base, low cost energy, large market and economic/political stability. The focus of this paper is on the patterns of energy use: (1) There is an optimum economic trade of capital against energy. Industry optimizes this trade to lower its costs. For the large volume chemicals which dominate energy use, this tradable capital cost exceeds energy cost by a factor of 1.5. (2) The capital/energy trade follows clearly defined rules. The basic rules are rooted in thermodynamics. (3) An increase in energy prices would result in a drop in process energy use: a doubling of process energy prices would cut process energy use by approximately 1/3 but the capital cost would be in excess of $100 billion if driven into a short time span, such as 5 years. This is because of the long useful lifetime of capital facilities. (4) Process energy is about half the total energy use, with feedstock being the balance. Feedstock use is much less sensitive to price. Restated, the doubling of energy price will result in roughly a 1/6 reduction in total energy use. (5) Technology progress will also reduce energy use. This reduction is distinct from the impact of energy price. Technological progress will be at least as important in reducing energy use as will energy pricing, for the foreseeable future. (6) Technology progress can be sorted into two themes: (a) Learning curve improvements, which are almost inherent in the production process and the nature of competition; and (b) Breakthroughs that happen in a

  7. Why do manufacturing industries invest in energy R&D?

    OpenAIRE

    Costa, M. Teresa (Maria Teresa), 1951-; Garcia-Quevedo, Jose

    2017-01-01

    Energy R&D can have major social and economic impacts and is a critical factor in addressing the challenges presented by climate change mitigation policies. As well as the energy utilities themselves, firms in other sectors also invest in energy R&D; however, while various studies have examined the determinants of R&D in the former, there are no analyses of energy R&D drivers in other industries. This paper seeks to fill this gap by examining the determinants of investment in energy R&D in no...

  8. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.|info:eu-repo/dai/nl/412493373; Kermeli, K.|info:eu-repo/dai/nl/411260553; Crijns-Graus, W.|info:eu-repo/dai/nl/308005015; Worrell, E.|info:eu-repo/dai/nl/106856715; Bibas, R.; Fais, B.; Fujimori, S.; Kyle, P.; Sano, F.; van Vuuren, Detlef|info:eu-repo/dai/nl/11522016X

    2017-01-01

    The industry sector is a major energy consumer and GHG emitter. Effective climate change mitigation strategies will require a significant reduction of industrial emissions. To better understand the variations in the projected industrial pathways for both baseline and mitigation scenarios, we compare

  9. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  10. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  11. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry

    International Nuclear Information System (INIS)

    Li, Ming-Jia; Tao, Wen-Quan

    2017-01-01

    Highlights: • The classification of the industrial energy efficiency index has been summarized. • The factors of energy efficiency and their implement in industries are discussed. • Four main evaluation methodologies of energy efficiency in industries are concluded. • Utilization of the methodologies in energy efficiency evaluations are illustrated. • Related polices and suggestions based on energy efficiency evaluations are provided. - Abstract: Energy efficiency of high energy-consuming industries plays a significant role in social sustainability, economic performance and environmental protection of any nation. In order to evaluate the energy efficiency and guide the sustainability development, various methodologies have been proposed for energy demand management and to measure the energy efficiency performance accurately in the past decades. A systematical review of these methodologies are conducted in the present paper. First, the classification of the industrial energy efficiency index has been summarized to track the previous application studies. The single measurement indicator and the composite index benchmarking are highly recognized as the modeling tools for power industries and policy-making in worldwide countries. They are the pivotal figures to convey the fundamental information in energy systems for improving the performance in fields such as economy, environment and technology. Second, the six factors that influence the energy efficiency in industry are discussed. Third, four major evaluation methodologies of energy efficiency are explained in detail, including stochastic frontier analysis, data envelopment analysis, exergy analysis and benchmarking comparison. The basic models and the developments of these methodologies are introduced. The recent utilization of these methodologies in the energy efficiency evaluations are illustrated. Some drawbacks of these methodologies are also discussed. Other related methods or influential indicators

  12. Industrial energy thrift scheme. Energy use in the soap and detergents industry. Report No. 10

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    An examination was made of how energy is used in the manufacture of soap, detergents, and candles and in the processes of fat splitting and distillation. Twenty-four factories were visited and data are compiled on total amount of energy used, possible energy savings, total amounts of energy purchased, estimated potential savings in space heating energy, and energy savings good housekeeping could yield. (MCW)

  13. Assessment of a small pressurized water reactor for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.; Fuller, L.C.; Myers, M.L.

    1977-01-01

    An evaluation of several recent ERDA/ORNL sponsored studies on the application of a small, 365 MW(t) pressurized water reactor for industrial energy is presented. Preliminary studies have investigated technical and reliability requirements; costs for nuclear and fossil based steam were compared, including consideration of economic inflation and financing methods. For base-load industrial steam production, small reactors appear economically attractive relative to coal fired boilers that use coal priced at $30/ton

  14. Energy Transition for Industry: India and the Global Context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This publication further develops the analysis presented in the India chapter of Energy Technology Perspectives 2010 and provides insights on the implications of achieving deep energy and CO2 emission cuts in the industrial sector both for India and globally. It investigates the least-cost combination of options that can significantly reduce energy and CO2 emissions in India's industrial sector, while enabling the Indian economy to continue to grow and alleviate energy poverty. For India to play its part in helping to realise deep cuts in global CO2 emissions by the middle of the 21st century, it will need to achieve rapid economic development over the next 40 years with only a very small increase in emissions. Currently there is no precedent for such a low-CO2 development path. The challenge for India will be to achieve strong economic growth while improving energy security, but without locking in high emissions.

  15. Diffusion of energy-efficient technologies in industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.Y.

    1979-01-01

    United States energy policies aim at cutting down dependence on foreign oil in two ways: by energy conservation and by finding new domestic supplies. The study investigates how the first goal can be achieved in the industrial sector (manufacturing) of the economy, which accounts for about 40% (about 7.3 million barrels per day) of the total energy consumption in the US. It is noted that industry is able to conserve as much as 25 to 30% of its energy consumption by adopting simple conservation measures and energy-efficient technologies. These technologies can be implemented without major alterations of the original equipment. The schools of thought on innovative processes are discussed; these will serve as the conceptual and methodological base of the project. (MCW)

  16. Disaggregate energy consumption and industrial output in the United States

    International Nuclear Information System (INIS)

    Ewing, Bradley T.; Sari, Ramazan; Soytas, Ugur

    2007-01-01

    This paper investigates the effect of disaggregate energy consumption on industrial output in the United States. Most of the related research utilizes aggregate data which may not indicate the relative strength or explanatory power of various energy inputs on output. We use monthly data and employ the generalized variance decomposition approach to assess the relative impacts of energy and employment on real output. Our results suggest that unexpected shocks to coal, natural gas and fossil fuel energy sources have the highest impacts on the variation of output, while several renewable sources exhibit considerable explanatory power as well. However, none of the energy sources explain more of the forecast error variance of industrial output than employment

  17. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  18. Cyber Attacks: A New Threat to the Energy Industry

    International Nuclear Information System (INIS)

    Desarnaud, Gabrielle

    2016-01-01

    The Network and Information Security (NIS) Directive has been adopted on July 6, 2016 by the European Parliament, three years after the initial proposal by the European Commission. It paves the way for a much needed common cyber security strategy within the EU. This Edito explains the reasons why the energy industry is particularly vulnerable to cyber- attacks, and what tools this new directive brings about to protect European critical infrastructures. In about two decades, the energy industry has been deeply transformed by the digital revolution, which penetrated companies' commercial, administrative and financial branches, but also their industrial systems. From the optimization of electric grids to the precision of oil drilling, information and communication technologies (ICT) are now essential to every stage of energy production, transport and distribution processes. Data mining and analysis are increasingly considered as the energy sector's new 'black gold', and generate new activities just like the platform Predix, designed by General Electric to help energy companies (among others) collect and analyze industrial data. This silent revolution offers countless economic opportunities and paves the way for a better resource distribution and use. But it also puts physical energy infrastructures at risk

  19. Industrial energy demand - a micro panel data analysis. Phase 1

    International Nuclear Information System (INIS)

    Bue Bjoerner, T.; Togeby, M.; Christensen, J.

    1998-10-01

    The matching of several existing databases - covering seven different years, two different databases from Statistics Denmark and various information from DEA - has been a challenging task. Despite a relatively automatic procedure the result is promising. More than 2,700 companies can be followed for more than three years and this means that the majority (65-85%) of the energy consumption in Danish industry is included. The number of observations that can be used in the analysis is better than expected. The constructed database has a large number of variables. It includes, e.g. energy consumption of eight major energy sources (and several minor fuels), individual prices for electricity and district heating, information about production value, value added, investments, company size and industrial sector. To this we have added general energy prices for other fuels, information on taxes, subsidies given to individual companies and energy agreements between authorities and individual companies. The combination of micro level, the many variables, the panel structure and the number of observations make the database unique compared to previous data (Danish as well as international) used to analyse industrial energy consumption. The database can be used for a variety of analyses. In the next section we will present simple models that can be used in the analyses of the data. These are single equation models of the energy consumption. In the future more general models can be applied, e.g. with representation of energy, labour and capital. (au)

  20. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  1. Environmental and Energy Aspects of Construction Industry and Green Buildings

    Science.gov (United States)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  2. A waste to energy plant for an industrial districts

    International Nuclear Information System (INIS)

    Floreani, M.; Meneghetti, A.; Nardin, G.; Rocco, A.

    2001-01-01

    Industrial districts show characteristics that can be exploited by developing plant solutions studied for their special configuration and not simply extended from single unit models. In the paper a waste-to-energy plant for the chair industrial district in Friuli Venezia Giulia (North Eastern Italy) is described. It has been designed directly involving the University of Udine and can be considered an example of how technology innovation can be promoted by universities, especially in the case of small firms which have limited R and D resources. It is shown how industrial refuse becomes a chance of competitive advantage for the whole district due to its energy recovery in a plant unique for the type of waste processed. Input, combustion, energy recovery and cleaning sections are described in details, underlining innovative approaches and solutions [it

  3. Energy from wastes and the private waste contracting industry

    International Nuclear Information System (INIS)

    Burnett, J.S.

    1993-01-01

    The focus of this ongoing work is the utilisation of general non hazardous industrial and commercial waste as an energy or fuel source. Whereas much of the existing experience in energy from waste (EFW) is related to municipal solid wastes (MSW), there is very little direct experience with these other waste streams and the shortage of reliable information in this field is notoriously lacking. It is important to have a good understanding of the private waste contracting industry (pwci) in order to establish the conditions under which energy from waste technologies may play an economically and technically feasible role within that industry's development. The Non Fossil Fuel Obligation (NFFO) has encouraged entrepreneurial interest through premium payments for electricity generated from renewable sources. (author)

  4. Demands for energy policy by industry and the economy

    International Nuclear Information System (INIS)

    Thumann, J.R.

    2007-01-01

    'The Use of Nuclear Power for Peaceful Purposes' is a key topic in energy policy which produces a split of opinions in Germany, and which the policy of the Grand Coalition seeks to bypass. The Federation of German Industries (BDI) wants to achieve a sensible way of handling this source of energy because, after all, we are facing the challenge of having to secure economic development and prosperity and, at the same time, reduce global CO 2 emissions. If this is to be achieved, industry and politics together must build a bridge into a future with less CO 2 . That bridge would be supported on 4 pillars: - a global strategy of CO 2 reduction, - energy efficiency, - a broad energy mix, - energy research and development. In these efforts, industry and the BDI consider nuclear power an indispensable part of a viable climate and energy policy. Next to lignite, nuclear power offers electricity generation at the lowest cost, and promotes climate protection through CO 2 -free generation. As far as energy efficiency and a broad energy mix are concerned, the potentials for technical development play an important role. This is an area in which German industry can develop future markets for itself by being a leader in technology. Energy research should advance the development of existing technologies and open up new options. In this way, energy research contributes to high technologies in Germany. For nuclear power, it must be ensured that German scientists are able to participate in promising developments of new reactors in the same way in which this is the case in the development and construction of ITER, the international fusion reactor, in France. (orig.)

  5. Space industries and energy. Uchu sangyo to energy

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, K [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1991-09-05

    The following items are described with the problem of assuring energy required in space as the main subject: (1) Supplying energy for transportation in the space has no other way but to depent on combustion of propulsion chemicals, for which liquefied hydrogen and liquefied oxygen preserved in the space would be most suitable. Energy required for spatial position adjustment of a flying object itself, life maintenance and substance manufacturing in the space would be supplied from electricity. (2) To summarize, satisfying the energy requirement in the space would require availability of electricity, hydrogen and oxygen. Electricity could be supplied from photovoltaic generation, but meeting an aggregate power requirement at a certain moment will require an auxiliary battery, for which again hydrogen and oxygen fuel cells would be used. A conception is proposed for the hydrogen and oxygen supply base in the space, that a plant will be built to manufacture hydrogen and oxygen from water transported from the earth using the solar heat. 2 figs.

  6. The current state of the California biomass energy industry

    International Nuclear Information System (INIS)

    Morris, G.P.

    1994-01-01

    During the decade of the 1980s the California biomass energy industry grew from a few isolated facilities located mostly at pulp mills into the largest biomass energy industry in the world. Currently, more than fifty biomass powered electricity generating facilities provide the state with some 850 Megawatts (MW) of generating capacity, most of it interconnected to the state's electric utility systems. Each year, more than ten million tons of wood and agricultural wastes in the state are converted into fuel, rather than being disposed of using conventional, environmentally costly methods like open burning and landfill burial. As the 1980s began, the California biomass energy industry was in a nascent state. Optimism was blooming within the wood-products and agricultural sectors of California, who foresaw an opportunity to turn costly wastes into profits. At the same time, the independent energy industry itself was being launched. Interest in biomass energy development was spreading to the engineering and construction industries and the financial community as well. A great variety of firms and individuals were engaged in the development of biomass power plants and biomass fuel sources. The second half of the 1980s saw the fruits of the developmental activity that began in the first half of the decade. Biomass energy facilities were entering construction and coming on-line in increasing numbers, and the demand for biomass fuels was increasing in step. As the decade was coming to an end, biomass fuel supplies were hard put to meet the demand, yet a huge number of new facilities entered operation in 1990. This extreme growth spurt of new generating capacity caused a fuel crisis and a shake-out in the industry just as it was entering full-scale operation. The Crisis of Success had been reached. More recently an equilibrium has been achieved in which fuel prices are at levels that produce adequate supplies, while allowing profitable operations at the power plants

  7. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  8. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  9. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  10. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  11. Personnel decisions: cost benefits and opportunities for the energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Janz, T J

    1982-09-01

    This article reviews current practice in personnel decision making in the energy industry, outlining the conditions under which it developed. Changes in today's environment are noted and the utility equation is introduced as an aid to understanding the dollar impacts of these changes. Recent developments that make it possible to tally up the dollar benefits of alternative recruitment and selection programs are explained. Results of utility analyses for the job of roughneck on an oil rig, clerk-typist and assistant buyer are presented. The discussion points to human resource investments likely to have high net benefits and favorable return on investment for the energy industry.

  12. Panorama 2014 - Marine renewable energies: news from the ocean front

    International Nuclear Information System (INIS)

    Vinot, Simon

    2013-11-01

    Marine renewable energies have taken center stage in the energy transition and are no longer obscure. However, not all options are at the same stage of development. With the tidal wave of information in the field, now is an excellent time to review recent developments for the various types of renewable marine energy sources. (author)

  13. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  14. Upper Oceanic Energy Response to Tropical Cyclone Passage

    Science.gov (United States)

    2013-04-15

    lagged SST cooling is approximately 0.78C for a ‘‘typical’’ TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of...during tropical to extratropical transition). The scenario above led to the development of the TC potential intensity (PI) thesis, an important...is approximately 0.78C for a ??typical?? TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of upper oceanic

  15. Energy efficiency as an opportunity for the natural gas industry

    International Nuclear Information System (INIS)

    Love, P.

    2003-01-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves

  16. Energy efficiency as an opportunity for the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Love, P. [Canadian Energy Efficiency Alliance (Canada)

    2003-07-01

    Energy conservation, energy efficiency and demand side management are defined and the role played in the promotion and advancement of energy efficiency objectives by the Canadian Energy Efficiency Alliance are explained. Direct and indirect economic and environmental benefits and the potential impacts in terms of savings and jobs are discussed, with examples of successful greenhouse gas emission reduction programs by industry. The total potential for energy efficiency in Canada is estimated at 18 per cent lower energy use by 2010, and 33 per cent by 2020, assuming that specific policy recommendations and other cost effective efficiency measures are implemented. Overall conclusions are that there is a large potential for cost-effective energy savings over and above of what has been done already. Furthermore, utilities can play a leading role in realizing these efficiencies, and in the process achieve substantial benefits for themselves.

  17. Development of renewable energies in the building industry and in the industry in general; Developpement des energies renouvelable dans le batiment et l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This third issue of the international DERBI conference has permitted to decipher the international actuality of renewable energies, to position the French national projects in this thriving context, and to discover the recent technological innovations. Californian companies were invited to this conference for a comparison of the policies in favor of renewable energy sources on both sides of the Atlantic ocean. This document gathers the transparencies presented at this conference and dealing with technologies, products, projects and realization in the following domains: solar cooling, biomass power plants, photovoltaic power plants and advances in photovoltaic engineering, solar thermal energy, thermodynamic solar power plants, architecture, renewable energies and the Eco-Building European project, biofuels, wood fuels, wind power and small wind power, geothermal energy. Presentations deal also with the financing of renewable energy projects, the competencies, employment and training, the numerical dimension, and the automation in the renewable energies domain. (J.S.)

  18. Development of renewable energies in the building industry and in the industry in general; Developpement des energies renouvelable dans le batiment et l'industrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This third issue of the international DERBI conference has permitted to decipher the international actuality of renewable energies, to position the French national projects in this thriving context, and to discover the recent technological innovations. Californian companies were invited to this conference for a comparison of the policies in favor of renewable energy sources on both sides of the Atlantic ocean. This document gathers the transparencies presented at this conference and dealing with technologies, products, projects and realization in the following domains: solar cooling, biomass power plants, photovoltaic power plants and advances in photovoltaic engineering, solar thermal energy, thermodynamic solar power plants, architecture, renewable energies and the Eco-Building European project, biofuels, wood fuels, wind power and small wind power, geothermal energy. Presentations deal also with the financing of renewable energy projects, the competencies, employment and training, the numerical dimension, and the automation in the renewable energies domain. (J.S.)

  19. European Energy Companies. An Industry in Search of its Future

    International Nuclear Information System (INIS)

    2003-01-01

    In summer 2002 The Algemene Energieraad (General Energy Council) of The Netherlands has commissioned a research study to investigate the strategic behaviour of major European energy companies and the major governmental institutions in charge of regulating them. In total 18 electricity and gas companies and 9 governmental public institutions were analyzed. The aim of this research was to explore how the microeconomic view of analysing company and government strategy can contribute to understanding the likely future path of the energy industry, and what follows from that for the regulatory agenda and company strategy development. The is structured in seven chapters. The first chapter will first outline what the challenges for the European energy industry are. Most of the challenges result in the need for high investments and considerable changes in operating systems and business models. Against these challenges, the second chapter outlines what the expectations are of the industry. The public goods to be delivered by the industry is in the main to deliver high quality products at low prices and minimized environmental impact, in order to promote the conditions for economic growth of the European economy. Chapter 3 then describes the typical behaviour of the energy companies, being mostly engaged in a strategic conduct that is autonomy-oriented, short term and emergent planning with an international focus. Chapter 4 explains how the challenges and expectations could be better met with a strategic behaviour of companies that are network-oriented, long term deliberate planners and with a local focus. Chapter 5 explains that the observed strategic behaviour leads to an industrial structure that is geared towards maintaining static competition and avoiding innovation. Chapter 6 shows, how the current regulatory regime of the industry may reinforce this static competition even further. Chapter 7 finally concludes with alternative course of actions how the regulatory

  20. Estimating energy-augmenting technological change in developing country industries

    International Nuclear Information System (INIS)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Assumptions regarding the magnitude and direction of energy-related technological change have long been recognized as critical determinants of the outputs and policy conclusions derived from integrated assessment models. Particularly in the case of developing countries, however, empirical analysis of technological change has lagged behind simulation modeling. This paper presents estimates of sectoral productivity trends and energy-augmenting technological change for several energy-intensive industries in India and South Korea, and, for comparison, the United States. The key findings are substantial heterogeneity among both industries and countries, and a number of cases of declining energy efficiency. The results are subject to certain technical qualifications both in regards to the methodology and to the direct comparison to integrated assessment parameterizations. Nevertheless, they highlight the importance of closer attention to the empirical basis for common modeling assumptions

  1. Multi criteria analysis in the renewable energy industry

    CERN Document Server

    San Cristóbal Mateo, José Ramón

    2012-01-01

    Decision makers in the Renewable Energy sector face an increasingly complex social, economic, technological, and environmental scenario in their decision process. Different groups of decision-makers become involved in the process, each group bringing along different criteria therefore, policy formulation for fossil fuel substitution by Renewable Energies must be addressed in a multi-criteria context. Multi Criteria Analysis in the Renewable Energy Industry is a direct response to the increasing interest in the Renewable Energy industry which can be seen as an important remedy to many environmental problems that the world faces today. The multiplicity of criteria and the increasingly complex social, economic, technological, and environmental scenario makes multi-criteria analysis a valuable tool in the decision-making process for fossil fuel substitution. The detailed chapters explore the use of the Multi-criteria decision-making methods and how they provide valuable assistance in reaching equitable and accept...

  2. Global warming and the energy efficiency of Spanish industry

    International Nuclear Information System (INIS)

    Feijoo, Maria L.; Hernandez, Jose M.; Franco, Juan F.

    2002-01-01

    This paper uses a stochastic frontier production function model to analyze the energy efficiency of Spanish industry. We used minimum cost input demand equations as the reference in order to calculate the demand for electricity, gas and other fuels. On this basis, we found that there is no inherent conflict between the objectives of achieving productive efficiency and reducing energy consumption. Indeed, it is possible to reduce the industrial emissions of CO 2 by up to 29.4% by means of a bottom-up energy efficiency policy. However, if the government wants firms to reduce their emissions even further, then it would be necessary to implement some form of energy regulatory policy. In this respect, we estimate the cost of reducing CO 2 emissions by 20%

  3. Revenue Optimization for the Ocean Grazer Wave Energy Converter through Storage Utilization

    NARCIS (Netherlands)

    Dijkstra, H.T.; Barradas Berglind, J.J.; Meijer, H.; van Rooij, Marijn; Prins, W.A.; Vakis, A. I.; Jayawardhana, B.

    2016-01-01

    Increased penetration of renewable energy generation motivates a change of paradigm in the way power systems are structured and operated, as advocated by the smart grid concept. Accordingly, in this paper we investigate the lossless storage capabilities of the Ocean Grazer wave energy converter

  4. Energy management technologies: special focus on textile industry

    International Nuclear Information System (INIS)

    Dayo, F.B.O.

    2000-08-01

    requirement in international competitiveness. The focus of this paper is the review of energy management technologies that can be used to achieve energy efficiency improvement objectives in textile manufacturing. The paper is arranged as follows: in section 2, the characteristics of energy consumption in textile manufacturing are presented; energy efficiency improvement technology options for the textile industry are discussed in section 3, section 4 covers a discussion of process specific technologies for improving energy use efficiency in textile manufacturing; the paper is concluded in section 5 with salient recommendation for promoting rational use of energy in the Nigerian Textile Industrial Sector

  5. The evolution of nuclear energy Opportunities for the industry

    International Nuclear Information System (INIS)

    Dominguez, M. T.

    2013-01-01

    At the turn of the XXI century, the world energy context underwent a significant change due mainly to the increases in the demand for energy in the developing countries, a rise in gas prices and increased government support of clean energies in response to environmental issues. these boundary conditions led rapidly to renewed interest in nuclear energy worldwide. The phrase a Renaissance in nuclear energy was included in almost all energy forecasts. Unexpectedly, however, just then years later the panorama changed once again: unconventional gas appeared as new energy source, the world financial crisis hampered investment, and the demand for energy fell. This panorama has lowered expectations with regard to the size of the nuclear energy renaissance to a less buoyant but more balance scenario of nuclear energy deployment that we could now dub as the evolution of nuclear energy. This article describes how fission nuclear energy has continuously been evolving to adjust itself to these changing scenarios, and, in particular, how it is being adapted itself to todays vision of the role of the nuclear energy in the long term. The analysis in this paper focuses on those programs that could bring opportunities for Spanish nuclear industry participation. Starting with the development programs affecting existing reactors already in operation, the analysis moves on the new builds of Light Water Reactors (LWR) Generation III+, to then address, in two sections, Research Reactors and finally, the opportunities presented by Generation IV technologies. The development of fusion technology is not covered in this paper. (Author)

  6. Economic viability of wind and solar energy for industrial use

    International Nuclear Information System (INIS)

    Lashkari, Z.F.

    1994-01-01

    Non conventional energy sources have begun to move from fringes of technological possibility towards commercial viability. Out of the four sources, i e. solar, wind, biogas and minimicro hydel the first two viz. wind and solar energy are of relevance for industries in western region of India. This has to be seen in the context of developments in technology and hence economics both worldwide and in India. (author)

  7. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  8. An assessment of research and development leadership in ocean energy technologies

    International Nuclear Information System (INIS)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing

  9. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies

    International Nuclear Information System (INIS)

    Zhang, Sufang; Andrews-Speed, Philip; Zhao, Xiaoli; He, Yongxiu

    2013-01-01

    This paper analyzes China's policy approach to renewable energies and assesses how effectively China has met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. First we briefly discuss the interactions between these two policies. Then we outline China's key renewable energy and renewable industrial policies and find that China's government has well recognized the need for this policy interaction. After that, we study the achievements and problems in China's wind and solar PV sector during 2005–2012 and argue that China's policy approach to renewable energies has placed priority first on developing a renewable energy manufacturing industry and only second on renewable energy itself, and it has not effectively met the ideal of appropriate interactions between renewable energy policy and renewable energy industrial policy. Lastly, we make an in-depth analysis of the three ideas underlying this policy approach, that is, the green development idea, the low-carbon leadership idea and indigenous innovation idea. We conclude that Chinas' policy approach to renewable energies needs to enhance the interactions between renewable energy policy and renewable energy industrial policy. The paper contributes to a deeper understanding of China's policy strategy toward renewable energies. -- Highlights: •Interactions between renewable energy policy and renewable energy industrial policy are discussed. •China's key renewable energy and renewable energy industrial policies are outlined. •Two empirical cases illustrate China's policy approach to renewable energies. •We argue that China needs to enhance the interactions between the two policies. •Three ideas underlie China's policy approach to renewable energies

  10. Proceedings of the Newfoundland Ocean Industries Association NOIA 2008 conference : a billion barrels and beyond

    International Nuclear Information System (INIS)

    2008-01-01

    This conference provided a forum for industry experts to discuss the region's oil and gas activities in relation to current global market dynamics. Updates on current oil and gas operations were provided and new projects planned for the region were outlined. Political and socio-economic factors relevant to the oil and gas industry were reviewed. Methods of improving current technologies and attracting new employees were also discussed. The conference was divided into the following 5 sessions: (1) strength, opportunity and change, (2) global energy-global technologies, (3) realizing the potential, (4) human resources solutions, and (5) $100 oil, the good, the bad, and the ugly, panel discussion. The conference featured 29 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  11. The adventure of nuclear energy: a scientifical and industrial history

    International Nuclear Information System (INIS)

    Reuss, P.

    2007-01-01

    The nuclear energy history is one of the most exciting scientifical and industrial adventure. In France, in a few decades, nuclear energy has become the main energy source for power generation. The aim of this book is to present the stakes of this challenge, to better outline the difficulties that have been encountered all along its development in order to better understand the complexness of such a development. After an overview of the successive advances of atomic and nuclear physics since more than a century, the book describes the genesis of nuclear energy, its industrial developments and its still wide open perspectives. The conclusions makes a status of the advantages and risks linked with this energy source. The book contains also the testimonies of two French nuclear actors: P. Benoist and S. David. The forewords by H. Langevin, daughter of F. and I. Joliot-Curie, stresses on the past and future role of nuclear energy in the live synergy between research and industry. (J.S.)

  12. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements

    Directory of Open Access Journals (Sweden)

    Thomas Zobel

    2016-09-01

    Full Text Available Voluntary environmental management systems (EMS based on the international standard ISO 14001 have become widespread globally in recent years. The purpose of this study is to assess the impact of voluntary management systems on energy efficiency in the Swedish manufacturing industry by means of objective industrial energy data derived from mandatory annual environmental reports. The study focuses on changes in energy efficiency over a period of 12 years and includes both ISO 14001-certified companies and non-certified companies. Consideration is given to energy improvement efforts in the companies before the adoption of ISO 14001. The analysis has been carried out using statistical methods for two different industrial energy parameters: electricity and fossil fuel consumption. The results indicate that ISO 14001 adoption and certification has increased energy efficiency regarding the use of fossil fuel. In contrast, no effect of the management systems has been found concerning the use of electricity. The mixed results of this study are only partly in line with the results of previous studies based on perceptions of company representatives.

  13. Energy survey in the New Zealand dairy industry

    Energy Technology Data Exchange (ETDEWEB)

    Vickers, V T; Shannon, D V

    1977-12-25

    An in-depth report on energy consumption in the New Zealand dairy industry for 1974--75 shows that a reduction in fuel consumption per unit of production has occurred when compared with two previous surveys (1954--55 and 1964--65). The increase in thermal efficiency of dairy processing was due mainly to the use of hot water heating systems in milk-treatment stations, the increased capacity of butter and cheese factories, increased thermal efficiency in skim milk drying and casein manufacture, increased efficiency in boiler plants, and higher drying air temperature achieved with the use of indirect oil- and gas-fired air heaters and liquid-phase air heating systems. Total energy consumed by the industry by type is tabulated. Recommendations to the industry following the survey are listed. (MCW)

  14. Energy and minerals industries in national, regional, and state economies

    Science.gov (United States)

    D. J. Shields; S. A. Winter; G. S. Alward; K. L. Hartung

    1996-01-01

    This report presents information on the contribution of the extractive industries to the domestic economy at different geopolitical scales. Areas where resource production is important to gross state or regional product, employment, or income are highlighted. Output, employment, value added, and personal and total income multipliers are reported for the energy and...

  15. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  16. Occupational contact dermatitis in the wind energy industry.

    Science.gov (United States)

    Lárraga-Piñones, G; Heras-Mendaza, F; Conde-Salazar, L

    2012-12-01

    In 2010, wind energy coverage in Spain increased by 16%, making the country the world's fourth largest producer in a fast-developing industry that is also a source of employment. Occupational skin diseases in this field have received little attention. The present study aims to describe the main characteristics of skin diseases affecting workers in the wind energy industry and the allergens involved. We performed a descriptive, observational study of workers from the wind energy industry with suspected contact dermatitis who were referred to the occupational dermatology clinic of the National School of Occupational Medicine (Escuela Nacional de Medicina del Trabajo) between 2009 and 2011. We took both a clinical history and an occupational history, and patients underwent a physical examination and patch testing with the materials used in their work. We studied 10 workers (8 men, 2 women), with a mean age of 33.7 years. The main finding was dermatitis, which affected the face, eyelids, forearms, and hands. Sensitization to epoxy resins was detected in 4 workers, 1 of whom was also sensitized to epoxy curing agents. One worker was sensitized to bisphenol F resin but had a negative result with epoxy resin from the standard series. In the 5 remaining cases, the final diagnosis was irritant contact dermatitis due to fiberglass. Occupational skin diseases are increasingly common in the wind energy industry. The main allergens are epoxy resins. Fiberglass tends to produce irritation. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  17. International Atomic Energy Agency holds first industry forum

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives information about the first forum organized by the IAEA with representatives of entities dealing with industrial aspects of nuclear energy (Vienna, January 25-26, 2000). 35 participants from such groups with broad geographical distribution participated in the discussions. The main issues debated were: Innovative Technical Developments, Safety and Regulation, Economic Competitiveness and Back-end of the Fuel Cycle

  18. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  19. Advances in Energy Conservation of China Steel Industry

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2013-01-01

    Full Text Available The course, technical progresses, and achievements of energy conservation of China steel industry (CSI during 1980–2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011–2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years’ research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  20. Advances in energy conservation of China steel industry.

    Science.gov (United States)

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  1. An Energy Efficiency Evaluation Method Based on Energy Baseline for Chemical Industry

    OpenAIRE

    Yao, Dong-mei; Zhang, Xin; Wang, Ke-feng; Zou, Tao; Wang, Dong; Qian, Xin-hua

    2016-01-01

    According to the requirements and structure of ISO 50001 energy management system, this study proposes an energy efficiency evaluation method based on energy baseline for chemical industry. Using this method, the energy plan implementation effect in the processes of chemical production can be evaluated quantitatively, and evidences for system fault diagnosis can be provided. This method establishes the energy baseline models which can meet the demand of the different kinds of production proce...

  2. Innovation and greenhouse gas reductions in the Canadian energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Potter, I.J. [Alberta Research Council, Edmonton, AB (Canada); Stewart, B. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2005-07-01

    Canada's hydrocarbon industry must address the challenges presented by the Kyoto Protocol in order to thrive. This paper argued that technological innovations are the primary means of creating long-term options to provide clean hydrocarbon energy. Both federal and provincial governments have developed energy policies to ensure environmental stewardship, promote economic growth, and create a diversified energy sector. While the Canadian energy industry funds and undertakes a significant amount of research and development, government programs must continue to show leadership in research and development activities. In order to ensure Canada's future prosperity, research and innovation programs must expand. Adequate commercialization processes must be in place. Industry and government programs must also link market needs with research directions. Enhanced research coordination is needed between government agencies, research agencies, and educational facilities. Future research and development agendas must be designed to focus on energy technology developments that offer Canada a competitive advantage. The Cleaner Hydrocardon Technology Futures (CHTF) Group has recently focused on 5 key areas in which Canada's energy industry can contribute to a clean hydrocarbon future: (1) clean coal; (2) oil sands and heavy oil; (3) conventional and unconventional oil and gas; (4) carbon capture, use and storage; and (5) hydrocarbon to hydrogen bridging technologies. Investments in research and development in all 5 areas are expected to create a suite of new transformational technologies that will sever the relationship between GHG emissions and the continued production of hydrocarbons. A systems approach was recommended to encourage the creation of new networks and increase Canada's capacity to nurture science and technology innovation. Directions advocated by the EnergyINet have also been embraced by universities and research organizations in western Canada. It

  3. Application of energy conservation technologies in Indian industries

    International Nuclear Information System (INIS)

    Zubair, K.M.

    1992-01-01

    The quadrupling of oil prices in 1973 signaled the beginning of a crises period for the oil importing countries. It hampered the economic growth of developed and developing countries alike. The pace of industrialization slowed down, recession set in and the oil importing developing nations found their balance of payment situation steadily going worse. The second increase of oil prices in 1979 further compounded the problems. It did seem that the problem of economic growth and increasing debt burden was intractable as far as developing nations were concerned. Behind this turmoil were the faint stirrings of alternative actions that sought to wean the world from its oil and fossil fuel dominated economies. These alternatives ranged from harnessing renewable energy sources, such as solar, wind and biomass to implementing end-use energy efficiency strategies. A major lesson of the oil crunch era was that energy efficiency is tangible resource by itself that competes economically with contemporary energy supply options. In addition to this, four major national priorities, viz, economic competitiveness, utilization of scare capital for development, environmental quality and energy security through oil dependence provided an urgent rationale for saving energy. While conservation consciousness has already taken roots in Pakistan industry, it needs to be nurtured and gains need to be consolidated. The need of the hour is to take stock of the situation elsewhere, particularly in similar geographical and socio-economic situations, and plan for an energy efficient tomorrow. This article attempts to delineate the notable developments that have taken place in the application of energy conservation technologies in the Indian industries. These efforts have had a salutary effect on the Indian value added sector which was saddled with old plant and machinery designed in the era of cheap energy. (author)

  4. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.

    2014-01-01

    We try to understand the role of technological change and diffusion of energy efficient technologies in order to explain the trend of energy intensity developments in the German steel industry. We selected six key energy efficient technologies and collected data to derive their diffusion since their

  5. Survey on utility technology of a tidal and ocean current energy

    Science.gov (United States)

    Hirose, Manabu; Kadoyu, Masataka; Tanaka, Hiroyoshi

    1987-06-01

    A study is made to show the current technological levels in Japan and other nations regarding the conversion of tidal current or ocean current energy to electric power and to determine the latent energy quantities and energy-related characteristics of tidal and ocean currents. In Japan, relatively large-scale experiments made so far mostly used one of the following three types of devices: Savonius-wheel type, Darrieus-wheel type, and cross-flow-wheel type. Field experiments of tidal energy conversion have been performed at the Naruto and Kurushima Straits. The energy in the Kuroshio current is estimated at about 170 billion kWh per year. Ocean current energy does not undergo large seasonal variations. The total energy in major straits and channels in the Inland Sea and other sea areas to the west is estimated at about 124 billion kWh per year. Tidal current energy shows large seasonal variations, but it is possible to predict the changes. A survey is made to determine energy-related characteristics of a tidal current at Chichino-seto, Kagoshima Prefecture. At Chichino-seto, the flow velocity ranges from 0 to 2.2m/s, with a latent tidal current energy of about 70 kW, of which about 20 kW can actually be utilized.

  6. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  7. Energy extraction from ocean currents using straight bladed cross-flow hydrokinetic turbine

    Directory of Open Access Journals (Sweden)

    Prasad Dudhgaonkar

    2017-04-01

    Full Text Available Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.

  8. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  9. Impacts of Large Scale Wind Penetration on Energy Supply Industry

    Directory of Open Access Journals (Sweden)

    John Kabouris

    2009-11-01

    Full Text Available Large penetration of Renewable Energy Sources (RES impacts Energy Supply Industry (ESI in many aspects leading to a fundamental change in electric power systems. It raises a number of technical challenges to the Transmission System Operators (TSOs, Distribution System Operators (DSOs and Wind Turbine Generators (WTG constructors. This paper aims to present in a thorough and coherent way the redrawn picture for Energy Systems under these conditions. Topics related to emergent technical challenges, technical solutions required and finally the impact on ESI due to large wind power penetration, are analyzed. Finally, general conclusions are extracted about the ESI current and future state and general directions are recommended.

  10. Mobilizing private finance to drive an energy industrial revolution

    International Nuclear Information System (INIS)

    Mathews, John A.; Kidney, Sean; Mallon, Karl; Hughes, Mark

    2010-01-01

    While uptake of renewable energies as a solution to climate change is widely discussed, the issue of public vs. private financing is not yet adequately explored. The debates over the Kyoto Protocol and its successor, culminating in the COP15 Climate Change Conference in Copenhagen in December 2009, maintained a strong preference for public over private financing. Yet it is also clear to most observers that the energy revolution will never happen without the involvement of private finance to drive private investment. In this Viewpoint, we discuss the ways in which private financing could be mobilized to drive the energy industrial revolution that is needed if climate change mitigation is to succeed.

  11. Estimating energy-augmenting technological change in developingcountry industries

    Energy Technology Data Exchange (ETDEWEB)

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-07-07

    Assumptions regarding the magnitude and direction ofenergy-related technological change have long beenrecognized as criticaldeterminants of the outputs and policy conclusions derived fromintegrated assessment models. Particularly in the case of developingcountries, however, empirical analysis of technological change has laggedbehind simulation modeling. This paper presents estimates of sectoralproductivity trends and energy-augmenting technological change forseveral energy-intensive industries in India and South Korea, and, forcomparison, the United States. The key findings are substantialheterogeneity among both industries and countries, and a number of casesof declining energy efficiency. The results are subject to certaintechnical qualifications both in regards to the methodology and to thedirect comparison to integrated assessment parameterizations.Nevertheless, they highlight the importance of closer attention to theempirical basis for common modeling assumptions.

  12. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  13. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  14. Proceedings of the wind energy industry conference : develop, innovate, export : held in conjunction with Quebec's first wind energy industry gala

    International Nuclear Information System (INIS)

    2008-01-01

    This conference was dedicated to the wind energy industry and business opportunities in Quebec, the rest of Canada and abroad. It was held in conjunction with Quebec's first wind energy industry gala which highlighted the organizations and individuals that have made outstanding contributions to the wind power sector in Quebec over the past three years. The entire conference focused on current and future requests for proposals in Quebec, innovation, and exports. Some fifteen reputed speakers shared their knowledge and experience regarding technological development and technical support available in Quebec. It was intended to clarify current and future issues affecting the wind power industry and to build key relations with leading wind energy players. The sessions of the conference were entitled: the wind energy industry in Quebec and Canada; issues surrounding requests for proposals; the players involved in the request for proposals; visual impacts of wind farms; data transmission during wind farm construction; innovating to move ahead of the crowd; innovation in practice; exporting as a means of development; and, exports in practice. A tour of the Baie-des-Sable wind farm was also provided. The conference featured 24 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs

  15. The Department of Energy`s Solar Industrial Program: 1995 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  16. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Bacareza-Pacudan, L.; Lacrosse, L.; Pennington, M.; Dale Gonzales, A.

    1999-01-01

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  17. Energy study of railroad freight transportation. Volume 2. Industry description

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The United States railroad industry plays a key role in transporting materials to support our industrial economy. One of the oldest industries in the US, the railroads have developed over 150 years into their present physical and operational configuration. Energy conservation proposals to change industry facilities, equipment, or operating practices must be evaluated in terms of their cost impact. A current, comprehensive and accurate data baseline of railroad economic activity and energy consumption is presented. Descriptions of the history of railroad construction in the US and current equipment, facilities, and operation practices follow. Economic models that relate cost and energy of railroad service to the volume of railroad output and to physical and operational parameters are provided. The analyses and descriptions should provide not only an analytical baseline for evaluating the impact of proposed conservation measures, but they should also provide a measure of understanding of the system and its operations to analysts and policy makers who are involved in proposing, analyzing, and implementing such changes.

  18. Mapping the ocean current strength and persistence in the Agulhas to inform marine energy development

    CSIR Research Space (South Africa)

    Meyer, I

    2017-04-01

    Full Text Available sensing - Acoustic Doppler Current Profiler - Natal pulses U N C O R R EC TE D PR O O F 1 Mapping the Ocean Current Strength 2 and Persistence in the Agulhas to Inform 3 Marine Energy Development 4 I. Meyer, L. Braby, M. Krug and B. Backeberg 5... International Publishing AG 2017 Z. Yang and A. Copping (eds.), Marine Renewable Energy, DOI 10.1007/978-3-319-53536-4_8 1 A u th o r P ro o f U N C O R R EC TE D PR O O F 16 Current. Western boundary ocean currents have become an area of focus (Duerr and 17...

  19. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    In Germany, 19.6 % of the industrial final energy consumption (FEC) can be allocated to the chemical industry. Energy efficiency measures with focus on the chemical industry could thus significantly contribute to reaching the German goal of reducing greenhouse gas emissions by 80 % in 2050 compared...

  20. Strategic behavior and regulatory styles in the Netherlands energy industry

    International Nuclear Information System (INIS)

    Kuit, M.

    2002-01-01

    Network-based industries, such as the telecommunications industry, the energy industry and the public transport industry, are in motion. Changes in these industries as well as their consequences - disastrous, in some cases - have received considerable media coverage in recent years. Examples include the failed, or partly, liberalization or privatization processes in the electricity industry and public rail transport. Examples are the long and frequent interruptions in California's electricity supply and the problems in British rail transport, several of which had fatal consequences. Other examples are the behavior of organizations in the industries. Driven either by increasing competitive pressure or by their exclusive position in the industry, some organizations exhibit hardly acceptable behavior. They bar new organizations from joining the industry or face their customers with improper terms of delivery or inflated prices; this is commonly referred to as strategic behavior. This study focuses on strategic behavior or potentially strategic behavior in the Netherlands energy industry and on the link between the way regulators operate in the industry and the strategic behavior observed. All forms of strategic behavior are discussed in this thesis. It seeks to present the richest possible collection of strategic behavior, making it a substantial extension to existing research into strategic behavior in network-based industries, most of which is confined to describing particular strategic behavior and its effects. Examples of such in-depth research are that into predatory pricing, regulatory capture, entry deterrence and the use of price caps in setting rates. Most of this research comprises detailed economic studies covering the design of alternative models to explain strategic behavior and the prevention of such behavior. The present study will not copy the format of these economic studies. It does not present a complete picture of potential strategic behavior in

  1. Air pollution aspects of the atomic energy industry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Meteorology is important to the atomic energy industry for engineering and operational applications common to industry generally, but, in particular, it is important because of its usefulness when dealing with radioactivity in the atmosphere. Meteorology must be used in estimating environmental exposure risks if radioactivity is released through tall stacks and laboratory type vents as part of a routine waste disposal procedure or when it is necessary to consider accidental releases under a variety of circumstances. An outstanding use of meteorology is in the estimation of the spread of contaminants from a reactor disaster. The nature of radioactive materials and their sources are discussed. 7 figures

  2. Agrification: Agriculture for the industry and energy production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new aspect of agrification is the production of alternative products, which can replace fossil sources. This substitution is necessary in order to replace hazardous materials and to find a solution for the problem of depletion of conventional energy sources and basic materials. Attention is paid to some developments in Germany: agricultural products for the production of energy, and new industrial applications for vegetable filaments. With regard to energy production from agricultrual products one should distinguish between (a) solid energy sources (biomass), f.e. straw, fast-growing wood, elephant's grass, hay and rapeseed, and (b) fluid and gaseous energy sources, f.e. purified and partly refined rapeseed oil, rapeseed oil methyl-ester (RME), ethanol from sugar beet, methanol from straw and hydrogen from straw and/or elephant's grass. 4 figs., 7 refs

  3. Wood energy as an important factor in the tourist industry

    International Nuclear Information System (INIS)

    Zapf, V.

    2003-01-01

    This article discusses the role of wood energy in so-called eco-tourism and the fact that tourism has an essential interest in keeping our environment intact. The growing importance of the tourism industry and sustainable tourism in particular is stressed. Efforts being made by tour operators and regional authorities to market eco-tourism are examined, including awards and labels for sustainable tourist facilities. The role of wood energy and other renewable forms of energy as a marketing factor for those establishments that make use of them is commented on. Also, a project that links wood energy facilities to form a 'Wood Energy Way' in the Jura mountains is described that is already proving to be an international tourist attraction

  4. Embedded generation for industrial demand response in renewable energy markets

    International Nuclear Information System (INIS)

    Leanez, Frank J.; Drayton, Glenn

    2010-01-01

    Uncertainty in the electrical energy market is expected to increase with growth in the percentage of generation using renewable resources. Demand response can play a key role in giving stability to system operation. This paper discusses the embedded generation for industrial demand response in renewable energy markets. The methodology of the demand response is explained. It consists of long-term optimization and stochastic optimization. Wind energy, among all the renewable resources, is becoming increasingly popular. Volatility in the wind energy sector is high and this is explained using examples. Uncertainty in the wind market is shown using stochastic optimization. Alternative techniques for generation of wind energy were seen to be needed. Embedded generation techniques include co-generation (CHP) and pump storage among others. These techniques are analyzed and the results are presented. From these results, it is seen that investment in renewables is immediately required and that innovative generation technologies are also required over the long-term.

  5. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  6. Hybrid Building Performance Simulation Models for Industrial Energy Efficiency Applications

    Directory of Open Access Journals (Sweden)

    Peter Smolek

    2018-06-01

    Full Text Available In the challenge of achieving environmental sustainability, industrial production plants, as large contributors to the overall energy demand of a country, are prime candidates for applying energy efficiency measures. A modelling approach using cubes is used to decompose a production facility into manageable modules. All aspects of the facility are considered, classified into the building, energy system, production and logistics. This approach leads to specific challenges for building performance simulations since all parts of the facility are highly interconnected. To meet this challenge, models for the building, thermal zones, energy converters and energy grids are presented and the interfaces to the production and logistics equipment are illustrated. The advantages and limitations of the chosen approach are discussed. In an example implementation, the feasibility of the approach and models is shown. Different scenarios are simulated to highlight the models and the results are compared.

  7. Energy and environmental market in industrial enterprises in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    This paper discusses markets related with energy conservation and environment preservation in industrial enterprises in Thailand. The present Thailand is not in a situation that investments are made into environmental businesses or energy saving businesses. However, the attitude of the government toward environment is that emphasis is placed on solving the environmental pollution problems. Laws and regulations are defined for assistance in environment preservation to corporations making efforts to increase export, resource protection and energy conservation. These measures lead to expectation on bright future in developing technologies and markets related to environment preservation and energy conservation. Control of wastes by using clean technologies and enhancement in productivity are very important issues for the export of Thailand partly because European countries and America set these requirements as a condition for transaction. The markets related to energy conservation and environment preservation are anticipated of participation from such businesses as consultants, device manufacturers, and inspection and analysis of environmental effects. (NEDO)

  8. Energy diagnosis in industry: case of SAP Olympic

    International Nuclear Information System (INIS)

    Sandouidi, Ziwendtaore Frederic

    2007-01-01

    The control of the energy consumption became a crucial problem in the production facilities in Burkina Faso. Energy efficiency is a fact that cannot be ignored in the industrial sector because of the rise unceasingly in the prices of the petroleum. Current reality makes it possible to note the extent of the cost of electricity in our country. The economic pressures in all the sectors of the economic activity, unrestrained competitiveness, the removal of the tariff barriers in the UEMAO member countries caused many difficulties for several companies. SAP Olympic, potential consumer of electrical energy, has difficulties in control and optimize its energy consumption. The importance of this consumption of energy is the subject of great debates at this African Company of Tire. The performances of the old installations of energy are often distant from those obtained with the new installations. If it is relatively easy to carry out new powerful installations, the improvement of the energy consumption of the existing installations requires a study on a case-by-case basis, and it is not always possible to find a solution ensuring the same performances as a new installation. It is necessary to set up rigorous methods of follow-up of the calorific and electric consumption of the equipment in order to have a sufficiently precise energy assessment. The energy diagnosis indeed carries out the most relevant choices for our actions of energy saving [fr

  9. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  11. Novel Atmospheric and Sea State Modeling in Ocean Energy Applications

    Science.gov (United States)

    Kallos, George; Galanis, George; Kalogeri, Christina; Larsen, Xiaoli Guo

    2013-04-01

    The rapidly increasing use of renewable energy sources poses new challenges for the research and technological community today. The integration of the, usually, highly variable wind and wave energy amounts into the general grid, the optimization of energy transition and the forecast of extreme values that could lead to instabilities and failures of the system can be listed among them. In the present work, novel methodologies based on state of the art numerical wind/wave simulation systems and advanced statistical techniques addressing such type of problems are discussed. In particular, extremely high resolution modeling systems simulating the atmospheric and sea state conditions with spatial resolution of 100 meters or less and temporal discretization of a few seconds are utilized in order to simulate in the most detailed way the combined wind-wave energy potential at offshore sites. In addition, a statistical analysis based on a variety of mean and variation measures as well as univariate and bivariate probability distributions is used for the estimation of the variability of the power potential revealing the advantages of the use of combined forms of energy by offshore platforms able to produce wind and wave power simultaneously. The estimation and prediction of extreme wind/wave conditions - a critical issue both for site assessment and infrastructure maintenance - is also studied by means of the 50-year return period over areas with increased power potential. This work has been carried out within the framework of the FP7 project MARINA Platform (http://www.marina-platform.info/index.aspx).

  12. Utilization of pneumatic energy in industries and Nuclear Energy Unit - a brief review

    International Nuclear Information System (INIS)

    Muhd Noor Muhd Yunus

    1984-01-01

    The purpose of this paper is to evaluate the extent of utilisation of pneumatic energy in UTN, besides depicting the capabilities of pneumatics in various field, especially in nuclear industry. Thus, a few examples of the usage of this energy in industry and UTN are explained and listed briefly. Comparisons and advantages of the pneumatics with respect to other forms of energy also discussed briefly. It is hoped that this pneumatic technology will advanced in UTN and becoming one of the alternatives of offered apart from other form of energy like hyrdaulics and electricity. (author)

  13. Energy from the ocean. Report of the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fifth Congress, Second Session by the Science Policy Research Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    In the area of renewable sources of energy from the ocean, the report includes chapters on ocean thermal energy conversion; energy from ocean waves; energy from ocean currents; energy from tides; energy from oceanic winds; energy from salinity gradients; and energy from oceanic bioconversion. Also covered are the nonrenewable sources of energy from the ocean with chapters on deep ocean oil and gas; offshore geothermal energy; and offshore hard mineral energy resources. The report concludes with a bibliography and a selection of current articles on the general subject of the energy potential of the oceans.

  14. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  15. Strategic decisions in turbulent times: lessons from the energy industry

    DEFF Research Database (Denmark)

    Giones, Ferran; Brem, Alexander; Berger, Andreas

    2019-01-01

    of time, traditional business models eroded, and dominant players lost their positions in the industry. Based on personal interviews with the CEOs from RWE (Germany) and NRG (USA) we analyze how they led the transformation of their organizations. We get immersed in their decision-making processes......Most of the firms currently in the S&P 500 will probably not be part of this list in 15 years. In times of great uncertainty managers are called to make the right choices in their strategy, they are asked to preserve the core businesses, and to prepare their organizations for an unclear future. How...... can managers make the right choices when the whole industry is under transformation? In this light, we explore how the popular VUCA framework can help to make sense of turbulent contexts and drive the decision-making of managers. We study the case of the energy industry, where, in a short period...

  16. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  17. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  18. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  19. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  20. Assisting the Tooling and Machining Industry to Become Energy Efficient

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Bennett [Arizona Commerce Authority, Phoenix, AZ (United States)

    2016-12-30

    The Arizona Commerce Authority (ACA) conducted an Innovation in Advanced Manufacturing Grant Competition to support and grow southern and central Arizona’s Aerospace and Defense (A&D) industry and its supply chain. The problem statement for this grant challenge was that many A&D machining processes utilize older generation CNC machine tool technologies that can result an inefficient use of resources – energy, time and materials – compared to the latest state-of-the-art CNC machines. Competitive awards funded projects to develop innovative new tools and technologies that reduce energy consumption for older generation machine tools and foster working relationships between industry small to medium-sized manufacturing enterprises and third-party solution providers. During the 42-month term of this grant, 12 competitive awards were made. Final reports have been included with this submission.

  1. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  2. Russian Energy Strategy and development of renewable power industry

    OpenAIRE

    Bazhanov, Andrei; Tyukhov, Igor

    2008-01-01

    We consider two scenarios of the development of renewable power industry in Russia on an example of the Dasgupta-Heal-Solow-Stiglitz model. We assume that the resource rent is being invested into capital in the form of renewable power technologies according to the standard Hartwick saving rule. We use the modified Hotelling rule that reflects externalities implying, in particular, growing rates of oil extraction. We have shown that the growing extraction, prescribed by the Russian Energy Stra...

  3. Environmentally sound development in the energy and mining industries

    International Nuclear Information System (INIS)

    1987-01-01

    The paper contains the proceedings of a seminar on Strategies for Environmentally Sound Development in the Energy and Mining Industries, Crete, 1984. The seminar was structured around the following themes: 1) oil and gas exploration and production, 2) water power generation and storage projects, 3) electricity generating facilities, 4) restoration and after-use of disturbed land, 5) mineral development, 6) mineral and energy resources in fragile and remote ecosystems, and 7) general environmental issues. Two papers from the seminar were chosen and indexed separately. (U.K.)

  4. Control systems in the intersection of energy and ICT industries

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, K.; Kaessi, T.; Mustonen, T.; Paetaeri, S.; Soininen, L.

    2008-07-01

    The main objective of this research report is to shed light on business possibilities that are related to monitoring and control systems in the intersection of energy and ICT industries. The study uses both primary and secondary data sources that include a qualitative Delphi study, themed interviews, idea generation session, quantitative data regarding the alliances between the energy and ICT sectors as well as relevant literature. The environmental issues, the availability of energy, the opening energy markets, modern distributed generation and the saturation of existing transmission and distribution grids have raised a need to develop new energy solutions and business activities based on them. At the same time, the fast development in ICT technologies and automation has offered better possibilities for their implementation. Thus, the external factors and demands posed e.g. by political and social quarters as well as the internal needs of the energy companies make the cooperation in the intersection necessary and elaborate. The report reveals two major areas for the development of the cooperation between the energy and ICT sectors: households' energy utilization and distributed energy generation. In the former theme, e.g. the follow-up and guidance of energy consumption as well as new ways of electricity purchasing came up as issues for further examination. As regards to the second theme, the distributed energy solutions are seen to increase unavoidably and forcefully in the future. The emergence of distributed generation poses many new challenges for the whole energy system but also a vast amount of opportunities for the two sectors' co-operative activities, as the interfaces between the small local units and networks and the centralized system need to be controlled effectively and legitimately. (orig.)

  5. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  6. Energy program and policy about nuclear industry in France

    International Nuclear Information System (INIS)

    Malvy, M.

    1985-01-01

    As for the various problems on energy, Japan and France have taken the similar strategy and development program. Both Japan and France lack mineral energy resources, but have the industrial technical ability to make up for this shortage by substitute resources and to limit the dependence on import. Similarly to France, Japan has attained 3 tons in terms of petroleum per 1000 dollars of gross national product, which is about a half of the rate of energy consumption in the U.S., and became one of the advanced countries saving energy most. The consumption of petroleum decreased by 23 % in Japan and 30 % in France from 1973 to 1983. Nuclear power increased to 20 % of the generated output in Japan and to 50 % of that in France. The dependence on imported energy decreased to 80 % in Japan and 60 % in France. The energy policy taken by France was to satisfy demand, to diversity supply sources, to reduce energy cost, and to strengthen stable supply. The total demond of primary energy in 1984 was 191.6 million tons in terms of petroleum. Nuclear power stations generated 182 billion kWh in 1984. The nuclear power program in France, nuclear power stations and nuclear fuel cycle are reported. (Kako, I.)

  7. Securing the energy industry : perspectives in security risk management

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, G.L. [Anadarko Canada Corp., Calgary, AB (Canada)

    2003-07-01

    This presentation offered some perspectives in security risk management as it relates to the energy sector. Since the events of September 11, 2001 much attention has been given to terrorism and the business is reviewing protection strategies. The paper made reference to each of the following vulnerabilities in the energy sector: information technology, globalization, business restructuring, interdependencies, political/regulatory change, and physical/human factors. The vulnerability of information technology is that it can be subject to cyber and virus attacks. Dangers of globalization lie in privacy and information security, forced nationalization, organized crime, and anti-globalization efforts. It was noted that the Y2K phenomenon provided valuable lessons regarding interdependencies and the effects of power outages, water availability, transportation disruption, common utility corridor accidents, and compounding incidents. The paper also noted the conflict between the government's desire to have a resilient infrastructure that can withstand and recover from attacks versus a company's ability to afford this capability. The physical/human factors that need to be considered in risk management include crime, domestic terrorism, and disasters such as natural disasters, industrial disasters and crisis. The energy industry has geographically dispersed vulnerable systems. It has done a fair job of physical security and has good emergency management practices, but it was noted that the industry cannot protect against all threats. A strategy of vigilance and awareness is needed to deal with threats. Other strategies include contingency planning, physical security, employee communication, and emergency response plans. tabs., figs.

  8. Revenue maximisation and storage utilisation for the Ocean Grazer wave energy converter : A sensitivity analysis

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Dijkstra, H.T.; Wei, Yanji; van Rooij, Marijn; Meijer, Harmen; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2018-01-01

    This paper presents a revenue maximisation strategy for market integration of a novel wave energy converter (WEC), part of the Ocean Grazer platform. In particular, we evaluate and validate the aforementioned revenue maximisation model predictive control (MPC) strategy through extensive simulations

  9. Validity of zooplankton biomass estimates and energy equivalent in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    , as deduced from the data on biochemical composition and energy content, it is evident that zooplankton of the Indian Ocean contains on an average 2.7% organic carbon, rather than the widely quoted value of 6.5%. The biomass production in terms of organic...

  10. 75 FR 44276 - Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE); Cancellation of Oil and...

    Science.gov (United States)

    2010-07-28

    ... (OCS) in the Gulf of Mexico (GOM) AGENCY: Bureau of Ocean Energy Management, Regulation, and Enforcement, Interior. ACTION: Cancellation of WPA Gulf of Mexico Lease Sale 215. SUMMARY: On May 27, 2010, the President announced the Secretary of the Interior's decision to cancel WPA Sale 215 that was...

  11. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  12. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  13. Assessment of Energy Production Potential from Ocean Currents along the United States Coastline

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Kevin

    2013-09-15

    Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power

  14. Energy consumption in the dairy industry. Analysis of 1987. Energie in zuivel. Analyse 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The research on the title subject was carried out by the NOVEM (Dutch Agency for Energy and the Environment) aimed at planning energy conservation in the Dutch dairy industry for 1988. Data on the energy consumption (electric power and natural gas) were collected and are presented for: milk production on the farm; milk transport from the farm to the processing industry; cheese or butter production; production of consumption milk and derived products; production of evaporated milk; milk powder and whey powder production, and finally overall management and other products. 35 figs., 18 tabs., 1 app.

  15. Industry

    International Nuclear Information System (INIS)

    Schindler, I.; Wiesenberger, H.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of the industry in Austria. It gives a review of the structure and types of the industry, the legal framework and environmental policy of industrial relevance. The environmental situation of the industry in Austria is analyzed in detail, concerning air pollution (SO 2 , NO x , CO 2 , CO, CH 4 , N 2 O, NH 3 , Pb, Cd, Hg, dioxin, furans), waste water, waste management and deposit, energy and water consumption. The state of the art in respect of the IPPC-directives (European Integrated Pollution Prevention and Control Bureau) concerning the best available techniques of the different industry sectors is outlined. The application of European laws and regulations in the Austrian industry is described. (a.n.)

  16. Potential for energy efficiency in the Norwegian land-based industry; Potensial for energieffektivisering i norsk landbasert industri

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Process Industry Association (PIL, now the Federation of Norwegian Industries) conducted in collaboration with Enova SF, Kjelforeningen - Norwegian Energy and Institute for Energy Technology, in 2002 a study to determine the potential for more environmentally efficient energy use and production in the Norwegian process industry. It was in 2007 conducted a review of the 2002-study, and this work showed that large parts of the potential identified in 2002 were not realized, and that in addition there was further potential. Enova therefore took the initiative in 2009 to do a new review of the potential for energy efficiency in the Norwegian industry. (AG)

  17. Sustainable Industrialization in the Building Industry: On the Road to Energy Efficient Construction Management

    DEFF Research Database (Denmark)

    Wandahl, Søren; Ussing, Lene Faber

    2013-01-01

    Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other manufactu......Since the Brundtland report in 1987, sustainability has been an issue in all parts of the world, and the focus is increasing in these years. In the same period, the building industry has in the same period also been under heavy pressure to increase productivity in the same pace as other...... manufacturing industries. An important question, then, is how well these two highly relevant areas can go hand in hand. By means of comparing the main ideas and drivers behind sustainability and industrialization, respectively, common threads, possible synergies and evident barriers are put forward...... in this discussion paper. The main method is a review to track past merits in the two domains and to detect knowledge gaps that have research potential. A strategic research agenda focusing on energy-efficient construction management is outlined showing the need for future focus on combining industrialization...

  18. Current situation of energy conservation in high energy-consuming industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, D.Y.-L.; Yang, K.-H.; Hsu, C.-H.; Chien, M.-H.; Hong, G.-B.

    2007-01-01

    Growing concern in Taiwan has arisen about energy consumption and its adverse environmental impact. The current situation of energy conservation in high energy-consuming industries in Taiwan, including the iron and steel, chemical, cement, pulp and paper, textiles and electric/electrical industries has been presented. Since the energy consumption of the top 100 energy users (T100) comprised over 50% of total industry energy consumption, focusing energy consumption reduction efforts on T100 energy users can achieve significant results. This study conducted on-site energy audits of 314 firms in Taiwan during 2000-2004, and identified potential electricity savings of 1,022,656 MWH, fuel oil savings of 174,643 kiloliters (KL), steam coal savings of 98,620 ton, and natural gas (NG) savings of 10,430 kilo cubic meters. The total potential energy saving thus was 489,505 KL of crude oil equivalent (KLOE), representing a reduction of 1,447,841 ton in the carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 39,131-ha plantation forest

  19. Market in Germany. Renewable energy and energy conservation in the German construction industry

    International Nuclear Information System (INIS)

    2008-02-01

    This market survey for Germany is on the subject of renewable energy and energy efficient constructing and housing improvement. In order to meet sectoral or thematic information needs of Dutch exporting industries and investing companies, the EVD facilitates the realisation of up-to-date market surveys on promising markets in selected countries. The requested study is very relevant for the Dutch exporting industry, as the German building and construction market is of increasing importance to the Dutch building, installation and equipment building sector. Moreover the German market is a European innovator on renewable energy (RE) and energy efficient (EE) homes or even so-called 'passive' houses. The developments in the German market can guide the Dutch industry in the development of their export strategies. The main target groups for the market surveys are small- and medium-sized enterprises (SMEs) in the Netherlands. Interesting groups among these SMEs are those enterprises that start their business on a foreign market [nl

  20. The responsibility of industrialized nations in the energy problem

    International Nuclear Information System (INIS)

    Mandel, H.

    1979-01-01

    In view of the fact that some 15% of the world's population today claim some 50% of the world primary energy consumption, while 52% of the world population must be satisfied with 13% of the primary energy consumption, and in view also of an increase in world population of, at present, approx. 2% per annum, the question arises how to meet the increasing energy demand in the world without incurring international crises and grave economic setbacks. This attempt to find a problem solution is made in the light of the studies of the Conservation Commission of the World Energy Conference. The late author of this contribution, Professor Heinrich Mandel, who was an energy expert of international renown, always tried to examine the energy problem from a global point of view. In his last survey paper on the subject he once more dealt with the narrow margin available in the sector of energy policy and with the great responsibility of the industrialized nations towards the developing countries. (orig.) [de

  1. SLC summer 2010 university - The ocean in the climate-energy problem, urban policies. Proceedings

    International Nuclear Information System (INIS)

    2010-09-01

    This document brings together the available presentations given at the summer 2010 university of the SLC (save the climate) organization on the topics of the ocean in the climate-energy problem, and of the urban policies. Nine presentations (slides) are compiled in this document and deal with: 1 - Biofuels made from micro-algae: stakes and challenges (Olivier Bernard, Comore - INRIA /CNRS/UPMC); 2 - The energy of waves (Alain Clement, Ecole Centrale de Nantes); 3 - The sea, new source of renewable energies? (J.J. Herou, EDF CIH); 4 - Oceans acidification: the other CO 2 problem (James Orr, Pierre Simon Laplace Institute - IPSL, Laboratory of climate and environmental Sciences - LSCE, CEA-CNRS-UVSQ); 5 - Oceans and carbon cycle (Laurent Bopp, IPSL/LSCE); 6 - Renewable marine energies (Yann-Herve De Roeck, France Energies Marines); 7 - Energy renovation of buildings (Jean-Claude Terrier, Mesac Europe); 8 - Modevur research project - Modeling of urban development, sketch of a development typology of chinese cities (Clement-Noel Douady); 9 - Urban areas in the fight against climate change: stakes, knowledge and controversies (Francois Menard, PUCA)

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  3. Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

    NARCIS (Netherlands)

    Laurijssen, J.; Gram, F.J. de; Worrell, E.; Faaij, A.P.C.

    2010-01-01

    The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in

  4. The use of physical indicators for industrial energy demand scenarios

    International Nuclear Information System (INIS)

    Schenk, Niels J.; Moll, Henri C.

    2007-01-01

    Scientific information on the size and nature of the threat of climate change is needed by politicians in order to weight their decisions. Computerised models are extremely useful tools to quantify the long-term effects of current policies. This paper describes a new modelling approach that allows formulation of industrial energy demand projections consistent with the assumptions for scenario drivers such as GDP and population. In the model, a level of industrial production is used as a key variable, and we define it in physical units, rather than in monetary units. The aim of this research is to increase insights that come with long-term energy demand scenarios. This research clearly shows that physical indicators provide additional insights in scenario analysis. The use of physical indicators instead of monetary indicators seems to affect the energy scenarios significantly. The differences with monetary indicators are larger in developing regions than in OECD regions. We conclude that an integrated energy and materials approach reveals developments that are hardly visible using a monetary approach. Moreover, this research shows the potential and benefits of the use of physical indicators for scenario development. (author)

  5. What can industry do to improve acceptance of nuclear energy?

    International Nuclear Information System (INIS)

    Panossian, J.

    1990-01-01

    Even though nuclear energy covers approximately a third of the energy needs of Western Europe without having injured anyone or damaging the environment, its development is considerably hindered in many countries by the opposition of a significant part of the public. The majority of those responsible for the energy supply though, is of the opinion that nuclear energy should continue to play at least as great a role in coming years. In order to lead the public to a positive stand towards nuclear energy, the industry must perfect its product and improve the quality of its communication. One cannot afford to be afraid of admitting that the product, nuclear energy, can be even further improved, even if it is currently at a very high level. Experienced suppliers in the field of nuclear energy have great sums of money with which to work, and should continue to invest in development. It is especially important that the existing nuclear power plants demonstrate exemplary company behavior in respect to safety, availability and economy: this is the best proof of the advantages of nuclear energy and that it is harmless. In regards to communication, it is important to remember that resistance disappears if the public can be directly acquainted with the object of its fears. This explains the special interest in tours of nuclear power plants. The manner in which risk is understood also needs our attention. Risk is not easily understood. It is more easily grasped if it is identified with a highest unsurmountable limit value which corresponds with acceptable consequences. Finally, the public must be informed that nuclear energy is the most environmentally safe means of energy production. (author)

  6. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  7. Industrial application of geothermal energy in Southeast Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  8. Trends and prospects for the energy industry and electric utilities

    International Nuclear Information System (INIS)

    Bupp, I.C. Jr.

    1982-01-01

    Dr. Bupp notes that income redistribution is the major issue in the energy problem, with energy producers the current winners and consumers the big losers as money in the US flows from the northeast to the south and southwest. Also, the relative political success of allocating gas and oil income is offset by disappointment in the synthetic-fuels, nuclear, and fossil-fuels industries. He feels that some compromise is needed between the free-market advocates and the regulators so that cooperation between the private and public sectors can replace the current stalemate that is creating unacceptable financial burdens. Finally, he observes that serious thought and planning is particularly called for to overcome the inertia in nuclear power policy and to reorder energy budget priorities

  9. Energy policy perspectives from the angle of industry

    International Nuclear Information System (INIS)

    Stihl, H.P.

    1998-01-01

    Leave open the possibility to opt for nuclear power, monitor and eventually reduce the subsidies for coal, open up the electricity and natural gas markets to the competitive regime, and solve the conflicts of interest arising from utilization of energy and environmental protection on the national and international level by developing appropriate free market instruments. These requirements are the signposts along the road to comprehensive energy efficiency in generation and applications, which has to be achieved while keeping an eye on reliability and affordability of energy supplies, in order not to endanger economic growth or innovative impetus. The industry will continue to remind the policy makers of this interdependence of interests. (orig./CB) [de

  10. ANALYSIS METHODS OF BANKRUPTCY RISK IN ROMANIAN ENERGY MINING INDUSTRY

    Directory of Open Access Journals (Sweden)

    CORICI MARIAN CATALIN

    2016-12-01

    Full Text Available The study is an analysis of bankruptcy risk and assessing the economic performance of the entity in charge of energy mining industry from southwest region. The scientific activity assesses the risk of bankruptcy using score’s method and some indicators witch reflecting the results obtained and elements from organization balance sheet involved in mining and energy which contributes to the stability of the national energy system. Analysis undertaken is focused on the application of the business organization models that allow a comprehensive assessment of the risk of bankruptcy and be an instrument of its forecast. In this study will be highlighted developments bankruptcy risk within the organization through the Altman model and Conan-Holder model in order to show a versatile image on the organization's ability to ensure business continuity

  11. Use of some industrial waste as energy storage media

    International Nuclear Information System (INIS)

    Tayeb, A.M.

    1996-01-01

    Solar energy is stored using different solid storage materials, both chemical and metallic industrial wastes. The materials tested in the present study are paraffin wax, copper slag, aluminium slag, iron slag, cast iron slag and copper chips. Solar energy is stored in these materials and energy ia then recovered with water stream at different flow rates and the storage capacity and period for different materials were compared. The same set of experiments is run on solid metallic materials mixed with wax. The results indicated that iron slag has the highest storage capacity followed by cast iron slag then aluminium slag and copper chips and copper slag. It is also noted that addition of paraffin wax to the solid metallic material improves its storage capacity and duration greatly. The storage efficiency of different units is calculated and compared. 5 figs

  12. ASSESSMENT OF THE EFFECTIVENESS OF THE BLUE OCEAN STRATEGY FOR UKRAINIAN WINE INDUSTRY

    Directory of Open Access Journals (Sweden)

    N. Kochkina

    2015-08-01

    Full Text Available The study addresses the problem of assessment the effectiveness of company’s strategy. It gives an overview of theoretical and practical foundations for development of company’s strategy. It examines the principles of innovative Blue Ocean Strategy. The Blue Ocean Strategy for Ukrainian companies on wine market is developed. It is proposed to use DPM (Direct Policy Matrix for assessment the effectiveness of company’s strategy. The paper puts forward an algorithm for evaluating the effectiveness of strategies using DPM (Direct Policy Matrix. A structured interviews with experts by personal interview using a formalized table were conducted to build DPM. DPM is drawn to demonstrate results of the research method. Expenses for implementation the Blue Ocean Strategy for Ukrainian companies is evaluated. The efficiency of the developed Blue Ocean Strategy for Ukrainian companies on wine market is calculated.

  13. Computer-aided safety systems of industrial high energy objects

    International Nuclear Information System (INIS)

    Topolsky, N.G.; Gordeev, S.G.

    1995-01-01

    Modern objects of fuel and energy, chemical industries are characterized by high power consumption; by presence of large quantities of combustible and explosive substances used in technological processes; by advanced communications of submission systems of initial liquid and gasiform reagents, lubricants and coolants, the products of processing, and wastes of production; by advanced ventilation and pneumatic transport; and by complex control systems of energy, material and information flows. Such objects have advanced infrastructures, including a significant quantity of engineering buildings intended for storage, transportation, and processing of combustible liquids, gasiform fuels and materials, and firm materials. Examples of similar objects are nuclear and thermal power stations, chemical plants, machine-building factories, iron and steel industry enterprises, etc. Many tasks and functions characterizing the problem of fire safety of these objects can be accomplished only upon the development of special Computer-Aided Fire Safety Systems (CAFSS). The CAFSS for these objects are intended to reduce the hazard of disastrous accidents both causing fires and caused by them. The tasks of fire prevention and rescue work of large-scale industrial objects are analyzed within the bounds of the recommended conception. A functional structure of CAFSS with a list of the main subsystems forming a part of its composition has been proposed

  14. Wind energy industry and environmental bodies - friends not foes

    International Nuclear Information System (INIS)

    Mathers, M.

    1998-01-01

    WWF (the World Wide Fund for Nature) is convinced that Climate Change is one of the major long term threats to global biodiversity. At an international level WWF seeks to highlight the actual and predicted effects of Climate Change upon the natural environment, human health, and national economies in order to press governments and industry to set and achieve an ambitious target for the reduction of greenhouse gas emissions - 20% by 2005. At the national level, we are working with other NGOs, and industry to promote solutions. WWF is pressing for a reform of government measures to stimulate the renewable energy industry and developing its own 'green electricity' initiative in anticipation of deregulation of the electricity market in 1998. It is hoped that this scheme will both provide a market opportunity to a range of technologies and developers, and give a clear demonstration that there is a strong demand among British consumers for renewable energy. WWF wishes to work with all players, starting perhaps with BWEA and WWF working together on the recently announced DTI 'review of its strategy for the development of renewables technology'. (Author)

  15. Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand

    International Nuclear Information System (INIS)

    Adeyemi, Olutomi I.; Hunt, Lester C.

    2014-01-01

    This paper explores the way technical progress and improvements in energy efficiency are captured when modelling OECD industrial energy demand. The industrial sectors of the developed world involve a number of different practices and processes utilising a range of different technologies. Consequently, given the derived demand nature of energy, it is vital when modelling industrial energy demand that the impact of technical progress is appropriately captured. However, the energy economics literature does not give a clear guide on how this can be achieved; one strand suggests that technical progress is ‘endogenous’ via asymmetric price responses whereas another strand suggests that it is ‘exogenous’. More recently, it has been suggested that potentially there is a role for both ‘endogenous’ technical progress and ‘exogenous’ technical progress and consequently the general model should be specified accordingly. This paper therefore attempts to model OECD industrial energy demand using annual time series data over the period 1962–2010 for 15 OECD countries. Using the Structural Time Series Model framework, the general specifications allow for both asymmetric price responses (for technical progress to impact endogenously) and an underlying energy demand trend (for technical progress and other factors to impact exogenously, but in a non-linear way). The results show that almost all of the preferred models for OECD industrial energy demand incorporate both a stochastic underlying energy demand trend and asymmetric price responses. This gives estimated long-run income elasticities in the range of 0.34 to 0.96; estimated long-run price-maximum elasticities in the range of − 0.06 to − 1.22; estimated long-run price-recovery elasticities in the range of 0.00 to − 0.27; and estimated long-run price-cut elasticities in the range of 0.00 to − 0.18. Furthermore, the analysis suggests that when modelling industrial energy demand there is a place for

  16. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  17. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  18. Is inexpensive natural gas hindering the grid energy storage industry?

    International Nuclear Information System (INIS)

    Hittinger, Eric; Lueken, Roger

    2015-01-01

    Grid energy storage is a maturing technology and forecasts of the industry's growth have been promising. However, recent years have realized little growth in actual deployments of grid-level storage and several high-profile storage companies and projects have failed. We hypothesize that falling natural gas prices have significantly reduced the potential profit from many U.S. energy storage projects since 2009 and quantify that effect. We use engineering–economic models to calculate the monthly revenue to energy storage devices providing frequency regulation and energy arbitrage in several electricity markets and compare that revenue to prevailing natural gas prices. We find that flywheel devices providing frequency regulation were profitable in months when natural gas prices were above $7/mcf, but face difficulties at current prices (around $4/mcf). For energy arbitrage alone, we find that the breakeven capital cost for large-scale storage was around $300/kWh in several key locations in 2004–2008, but is around $100/kWh in the same locations today. Though cost and performance improvements have been continually decreasing the effective cost of energy services from storage, fundamental market signals indicating the need for energy storage are at or near 10-year lows for both energy arbitrage and frequency regulation. - Highlights: • We use engineering–economic models to determine breakeven capital cost of storage. • Two applications are examined: frequency regulation and energy arbitrage. • For both services, potential revenue has decreased significantly since 2008. • We show a high correlation of revenue with natural gas price. • We demonstrate a causal relationship using the PHORUM grid modeling software.

  19. Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

    1981-12-01

    An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

  20. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC