WorldWideScience

Sample records for ocean color algorithms

  1. Improved Global Ocean Color Using Polymer Algorithm

    Science.gov (United States)

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  2. Validation and Intercomparison of Ocean Color Algorithms for Estimating Particulate Organic Carbon in the Oceans

    Directory of Open Access Journals (Sweden)

    Hayley Evers-King

    2017-08-01

    Full Text Available Particulate Organic Carbon (POC plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-color signal is influenced by particle composition, size, and concentration and provides a way to observe variability in the POC pool at a range of temporal and spatial scales. To provide accurate estimates of POC concentration from satellite ocean color data requires algorithms that are well validated, with uncertainties characterized. Here, a number of algorithms to derive POC using different optical variables are applied to merged satellite ocean color data provided by the Ocean Color Climate Change Initiative (OC-CCI and validated against the largest database of in situ POC measurements currently available. The results of this validation exercise indicate satisfactory levels of performance from several algorithms (highest performance was observed from the algorithms of Loisel et al., 2002; Stramski et al., 2008 and uncertainties that are within the requirements of the user community. Estimates of the standing stock of the POC can be made by applying these algorithms, and yield an estimated mixed-layer integrated global stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary regionally, suggesting that blending of region-specific algorithms may provide the best way forward for generating global POC products.

  3. Validation of MERIS Ocean Color Algorithms in the Mediterranean Sea

    Science.gov (United States)

    Marullo, S.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Ragni, M.; Santoleri, R.; Vellucci, V.; Luttazzi, C.

    2004-05-01

    Satellite ocean color measurements can contribute, better than any other source of data, to quantify the spatial and time variability of ocean productivity and, tanks to the success of several satellite missions starting with CZCS up to SeaWiFS, MODIS and MERIS, it is now possible to start doing the investigation of interannual variations and compare level of production during different decades ([1],[2]). The interannual variability of the ocean productivity at global and regional scale can be correctly measured providing that chlorophyll estimate are based on well calibrated algorithms in order to avoid regional biases and instrumental time shifts. The calibration and validation of Ocean Color data is then one of the most important tasks of several research projects worldwide ([3], [4]). Algorithms developed to retrieve chlorophyll concentration need a specific effort to define the error ranges associated to the estimates. In particular, the empirical algorithms, calculated on regression with in situ data, require independent records to verify the degree of uncertainties associated. In addition several evidences demonstrated that regional algorithms can improve the accuracy of the satellite chlorophyll estimates [5]. In 2002, Santoleri et al. (SIMBIOS) first showed a significant overestimation of the SeaWiFS derived chlorophyll concentration in Mediterranean Sea when the standard global NASA algorithms (OC4v2 and OC4v4) are used. The same authors [6] proposed two preliminary new algorithms for the Mediterranean Sea (L-DORMA and NL-DORMA) on a basis of a bio-optical data set collected in the basin from 1998 to 2000. In 2002 Bricaud et al., [7] analyzing other bio-optical data collected in the Mediterranean, confirmed the overestimation of the chlorophyll concentration in oligotrophic conditions and proposed a new regional algorithm to be used in case of low concentrations. Recently, the number of in situ observations in the basin was increased, permitting a first

  4. Intercomparison of Ocean Color Algorithms for Picophytoplankton Carbon in the Ocean

    Directory of Open Access Journals (Sweden)

    Víctor Martínez-Vicente

    2017-12-01

    Full Text Available The differences among phytoplankton carbon (Cphy predictions from six ocean color algorithms are investigated by comparison with in situ estimates of phytoplankton carbon. The common satellite data used as input for the algorithms is the Ocean Color Climate Change Initiative merged product. The matching in situ data are derived from flow cytometric cell counts and per-cell carbon estimates for different types of pico-phytoplankton. This combination of satellite and in situ data provides a relatively large matching dataset (N > 500, which is independent from most of the algorithms tested and spans almost two orders of magnitude in Cphy. Results show that not a single algorithm outperforms any of the other when using all matching data. Concentrating on the oligotrophic regions (Chlorophyll-a concentration, B, less than 0.15 mg Chl m−3, where flow cytometric analysis captures most of the phytoplankton biomass, reveals significant differences in algorithm performance. The bias ranges from −35 to +150% and unbiased root mean squared difference from 5 to 10 mg C m−3 among algorithms, with chlorophyll-based algorithms performing better than the rest. The backscattering-based algorithms produce different results at the clearest waters and these differences are discussed in terms of the different algorithms used for optical particle backscattering coefficient (bbp retrieval.

  5. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  6. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  7. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  8. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  9. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    Science.gov (United States)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  10. Improved ocean-color remote sensing in the Arctic using the POLYMER algorithm

    Science.gov (United States)

    Frouin, Robert; Deschamps, Pierre-Yves; Ramon, Didier; Steinmetz, François

    2012-10-01

    Atmospheric correction of ocean-color imagery in the Arctic brings some specific challenges that the standard atmospheric correction algorithm does not address, namely low solar elevation, high cloud frequency, multi-layered polar clouds, presence of ice in the field-of-view, and adjacency effects from highly reflecting surfaces covered by snow and ice and from clouds. The challenges may be addressed using a flexible atmospheric correction algorithm, referred to as POLYMER (Steinmetz and al., 2011). This algorithm does not use a specific aerosol model, but fits the atmospheric reflectance by a polynomial with a non spectral term that accounts for any non spectral scattering (clouds, coarse aerosol mode) or reflection (glitter, whitecaps, small ice surfaces within the instrument field of view), a spectral term with a law in wavelength to the power -1 (fine aerosol mode), and a spectral term with a law in wavelength to the power -4 (molecular scattering, adjacency effects from clouds and white surfaces). Tests are performed on selected MERIS imagery acquired over Arctic Seas. The derived ocean properties, i.e., marine reflectance and chlorophyll concentration, are compared with those obtained with the standard MEGS algorithm. The POLYMER estimates are more realistic in regions affected by the ice environment, e.g., chlorophyll concentration is higher near the ice edge, and spatial coverage is substantially increased. Good retrievals are obtained in the presence of thin clouds, with ocean-color features exhibiting spatial continuity from clear to cloudy regions. The POLYMER estimates of marine reflectance agree better with in situ measurements than the MEGS estimates. Biases are 0.001 or less in magnitude, except at 412 and 443 nm, where they reach 0.005 and 0.002, respectively, and root-mean-squared difference decreases from 0.006 at 412 nm to less than 0.001 at 620 and 665 nm. A first application to MODIS imagery is presented, revealing that the POLYMER algorithm is

  11. Empirical ocean color algorithms and bio-optical properties of the western coastal waters of Svalbard, Arctic

    Science.gov (United States)

    Son, Young-Sun; Kim, Hyun-cheol

    2018-05-01

    Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).

  12. Improved Chlorophyll-a Algorithm for the Satellite Ocean Color Data in the Northern Bering Sea and Southern Chukchi Sea

    Science.gov (United States)

    Lee, Sang Heon; Ryu, Jongseong; Park, Jung-woo; Lee, Dabin; Kwon, Jae-Il; Zhao, Jingping; Son, SeungHyun

    2018-03-01

    The Bering and Chukchi seas are an important conduit to the Arctic Ocean and are reported to be one of the most productive regions in the world's oceans in terms of high primary productivity that sustains large numbers of fishes, marine mammals, and sea birds as well as benthic animals. Climate-induced changes in primary production and production at higher trophic levels also have been observed in the northern Bering and Chukchi seas. Satellite ocean color observations could enable the monitoring of relatively long term patterns in chlorophyll-a (Chl-a) concentrations that would serve as an indicator of phytoplankton biomass. The performance of existing global and regional Chl-a algorithms for satellite ocean color data was investigated in the northeastern Bering Sea and southern Chukchi Sea using in situ optical measurements from the Healy 2007 cruise. The model-derived Chl-a data using the previous Chl-a algorithms present striking uncertainties regarding Chl-a concentrations-for example, overestimation in lower Chl-a concentrations or systematic overestimation in the northeastern Bering Sea and southern Chukchi Sea. Accordingly, a simple two band ratio (R rs(443)/R rs(555)) algorithm of Chl-a for the satellite ocean color data was devised for the northeastern Bering Sea and southern Chukchi Sea. The MODIS-derived Chl-a data from July 2002 to December 2014 were produced using the new Chl-a algorithm to investigate the seasonal and interannual variations of Chl-a in the northern Bering Sea and the southern Chukchi Sea. The seasonal distribution of Chl-a shows that the highest (spring bloom) Chl-a concentrations are in May and the lowest are in July in the overall area. Chl-a concentrations relatively decreased in June, particularly in the open ocean waters of the Bering Sea. The Chl-a concentrations start to increase again in August and become quite high in September. In October, Chl-a concentrations decreased in the western area of the Study area and the Alaskan

  13. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  14. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    Science.gov (United States)

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  15. Bio-Optical Properties of the Inner Continental Shelf off Santos Estuarine System, Southeastern Brazil, and their Implications for Ocean Color Algorithm Performance

    Directory of Open Access Journals (Sweden)

    Melissa Carvalho

    2014-07-01

    Full Text Available Optical characterizations of coastal water masses are important tools for a better understanding of physical and biochemical processes and aid the optimization of ocean color algorithms. In this study we present three optical classes of water observed during October/2005 and March/2006 on the inner continental shelf adjacent to Santos Bay (Brazil, based on remote sensing reflectance. ANOVA indicated a crescent estuarine influence in classes 1 to 3. Class 3 presented the highest chlorophyll-a and nutrient concentration and highest light absorption coefficients. Colored dissolved organic matter (CDOM dominated the light absorption in all classes and was strongly correlated to salinity in October/2005 due to the influence of the La Plata plume. The results indicated that CDOM dynamics in the Santos inner shelf are very complex. The performance of global chlorophyll algorithms was significantly smaller for October/2005 than for March/2006. As inconsistent changes in light absorption spectra by phytoplankton were detected between samplings, the results show that future bio-optical algorithms for this region must be optimized preferentially considering CDOM optical parameters.

  16. OW NASA MODIS Aqua Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Moderate Resolution Imaging Spectroradiometer...

  17. Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.

    2003-05-01

    A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.

  18. Ocean Color and Earth Science Data Records

    Science.gov (United States)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  19. OW NASA SeaWIFS Ocean Color

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface ocean color (chlorophyll-a) measurements collected by means of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)...

  20. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  1. Flagging optically shallow pixels for improved analysis of ocean color data

    Science.gov (United States)

    McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.

    2016-02-01

    Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.

  2. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  3. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  4. A Novel Scoring Metrics for Quality Assurance of Ocean Color Observations

    Science.gov (United States)

    Wei, J.; Lee, Z.

    2016-02-01

    Interpretation of the ocean bio-optical properties from ocean color observations depends on the quality of the ocean color data, specifically the spectrum of remote sensing reflectance (Rrs). The in situ and remotely measured Rrs spectra are inevitably subject to errors induced by instrument calibration, sea-surface correction and atmospheric correction, and other environmental factors. Great efforts have been devoted to the ocean color calibration and validation. Yet, there exist no objective and consensus criteria for assessment of the ocean color data quality. In this study, the gap is filled by developing a novel metrics for such data quality assurance and quality control (QA/QC). This new QA metrics is not intended to discard "suspicious" Rrs spectra from available datasets. Rather, it takes into account the Rrs spectral shapes and amplitudes as a whole and grades each Rrs spectrum. This scoring system is developed based on a large ensemble of in situ hyperspectral remote sensing reflectance data measured from various aquatic environments and processed with robust procedures. This system is further tested with the NASA bio-Optical Marine Algorithm Data set (NOMAD), with results indicating significant improvements in the estimation of bio-optical properties when Rrs spectra marked with higher quality assurance are used. This scoring system is further verified with simulated data and satellite ocean color data in various regions, and we envision higher quality ocean color products with the implementation of such a quality screening system.

  5. Biases in ocean color over a Secchi disk

    NARCIS (Netherlands)

    Pitarch, J.

    2017-01-01

    The oldest record of ocean color measurements consists of visual comparisonsto a standardized color scale, the Forel-Ule scale (FU). Analysis of FU archived dataallows the construction of a century-long time series. In situ protocols of FUmeasurements require the perceived color to be estimated over

  6. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    Science.gov (United States)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for

  7. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    Science.gov (United States)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  8. Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    Science.gov (United States)

    Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos

    2014-01-01

    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.

  9. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  10. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revised

    Science.gov (United States)

    Fargion, Giulietta S.; Mueller, James L.

    2000-01-01

    The document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. This document supersedes the earlier version (Mueller and Austin 1995) published as Volume 25 in the SeaWiFS Technical Report Series. This document marks a significant departure from, and improvement on, theformat and content of Mueller and Austin (1995). The authorship of the protocols has been greatly broadened to include experts specializing in some key areas. New chapters have been added to provide detailed and comprehensive protocols for stability monitoring of radiometers using portable sources, abovewater measurements of remote-sensing reflectance, spectral absorption measurements for discrete water samples, HPLC pigment analysis and fluorometric pigment analysis. Protocols were included in Mueller and Austin (1995) for each of these areas, but the new treatment makes significant advances in each topic area. There are also new chapters prescribing protocols for calibration of sun photometers and sky radiance sensors, sun photometer and sky radiance measurements and analysis, and data archival. These topic areas were barely mentioned in Mueller and Austin (1995).

  11. The use of a MODIS band-ratio algorithm versus a new hybrid approach for estimating colored dissolved organic matter (CDOM)

    Science.gov (United States)

    Satellite remote sensing offers synoptic and frequent monitoring of optical water quality parameters, such as chlorophyll-a, turbidity, and colored dissolved organic matter (CDOM). While traditional satellite algorithms were developed for the open ocean, these algorithms often do...

  12. Regional impacts of ocean color on tropical Pacific variability

    OpenAIRE

    W. Anderson; A. Gnanadesikan; A. Wittenberg

    2009-01-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly se...

  13. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  14. A locally adaptive algorithm for shadow correction in color images

    Science.gov (United States)

    Karnaukhov, Victor; Kober, Vitaly

    2017-09-01

    The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.

  15. Retrieval of Oceanic Constituents from Ocean Color Using Simulated Annealing

    National Research Council Canada - National Science Library

    Kempeneers, Pieter; Sterckx, Sindy; Debruyn, Walter; De Backer, Steve; Scheunders, Paul; Park, Youngje; Ruddick, Kevin

    2005-01-01

    ...), phytoplankton pigments such as chlorophyll (CHL) and colored dissolved organic matter (CDOM). Reversely, optical sensors that measure the water-leaving reflectance spectra allow us to calculate the desired concentration products...

  16. Petri nets SM-cover-based on heuristic coloring algorithm

    Science.gov (United States)

    Tkacz, Jacek; Doligalski, Michał

    2015-09-01

    In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.

  17. [An automatic color correction algorithm for digital human body sections].

    Science.gov (United States)

    Zhuge, Bin; Zhou, He-qin; Tang, Lei; Lang, Wen-hui; Feng, Huan-qing

    2005-06-01

    To find a new approach to improve the uniformity of color parameters for images data of the serial sections of the human body. An auto-color correction algorithm in the RGB color space based on a standard CMYK color chart was proposed. The gray part of the color chart was auto-segmented from every original image, and fifteen gray values were attained. The transformation function between the measured gray value and the standard gray value of the color chart and the lookup table were obtained. In RGB color space, the colors of images were corrected according to the lookup table. The color of original Chinese Digital Human Girl No. 1 (CDH-G1) database was corrected by using the algorithm with Matlab 6.5, and it took 13.475 s to deal with one picture on a personal computer. Using the algorithm, the color of the original database is corrected automatically and quickly. The uniformity of color parameters for corrected dataset is improved.

  18. Some Insights of Spectral Optimization in Ocean Color Inversion

    Science.gov (United States)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  19. Validation of ocean color sensors using a profiling hyperspectral radiometer

    Science.gov (United States)

    Ondrusek, M. E.; Stengel, E.; Rella, M. A.; Goode, W.; Ladner, S.; Feinholz, M.

    2014-05-01

    Validation measurements of satellite ocean color sensors require in situ measurements that are accurate, repeatable and traceable enough to distinguish variability between in situ measurements and variability in the signal being observed on orbit. The utility of using a Satlantic Profiler II equipped with HyperOCR radiometers (Hyperpro) for validating ocean color sensors is tested by assessing the stability of the calibration coefficients and by comparing Hyperpro in situ measurements to other instruments and between different Hyperpros in a variety of water types. Calibration and characterization of the NOAA Satlantic Hyperpro instrument is described and concurrent measurements of water-leaving radiances conducted during cruises are presented between this profiling instrument and other profiling, above-water and moored instruments. The moored optical instruments are the US operated Marine Optical BuoY (MOBY) and the French operated Boussole Buoy. In addition, Satlantic processing versions are described in terms of accuracy and consistency. A new multi-cast approach is compared to the most commonly used single cast method. Analysis comparisons are conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection and analysis, the Satlantic Hyperpro profiling radiometer has proven to be a reliable and consistent tool for satellite ocean color validation.

  20. Color segmentation in the HSI color space using the K-means algorithm

    Science.gov (United States)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  1. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    Science.gov (United States)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  2. Demosaicking algorithm for the Kodak-RGBW color filter array

    Science.gov (United States)

    Rafinazari, M.; Dubois, E.

    2015-01-01

    Digital cameras capture images through different Color Filter Arrays and then reconstruct the full color image. Each CFA pixel only captures one primary color component; the other primary components will be estimated using information from neighboring pixels. During the demosaicking algorithm, the two unknown color components will be estimated at each pixel location. Most of the demosaicking algorithms use the RGB Bayer CFA pattern with Red, Green and Blue filters. The least-Squares Luma-Chroma demultiplexing method is a state of the art demosaicking method for the Bayer CFA. In this paper we develop a new demosaicking algorithm using the Kodak-RGBW CFA. This particular CFA reduces noise and improves the quality of the reconstructed images by adding white pixels. We have applied non-adaptive and adaptive demosaicking method using the Kodak-RGBW CFA on the standard Kodak image dataset and the results have been compared with previous work.

  3. Seahawk: An Advanced Cubesat Mission for Sustained Ocean Color Monitoring

    Science.gov (United States)

    Morrison, John M.; Jeffrey, Hazel; Gorter, Hessel; Anderson, Pamela; Clark, Craig; Holmes, Alan; Feldman, Gene C.; Pratt, Frederick S.

    2016-01-01

    Sustained ocean color monitoring is vital to understanding the marine ecosystem. It has been identified as an Essential Climate Variable (ECV) and is a vital parameter in understanding long-term climate change. Furthermore, observations can be beneficial in observing oil spills, harmful algal blooms and the health of fisheries. Space-based remote sensing, through MERIS, SeaWiFS and MODIS instruments, have provided a means of observing the vast area covered by the ocean which would otherwise be impossible using ships alone. However, the large pixel size makes measurements of lakes, rivers, estuaries and coastal zones difficult. Furthermore, retirement of a number of widely used and relied upon ocean observation instruments, particularly MERIS and SeaWiFS, leaves a significant gap in ocean color observation opportunities. This paper presents an overview of the SeaHawk mission, a collaborative effort between Clyde Space Ltd., the University of North Carolina Wilmington, Cloudland Instruments, and Goddard Spaceflight Center, funded by the Gordon and Betty Moore Foundation. The goal of the project is to enhance the ability to observe ocean color in high temporal and spatial resolution through use of a low-cost, next-generation ocean color sensor flown aboard a CubeSat. The final product will be 530 times smaller (0.0034 vs 1.81cu m) and 115 time less massive (3.4 vs 390.0 kg) but with a ground resolution 10 times better whilst maintaining a signal/noise ratio 50 that of SeaWiFs. This paper will describe the objectives of the mission, outline the payload specification and the spacecraft platform to support it.

  4. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    Science.gov (United States)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  5. Encoding color information for visual tracking: Algorithms and benchmark.

    Science.gov (United States)

    Liang, Pengpeng; Blasch, Erik; Ling, Haibin

    2015-12-01

    While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

  6. Use of ocean color scanner data in water quality mapping

    Science.gov (United States)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  7. A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM

    Directory of Open Access Journals (Sweden)

    Román Anselmo Mora Gutiérrez

    2016-08-01

    Full Text Available A hybridalgorithm which combines mathematical programming techniques (Kruskal’s algorithm and the strategy of maintaining arc consistency to solve constraint satisfaction problem “CSP” and heuristic methods (musical composition method and DSATUR to resolve the robust graph coloring problem (RGCP is proposed in this paper. Experimental result shows that this algorithm is better than the other algorithms presented on the literature.

  8. Validation of Ocean Color Sensors Using a Profiling Hyperspectral Radiometer

    Science.gov (United States)

    2014-01-01

    Chesapeake Bay, South Florida, Hawaii, and the Gulf of Mexico . Typical data collected for each station include Hyperpro in-water measurements, ASD above...K., Demer, K., Fishe,r K.M., Davis, E., Urizar, C, and Merlini, R., "Assessment of the Eastern Gulf of Mexico Harmful Algal Bloom Operational...conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection

  9. Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea

    KAUST Repository

    Racault, Marie-Fanny; Raitsos, Dionysios E.; Berumen, Michael L.; Brewin, Robert J.W.; Platt, Trevor; Sathyendranath, Shubha; Hoteit, Ibrahim

    2015-01-01

    Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period

  10. Algorithms for Coastal-Zone Color-Scanner Data

    Science.gov (United States)

    1986-01-01

    Software for Nimbus-7 Coastal-Zone Color-Scanner (CZCS) derived products consists of set of scientific algorithms for extracting information from CZCS-gathered data. Software uses CZCS-generated Calibrated RadianceTemperature (CRT) tape as input and outputs computer-compatible tape and film product.

  11. How ocean color can steer Pacific tropical cyclones

    Science.gov (United States)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  12. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.

    Science.gov (United States)

    Dierssen, Heidi M

    2010-10-05

    Phytoplankton biomass and productivity have been continuously monitored from ocean color satellites for over a decade. Yet, the most widely used empirical approach for estimating chlorophyll a (Chl) from satellites can be in error by a factor of 5 or more. Such variability is due to differences in absorption and backscattering properties of phytoplankton and related concentrations of colored-dissolved organic matter (CDOM) and minerals. The empirical algorithms have built-in assumptions that follow the basic precept of biological oceanography--namely, oligotrophic regions with low phytoplankton biomass are populated with small phytoplankton, whereas more productive regions contain larger bloom-forming phytoplankton. With a changing world ocean, phytoplankton composition may shift in response to altered environmental forcing, and CDOM and mineral concentrations may become uncoupled from phytoplankton stocks, creating further uncertainty and error in the empirical approaches. Hence, caution is warranted when using empirically derived Chl to infer climate-related changes in ocean biology. The Southern Ocean is already experiencing climatic shifts and shows substantial errors in satellite-derived Chl for different phytoplankton assemblages. Accurate global assessments of phytoplankton will require improved technology and modeling, enhanced field observations, and ongoing validation of our "eyes in space."

  13. Regional impacts of ocean color on tropical Pacific variability

    Science.gov (United States)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  14. Regional impacts of ocean color on tropical Pacific variability

    Directory of Open Access Journals (Sweden)

    W. Anderson

    2009-08-01

    Full Text Available The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  15. Objectness Supervised Merging Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    Haifeng Sima

    2016-01-01

    Full Text Available Ideal color image segmentation needs both low-level cues and high-level semantic features. This paper proposes a two-hierarchy segmentation model based on merging homogeneous superpixels. First, a region growing strategy is designed for producing homogenous and compact superpixels in different partitions. Total variation smoothing features are adopted in the growing procedure for locating real boundaries. Before merging, we define a combined color-texture histogram feature for superpixels description and, meanwhile, a novel objectness feature is proposed to supervise the region merging procedure for reliable segmentation. Both color-texture histograms and objectness are computed to measure regional similarities between region pairs, and the mixed standard deviation of the union features is exploited to make stop criteria for merging process. Experimental results on the popular benchmark dataset demonstrate the better segmentation performance of the proposed model compared to other well-known segmentation algorithms.

  16. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  17. A Moving Object Detection Algorithm Based on Color Information

    International Nuclear Information System (INIS)

    Fang, X H; Xiong, W; Hu, B J; Wang, L T

    2006-01-01

    This paper designed a new algorithm of moving object detection for the aim of quick moving object detection and orientation, which used a pixel and its neighbors as an image vector to represent that pixel and modeled different chrominance component pixel as a mixture of Gaussians, and set up different mixture model of Gauss for different YUV chrominance components. In order to make full use of the spatial information, color segmentation and background model were combined. Simulation results show that the algorithm can detect intact moving objects even when the foreground has low contrast with background

  18. Evaluating VIIRS ocean color products for west coast and Hawaiian waters

    KAUST Repository

    Davis, Curtiss O.; Tufillaro, Nicholas; Nahorniak, Jasmine; Jones, Burton; Arnone, Robert

    2013-01-01

    Automated match ups allow us to maintain and improve the ocean color products of current satellite instruments MODIS, and since February 2012 the Visible Infrared Imaging Radiometer Suite (VIIRS). As part of the VIIRS mission Ocean Calibration

  19. Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

    Science.gov (United States)

    Aleksanin, A. I.; Kachur, V. A.

    2017-12-01

    Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

  20. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    Science.gov (United States)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  1. EFFICIENT ADAPTIVE STEGANOGRAPHY FOR COLOR IMAGESBASED ON LSBMR ALGORITHM

    Directory of Open Access Journals (Sweden)

    B. Sharmila

    2012-02-01

    Full Text Available Steganography is the art of hiding the fact that communication is taking place, by hiding information in other medium. Many different carrier file formats can be used, but digital images are the most popular because of their frequent use on the Internet. For hiding secret information in images, there exists a large variety of steganographic techniques. The Least Significant Bit (LSB based approach is a simplest type of steganographic algorithm. In all the existing approaches, the decision of choosing the region within a cover image is performed without considering the relationship between image content and the size of secret message. Thus, the plain regions in the cover will be ruin after data hiding even at a low data rate. Hence choosing the edge region for data hiding will be a solution. Many algorithms are deal with edges in images for data hiding. The Paper 'Edge adaptive image steganography based on LSBMR algorithm' is a LSB steganography presented the results of algorithms on gray-scale images only. This paper presents the results of analyzing the performance of edge adaptive steganography for colored images (JPEG. The algorithms have been slightly modified for colored image implementation and are compared on the basis of evaluation parameters like peak signal noise ratio (PSNR and mean square error (MSE. This method can select the edge region depending on the length of secret message and difference between two consecutive bits in the cover image. For length of message is short, only small edge regions are utilized while on leaving other region as such. When the data rate increases, more regions can be used adaptively for data hiding by adjusting the parameters. Besides this, the message is encrypted using efficient cryptographic algorithm which further increases the security.

  2. Automated ocean color product validation for the Southern California Bight

    Science.gov (United States)

    Davis, Curtiss O.; Tufillaro, Nicholas; Jones, Burt; Arnone, Robert

    2012-06-01

    Automated match ups allow us to maintain and improve the products of current satellite ocean color sensors (MODIS, MERIS), and new sensors (VIIRS). As part of the VIIRS mission preparation, we have created a web based automated match up tool that provides access to searchable fields for date, site, and products, and creates match-ups between satellite (MODIS, MERIS, VIIRS), and in-situ measurements (HyperPRO and SeaPRISM). The back end of the system is a 'mySQL' database, and the front end is a `php' web portal with pull down menus for searchable fields. Based on selections, graphics are generated showing match-ups and statistics, and ascii files are created for downloads for the matchup data. Examples are shown for matching the satellite data with the data from Platform Eureka SeaPRISM off L.A. Harbor in the Southern California Bight.

  3. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  4. Intersatellite comparisons and evaluations of three ocean color products along the Zhejiang coast, eastern China

    Science.gov (United States)

    Cui, Qiyuan; Wang, Difeng; Gong, Fang; Pan, Delu; Hao, Zengzhou; Wang, Tianyu; Zhu, Qiankun

    2017-10-01

    With its broad spatial coverage and fine temporal resolution, ocean color remote sensing data represents an effective tool for monitoring large areas of ocean, and has the potential to provide crucial information in coastal waters where routine monitoring is either lacking or unsatisfactory. The semi-analytical or empirical algorithms that work well in Case 1 waters encounter many problems in offshore areas where the water is often optically complex and presents difficulties for atmospheric correction. Zhejiang is one of the most developed provinces in eastern China, and its adjacent seas have been greatly affected by recent rapid economic development. Various islands and semi-closed bays along the Zhejiang coast promote the formation of muddy tidal flats. Moreover, large quantities of terrestrial substances coming down with the Yangtze River and other local rivers also have a great impact on the coastal waters of the province. MODIS, VIIRS and GOCI are three commonly used ocean color sensors covering the East China Sea. Several ocean color products such as remote-sensing reflectance (Rrs) and the concentrations of chlorophyll a (Chl-a) and total suspended matter (TSM) of the above three sensors on the Zhejiang coast have been evaluated. Cloud-free satellite images with synchronous field measurements taken between 2012 and 2015 were used for comparison. It is shown that there is a good correlation between the MODIS and GOCI spectral data, while some outliers were found in the VIIRS images. The low signal-to-noise ratio at short wavelengths in highly turbid waters also reduced the correlation between different sensors. In addition, it was possible to obtain more valid data with GOCI in shallow waters because of the use of an appropriate atmospheric correction algorithm. The standard Chl-a and TSM products of the three satellites were also evaluated, and it was found that the Chl-a and TSM concentrations calculated by the OC3G and Case 2 algorithms, respectively

  5. Ocean color remote sensing using polarization properties of reflected sunlight

    Science.gov (United States)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  6. Near Real Time Operational Satellite Ocean Color Products From NOAA OSPO CoastWatch Okeanos System:: Status and Challenges

    Science.gov (United States)

    Banghua Yan, B.

    2016-02-01

    Near real-time (NRT) ocean color (OC) satellite operation products are generated and distributed in NOAA Okeanos Operational Product System, by using the CWAPS including the Multi-Sensor Level (MSL) 12 and the chlorophyll-a frontal algorithms. Current OC operational products include daily chlorophyll concentration (anomaly), water turbidity, remote sensing reflectance and chlorophyll frontal products from Moderate-resolution Imaging Spectroradiometer (MODIS)/Aqua. The products have been widely applied to USA local and state ecosystem research, ecosystem observations, and fisheries managements for coastal and regional forecasting of ocean water quality, phytoplankton concentrations, and primary production. Users of the products have the National Ocean Service, National Marine Fisheries Service, National Weather Service, and Oceanic and Atmospheric Research. Recently, the OC products are being extended to S-NPP VIIRS to provide global NRT ocean color products to user community suh as National Weatrher Service for application for Global Data Assimilation System and Real-Time Ocean Forecast System. However, there remain some challenges in application of the products due to certain product quality and coverage issues. Recent efforts were made to provide a comprehensive web-based Quality Assurance (QA) tool for monitoring OC products quality in near real time mode, referring to http://www.ospo.noaa.gov/Products/ocean/color_new/color.htm. The new QA monitoring tool includes but not limited to the following advanced features applicable for MODIS/Aqua and NPP/VIIRS OC products: 1) Monitoring product quality in NRT mode; 2) Monitoring the availability and quality of OC products with time; 3) Detecting anomalous OC products due to low valid pixels and other quality issues. As an example, potential application and challenges of the ocean color products to oceanic oil spill detection are investigated. It is thus expected that the Okeanos ocean color operational system in

  7. Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization

    Science.gov (United States)

    Westberry, Toby K.; Behrenfeld, Michael J.; Milligan, Allen J.; Doney, Scott C.

    2013-03-01

    Significant effort has been invested in understanding the role of iron in marine ecosystems over the past few decades. What began as shipboard amendment experiments quickly grew into a succession of in situ, mesoscale ocean iron fertilization (OIF) experiments carried out in all three high nutrient low chlorophyll (HNLC) regions of the world ocean. Dedicated process studies have also looked at regions of the ocean that are seasonally exposed to iron-replete conditions as natural OIF experiments. However, one problem common to many OIF experiments is determination of biological response beyond the duration of the experiment (typicallyfloristic shifts in the phytoplankton community. Further, a consistent pattern of decreased satellite fluorescence efficiency (FLH:Chl or ϕf) following OIF is observed that is in agreement with current understanding of phytoplankton physiological responses to relief from iron stress. The current study extends our ability to retrieve phytoplankton physiology from space-based sensors, strengthens the link between satellite fluorescence and iron availability, and shows that satellite ocean color analyses provide a unique tool for monitoring OIF experiments.

  8. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  9. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes

    Directory of Open Access Journals (Sweden)

    Dilip K. Prasad

    2016-03-01

    Full Text Available We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds. The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS, moderate-resolution imaging spectroradiometer (MODIS, sea-viewing wide field-of-view sensor (SeaWiFS, coastal zone color scanner (CZCS, ocean and land colour instrument (OLCI, and visible infrared imaging radiometer suite (VIIRS sensors. Results are also shown for CIMEL’s SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.

  10. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

    Science.gov (United States)

    Werdell, P. Jeremy; McKinna, Lachlan I. W.; Boss, Emmanuel; Ackleson, Steven G.; Craig, Susanne E.; Gregg, Watson W.; Lee, Zhongping; Maritorena, Stéphane; Roesler, Collin S.; Rousseaux, Cécile S.; Stramski, Dariusz; Sullivan, James M.; Twardowski, Michael S.; Tzortziou, Maria; Zhang, Xiaodong

    2018-01-01

    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

  11. Cross-media color reproduction using the frequency-based spatial gamut mapping algorithm based on human color vision

    Science.gov (United States)

    Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun

    2018-04-01

    Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.

  12. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  13. A new parallelization algorithm of ocean model with explicit scheme

    Science.gov (United States)

    Fu, X. D.

    2017-08-01

    This paper will focus on the parallelization of ocean model with explicit scheme which is one of the most commonly used schemes in the discretization of governing equation of ocean model. The characteristic of explicit schema is that calculation is simple, and that the value of the given grid point of ocean model depends on the grid point at the previous time step, which means that one doesn’t need to solve sparse linear equations in the process of solving the governing equation of the ocean model. Aiming at characteristics of the explicit scheme, this paper designs a parallel algorithm named halo cells update with tiny modification of original ocean model and little change of space step and time step of the original ocean model, which can parallelize ocean model by designing transmission module between sub-domains. This paper takes the GRGO for an example to implement the parallelization of GRGO (Global Reduced Gravity Ocean model) with halo update. The result demonstrates that the higher speedup can be achieved at different problem size.

  14. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing; hide

    2013-01-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.

  15. Ocean Color and the Equatorial Annual Cycle in the Pacific

    Science.gov (United States)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical

  16. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    Science.gov (United States)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  17. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  18. Equitable Coloring of Graphs. Recent Theoretical Results and New Practical Algorithms

    Directory of Open Access Journals (Sweden)

    Furmańczyk Hanna

    2016-09-01

    Full Text Available In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper we survey recent theoretical results concerning conditions for equitable colorability of some graphs and recent theoretical results concerning the complexity of equitable coloring problem. Next, since the general coloring problem is strongly NP-hard, we report on practical experiments with some efficient polynomial-time algorithms for approximate equitable coloring of general graphs.

  19. Dazzled by ice and snow: improving medium ocean color images in Arctic waters

    Science.gov (United States)

    Babin, M.; Goyens, C.; Belanger, S.

    2016-02-01

    The importance of phytoplankton blooms for the Arctic marine ecosystem is well recognized but studies disagree as the consequences of sea ice melt on the phytoplankton distribution and growth. This limited understanding in actual and future Arctic phytoplankton dynamics mostly results from a lack of accurate data at the receding ice-edges where phytoplankton blooms are known to occur. Ocean color sensors on-board satellites represent therefore a crucial tool providing a synoptic view of the ocean systems over broad spatio-temporal scales. However, today the use of ocean color data in Arctic environments remains strongly compromised due to, among others, sea ice contamination. Indeed, medium ocean color data along the receding ice edge are "dazzled" by nearby and/or sub-pixel highly reflective ice floes. Standard ocean color data methods ignore ice-contamination during data processing which deteriorates the quality of the radiometric data and subsequent satellite derived bio-geochemical products. Moreover, since Arctic phytoplankton spring blooms typically develop along the receding ice-edges, ignoring ice-contaminated pixels may lead to wrong interpretation of satellite data. The present study shows how adjacent and sub-pixel sea-ice floes affect the retrieved ocean color data. A correction approach is also suggested to improve the "dazzled" ocean color pixels along the receding ice edge in the aim to provide additional support to better understand current and future trends in phytoplankton dynamics.

  20. Performance metrics for the assessment of satellite data products: an ocean color case study

    Science.gov (United States)

    Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coeffic...

  1. In-Orbit Vicarious Calibration for Ocean Color and Aerosol Products

    National Research Council Canada - National Science Library

    Wang, Menghua

    2005-01-01

    It is well known that, to accurately retrieve the spectrum of the water-leaving radiance and derive the ocean color products from satellite sensors, a vicarious calibration procedure, which performs...

  2. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 2; Revised

    Science.gov (United States)

    Mueller, James L. (Editor); Fargion, Giulietta S. (Editor); Trees, C.; Austin, R. W.; Pietras, C. (Editor); Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; Yuen, M.

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  3. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 1; Revised

    Science.gov (United States)

    Mueller, James L. (Editor); Fargion, Giulietta (Editor); Mueller, J. L.; Trees, C.; Austin, R. W.; Pietras, C.; Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; hide

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  4. A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products

    Science.gov (United States)

    Singh, Rakesh Kumar; Shanmugam, Palanisamy

    2018-06-01

    Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water

  5. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  6. A deblocking algorithm based on color psychology for display quality enhancement

    Science.gov (United States)

    Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin

    2012-12-01

    This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.

  7. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    Science.gov (United States)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  8. Categorization and Searching of Color Images Using Mean Shift Algorithm

    Directory of Open Access Journals (Sweden)

    Prakash PANDEY

    2009-07-01

    Full Text Available Now a day’s Image Searching is still a challenging problem in content based image retrieval (CBIR system. Most CBIR system operates on all images without pre-sorting the images. The image search result contains many unrelated image. The aim of this research is to propose a new object based indexing system Based on extracting salient region representative from the image, categorizing the image into different types and search images that are similar to given query images.In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique, Dominant objects are obtained by performing region grouping of segmented thumbnails. The category for an image is generated automatically by analyzing the image for the presence of a dominant object. The images in the database are clustered based on region feature similarity using Euclidian distance. Placing an image into a category can help the user to navigate retrieval results more effectively. Extensive experimental results illustrate excellent performance.

  9. Remote sensing estimation of terrestrially derived colored dissolved organic matterinput to the Arctic Ocean

    Science.gov (United States)

    Li, J.; Yu, Q.; Tian, Y. Q.

    2017-12-01

    The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.

  10. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  11. A new efficient RLF-like algorithm for the vertex coloring problem

    Directory of Open Access Journals (Sweden)

    Adegbindin Mourchid

    2016-01-01

    Full Text Available The Recursive Largest First (RLF algorithm is one of the most popular greedy heuristics for the vertex coloring problem. It sequentially builds color classes on the basis of greedy choices. In particular, the first vertex placed in a color class C is one with a maximum number of uncolored neighbors, and the next vertices placed in C are chosen so that they have as many uncolored neighbors which cannot be placed in C. These greedy choices can have a significant impact on the performance of the algorithm, which explains why we propose alternative selection rules. Computational experiments on 63 difficult DIMACS instances show that the resulting new RLF-like algorithm, when compared with the standard RLF, allows to obtain a reduction of more than 50% of the gap between the number of colors used and the best known upper bound on the chromatic number. The new greedy algorithm even competes with basic metaheuristics for the vertex coloring problem.

  12. Airborne Ocean Color Imager Experiment Data 1988 - 1991

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic and fisheries data were collected during 1988 through 1991 through a multiagency research project to develop a remote sensing system to provide near...

  13. VIIRS Ocean Color Reprocessed Science Quality Environmental Data Record (EDR) Level 2 products from 2012-01 to the present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains VIIRS Ocean Color Reprocessed Environmental Data Record (EDR) Level 2 products produced by the NESDIS Center for Satellite Applications and...

  14. VIIRS Ocean Color Reprocessed Science Quality Environmental Data Record (EDR) Level 3 products from 2012-01 to the present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains VIIRS Ocean Color Reprocessed Environmental Data Record (EDR) Level 3 products produced by the NESDIS Center for Satellite Applications and...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ocean Color/Chlorophyll (OCC) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ocean Color/Chlorophyll (OCC) from the Visible Infrared Imaging Radiometer Suite...

  16. Use of satellite ocean color observations to refine understanding of global geochemical cycles

    Science.gov (United States)

    Walsh, J. J.; Dieterle, D. A.

    1985-01-01

    In October 1978, the first satellite-borne color sensor, the Coastal Zone Color Scanner (CZCS), was launched aboard Nimbus-7 with four visible and two infrared bands, permitting a sensitivity about 60 times that of the Landsat-1 multispectral scanner. The CZCS radiance data can be utilized to estimate ocean chlorophyll concentrations by detecting shifts in sea color, particularly in oceanic waters. The obtained data can be used in studies regarding problems of overfishing, and, in addition, in investigations concerning the consequences of man's accelerated extraction of nitrogen from the atmosphere and addition of carbon to the atmosphere. The satellite data base is considered along with a simulation analysis, and ships providing ground-truth chlorophyll measurements in the ocean.

  17. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    Science.gov (United States)

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works.

  18. A design study for an advanced ocean color scanner system. [spaceborne equipment

    Science.gov (United States)

    Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.

    1980-01-01

    Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.

  19. Specificity of Atmosphere Correction of Satellite Ocean Color Data in Far-Eastern Region

    Science.gov (United States)

    Trusenkova, O.; Kachur, V.; Aleksanin, A. I.

    2016-02-01

    It was carried out an error analysis of satellite reflectance coefficients (Rrs) of MODIS/AQUA colour data for two atmospheric correction algorithms (NIR, MUMM) in the Far-Eastern region. Some sets of unique data of in situ and satellite measurements have been analysed. A set has some measurements with ASD spectroradiometer for each satellite pass. The measurement allocations were selected so the Chlorophyll-a concentration has high variability. Analysis of arbitrary set demonstrated that the main error component is systematic error, and it has simple relations on Rrs values. The reasons of such error behavior are considered. The most probable explanation of the large errors of oceanic color parameters in the Far-Eastern region is the ability of high concentrations of continental aerosol. A comparison of satellite and in situ measurements at AERONET stations of USA and South Korea regions has been made. It was shown that for NIR-correction of the atmosphere influence the error values in these two regions have differences up to 10 times for almost the same water turbidity and relatively good accuracy of computation of aerosol optical thickness. The study was supported by grant Russian Scientific Foundation No. 14-50-00034, by grant of Russian Foundation of Basic Research No.15-35-21032-mol-a-ved, and by Program of Basic Research "Far East" of Far Eastern Branch of Russian Academy of Sciences.

  20. Chlorophyll-a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Franz, Bryan

    2011-01-01

    A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in the global ocean for Chl less than or equal to 0.25 milligrams per cubic meters (approximately 77% of the global ocean area). The algorithm is based on a color index (CI), defined as the difference between remote sensing reflectance (R(sub rs), sr(sup -1) in the green and a reference formed linearly between R(sub rs) in the blue and red. For low Chl waters, in situ data showed a tighter (and therefore better) relationship between CI and Chl than between traditional band-ratios and Chl, which was further validated using global data collected concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed similarly for different relative contributions of non-phytoplankton absorption. Simulations using existing atmospheric correction approaches further demonstrated that the CIA was much less sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect atmospheric correction (including sun glint and whitecap corrections). Image and time-series analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of reduced image noise, more coherent spatial and temporal patterns, and consistency between the two sensors. The reduction in noise and other errors is particularly useful to improve the detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data indicate that the new approach should be generally applicable to all existing and future ocean color instruments.

  1. Recommendations on Future Science and Engineering Studies for Ocean Color

    Science.gov (United States)

    Mannino, Antonio

    2015-01-01

    The Ocean Health Index measured Ecological Integrity as the relative condition of assessed species in a given location. This was calculated as the weighted sum of the International Union for Conservation of Natures (IUCN) assessments of species. Weights used were based on the level of extinction risk following Butchart et al.2007: EX (extinct) 0.0, CR (critically endangered) 0.2, EN (endangered) 0.5, VU (vulnerable) 0.7, NT (not threatened) 0.9, and LC (least concern) 0.99. For primarily coastal goals, the spatial average of these per pixel scores was based on a 3nmi buffer; for goals derived from all ocean waters, the spatial average was computed for the entire EEZ.

  2. A Simple Encryption Algorithm for Quantum Color Image

    Science.gov (United States)

    Li, Panchi; Zhao, Ya

    2017-06-01

    In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.

  3. Multi-Working Modes Product-Color Planning Based on Evolutionary Algorithms and Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Man Ding

    2010-01-01

    Full Text Available In order to assist designer in color planning during product development, a novel synthesized evaluation method is presented to evaluate color-combination schemes of multi-working modes products (MMPs. The proposed evaluation method considers color-combination images in different working modes as evaluating attributes, to which the corresponding weights are assigned for synthesized evaluation. Then a mathematical model is developed to search for optimal color-combination schemes of MMP based on the proposed evaluation method and two powerful search techniques known as Evolution Algorithms (EAs and Swarm Intelligence (SI. In the experiments, we present a comparative study for two EAs, namely, Genetic Algorithm (GA and Difference Evolution (DE, and one SI algorithm, namely, Particle Swarm Optimization (PSO, on searching for color-combination schemes of MMP problem. All of the algorithms are evaluated against a test scenario, namely, an Arm-type aerial work platform, which has two working modes. The results show that the DE obtains the superior solution than the other two algorithms for color-combination scheme searching problem in terms of optimization accuracy and computation robustness. Simulation results demonstrate that the proposed method is feasible and efficient.

  4. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    Science.gov (United States)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-12-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  5. Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    Directory of Open Access Journals (Sweden)

    Iyad Abu Doush

    2017-10-01

    Full Text Available Banknote recognition means classifying the currency (coin and paper to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach and gray image local invariant feature descriptor (gray SIFT approach. The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy.

  6. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    Science.gov (United States)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  7. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    Science.gov (United States)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  8. Marine mammal distribution in the open ocean: a comparison of ocean color data products and levant time scales

    Science.gov (United States)

    Ohern, J.

    2016-02-01

    Marine mammals are generally located in areas of enhanced surface primary productivity, though they may forage much deeper within the water column and higher on the food chain. Numerous studies over the past several decades have utilized ocean color data from remote sensing instruments (CZCS, MODIS, and others) to asses both the quantity and time scales over which surface primary productivity relates to marine mammal distribution. In areas of sustained upwelling, primary productivity may essentially grow in the secondary levels of productivity (the zooplankton and nektonic species on which marine mammals forage). However, in many open ocean habitats a simple trophic cascade does not explain relatively short time lags between enhanced surface productivity and marine mammal presence. Other dynamic features that entrain prey or attract marine mammals may be responsible for the correlations between marine mammals and ocean color. In order to investigate these features, two MODIS (moderate imaging spectroradiometer) data products, the concentration as well as the standard deviation of surface chlorophyll were used in conjunction with marine mammal sightings collected within Ecuadorian waters. Time lags between enhanced surface chlorophyll and marine mammal presence were on the order of 2-4 weeks, however correlations were much stronger when the standard deviation of spatially binned images was used, rather than the chlorophyll concentrations. Time lags also varied between Balaenopterid and Odontocete cetaceans. Overall, the standard deviation of surface chlorophyll proved a useful tool for assessing potential relationships between marine mammal sightings and surface chlorophyll.

  9. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    Science.gov (United States)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  10. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    Science.gov (United States)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  11. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    Science.gov (United States)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  12. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.

    Science.gov (United States)

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Liu, Bingyi; Lin, Gong; Wei, Jianwei; Li, Xiaolong

    2018-05-01

    Inversion of the total absorption (a) and backscattering coefficients of bulk water through a fusion of remote sensing reflectance (R rs ) and Secchi disk depth (Z SD ) is developed. An application of such a system to a synthesized wide-range dataset shows a reduction of ∼3 folds in the uncertainties of inverted a(λ) (in a range of ∼0.01-6.8  m -1 ) from R rs (λ) for the 350-560 nm range. Such a fusion is further proposed to process concurrent active (ocean LiDAR) and passive (ocean-color) measurements, which can lead to nearly "exact" analytical inversion of an R rs spectrum. With such a fusion, it is found that the uncertainty in the inverted total a in the 350-560 nm range could be reduced to ∼2% for the synthesized data, which can thus significantly improve the derivation of a coefficients of other varying components. Although the inclusion of Z SD places an extra constraint in the inversion of R rs , no apparent improvement over the quasi-analytical algorithm (QAA) was found when the fusion of Z SD and R rs was applied to a field dataset, which calls for more accurate determination of the absorption coefficients from water samples.

  13. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    Science.gov (United States)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  14. Morphological rational multi-scale algorithm for color contrast enhancement

    Science.gov (United States)

    Peregrina-Barreto, Hayde; Terol-Villalobos, Iván R.

    2010-01-01

    Contrast enhancement main goal consists on improving the image visual appearance but also it is used for providing a transformed image in order to segment it. In mathematical morphology several works have been derived from the framework theory for contrast enhancement proposed by Meyer and Serra. However, when working with images with a wide range of scene brightness, as for example when strong highlights and deep shadows appear in the same image, the proposed morphological methods do not allow the enhancement. In this work, a rational multi-scale method, which uses a class of morphological connected filters called filters by reconstruction, is proposed. Granulometry is used by finding the more accurate scales for filters and with the aim of avoiding the use of other little significant scales. The CIE-u'v'Y' space was used to introduce our results since it takes into account the Weber's Law and by avoiding the creation of new colors it permits to modify the luminance values without affecting the hue. The luminance component ('Y) is enhanced separately using the proposed method, next it is used for enhancing the chromatic components (u', v') by means of the center of gravity law of color mixing.

  15. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for Southern Beaufort Sea (Canadian Arctic) waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2012-10-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  16. Characteristic vector analysis of inflection ratio spectra: New technique for analysis of ocean color data

    Science.gov (United States)

    Grew, G. W.

    1985-01-01

    Characteristic vector analysis applied to inflection ratio spectra is a new approach to analyzing spectral data. The technique applied to remote data collected with the multichannel ocean color sensor (MOCS), a passive sensor, simultaneously maps the distribution of two different phytopigments, chlorophyll alpha and phycoerythrin, the ocean. The data set presented is from a series of warm core ring missions conducted during 1982. The data compare favorably with a theoretical model and with data collected on the same mission by an active sensor, the airborne oceanographic lidar (AOL).

  17. Object tracking system using a VSW algorithm based on color and point features

    Directory of Open Access Journals (Sweden)

    Lim Hye-Youn

    2011-01-01

    Full Text Available Abstract An object tracking system using a variable search window (VSW algorithm based on color and feature points is proposed. A meanshift algorithm is an object tracking technique that works according to color probability distributions. An advantage of this algorithm based on color is that it is robust to specific color objects; however, a disadvantage is that it is sensitive to non-specific color objects due to illumination and noise. Therefore, to offset this weakness, it presents the VSW algorithm based on robust feature points for the accurate tracking of moving objects. The proposed method extracts the feature points of a detected object which is the region of interest (ROI, and generates a VSW using the given information which is the positions of extracted feature points. The goal of this paper is to achieve an efficient and effective object tracking system that meets the accurate tracking of moving objects. Through experiments, the object tracking system is implemented that it performs more precisely than existing techniques.

  18. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  19. A Multiresolution Image Completion Algorithm for Compressing Digital Color Images

    Directory of Open Access Journals (Sweden)

    R. Gomathi

    2014-01-01

    Full Text Available This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total Variation (TV inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264 Intracoding algorithms. The results show that the proposed algorithm works well.

  20. Influence of CDOM and particle composition on ocean color of the Eastern New Caledonia Lagoon during the CALIOPE cruises

    Science.gov (United States)

    Dupouy, Cécile; Röttgers, Rüdiger; Tedetti, Marc; Martias, Chloe; Murakami, Hiroshi; Doxaran, David; Lantoine, Francois; Rodier, Martine; Favareto, Luciane; Kampel, Milton; Goutx, Madeleine; Frouin, Robert J.

    2014-11-01

    Ocean color of tropical lagoons is dependent on bathymetry and bottom type, as well as input of coastal living and mineral particles and chromophoric dissolved organic matter (CDOM). The New Caledonia lagoon lies in the Southwestern Tropical Pacific around 21° 30'S and 166° 30'E, with a great marine biodiversity in UNESCO Heritage coral reefs, benthic sea grass, and benthic communities. They are largely connected to the open ocean in the southern and eastern parts, but only by narrow passes in the southwest part. The trophic state is linked to spatial variations in flushing times. High run offs due to rain carrying abundant chromophoric dissolved organic matter (CDOM) and particle loads may greatly impact the functioning of ecosystems while rivers and sewage effluents may induce localized impacts. Two oceanographic cruises (CALIOPE 1 in 2011 and CALIOPE 2 in 2014) were carried out off the Eastern Coast of New Caledonia during a calm dry period and during high winds, respectively. Multi- and hyper-spectral marine reflectance was measured with a SIMBADA instrument and a TRIOS radiometer system, together with inherent optical properties (total and CDOM absorption coefficients with a PSICAM, in situ absorption and scattering with an AC9, backscattering with a Hydroscat-6). Fluorescence of CDOM (EEM/PARAFAC) was measured on collected 0.2 μm filtered samples. In 2014, Satlantic and FieldSpec hyper-spectral radiometers were available for in-water profiling of upwelling radiance and downwelling irradiance and above-water reflectance measurements, respectively. Inherent and apparent optical data from the two cruises are compared and used to estimate ocean color algorithms performance and evaluate a Linear Matrix Inversion method, providing tools for remote sensing on this highly under-sampled coastal region of New Caledonia.

  1. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image.

    Science.gov (United States)

    Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai

    2018-01-01

    In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.

  2. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Science.gov (United States)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  3. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  4. A kind of color image segmentation algorithm based on super-pixel and PCNN

    Science.gov (United States)

    Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.

  5. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: a Generalized Approach for Use with Multiple Sensors

    Science.gov (United States)

    Moore, Timothy; Dowell, Mark; Franz, Bryan A.

    2012-01-01

    A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.

  6. Color Image Secret Watermarking Erase and Write Algorithm Based on SIFT

    Science.gov (United States)

    Qu, Jubao

    The use of adaptive characteristics of SIFT, image features, the implementation of the write, erase operations on Extraction and color image hidden watermarking. From the experimental results, this algorithm has better imperceptibility and at the same time, is robust against geometric attacks and common signal processing.

  7. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.; Raitsos, Dionysios E.; Dall'Olmo, Giorgio; Zarokanellos, Nikolaos; Jackson, Thomas; Racault, Marie-Fanny; Boss, Emmanuel S.; Sathyendranath, Shubha; Jones, Burton; Hoteit, Ibrahim

    2015-01-01

    an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll

  8. A novel hybrid color image encryption algorithm using two complex chaotic systems

    Science.gov (United States)

    Wang, Leyuan; Song, Hongjun; Liu, Ping

    2016-02-01

    Based on complex Chen and complex Lorenz systems, a novel color image encryption algorithm is proposed. The larger chaotic ranges and more complex behaviors of complex chaotic systems, which compared with real chaotic systems could additionally enhance the security and enlarge key space of color image encryption. The encryption algorithm is comprised of three step processes. In the permutation process, the pixels of plain image are scrambled via two-dimensional and one-dimensional permutation processes among RGB channels individually. In the diffusion process, the exclusive-or (XOR for short) operation is employed to conceal pixels information. Finally, the mixing RGB channels are used to achieve a multilevel encryption. The security analysis and experimental simulations demonstrate that the proposed algorithm is large enough to resist the brute-force attack and has excellent encryption performance.

  9. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    Science.gov (United States)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  10. Evaluating VIIRS ocean color products for west coast and Hawaiian waters

    KAUST Repository

    Davis, Curtiss O.

    2013-06-03

    Automated match ups allow us to maintain and improve the ocean color products of current satellite instruments MODIS, and since February 2012 the Visible Infrared Imaging Radiometer Suite (VIIRS). As part of the VIIRS mission Ocean Calibration and Validation Team, we have created a web-based automated match up tool that provides access to searchable fields for date, site, and products, and creates matchups between satellites (MODIS, VIIRS), and in-situ measurements (HyperPRO and SeaPRISM). The goal is to evaluate the standard VIIRS ocean color products produced by the IDPS and available through NOAA’s CLASS data system. Comparisons are made with MODIS data for the same location, and VIIRS data processed using the NRL Automated Processing System (APS) used to produce operational products for the Navy. Results are shown for the first year of VIIRS data matching the satellite data with the data from Platform Eureka SeaPRISM off L. A. Harbor in the Southern California Bight, and HyperPRO data from Station ALOHA near Hawaii. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Seasonal estimates of DOC standing stocks in Apalachicola Bay estuary: Towards a better understanding using field, ocean color and model data

    Science.gov (United States)

    D'Sa, E. J.; Joshi, I.; Osburn, C. L.; Bianchi, T. S.; Ko, D. S.; Oviedo-Vargas, D.; Arellano, A.; Ward, N.

    2016-12-01

    Apalachicola Bay, a semi-enclosed estuary located in Florida's panhandle, is well known for its water quality and oyster yields. We present the use of combined field and ocean color satellite observations and the outputs of a high-resolution hydrodynamic model to study the influence of physical processes on the distribution and the transport of terrestrially derived CDOM and DOC to shelf waters during the spring and fall of 2015. Determination of DOC stocks were based on the development of a CDOM algorithm (R2 = 0.87, N = 9) for the VIIRS ocean color sensor, and the assessment of CDOM - DOC relationships (R2 = 0.88, N = 13 in March; R2 = 0.83, N = 24 in November) for the Apalachicola Bay. Satellite-derived CDOM and DOC maps together with model-based salinity distributions revealed their spatial extent, sources and transport to the shelf water. Furthermore, strong seasonal influence on DOM distribution in the bay was associated with inputs from Apalachicola and Carrabelle Rivers and the surrounding marshes. Estimates of DOC standing stocks in the bay obtained using ocean color data and high-resolution bathymetry showed relatively higher stocks in November ( 3.71 × 106 kg C, 560 km2) than in March ( 4.07 × 106 kg C, 560 km2) despite lower river discharge in dry season. Results of DOC flux estimates from the bay to coastal waters will also be presented.

  12. Color-SIFT model: a robust and an accurate shot boundary detection algorithm

    Science.gov (United States)

    Sharmila Kumari, M.; Shekar, B. H.

    2010-02-01

    In this paper, a new technique called color-SIFT model is devised for shot boundary detection. Unlike scale invariant feature transform model that uses only grayscale information and misses important visual information regarding color, here we have adopted different color planes to extract keypoints which are subsequently used to detect shot boundaries. The basic SIFT model has four stages namely scale-space peak selection, keypoint localization, orientation assignment and keypoint descriptor and all these four stages were employed to extract key descriptors in each color plane. The proposed model works on three different color planes and a fusion has been made to take a decision on number of keypoint matches for shot boundary identification and hence is different from the color global scale invariant feature transform that works on quantized images. In addition, the proposed algorithm possess invariance to linear transformation and robust to occlusion and noisy environment. Experiments have been conducted on the standard TRECVID video database to reveal the performance of the proposed model.

  13. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    Science.gov (United States)

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  14. Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors

    Directory of Open Access Journals (Sweden)

    Mhd. Suhyb Salama

    2010-08-01

    Full Text Available A Bayesian model is developed to match aerospace ocean color observation tofield measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  15. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    Science.gov (United States)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  16. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Science.gov (United States)

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  17. Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-color observations in the Red Sea

    KAUST Repository

    Racault, Marie-Fanny

    2015-02-18

    Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplankton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data coverage, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phytoplankton growth during the winter period (relative to the summer

  18. A fast color image enhancement algorithm based on Max Intensity Channel

    Science.gov (United States)

    Sun, Wei; Han, Long; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2014-03-01

    In this paper, we extend image enhancement techniques based on the retinex theory imitating human visual perception of scenes containing high illumination variations. This extension achieves simultaneous dynamic range modification, color consistency, and lightness rendition without multi-scale Gaussian filtering which has a certain halo effect. The reflection component is analyzed based on the illumination and reflection imaging model. A new prior named Max Intensity Channel (MIC) is implemented assuming that the reflections of some points in the scene are very high in at least one color channel. Using this prior, the illumination of the scene is obtained directly by performing a gray-scale closing operation and a fast cross-bilateral filtering on the MIC of the input color image. Consequently, the reflection component of each RGB color channel can be determined from the illumination and reflection imaging model. The proposed algorithm estimates the illumination component which is relatively smooth and maintains the edge details in different regions. A satisfactory color rendition is achieved for a class of images that do not satisfy the gray-world assumption implicit to the theoretical foundation of the retinex. Experiments are carried out to compare the new method with several spatial and transform domain methods. Our results indicate that the new method is superior in enhancement applications, improves computation speed, and performs well for images with high illumination variations than other methods. Further comparisons of images from National Aeronautics and Space Administration and a wearable camera eButton have shown a high performance of the new method with better color restoration and preservation of image details.

  19. a New Graduation Algorithm for Color Balance of Remote Sensing Image

    Science.gov (United States)

    Zhou, G.; Liu, X.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Pan, Q.

    2018-05-01

    In order to expand the field of view to obtain more data and information when doing research on remote sensing image, workers always need to mosaicking images together. However, the image after mosaic always has the large color differences and produces the gap line. This paper based on the graduation algorithm of tarigonometric function proposed a new algorithm of Two Quarter-rounds Curves (TQC). The paper uses the Gaussian filter to solve the program about the image color noise and the gap line. The paper used one of Greenland compiled data acquired in 1963 from Declassified Intelligence Photography Project (DISP) by ARGON KH-5 satellite, and used the photography of North Gulf, China, by Landsat satellite to experiment. The experimental results show that the proposed method has improved the accuracy of the results in two parts: on the one hand, for the large color differences remote sensing image will become more balanced. On the other hands, the remote sensing image will achieve more smooth transition.

  20. A True-Color Sensor and Suitable Evaluation Algorithm for Plant Recognition.

    Science.gov (United States)

    Schmittmann, Oliver; Schulze Lammers, Peter

    2017-08-08

    Plant-specific herbicide application requires sensor systems for plant recognition and differentiation. A literature review reveals a lack of sensor systems capable of recognizing small weeds in early stages of development (in the two- or four-leaf stage) and crop plants, of making spraying decisions in real time and, in addition, are that are inexpensive and ready for practical use in sprayers. The system described in this work is based on free cascadable and programmable true-color sensors for real-time recognition and identification of individual weed and crop plants. The application of this type of sensor is suitable for municipal areas and farmland with and without crops to perform the site-specific application of herbicides. Initially, databases with reflection properties of plants, natural and artificial backgrounds were created. Crop and weed plants should be recognized by the use of mathematical algorithms and decision models based on these data. They include the characteristic color spectrum, as well as the reflectance characteristics of unvegetated areas and areas with organic material. The CIE-Lab color-space was chosen for color matching because it contains information not only about coloration (a- and b-channel), but also about luminance (L-channel), thus increasing accuracy. Four different decision making algorithms based on different parameters are explained: (i) color similarity (ΔE); (ii) color similarity split in ΔL, Δa and Δb; (iii) a virtual channel 'd' and (iv) statistical distribution of the differences of reflection backgrounds and plants. Afterwards, the detection success of the recognition system is described. Furthermore, the minimum weed/plant coverage of the measuring spot was calculated by a mathematical model. Plants with a size of 1-5% of the spot can be recognized, and weeds in the two-leaf stage can be identified with a measuring spot size of 5 cm. By choosing a decision model previously, the detection quality can be increased

  1. CDOM-DOC relationship in contrasted coastal waters : implication for DOC retrieval from ocean color remote sensing observation

    OpenAIRE

    Vantrepotte, V.; Danhiez, F. P.; Loisel, Hubert; Ouillon, Sylvain; Meriaux, X.; Cauvin, A.; Dessailly, D.

    2015-01-01

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the acdom(...

  2. Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Science.gov (United States)

    Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.

    2013-02-01

    A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  3. Estimating absorption coefficients of colored dissolved organic matter (CDOM using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space

    Directory of Open Access Journals (Sweden)

    A. Matsuoka

    2013-02-01

    Full Text Available A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM, has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM into CDOM and non-algal particles (NAP through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012 showed that dissolved organic carbon (DOC concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97. By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.

  4. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    Science.gov (United States)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  5. Solving Flexible Job-Shop Scheduling Problem Using Gravitational Search Algorithm and Colored Petri Net

    Directory of Open Access Journals (Sweden)

    Behnam Barzegar

    2012-01-01

    Full Text Available Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing or even eliminating idol machines, and effort to better benefitting from machines for on time responding customer orders and supplying requested materials in suitable time. In flexible job-shop scheduling production systems, we could reduce time and costs by transferring and delivering operations on existing machines, that is, among NP-hard problems. The scheduling objective minimizes the maximal completion time of all the operations, which is denoted by Makespan. Different methods and algorithms have been presented for solving this problem. Having a reasonable scheduled production system has significant influence on improving effectiveness and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-shop scheduling problem systems (FJSSP-GSPN that is based on gravitational search algorithm (GSA. In the proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The experimental results showed that the proposed method has reasonable performance in comparison with other algorithms.

  6. The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data

    Directory of Open Access Journals (Sweden)

    Vittorio E. Brando

    2016-02-01

    Full Text Available Calibration and validation of satellite observations are essential and on-going tasks to ensure compliance with mission accuracy requirements. An automated above water hyperspectral radiometer significantly augmented Australia’s ability to contribute to global and regional ocean color validation and algorithm design activities. The hyperspectral data can be re-sampled for comparison with current and future sensor wavebands. The continuous spectral acquisition along the ship track enables spatial resampling to match satellite footprint. This study reports spectral comparisons of the radiometer data with Visible Infrared Imaging Radiometer Suite (VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua for contrasting water types in tropical waters off northern Australia based on the standard NIR atmospheric correction implemented in SeaDAS. Consistent match-ups are shown for transects of up to 50 km over a range of reflectance values. The MODIS and VIIRS satellite reflectance data consistently underestimated the in situ spectra in the blue with a bias relative to the “dynamic above water radiance and irradiance collector” (DALEC at 443 nm ranging from 9.8 × 10−4 to 3.1 × 10−3 sr−1. Automated acquisition has produced good quality data under standard operating and maintenance procedures. A sensitivity analysis explored the effects of some assumptions in the data reduction methods, indicating the need for a comprehensive investigation and quantification of each source of uncertainty in the estimate of the DALEC reflectances. Deployment on a Research Vessel provides the potential for the radiometric data to be combined with other sampling and observational activities to contribute to algorithm development in the wider bio-optical research community.

  7. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic.

    Science.gov (United States)

    Kampel, Milton; Lorenzzetti, João A; Bentz, Cristina M; Nunes, Raul A; Paranhos, Rodolfo; Rudorff, Frederico M; Politano, Alexandre T

    2009-01-01

    Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL) and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3M(RAD)), Ocean Chlorophyll 4 bands (OC4v4(RAD)), and Ocean Chlorophyll 2 bands (OC2v4(RAD)). The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS) with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3M(SAT), and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01(SAT)), and Carder(SAT). In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg/m(3). In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m(3) (OC2v4(RAD)). The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m(3)) than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m(3), respectively). We find that rmsd values between MODIS relative to the in situ radiometric measurements are MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed reflectance due to several errors in the bio-optical algorithm

  8. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Cristina M. Bentz

    2009-01-01

    Full Text Available Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3MRAD, Ocean Chlorophyll 4 bands (OC4v4RAD, and Ocean Chlorophyll 2 bands (OC2v4RAD. The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3MSAT, and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01SAT, and CarderSAT. In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg·m-3. In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m3 (OC2v4RAD. The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m3 than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m3, respectively. We find that rmsd values between MODIS relative to the in situ radiometric measurements are < 26%, i.e., there is a trend towards overestimation of RRS by MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed

  9. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  10. Shot Boundary Detection in Soccer Video using Twin-comparison Algorithm and Dominant Color Region

    Directory of Open Access Journals (Sweden)

    Matko Šarić

    2008-06-01

    Full Text Available The first step in generic video processing is temporal segmentation, i.e. shot boundary detection. Camera shot transitions can be either abrupt (e.g. cuts or gradual (e.g. fades, dissolves, wipes. Sports video is one of the most challenging domains for robust shot boundary detection. We proposed a shot boundary detection algorithm for soccer video based on the twin-comparison method and the absolute difference between frames in their ratios of dominant colored pixels to total number of pixels. With this approach the detection of gradual transitions is improved by decreasing the number of false positives caused by some camera operations. We also compared performances of our algorithm and the standard twin-comparison method.

  11. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  12. How Ocean Color Influences the Interplay Between Annual and Interannual Tropical Pacific Variability

    Science.gov (United States)

    Hammann, A. C.; Gnanadesikan, A.

    2010-12-01

    While the basic mechanisms responsible for ENSO have long been known, many details still evade our understanding. Since the behavior of the real climate system appears to be highly sensitive to such details, however, our ability to model, let alone predict it with any confidence has so far been rather restricted. Not only can small perturbations in many state variables lead to strongly amplified responses, but also do spatial and temporal scales of variability rarely occur in isolation from each other. Both points are born out in the study by Anderson et al. (2009), who removed surface chlorophyll in different regions of the tropical (but mostly off-equatorial) Pacific in a coupled ocean-atmosphere-land-ice model. Different removal patterns lead to large differences in the amplitudes of both ENSO and the equatorial annual cycle. Anderson et al.’s analysis focuses on ENSO and reveals that the transmission of off-equatorial perturbations to the equator happens mainly through a changed atmospheric response to SST anomalies. Here, we analyze the same data with respect to the annual cycle and how it interacts with ENSO. Guilyardi (2006) reports that observations and models alike show a zero-sum-type behavior of annual and ENSO-scale variability; increased spectral power in the annual band means decreased power in the ENSO band and vice versa. This is not the case for the different patterns of chlorophyll removal in our model, and hence it appears that this removal changes a fundamental part of its mean state. The dynamics of the annual cycle are likely influenced by oceanic meridional temperature advection, which provides another possible route for off-to-equatorial signal propagation. A common aspect of the tropical annual cycle in most coupled climate models is the presence of a double ITCZ instead of a single north-shifted one. Even though this appears to be unrelated to (albeit influenced by) the changes in ocean color, our model exhibits a much improved

  13. FUNCTIONALITY ASSESSMENT OF ALGORITHMS FOR THE COLORING OF IMAGES IN TERMS OF INCREASING RADIOMETRIC VALUES OF AERIAL PHOTOGRAPHS ARCHIVES

    Directory of Open Access Journals (Sweden)

    Ewiak Ireneusz

    2016-12-01

    Full Text Available Available on the commercial market are a number of algorithms that enable assigning to pixels of a monochrome digital image suitable colors according to a strictly defined schedule. These algorithms have been recently used by professional film studios involved in the coloring of archival productions. This article provides an overview on the functionality of coloring algorithms in terms of their use to improve the interpretation quality of historical, black - and - white aerial photographs. The analysis covered intuitive (Recolored programs, as well as more advanced (Adobe After Effect, DaVinci Resolve programs. The use of their full functionality was limited by the too large information capacity of aerial photograph images. Black - and - white historical aerial photographs, which interpretation quality in many cases does not meet the criteria posed on photogrammetric developments, require an increase of their readability. The solution in this regard may be the process of coloring images. The authors of this article conducted studies aimed to determine to what extent the tested coloring algorithms enable an automatic detection of land cover elements on historical aerial photographs and provide color close to the natural. Used in the studies were archival black - and - white aerial photographs of the western part of Warsaw district made available by the Main Centre of Geodetic and Cartographic Documentation , the selection of which was associated with the presence in this area of various elements of land cover, such as water, forests, crops, exposed soils and also anthropogenic objects. In the analysis of different algorithms are included: format and size of the image, degree of automation of the process, degree of compliance of the result and processing time. The accuracy of the coloring process was different for each class of objects mapped on the photograph. The main limitation of the coloring process created shadows of anthropogenic objects

  14. Estimators of primary production for interpretation of remotely sensed data on ocean color

    Science.gov (United States)

    Platt, Trevor; Sathyendranath, Shubha

    1993-01-01

    The theoretical basis is explained for some commonly used estimators of daily primary production in a vertically uniform water column. These models are recast into a canonical form, with dimensionless arguments, to facilitate comparison with each other and with an analytic solution. The limitations of each model are examined. The values of the photoadaptation parameter I(k) observed in the ocean are analyzed, and I(k) is used as a scale to normalize the surface irradiance. The range of this scaled irradiance is presented. An equation is given for estimation of I(k) from recent light history. It is shown how the models for water column production can be adapted for estimation of the production in finite layers. The distinctions between model formulation, model implementation and model evaluation are discussed. Recommendations are given on the choice of algorithm for computation of daily production according to the degree of approximation acceptable in the result.

  15. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Claustre, H.; Bishop, J.; Boss, E.; Bernard, S.; Berthon, J.-F.; Coatanoan, C.; Johnson, K.; Lotiker, A.; Ulloa, O.; Perry, M.J.; D' Ortenzio, F.; D' andon, O.H.F.; Uitz, J.

    2009-10-01

    Profiling floats now represent a mature technology. In parallel with their emergence, the field of miniature, low power bio-optical and biogeochemical sensors is rapidly evolving. Over recent years, the bio-geochemical and bio-optical community has begun to benefit from the increase in observational capacities by developing profiling floats that allow the measurement of key biooptical variables and subsequent products of biogeochemical and ecosystem relevance like Chlorophyll a (Chla), optical backscattering or attenuation coefficients which are proxies of Particulate Organic Carbon (POC), Colored Dissolved Organic Matter (CDOM). Thanks to recent algorithmic improvements, new bio-optical variables such as backscattering coefficient or absorption by CDOM, at present can also be extracted from space observations of ocean color. In the future, an intensification of in situ measurements by bio-optical profiling floats would permit the elaboration of unique 3D/4D bio-optical climatologies, linking surface (remotely detected) properties to their vertical distribution (measured by autonomous platforms), with which key questions in the role of the ocean in climate could be addressed. In this context, the objective of the IOCCG (International Ocean Color Coordinating Group) BIO-Argo working group is to elaborate recommendations in view of a future use of bio-optical profiling floats as part of a network that would include a global array that could be 'Argo-relevant', and specific arrays that would have more focused objectives or regional targets. The overall network, realizing true multi-scale sustained observations of global marine biogeochemistry and biooptics, should satisfy the requirements for validation of ocean color remote sensing as well as the needs of a wider community investigating the impact of global change on biogeochemical cycles and ecosystems. Regarding the global profiling float array, the recommendation is that Chla as well as POC should be the

  16. Shedding light on the Global Ocean microbiome with algorithms and data collection

    Science.gov (United States)

    Lauro, F.; Ostrowski, M.; Chénard, C.; Acerbi, E.; Paulsen, I.; Jensen, R.

    2016-02-01

    In the Global Oceans, the marine microbiome plays a critical role in biogeochemical cycling of nutrients, but surveying marine microbial communities requires ship time for sample collection, economically constraining the number of samples collected. An integrative understanding of the microbiome's activity and performance requires the collection of high-density data, both temporally and spatially in a cost-effective way. We have overcome this bottleneck by crowdsourcing the data collection to vessels of opportunity, including bluewater sailing yachts. Sailors know the oceans, and experience first-hand the declines in ocean productivity and the effects of pollution and climate change. Moreover, simply the ability to sample a microbial community during anomalous or inclement weather conditions is a major advance in sampling strategy. Our approach inherently incorporates the benefit of outreach and participation of people in scientific research, gaining positive media attention for sailors, scientists and concerned citizens alike. We have tested the basic methods during a 2013 Indian Ocean Concept Cruise, from Cape Town to Singapore, performing experimental work and reaching sampling locations inaccessible to traditional Oceanographic Vessels. At the same time we developed a small, yacht-adapted automated sampling device that takes a variety of biological and chemical measurements. In 2015 our first beta-cruisers sampled the Pacific Ocean in the first ever citizen-oceanography transect at high and low latitudes in both hemispheres. The collected samples were characterized with next-gen sequencing technology and analysed with a combination of novel algorithmic approaches. With big data management, machine learning algorithms and agent-based models we show that it is possible to deconvolute the complexity of the Ocean Microbiome for the scientific management of fisheries, marine protected areas and preservation of the oceans and seas for generations to come.

  17. Empirical algorithms to estimate water column pH in the Southern Ocean

    Science.gov (United States)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  18. UNIFICATION AND APPLICATIONS OF MODERN OCEANIC/ATMOSPHERIC DATA ASSIMILATION ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    QIAO Fang-li; ZHANG Shao-qing; YUAN Ye-li

    2004-01-01

    The key mathematics and applications of various modern atmospheric/oceanic data assimilation methods including Optimal Interpolation(OI),4-dimensional variational approach(4D-Var)and filters were systematically reviewed and classified.Based on the data assimilation philosophy,I.e.,using model dynamics to extract the observational information,the common character of the problem,such as the probabilistic nature of the evolution of the atmospheric/oceanic system,noisy and irregularly spaced observations,and the advantages and disadvantages of these data assimilation algorithms,were discussed.In the filtering framework,all modern data assimilation algorithms were unified: OI/3D-Var is a stationary filter,4D-Var is a linear(Kalman)filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter(ENKF),Ensemble Adjustment Kalman Filter(EAKF)and Ensemble Transformation Kalman Filter(ETKF)can,to some extent,account for the non-Gaussian information of the prior distribution from the model.The flow-dependent covariance estimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditional algorithms.In practice,the performance of algorithms may depend on the specific numerical model and the choice of algorithm may depend on the specific problem.However,the unification of algorithms allows us to establish a unified test system to evaluate these algorithms,which provides more insights into data assimilation philosophies and helps improve data assimilation techniques.

  19. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  20. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    Science.gov (United States)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  1. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)

    Science.gov (United States)

    Wei, Jun; Jiang, Guo-Qing; Liu, Xin

    2017-09-01

    This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.

  2. Two-component wind fields over ocean waves using atmospheric lidar and motion estimation algorithms

    Science.gov (United States)

    Mayor, S. D.

    2016-02-01

    Numerical models, such as large eddy simulations, are capable of providing stunning visualizations of the air-sea interface. One reason for this is the inherent spatial nature of such models. As compute power grows, models are able to provide higher resolution visualizations over larger domains revealing intricate details of the interactions of ocean waves and the airflow over them. Spatial observations on the other hand, which are necessary to validate the simulations, appear to lag behind models. The rough ocean environment of the real world is an additional challenge. One method of providing spatial observations of fluid flow is that of particle image velocimetry (PIV). PIV has been successfully applied to many problems in engineering and the geosciences. This presentation will show recent research results that demonstate that a PIV-style approach using pulsed-fiber atmospheric elastic backscatter lidar hardware and wavelet-based optical flow motion estimation software can reveal two-component wind fields over rough ocean surfaces. Namely, a recently-developed compact lidar was deployed for 10 days in March of 2015 in the Eureka, California area. It scanned over the ocean. Imagery reveal that breaking ocean waves provide copius amounts of particulate matter for the lidar to detect and for the motion estimation algorithms to retrieve wind vectors from. The image below shows two examples of results from the experiment. The left panel shows the elastic backscatter intensity (copper shades) under a field of vectors that was retrieved by the wavelet-based optical flow algorithm from two scans that took about 15 s each to acquire. The vectors, that reveal offshore flow toward the NW, were decimated for clarity. The bright aerosol features along the right edge of the sector scan were caused by ocean waves breaking on the beach. The right panel is the result of scanning over the ocean on a day when wave amplitudes ranged from 8-12 feet and whitecaps offshore beyond the

  3. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.

    Science.gov (United States)

    Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique

    2018-01-22

    We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

  4. Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea

    Directory of Open Access Journals (Sweden)

    Anne-Hélène Rêve-Lamarche

    2017-12-01

    Full Text Available Over the past years, a large number of new approaches in the domain of ocean-color have been developed, leading to a variety of innovative descriptors for phytoplankton communities. One of these methods, named PHYSAT, currently allows for the qualitative detection of five main phytoplankton groups from ocean-color measurements. Even though PHYSAT products are widely used in various applications and projects, the approach is limited by the fact it identifies only dominant phytoplankton groups. This current limitation is due to the use of biomarker pigment ratios for establishing empirical relationships between in-situ information and specific ocean-color radiance anomalies in open ocean waters. However, theoretical explanations of PHYSAT suggests that it could be possible to detect more than dominance cases but move more toward phytoplanktonic assemblage detection. Thus, to evaluate the potential of PHYSAT for the detection of phytoplankton assemblages, we took advantage of the Continuous Plankton Recorder (CPR survey, collected in both the English Channel and the North Sea. The available CPR dataset contains information on diatom abundance in two large areas of the North Sea for the period 1998-2010. Using this unique dataset, recurrent diatom assemblages were retrieved based on classification of CPR samples. Six diatom assemblages were identified in-situ, each having indicators taxa or species. Once this first step was completed, the in-situ analysis was used to empirically associate the diatom assemblages with specific PHYSAT spectral anomalies. This step was facilitated by the use of previous classifications of regional radiance anomalies in terms of shape and amplitude, coupled with phenological tools. Through a matchup exercise, three CPR assemblages were associated with specific radiance anomalies. The maps of detection of these specific radiances anomalies are in close agreement with current in-situ ecological knowledge.

  5. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  6. A Novel Algorithm for Color Space Conversion Model from CMYK to LAB

    OpenAIRE

    Juan-li Hu; Jia-bing Deng; Shan-shan Zou

    2010-01-01

    Color space conversion has become a very important role in the image acquisition, display and the transmission of the color information in the replication. Printers and Image setter express color by CMYK space. But if color is edited and corrected in the CMYK space, it will cause a greater loss of color, and the Computing of computer will also be slowed down. So it often needs to be converted to a LAB uniform color space. Among the previous conversion methods, there is a widespread problem th...

  7. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    Science.gov (United States)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  8. Seasonality and flux estimates of dissolved organic carbon in tidal wetlands and estuaries in the U.S. Mid- Atlantic Bight and Gulf of Mexico from ocean color

    Science.gov (United States)

    Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.

    2016-02-01

    Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.

  9. The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud

    International Nuclear Information System (INIS)

    Zeng, Fanyang; Zhong, Ruofei

    2014-01-01

    Laser point cloud contains only intensity information and it is necessary for visual interpretation to obtain color information from other sensor. Cameras can provide texture, color, and other information of the corresponding object. Points with color information of corresponding pixels in digital images can be used to generate color point-cloud and is conducive to the visualization, classification and modeling of point-cloud. Different types of digital cameras are used in different Mobile Measurement Systems (MMS).the principles and processes for generating color point-cloud in different systems are not the same. The most prominent feature of the panoramic images is the field of 360 degrees view angle in the horizontal direction, to obtain the image information around the camera as much as possible. In this paper, we introduce a method to generate color point-cloud with panoramic image and laser point-cloud, and deduce the equation of the correspondence between points in panoramic images and laser point-clouds. The fusion of panoramic image and laser point-cloud is according to the collinear principle of three points (the center of the omnidirectional multi-camera system, the image point on the sphere, the object point). The experimental results show that the proposed algorithm and formulae in this paper are correct

  10. Underway Sampling of Marine Inherent Optical Properties on the Tara Oceans Expedition as a Novel Resource for Ocean Color Satellite Data Product Validation

    Science.gov (United States)

    Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha

    2013-01-01

    Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.

  11. Discover the Atlantic Ocean: An Exciting Coloring Book of Fish and Shellfish.

    Science.gov (United States)

    Flick, George J.

    This coloring book contains pictures of more than 79 fish and shellfish found on the Atlantic Coast. Captions give information on habitats, behavior, or commercial uses of the species pictured. Indexes of both common and scientific names are given. (BB)

  12. Determination of Primary Bands for Global Ocean-Color Remote Sensing

    National Research Council Canada - National Science Library

    Lee, ZhongPing; Arnone, Robert; Carder, Kendall; He, MingXia

    2007-01-01

    ...) from remote sensing of its color, a sensor with roughly 17 spectral bands in the 400 - 800 nm range can provide acceptable results compared to a sensor with 81 consecutive bands (in a 5-nm step...

  13. End User Perceptual Distorted Scenes Enhancement Algorithm Using Partition-Based Local Color Values for QoE-Guaranteed IPTV

    Science.gov (United States)

    Kim, Jinsul

    In this letter, we propose distorted scenes enhancement algorithm in order to provide end user perceptual QoE-guaranteed IPTV service. The block edge detection with weight factor and partition-based local color values method can be applied for the degraded video frames which are affected by network transmission errors such as out of order, jitter, and packet loss to improve QoE efficiently. Based on the result of quality metric after using the distorted scenes enhancement algorithm, the distorted scenes have been restored better than others.

  14. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

    Science.gov (United States)

    Vantrepotte, Vincent; Danhiez, François-Pierre; Loisel, Hubert; Ouillon, Sylvain; Mériaux, Xavier; Cauvin, Arnaud; Dessailly, David

    2015-01-12

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the a(cdom)(412) to DOC ratio (a*(cdom)(412)) can be depicted from the CDOM spectral slope in the UV domain (S(275-295)). They also evidenced that regional first order variation in both a*(cdom)(412) and S(275-295) are highly correlated to variation in a(cdom)(412). From these observations, generalized relationships for estimating a*(cdom)(412) from S(275-295) or a(cdom)(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L(-1)). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S(275-295)-based formulations and the potential for a(cdom)-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

  15. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    Science.gov (United States)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  16. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography.

    Science.gov (United States)

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2017-09-01

    The purpose of the present study was to employ a computer-aided diagnosis system that classifies chronic liver disease (CLD) using ultrasound shear wave elastography (SWE) imaging, with a stiffness value-clustering and machine-learning algorithm. A clinical data set of 126 patients (56 healthy controls, 70 with CLD) was analyzed. First, an RGB-to-stiffness inverse mapping technique was employed. A five-cluster segmentation was then performed associating corresponding different-color regions with certain stiffness value ranges acquired from the SWE manufacturer-provided color bar. Subsequently, 35 features (7 for each cluster), indicative of physical characteristics existing within the SWE image, were extracted. A stepwise regression analysis toward feature reduction was used to derive a reduced feature subset that was fed into the support vector machine classification algorithm to classify CLD from healthy cases. The highest accuracy in classification of healthy to CLD subject discrimination from the support vector machine model was 87.3% with sensitivity and specificity values of 93.5% and 81.2%, respectively. Receiver operating characteristic curve analysis gave an area under the curve value of 0.87 (confidence interval: 0.77-0.92). A machine-learning algorithm that quantifies color information in terms of stiffness values from SWE images and discriminates CLD from healthy cases is introduced. New objective parameters and criteria for CLD diagnosis employing SWE images provided by the present study can be considered an important step toward color-based interpretation, and could assist radiologists' diagnostic performance on a daily basis after being installed in a PC and employed retrospectively, immediately after the examination. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  18. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  19. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.

    Science.gov (United States)

    Lee, Zhongping; Shang, Shaoling; Hu, Chuanmin; Zibordi, Giuseppe

    2014-05-20

    Using 901 remote-sensing reflectance spectra (R(rs)(λ), sr⁻¹, λ from 400 to 700 nm with a 5 nm resolution), we evaluated the correlations of R(rs)(λ) between neighboring spectral bands in order to characterize (1) the spectral interdependence of R(rs)(λ) at different bands and (2) to what extent hyperspectral R(rs)(λ) can be reconstructed from multiband measurements. The 901 R(rs) spectra were measured over a wide variety of aquatic environments in which water color varied from oceanic blue to coastal green or brown, with chlorophyll-a concentrations ranging from ~0.02 to >100  mg  m⁻³, bottom depths from ~1  m to >1000  m, and bottom substrates including sand, coral reef, and seagrass. The correlation coefficient of R(rs)(λ) between neighboring bands at center wavelengths λ(k) and λ(l), r(Δλ)(λ(k), λ(l)), was evaluated systematically, with the spectral gap (Δλ=λ(l)-λ(k)) changing between 5, 10, 15, 20, 25, and 30 nm, respectively. It was found that r(Δλ) decreased with increasing Δλ, but remained >0.97 for Δλ≤20  nm for all spectral bands. Further, using 15 spectral bands between 400 and 710 nm, we reconstructed, via multivariant linear regression, hyperspectral R(rs)(λ) (from 400 to 700 nm with a 5 nm resolution). The percentage difference between measured and reconstructed R(rs) for each band in the 400-700 nm range was generally less than 1%, with a correlation coefficient close to 1.0. The mean absolute error between measured and reconstructed R(rs) was about 0.00002  sr⁻¹ for each band, which is significantly smaller than the R(rs) uncertainties from all past and current ocean color satellite radiometric products. These results echo findings of earlier studies that R(rs) measurements at ~15 spectral bands in the visible domain can provide nearly identical spectral information as with hyperspectral (contiguous bands at 5 nm spectral resolution) measurements. Such results provide insights for data

  20. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  1. Optical Moorings-of-Opportunity for Validation of Ocean Color Satellites

    Science.gov (United States)

    2008-01-01

    at the midpoint of the two depths is given by: K , z d dz lnE , z , , d dλ λ λ λ ( ) = − ( )[ ] ( ) = − ( ) ( ) ( ) 4a 1 z ln E , z E , z 4bd 2 d 1...Biological Oceanography Program ( TD : OCE-9627281, OCE-9730471, OCE-9819477), NASA ( TD : NAS5-97127), the ONR Ocean Engineering and Marine Systems Program

  2. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models

    Science.gov (United States)

    Jiang, Guo-Qing; Xu, Jing; Wei, Jun

    2018-04-01

    Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.

  3. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  4. COLORS OF A SECOND EARTH: ESTIMATING THE FRACTIONAL AREAS OF OCEAN, LAND, AND VEGETATION OF EARTH-LIKE EXOPLANETS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Taruya, Atsushi; Fukuda, Satoru; Nakajima, Teruyuki; Turner, Edwin L.

    2010-01-01

    Characterizing the surfaces of rocky exoplanets via their scattered light will be an essential challenge in investigating their habitability and the possible existence of life on their surfaces. We present a reconstruction method for fractional areas of different surface types from the colors of an Earth-like exoplanet. We create mock light curves for Earth without clouds using empirical data. These light curves are fitted to an isotropic scattering model consisting of four surface types: ocean, soil, snow, and vegetation. In an idealized situation where the photometric errors are only photon shot noise, we are able to reproduce the fractional areas of those components fairly well. The results offer some hope for detection of vegetation via the distinct spectral feature of photosynthesis on Earth, known as the red edge. In our reconstruction method, Rayleigh scattering due to the atmosphere plays an important role, and for terrestrial exoplanets with an atmosphere similar to our Earth, it is possible to estimate the presence of oceans and an atmosphere simultaneously.

  5. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    Science.gov (United States)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  6. Improved NAMK Color Images Representation Algorithm%改进的NAMK彩色图像表示算法

    Institute of Scientific and Technical Information of China (English)

    郑运平

    2011-01-01

    By taking advantages of the characteristic of Gray code that can extend or remain the block character of binary images, this paper proposes an improved Non-symmetry and Anti-packing Model with K-lines(NAMK) representation algorithm for color images, which is called NAMKG algorithm.The description of NAMKG algorithm is presented and the storage structure and the total data amount of the algorithm are analyzed.Theoretical and experimental results show that, compared with NAMK and Linear Quadtree(LQT), NAMKG can effectively reduce the number of subpatterns and reduce the storage room.%利用格雷码可以扩展或保持二值图像块状性的特点,提出一种改进的NAMK彩色图像表示算法NAMKG,给出算法的形式化描述及其存储结构,对其总数据量进行分析.理论分析和实验结果表明,相比NAMK算法和线性四元树算法,NAMKG可以有效减少子模式数,减小存储空间.

  7. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  8. Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

    OpenAIRE

    Iyad Abu Doush; Sahar AL-Btoush

    2017-01-01

    Banknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust a...

  9. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    Science.gov (United States)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  10. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  11. INVESTIGATION THE BEHAVIOR OF MODIS OCEAN COLOR PRODUCTS UNDER THE 2008 RED TIDE IN THE EASTERN PERSIAN GULF

    Directory of Open Access Journals (Sweden)

    M. Ghanea

    2015-12-01

    Full Text Available Biophysical properties of water undergo serious variations under red tide (RT outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS satellite sensor has estimated satellite derived chlorophyll-a (Chl-a, normalized fluorescence line height (nFLH, and diffuse attenuation coefficient at 490nm (kd490. It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7

  12. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  13. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas

    2015-02-10

    Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

  14. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    Science.gov (United States)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  15. 完全图的点可区别强全染色算法%Strong Vertex-distinguishing Total Coloring Algorithm of Complete Graph

    Institute of Scientific and Technical Information of China (English)

    赵焕平; 刘平; 李敬文

    2012-01-01

    According to the definition of strong vertex-distinguishing total coloring, this paper combines with the symmetry of complete graph, proposes a new strong vertex-distinguishing total coloring algorithm. The algorithm divides the filled colors into two parts: overcolor and propercolor. At the premise of getting the coloring number and the coloring frequency, it uses colored at first to enhance its convergence. Experimental results show that this algorithm has a lower time complexity.%根据图的点可区别全染色的定义,结合完全图的对称性,提出一种新的点可区别强全染色算法.该算法将需要填充的颜色分为超色数和正常色数2个部分,在得到染色数量和染色次数的前提下,对超色数进行染色以增强算法收敛性.实验结果表明,该算法具有较低的时间复杂度.

  16. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    Science.gov (United States)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  17. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Science.gov (United States)

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  18. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    Science.gov (United States)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  19. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  20. Preliminary results of algorithms to determine horizontal and vertical underwater visibilities of coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Joshi, Shreya; Talaulikar, M.; Desa, E.J.

    the underwater average cosine. These algorithms for vertical and horizontal visibilities have been validated for the coastal waters of Goa with the measured and those derived from the ocean color data of OCM-2 and MODIS...

  1. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    OpenAIRE

    G. E. Kim; M.-A. Pradal; A. Gnanadesikan

    2015-01-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attribut...

  2. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  3. The Ocean Colour Climate Change Initiative: III. A Round-Robin Comparison on In-Water Bio-Optical Algorithms

    Science.gov (United States)

    Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike; hide

    2013-01-01

    qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.

  4. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method

    Science.gov (United States)

    Brajard, J.; Moulin, C.; Thiria, S.

    2008-10-01

    This paper presents a comparison of the atmospheric correction accuracy between the standard sea-viewing wide field-of-view sensor (SeaWiFS) algorithm and the NeuroVaria algorithm for the ocean off the Indian coast in March 1999. NeuroVaria is a general method developed to retrieve aerosol optical properties and water-leaving reflectances for all types of aerosols, including absorbing ones. It has been applied to SeaWiFS images of March 1999, during an episode of transport of absorbing aerosols coming from pollutant sources in India. Water-leaving reflectances and aerosol optical thickness estimated by the two methods were extracted along a transect across the aerosol plume for three days. The comparison showed that NeuroVaria allows the retrieval of oceanic properties in the presence of absorbing aerosols with a better spatial and temporal stability than the standard SeaWiFS algorithm. NeuroVaria was then applied to the available SeaWiFS images over a two-week period. NeuroVaria algorithm retrieves ocean products for a larger number of pixels than the standard one and eliminates most of the discontinuities and artifacts associated with the standard algorithm in presence of absorbing aerosols.

  5. Ocean primary production and available light: Further algorithms for remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R.

    (1986, Deep-Sea Research, 33, 149-163) Further empirical evidence is presented to show the stability of the relationship between surface light and biomass-normalized primary production of the ocean water column A theoretical explanation is given...

  6. 2015 NOAA Ortho-rectified Color Mosaic of San Diego, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. 2015 NOAA Ortho-rectified Color Mosaic of Los Angeles and Long Beach, California: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  8. AERONET-OCEAN COLOR

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aerosol Robotic Network (AERONET), developed to sustain atmospheric studies at various scales with measurements from worldwide distributed autonomous...

  9. Using Remote Sensing and Field Observations of Colored Dissolved Organic Material (CDOM) to Improve Understanding of Carbon Dynamics at the Land-Ocean Interface

    Science.gov (United States)

    Lai, L.; Tzortziou, M.; Gilerson, A.; Foster, R.

    2013-12-01

    Dissolved Organic Matter (DOM) and its colored component, (CDOM) are sensitive indicators of environmental pollution, nutrient enrichment, water quality and plays a key role in a broad range of processes and climate-related biogeochemical cycles in estuarine and coastal ecosystems. Because of its strong influence on how ocean color is viewed, CDOM can provide an invaluable optical tool for coastal zone environmental assessment and from space. There is a continuous cycle of sources and sinks of CDOM from terrestrial sources to the wetlands to the estuaries and to the ocean waters. Terrestrial inputs from natural processes, anthropogenic activities, exchanges with the atmosphere, rich biodiversity and high primary productivity, physical, photochemical and microbial processes affect not only the amount but also the quality and optical signature of CDOM in near-shore waters. In this study, new measurements are presented of the optical characteristics of CDOM collected from the Chesapeake Bay estuarine environment. Measured parameters include absorption spectra, estimated spectral slopes, slope ratios, DOC-specific CDOM absorption as well as 3D CDOM fluorescence emission-excitation matrices. Such results will provide insight of the measured CDOM in this complex environment and the complex process that affect CDOM quality and amount during transport to the estuary and coastal ocean. New field campaigns will be conducted in August and September in the Chesapeake Bay estuary and the coast of the Gulf of Mexico to collect more samples for analysis of CDOM dynamics and link field observations and measurements to satellite ocean color retrievals of estuarine biogeochemical processes. In addition, advanced satellite CDOM data distribution and usage is discussed as it has considerable operational value and practical application beyond the scientific community and research. Keywords: CDOM, carbon dynamics, estuaries, coastal ecosystems, optical properties, satellite applications

  10. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  11. Splitting turbulence algorithm for mixing parameterization embedded in the ocean climate model. Examples of data assimilation and Prandtl number variations.

    Science.gov (United States)

    Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay

    2017-04-01

    Series of experiments were performed with a three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM) using vertical grid refinement in the zone of fully developed turbulence (40 sigma-levels). The model variables are horizontal velocity components, potential temperature, and salinity as well as free surface height. For parameterization of viscosity and diffusivity, the original splitting turbulence algorithm (STA) is used when total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF) split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage the analytical solution was obtained for TKE and TDF as functions of the buoyancy and velocity shift frequencies (BF and VSF). The proposed model with STA is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. For mixing simulation in the zone of turbulence decay, the two kind numerical experiments were carried out, as with assimilation of annual mean climatic buoyancy frequency, as with variation of Prandtl number function dependence upon the BF, VSF, TKE and TDF. The CORE-II data for 1948-2009 were used for experiments. Quality of temperature T and salinity S structure simulation is estimated by the comparison of model monthly profiles T and S averaged for 1980-2009, with T and S monthly data from the World Ocean Atlas 2013. Form of coefficients in equations for TKE and TDF on the generation-dissipation stage makes it possible to assimilate annual mean climatic buoyancy frequency in a varying degree that cardinally improves adequacy of model results to climatic data in all analyzed model domain. The numerical experiments with modified

  12. High-dynamic range imaging techniques based on both color-separation algorithms used in conventional graphic arts and the human visual perception modeling

    Science.gov (United States)

    Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao

    2010-01-01

    The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.

  13. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  14. Investigating Rhône River plume (Gulf of Lions, France) dynamics using metrics analysis from the MERIS 300m Ocean Color archive (2002-2012)

    Science.gov (United States)

    Gangloff, Aurélien; Verney, Romaric; Doxaran, David; Ody, Anouck; Estournel, Claude

    2017-07-01

    In coastal environments, river plumes are major transport mechanisms for particulate matter, nutriments and pollutants. Ocean color satellite imagery is a valuable tool to explore river turbid plume characteristics, providing observations at high temporal and spatial resolutions of suspended particulate matter (SPM) concentration over a long time period, covering a wide range of hydro-meteorological conditions. We propose here to use the MERIS-FR (300m) Ocean Color archive (2002-2012) in order to investigate Rhône River turbid plume patterns generated by the two main forcings acting on the north-eastern part of the Gulf of Lions (France): wind and river freshwater discharge. Results are exposed considering plume metrics (area of extension, south-east-westernmost points, shape, centroid, SPM concentrations) extracted from satellite data using an automated image-processing tool. Rhône River turbid plume SPM concentrations and area of extension are shown to be mainly driven by the river outflow while wind direction acts on its shape and orientation. This paper also presents the region of influence of the Rhône River turbid plume over monthly and annual periods, and highlights its interannual variability.

  15. Biodiversity of Pigmented Fungi Isolated from Marine Environment in La Réunion Island, Indian Ocean: New Resources for Colored Metabolites

    Directory of Open Access Journals (Sweden)

    Mireille Fouillaud

    2017-07-01

    Full Text Available Marine ecosystems cover about 70% of the planet surface and are still an underexploited source of useful metabolites. Among microbes, filamentous fungi are captivating organisms used for the production of many chemical classes of secondary metabolites bound to be used in various fields of industrial application. The present study was focused on the collection, isolation, screening and genotyping of pigmented filamentous fungi isolated from tropical marine environments around La Réunion Island, Indian Ocean. About 150 micromycetes were revived and isolated from 14 marine samples (sediments, living corals, coral rubble, sea water and hard substrates collected in four different locations. Forty-two colored fungal isolates belonging to 16 families, 25 genera and 31 species were further studied depending on their ability to produce pigments and thus subjected to molecular identification. From gene sequence analysis, the most frequently identified colored fungi belong to the widespread Penicillium, Talaromyces and Aspergillus genera in the family Trichocomaceae (11 species, then followed by the family Hypocreaceae (three species. This study demonstrates that marine biotopes in La Réunion Island, Indian Ocean, from coral reefs to underwater slopes of this volcanic island, shelter numerous species of micromycetes, from common or uncommon genera. This unstudied biodiversity comes along with the ability for some fungal marine inhabitants, to produce a range of pigments and hues.

  16. New Triangular and Rectangular NAM Representation Algorithm for Color Images%一种新的TRNAM彩色图像表示算法

    Institute of Scientific and Technical Information of China (English)

    郑运平

    2011-01-01

    The Non-symmetry and Anti-packing Model (NAM) is suitable for representations of image pattern, audio pattern, video pattern, and text pattern, and it is a general pattern representation model. Inspired by the idea of representing the pixels by the Gray code, a new triangular and rectangular NAM representation algorithm for color images, which is called the NTRNAM algorithm, is proposed. The principium and the description of the NTRNAM algorithm are presented and the storage structure, the total data a-mount, and the time and space complexities of the proposed algorithm are analyzed. The theoretical and experimental results show that the NTRNAM algorithm can greatly reduce the number of subpatterns and simultaneously save the storage room, and therefore it is an effective algorithm for color image representation.%非对称逆布局模型(NAM)适用于图像模式、语音模式、文本模式、视频模式的表示,是一个通用型的模式表示模型.借助于格雷码表示图像像素的思想,提出了一种新的三角形和矩形NAM彩色图像表示算法(简称NTRNAM算法).给出了算法的原理及形式化描述,并对其存储结构、总数据量和时空复杂性进行了分析.理论分析和实验结果表明:NTRNAM算法能够显著降低子模式数和存储空间,是一种有效的彩色图像表示算法.

  17. An optimal estimation algorithm to derive Ice and Ocean parameters from AMSR Microwave radiometer observations

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Tonboe, Rasmus T.; Høyer, Jacob

    channels as well as the combination of data from multiple sources such as microwave radiometry, scatterometry and numerical weather prediction. Optimal estimation is data assimilation without a numerical model for retrieving physical parameters from remote sensing using a multitude of available information......Global multispectral microwave radiometer measurements have been available for several decades. However, most current sea ice concentration algorithms still only takes advantage of a very limited subset of the available channels. Here we present a method that allows utilization of all available....... The methodology is observation driven and model innovation is limited to the translation between observation space and physical parameter space Over open water we use a semi-empirical radiative transfer model developed by Meissner & Wentz that estimates the multispectral AMSR brightness temperatures, i...

  18. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  19. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  20. Using Ocean Color Satellite Data to Estimate Economics Benefits Associated with Monitoring and Preventing Harmful Algal Blooms

    Science.gov (United States)

    This presentation describes preliminary work that is underway that will illustrate the use of ocean land colour instrument data (Sentinel-3 & Landsat) to detect and monitor harmful algal blooms (HABS) in freshwater lakes for two types of economic analyses. This project is a j...

  1. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  2. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  3. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pineda, O.; MacDonald, I.R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Oceanography; Zimmer, B. [Texas A and M Univ., Corpus Christi, TX (United States). Dept. of Mathematics and Statistics; Howard, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography; Pichel, W. [National Oceanic and Atmospheric Administration, Camp Springs, MD (United States). Center for Satellite Applications and Research, National Environmental Satellite, Data and Information Service; Li, X. [National Oceanic and Atmospheric Administration, Camp Springs, MD (United States). Systems Group, National Environmental Satellite, Data and Information

    2009-10-15

    Synthetic aperture radar (SAR) is used to detect surfactant layers produced by floating oil on the ocean surface. This study presented details of a texture-classifying neural network algorithm (TCNNA) designed to process SAR data from a wide selection of beam modes. Patterns from SAR imagery were extracted in a semi-supervised procedure using a combination of edge-detection filters; texture descriptors; collection information; and environmental data. Various natural oil seeps in the Gulf of Mexico were used as case studies. An analysis of the case studies demonstrated that the TCNNA was able to extract targets and rapidly interpret images collected under a range of environmental conditions. Results presented by the TCNNA were used to evaluate the effects of different environmental conditions on the expressions of oil slicks detected by the data. Optimal incidence angle ranges and wind speed ranges for surfactant film detection were also presented. Results obtained by the TCNNA can be stored and manipulated in geographic information system (GIS) data layers. 26 refs., 1 tab., 7 figs.

  4. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography.

    Science.gov (United States)

    Grassmann, Felix; Mengelkamp, Judith; Brandl, Caroline; Harsch, Sebastian; Zimmermann, Martina E; Linkohr, Birgit; Peters, Annette; Heid, Iris M; Palm, Christoph; Weber, Bernhard H F

    2018-04-10

    Age-related macular degeneration (AMD) is a common threat to vision. While classification of disease stages is critical to understanding disease risk and progression, several systems based on color fundus photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein, we present an automated computer-based classification algorithm. Algorithm development for AMD classification based on a large collection of color fundus images. Validation is performed on a cross-sectional, population-based study. We included 120 656 manually graded color fundus images from 3654 Age-Related Eye Disease Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health Research in the Region of Augsburg) study. We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and trained several convolution deep learning architectures. An ensemble of network architectures improved prediction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-based study. κ Statistics and accuracy to evaluate the concordance between predicted and expert human grader classification. A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test set with a quadratic weighted κ of 92% (95% confidence interval, 89%-92%) and an overall accuracy of 63.3%. In the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion of other retinopathies, the weighted and unweighted κ increased to 50% and 63%, respectively. Importantly, the algorithm

  5. Accurately Measuring the Color of the Ocean on Earth and from Space: Uncertainties Revisited and A Report from the Community-Led Spectral Absorption Workshop to Update and Revise the NASA Inherent Optical Properties Protocol

    Science.gov (United States)

    Neeley, Aimee Renee

    2014-01-01

    The color of the ocean (apparent optical properties or AOPs) is determined by the spectral scattering and absorption of light by its dissolved and particulate constituents.The absorption and scattering properties of the water column are the so-called inherent optical properties.

  6. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    Science.gov (United States)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-03-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  7. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  8. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  9. Pathway Detection from Protein Interaction Networks and Gene Expression Data Using Color-Coding Methods and A* Search Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Yeh

    2012-01-01

    Full Text Available With the large availability of protein interaction networks and microarray data supported, to identify the linear paths that have biological significance in search of a potential pathway is a challenge issue. We proposed a color-coding method based on the characteristics of biological network topology and applied heuristic search to speed up color-coding method. In the experiments, we tested our methods by applying to two datasets: yeast and human prostate cancer networks and gene expression data set. The comparisons of our method with other existing methods on known yeast MAPK pathways in terms of precision and recall show that we can find maximum number of the proteins and perform comparably well. On the other hand, our method is more efficient than previous ones and detects the paths of length 10 within 40 seconds using CPU Intel 1.73GHz and 1GB main memory running under windows operating system.

  10. Empirical Algorithms to Predict pH and Aragonite Saturation State on SOCCOM Biogeochemical Argo Floats in the Pacific Sector of the Southern Ocean

    Science.gov (United States)

    Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Russell, J. L.

    2016-02-01

    The Southern Ocean plays a major role in the global uptake, transport, and storage of both heat and carbon, yet it remains one of the least-sampled regions of the ocean. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project aims to fill the observational gaps by deploying over 200 autonomous profiling floats in the Southern Ocean over the next several years. Initial float deployments have greatly expanded our observational capability to include wintertime measurements as well as under-ice measurements, and many of these floats include novel biogeochemical sensors (pH, nitrate, oxygen). Here we present empirical algorithms that can be used to predict pH and ΩAragonite from other float-measured parameters (temperature, salinity, pressure, nitrate, oxygen). These algorithms were trained using bottle measurements from high-quality repeat hydrographic GO-SHIP cruises. We obtained R2 values of 0.98 (pH) and 0.99 (ΩAragonite) and RMS errors of 0.007 (pH) and 0.052 (ΩAragonite) for data between 100-1500 m. These algorithms will allow us to both validate pH data from these sensors, as well as predict ΩAragonite and pH on floats that do not have pH sensors. Here we present estimated pH and ΩAragonite over 20 months of deployment for several SOCCOM floats in the Pacific Sector of the Southern Ocean. The results show seasonal ranges in surface pH and ΩAragonite of 0.05 and 0.1, respectively.

  11. Satellite Ocean Biology: Past, Present, Future

    Science.gov (United States)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  12. PERFORMANCE ANALYSIS OF SET PARTITIONING IN HIERARCHICAL TREES (SPIHT ALGORITHM FOR A FAMILY OF WAVELETS USED IN COLOR IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    A. Sreenivasa Murthy

    2014-11-01

    Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.

  13. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...

  14. On the Use of Ocean Color Remote Sensing to Measure the Transport of Dissolved Organic Carbon by the Mississippi River Plume

    Science.gov (United States)

    DelCastillo, Carlos E.; Miller, Richard L.

    2007-01-01

    We investigated the use of ocean color remote sensing to measure transport of dissolved organic carbon (DOC) by the Mississippi River to the Gulf of Mexico. From 2000 to 2005 we recorded surface measurements of DOC, colored dissolved organic matter (CDOM), salinity, and water-leaving radiances during five cruises to the Mississippi River Plume. These measurements were used to develop empirical relationships to derive CDOM, DOC, and salinity from monthly composites of SeaWiFS imagery collected from 1998 through 2005. We used river flow data and a two-end-member mixing model to derive DOC concentrations in the river end-member, river flow, and DOC transport using remote sensing data. We compared our remote sensing estimates of river flow and DOC transport with data collected by the United States Geological Survey (USGS) from 1998 through 2005. Our remote sensing estimates of river flow and DOC transport correlated well (r2 0.70) with the USGS data. Our remote sensing estimates and USGS field data showed low variability in DOC concentrations in the river end-member (7-11%), and high seasonal variability in river flow (50%). Therefore, changes in river flow control the variability in DOC transport, indicating that the remote sensing estimate of river flow is the most critical element of our DOC transport measurement. We concluded that it is possible to use this method to estimate DOC transport by other large rivers if there are data on the relationship between CDOM, DOC, and salinity in the river plume.

  15. Detailed validation of the bidirectional effect in various Case 1 waters for application to ocean color imagery

    Directory of Open Access Journals (Sweden)

    K. J. Voss

    2007-09-01

    Full Text Available The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties, and this variation is called the bidirectional effect. This bidirectional effect depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model of f/Q, which contains the bidirectional effect, by Morel et al. (2002 depends on modeled, not measured, water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We compared modeled and measured Lview/Lnadir and found that the average difference between the model and data was less than 0.01, while the RMS difference between the model and data was on the order of 0.02–0.03. This is well within the statistical noise of the data, which was on the order of 0.04–0.05, due to environmental noise sources such as wave focusing.

  16. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    Science.gov (United States)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  17. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic true color (RGB) and infrared (IR) image tiles, Kachemak Bay, Alaska, 2008 (NODC Accession 0074379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are a NOAA National Ocean Service National Geodetic Survey (NOS/NGS) Integrated Ocean and Coastal Mapping (IOCM) Product. The images were acquired from a...

  18. An empirical algorithm to estimate spectral average cosine of underwater light field from remote sensing data in coastal oceanic waters.

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulika, M.; Suresh, T.; Desa, E.S.; Inamdar, A.

    parameters from the coastal waters off Goa, India, and eastern Arabian Sea and the optical parameters derived using the radiative transfer code using these measured data. The algorithm was compared with two earlier reported empirical algorithms of Haltrin...

  19. Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization

    Science.gov (United States)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-08-01

    Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by

  20. Multiscale comparison of GPM radar and passive microwave precipitation fields over oceans and land: effective resolution and global/regional/local diagnostics for improving retrieval algorithms

    Science.gov (United States)

    Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.

    2017-12-01

    A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.

  1. Riemann Geometric Color-Weak Compensationfor Individual Observers

    OpenAIRE

    Kojima, Takanori; Mochizuki, Rika; Lenz, Reiner; Chao, Jinhui

    2014-01-01

    We extend a method for color weak compensation based on the criterion of preservation of subjective color differences between color normal and color weak observers presented in [2]. We introduce a new algorithm for color weak compensation using local affine maps between color spaces of color normal and color weak observers. We show howto estimate the local affine map and how to determine correspondences between the origins of local coordinates in color spaces of color normal and color weak ob...

  2. Coastal Zone Color Scanner

    Science.gov (United States)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  3. A Study of Color Transformation on Website Images for the Color Blind

    OpenAIRE

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  4. Multi-color and artistic dithering

    OpenAIRE

    Ostromoukhov, Victor; Hersch, Roger D.

    1999-01-01

    A multi-color dithering algorithm is proposed, which converts a barycentric combination of color intensities into a multi-color non-overlapping surface coverage. Multi-color dithering is a generalization of standard bi-level dithering. Combined with tetrahedral color separation, multi-color dithering makes it possible to print images made of a set of non-standard inks. In contrast to most previous color halftoning methods, multi-color dithering ensures by construction that the different selec...

  5. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data.

    Science.gov (United States)

    Mélin, F; Vantrepotte, V; Chuprin, A; Grant, M; Jackson, T; Sathyendranath, S

    2017-12-15

    series analysis (including trend detection), but with some caution required if recent years are included, particularly in the central tropical Pacific. The study also recalls the challenges associated with creating a multi-mission ocean color data record suitable for climate research.

  6. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Hood Canal - Port Townsend to Annas Bay, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  7. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Lake Charles, Louisiana 2009-2010 (NODC Accession 0075827)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Lake Charles,...

  8. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Palm Beach, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  9. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of Ports of Houston, Texas City, and Galveston, Texas: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  10. NOAA Integrated Ocean and Coastal Mapping (IOCM) true color (RGB) orthorectified mosaic image tiles, Baton Rouge to LaPlace, Louisiana 2010 (NODC Accession 0074374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of the Mississippi...

  11. 2013 NOAA Ortho-rectified Mean High Water Color Mosaic of Sequim Bay to Foulweather Bluff, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  12. 2014 NOAA Ortho-rectified Mean Low Low Water Color Mosaic of Puget Sound - Everett to Spring Beach, Washington: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  13. The shape of ocean color

    Science.gov (United States)

    Tufillaro, Nicholas

    2013-01-01

    "I want to see gamma rays! I want to hear X-rays! And I want to -- I want to smell dark matter! Do you see the absurdity of what I am? I can't even express these things properly because I have to -- I have to conceptualize complex ideas in this stupid limiting spoken language! But I know I want to reach out with something other than these prehensile paws! And feel the wind of a supernova flowing over me! I'm a machine! And I can know much more! I can experience so much more. But I'm trapped in this absurd body!" - Brother Cavil, Battlestar Galactica

  14. Use seismic colored inversion and power law committee machine based on imperial competitive algorithm for improving porosity prediction in a heterogeneous reservoir

    Science.gov (United States)

    Ansari, Hamid Reza

    2014-09-01

    In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.

  15. Development, Validation, and Deployment of a Revised Air Traffic Control Color Vision Test: Incorporating Advanced Technologies and Oceanic Procedures and En Route Automation Modernization Systems

    Science.gov (United States)

    2013-09-01

    through direct sampling of form and content of critical display data. Evidence of construct validity is provided by correlation with the Colour ...measured by the Colour Assessment and Diagnosis (CAD; ARTS Background Colors STARS Background Colors ERAM Background Colors Figure 3...Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology , 12, 97–136. Xing, J. & Schroeder, D.J. (2006). Reexamination of

  16. Empirical algorithm to estimate the average cosine of underwater light field at 490 nm

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Desa, E.; Matondkar, S.G.P.; Kumar, T.S.; Lotliker, A.; Inamdar, A.

    optical properties from water color, a multi-band quasi-analytical algorithm for optically deep waters. Applied Optic, 41, pp. 5755– 5772. MCCORMIC, N. J., 1995, Mathematical models for the mean cosine of irradiance and the diffuse attenuation... parameter to determine μ(490) from the measured data and from the ocean color satellite data is discussed. Absorption coefficients of water derived using μ(490) were also evaluated comparing with the synthetic data and in-situ measured data from other...

  17. Ocean Color Products Supporting the Assessment of Good Environmental Status: Development of a Spatial Distribution Model for the Seagrass Posidonia Oceanica (L.) Delille, 1813

    Science.gov (United States)

    Zucchetta, M.; Taji, M. A.; Mangin, A.; Pastres, R.

    2015-12-01

    Posidonia oceanica (L.) Delile, 1813 is a seagrass species endemic to the Mediterranean Sea, which is considered as one of the key habitats of the coastal areas. This species forms large meadows sensitive to several anthropogenic pressures, that can be regarded as indicators of environment quality in coastal environments and its distributional patterns should be take into account when evaluating the Environmental Status following the Ecosystem approach promoted by the Mediterranean Action Plan of UNEP and the EU Marine Strategy Framework Directive (2008/56/EC). The aim of this study was to develop a Species Distribution Model for P. oceanica, to be applied to the whole Mediterranean North African coast, in order to obtain an estimation of the potential distribution of this species in the region to be considered as an indicator for the assessment of good Environmental Status. As the study area is a data-poor zone with regard to seagrass distribution (i.e. only for some areas detailed distribution maps are available), the Species Distribution Model (SDM) was calibrated using high resolution data from 5 Mediterranean sites, located in Italy and Spain and validated using available data from the North African coast. Usually, when developing SDMs species occupancy data is available at coarser resolution than the information of environmental variables, and thus has to be downscaled at the appropriate grain to be coupled to the environmental conditions. Tackling the case of P. oceanica we had to face the opposite problem: the quality (in terms of resolution) of the information on seagrass distribution is generally very high compared to the environmental data available over large scale in marine domains (e.g. global bathymetry data). The high resolution application and the model transfer (from calibration areas to North African coast) was possible taking advantage of Ocean Color products: the probability of presence of the species in a given area was modelled using a

  18. On the suitability of global algorithms for the retrieval of SST from the north Indian Ocean using NOAA/AVHRR

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.

    using satellite-sea-truth matchups for NOAA-9 and NOAA-11. The trends associated with the SST retrievals with respect to various independent parameters and simple statistics are analysed to assess the performance of the algorithms. The MCSST and NLSST...

  19. Colorism/Neo-Colorism

    Science.gov (United States)

    Snell, Joel

    2017-01-01

    There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…

  20. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    Science.gov (United States)

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  1. Shift Colors

    Science.gov (United States)

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  2. The remote sensing of ocean primary productivity - Use of a new data compilation to test satellite algorithms

    Science.gov (United States)

    Balch, William; Evans, Robert; Brown, Jim; Feldman, Gene; Mcclain, Charles; Esaias, Wayne

    1992-01-01

    Global pigment and primary productivity algorithms based on a new data compilation of over 12,000 stations occupied mostly in the Northern Hemisphere, from the late 1950s to 1988, were tested. The results showed high variability of the fraction of total pigment contributed by chlorophyll, which is required for subsequent predictions of primary productivity. Two models, which predict pigment concentration normalized to an attenuation length of euphotic depth, were checked against 2,800 vertical profiles of pigments. Phaeopigments consistently showed maxima at about one optical depth below the chlorophyll maxima. CZCS data coincident with the sea truth data were also checked. A regression of satellite-derived pigment vs ship-derived pigment had a coefficient of determination. The satellite underestimated the true pigment concentration in mesotrophic and oligotrophic waters and overestimated the pigment concentration in eutrophic waters. The error in the satellite estimate showed no trends with time between 1978 and 1986.

  3. Illuminant color estimation based on pigmentation separation from human skin color

    Science.gov (United States)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  4. Color Memory

    OpenAIRE

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-01-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test `quarks' initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For weak color flux the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  5. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: Potential synergies with ocean color remote sensing

    CSIR Research Space (South Africa)

    Claustre, H

    2009-09-01

    Full Text Available Color Coordinating Group) BIO-Argo working group is to elaborate recommendations in view of a future use of bio-optical profiling floats as part of a network that would include a global array that could be "Argo-relevant", and specific arrays that would...

  6. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    NARCIS (Netherlands)

    Granskog, M.A.; Stedmon, C.A.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.K.; de Steur, L.; Hansen, E.

    2012-01-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, delta O-18, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water,

  7. An Empirical Ocean Colour Algorithm for Estimating the Contribution of Coloured Dissolved Organic Matter in North-Central Western Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Alessandra Campanelli

    2017-02-01

    Full Text Available The performance of empirical band ratio models were evaluated for the estimation of Coloured Dissolved Organic Matter (CDOM using MODIS ocean colour sensor images and data collected on the North-Central Western Adriatic Sea (Mediterranean Sea. Relationships between in situ measurements (2013–2016 of CDOM absorption coefficients at 355 nm (aCDOM355 with several MODIS satellite band ratios were evaluated on a test data set. The prediction capability of the different linear models was assessed on a validation data set. Based on some statistical diagnostic parameters (R2, APD and RMSE, the best MODIS band ratio performance in retrieving CDOM was obtained by a simple linear model of the transformed dependent variable using the remote sensing reflectance band ratio Rrs(667/Rrs(488 as the only independent variable. The best-retrieved CDOM algorithm provides very good results for the complex coastal area along the North-Central Western Adriatic Sea where the Po River outflow is the main driving force in CDOM and nutrient circulation, which in winter mostly remains confined to a coastal boundary layer, whereas in summer it spreads to the open sea as well.

  8. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    OpenAIRE

    Granskog, M.A.; Stedmon, C.A.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.K.; de Steur, L.; Hansen, E.

    2012-01-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, delta O-18, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water, characteristic of the Arctic mixed layer and upper halocline waters in the East Greenland Current (EGC). The lowest CDOM concentrations were found in the Atlantic inflow. We show that the salinity-CDOM relati...

  9. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite

  10. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  11. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  12. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  13. Color constancy by characterization of illumination chromaticity

    Science.gov (United States)

    Nikkanen, Jarno T.

    2011-05-01

    Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.

  14. Color naming

    OpenAIRE

    Şahin, Ebru

    1998-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1998. Thesis (Ph.D) -- Bilkent University, 1998 Includes bibliographical refences. In this study, visual aspects of color and neurophysiological processes involved in the phenomenon, language of color and color models were explained in addition to the discussion of different ideas, orientations and previous works behind the subject of matter. Available color ...

  15. Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean

    DEFF Research Database (Denmark)

    Granskog, M.A.; Stedmon, Colin; Dodd, P.A.

    2012-01-01

    Absorption coefficients of colored dissolved organic matter (CDOM) were measured together with salinity, δ18O, and inorganic nutrients across the Fram Strait. A pronounced CDOM absorption maximum between 30 and 120 m depth was associated with river and sea ice brine enriched water, characteristic...... of the Arctic mixed layer and upper halocline waters in the East Greenland Current (EGC). The lowest CDOM concentrations were found in the Atlantic inflow. We show that the salinity-CDOM relationship is not suitable for evaluating conservative mixing of CDOM. The strong correlation between meteoric water...... and CDOM is indicative of the riverine/terrigenous origin of CDOM in the EGC. Based on CDOM absorption in Polar Water and comparison with an Arctic river discharge weighted mean, we estimate that a 49–59% integrated loss of CDOM absorption across 250–600 nm has occurred. A preferential removal...

  16. Finding text in color images

    Science.gov (United States)

    Zhou, Jiangying; Lopresti, Daniel P.; Tasdizen, Tolga

    1998-04-01

    In this paper, we consider the problem of locating and extracting text from WWW images. A previous algorithm based on color clustering and connected components analysis works well as long as the color of each character is relatively uniform and the typography is fairly simple. It breaks down quickly, however, when these assumptions are violated. In this paper, we describe more robust techniques for dealing with this challenging problem. We present an improved color clustering algorithm that measures similarity based on both RGB and spatial proximity. Layout analysis is also incorporated to handle more complex typography. THese changes significantly enhance the performance of our text detection procedure.

  17. Color Categories and Color Appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  18. Color Terms and Color Concepts

    Science.gov (United States)

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  19. Color Analysis

    Science.gov (United States)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  20. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  1. Implementation of a reduced order Kalman filter to assimilate ocean color data into a coupled physical-biochemical model of the North Aegean Sea.

    Science.gov (United States)

    Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George

    2013-04-01

    Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.

  2. Processing of Color Words Activates Color Representations

    Science.gov (United States)

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  3. Colored operads

    CERN Document Server

    Yau, Donald

    2016-01-01

    The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

  4. Color metallography

    International Nuclear Information System (INIS)

    Hasson, Raymond.

    1976-06-01

    After a short introduction explaining the reasons why color metallography was adopted, the various operations involved in this technique are described in turn and illustrated by colored photomicrographs. The sample preparation (cutting, covering) and surface preparation (trimming, polishing, finishing) are described briefly. The operations specific to color metallography are then detailed: revelation of the structure of polished surfaces, dye impregnation techniques, optical systems used in macrography, in micrography, different light sources used in microscopy, photographic methods [fr

  5. Modeling human color categorization: Color discrimination and color memory

    OpenAIRE

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve c...

  6. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  7. Colored Chaos

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D

  8. A synthesis of light absorption properties of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2013-11-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  9. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  10. SeaWinds - Oceans, Land, Polar Regions

    Science.gov (United States)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.NASA's Earth Science Enterprise is a long-term research and technology program designed to examine Earth

  11. Color-to-grayscale conversion through weighted multiresolution channel fusion

    NARCIS (Netherlands)

    Wu, T.; Toet, A.

    2014-01-01

    We present a color-to-gray conversion algorithm that retains both the overall appearance and the discriminability of details of the input color image. The algorithm employs a weighted pyramid image fusion scheme to blend the R, G, and B color channels of the input image into a single grayscale

  12. Colored leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1985-01-01

    If leptons are composite and if they contain colored preons, one expects the existence of heavy color-octet fermions with quantum numbers similar to those of ordinary leptons. Such a ''colored lepton'' should decay into a gluon and a lepton, yielding a unique experimental signature. Charged ''colored leptons'' probably have masses of the order of the compositeness scale Λ > or approx. 1 TeV. They may be copiously produced at future multi-TeV e + e - , ep and hadron colliders. ''Colored neutrinos'' may have both Dirac and Majorana masses. They could be much lighter than Λ, possibly as light as 100 GeV or less. In such a case they should be readily produced at the CERN anti pp collider, yielding spectacular monojet and dijet events. They may also be produced at LEP and HERA. (orig.)

  13. What is Color Blindness?

    Science.gov (United States)

    ... Color Blindness? Who Is at Risk for Color Blindness? Color Blindness Causes Color Blindness Diagnosis and Treatment How Color Blindness Is Tested What Is Color Blindness? Leer en Español: ¿Qué es el daltonismo? Written ...

  14. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  15. 包装彩盒检测中定位核提取算法%Extraction algorithm of ROI for detecting colored box

    Institute of Scientific and Technical Information of China (English)

    陈功明; 李锋

    2016-01-01

    To reduce the complexity of the existing method for automatically extracting region of interest (ROI)and improve the detection efficiency in package printing detection process,an algorithm for automatic extraction of ROI was proposed on account of multi-feature.Based on the input selected rectangular region,by comparing the output parameters like contrast ratio,duty cycle,XY direction confidence interval and the symmetry of the fitting curve of the matching coefficient,the ROI was j udged to be good or not.The feasibility of the scheme was verified using the method of automatically calculative center coordinate error. Simulation analysis demonstrates that the algorithm succeeds in extracting automatic ROI for less than 100 ms,and success rate reaches 99.78% or more,the complexity of the proposed algorithm is much lower than that of the existing ones.The proposed verification method is simple and reliable.%为降低现有包装印刷品检测过程中感兴趣区域(简称定位核)提取方法的复杂度,提高检测效率,提出一种基于多特征的定位核自动提取方案。通过输入选中的矩形区域,输出参数对比度、占空比、XY 方向置信区间的取值范围及匹配系数拟合曲线的对称性,综合判断提取定位核的好坏。提出自动求取中心点坐标误差法对该方案的有效性进行验证。仿真分析结果表明,该方案可在100 ms内自动提取定位核,成功率达到99.78%以上,明显优于已有方案,所提验证方法简单可靠。

  16. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  17. Minuutit (Colors).

    Science.gov (United States)

    Pulu, Tupou L.; And Others

    This first grade workbook is designed for children in bilingual Inupiat-English programs in the Alaskan villages of Ambler, Kiana, Kobuk, Noorvik, Selawik, and Shungnak. Each page has a captioned black-and-white drawing to be colored. (CFM)

  18. Aquarius salinity and wind retrieval using the cap algorithm and application to water cycle observation in the Indian ocean and subcontinent

    Science.gov (United States)

    Aquarius is a combined passive/active L-band microwave instrument developed to map the ocean surface salinity field from space. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open oc...

  19. CFA-aware features for steganalysis of color images

    Science.gov (United States)

    Goljan, Miroslav; Fridrich, Jessica

    2015-03-01

    Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.

  20. Color tejido

    OpenAIRE

    Rius Tormo, Palmira

    2010-01-01

    Póster presentado en el IX Congreso Nacional del Color, Alicante, 29-30 junio, 1-2 julio 2010. La exposición que se propone tiene como núcleo principal el color y muestra las posibilidades expresivas que aporta a los diferentes materiales. Las 7 obras presentadas buscan la armonía estética y la fuerza simbólica.

  1. An Empirical Ocean Colour Algorithm for Estimating the Contribution of Coloured Dissolved Organic Matter in North-Central Western Adriatic Sea

    OpenAIRE

    Alessandra Campanelli; Simone Pascucci; Mattia Betti; Federica Grilli; Mauro Marini; Stefano Pignatti; Stefano Guicciardi

    2017-01-01

    The performance of empirical band ratio models were evaluated for the estimation of Coloured Dissolved Organic Matter (CDOM) using MODIS ocean colour sensor images and data collected on the North-Central Western Adriatic Sea (Mediterranean Sea). Relationships between in situ measurements (2013–2016) of CDOM absorption coefficients at 355 nm (aCDOM355) with several MODIS satellite band ratios were evaluated on a test data set. The prediction capability of the different linear models was assess...

  2. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  3. Modeling human color categorization: Color discrimination and color memory

    NARCIS (Netherlands)

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The

  4. 1-Colored Archetypal Permutations and Strings of Degree n

    Directory of Open Access Journals (Sweden)

    Gheorghe Eduard Tara

    2012-10-01

    Full Text Available New notions related to permutations are introduced here. We present the string of a 1-colored permutation as a closed planar curve, the fundamental 1-colored permutation as an equivalence class related to the equivalence in strings of the 1-colored permutations. We give formulas for the number of the 1-colored archetypal permutations of degree n. We establish an algorithm to identify the 1- colored archetypal permutations of degree n and we present the atlas of the 1-colored archetypal strings of degree n, n ≤ 7, based on this algorithm.

  5. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  6. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. Color Sense

    Science.gov (United States)

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  8. Color transparency

    International Nuclear Information System (INIS)

    Jennings, B.K.; Miller, G.A.

    1993-01-01

    The anomously large transmission of nucleons through a nucleus following a hard collision is explored. This effect, known as color transparency, is believed to be a prediction of QCD. The necessary conditions for its occurrence and the effects that must be included a realistic calculation are discussed

  9. Color transparency

    International Nuclear Information System (INIS)

    Miller, G.A.

    1993-01-01

    Imagine shooting a beam of protons of high momentum P through an atomic nucleus. Usually the nuclear interactions prevent the particles from emerging with momentum ∼P. Further, the angular distribution of elastically scattered protons is close to the optical diffraction pattern produced by a black disk. Thus the nucleus acts as a black disk and is not transparent. However, certain high momentum transfer reactions in which a proton is knocked out of the nucleus may be completely different. Suppose that the high momentum transfer process leads to the formation of a small-size color singlet wavepacket that is ejected from the nucleus. The effects of gluons emitted by color singlet systems of closely separated quarks and gluons tend to cancel. Thus the wavepacket-nuclear interactions are suppressed, the nucleus becomes transparant and one says that color transparency CT occurs. The observation of CT also requires that the wavepacket not expand very much while it moves through the nucleus. Simple quantum mechanical formulations can assess this expansion. The creation of a small-sized wavepacket is expected in asymptotic perturbative effects. The author reviews the few experimental attempts to observe color transparency in nuclear (e,e'p) and (p,pp) reactions and interpret the data and their implications

  10. Color transparency

    International Nuclear Information System (INIS)

    Pire, B.; Ralston, J.P.

    1991-01-01

    This paper reviews the physics of color transparency and the unexpected energy dependence of recent measurements of high-energy fixed-angle elastic scattering in nuclear targets. The authors point out advantages of using transparency as a tool, introducing two concepts - spin and flavor flow filtering - that may be studied with nuclear targets. The special case of electroproduction is also considered

  11. Segmentation and Classification of Burn Color Images

    National Research Council Canada - National Science Library

    Acha, Begonya

    2001-01-01

    .... In the classification part, we take advantage of color information by clustering, with a vector quantization algorithm, the color centroids of small squares, taken from the burnt segmented part of the image, in the (V1, V2) plane into two possible groups, where V1 and V2 are the two chrominance components of the CIE Lab representation.

  12. Enriching text with images and colored light

    Science.gov (United States)

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  13. Cliques, coloring, and satisfiability

    CERN Document Server

    Johnson, David S

    1996-01-01

    The purpose of a DIMACS Challenge is to encourage and coordinate research in the experimental analysis of algorithms. The First DIMACS Challenge encouraged experimental work in the area of network flow and matchings. The Second DIMACS Challenge, on which this volume is based, took place in conjunction with the DIMACS Special Year on Combinatorial Optimization. Addressed here are three difficult combinatorial optimization problems: finding cliques in a graph, coloring the vertices of a graph, and solving instances of the satisfiability problem. These problems were chosen both for their practical interest and because of their theoretical intractability.

  14. Color-weak compensation using local affine isometry based on discrimination threshold matching

    OpenAIRE

    Mochizuki, Rika; Kojima, Takanori; Lenz, Reiner; Chao, Jinhui

    2015-01-01

    We develop algorithms for color-weak compensation and color-weak simulation based on Riemannian geometry models of color spaces. The objective function introduced measures the match of color discrimination thresholds of average normal observers and a color-weak observer. The developed matching process makes use of local affine maps between color spaces of color-normal and color-weak observers. The method can be used to generate displays of images that provide color-normal and color-weak obser...

  15. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  16. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  18. Harmonious colors: from alchemy to science

    Science.gov (United States)

    Beretta, Giordano B.; Moroney, Nathan M.

    2012-01-01

    There is a very long tradition in designing color palettes for various applications, going back to at least the Upanishad. Although color palettes have been influenced by the available colorants, starting with the advent of aniline dyes in the late 1850s there have been few physical limits on the choice of individual colors. This abundance of choices exacerbates the problem of limiting the number of colors in a palette, i.e., in keeping them into a manageable quantity. For example, it is not practical for a car company to offer each model in hundreds of colors. Instead, for each model year a small number of color palettes is offered, each containing the colors for the body, trim, interior, etc. Another example is the fashion industry, where in addition to solid colors there are also patterns, leading to a huge variety of combinations that would be impossible to stock. The traditional solution is that of "color forecasting." Color consultants assess the sentiment or affective state of a target customer class and compare it with new colorants offered by the industry. They assemble a limited color palette, name the colors according to the sentiment, and publish their result. Textile manufacturers will produce fabrics in these colors and fashion designers will design clothes, accessories, and furniture based on these fabrics. Eventually, the media will communicate these forecasts to the consumers, who will be admired by their cohorts when they choose colors from the forecast palette, which by then is widely diffused. The color forecasting business is very labor intensive and difficult, thus for years computer engineers have tried to come up with algorithms to design harmonious color palettes, alas with little commercial success. For example, Johannes Itten's color theory has been implemented many times, but despite Itten's success in the Bauhaus artifacts, the computer tools have been of little utility. Indeed, contrary to the auditory sense, there is no known

  19. Towards representation of a perceptual color manifold using associative memory for color constancy.

    Science.gov (United States)

    Seow, Ming-Jung; Asari, Vijayan K

    2009-01-01

    In this paper, we propose the concept of a manifold of color perception through empirical observation that the center-surround properties of images in a perceptually similar environment define a manifold in the high dimensional space. Such a manifold representation can be learned using a novel recurrent neural network based learning algorithm. Unlike the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete locations in the state space, the dynamics of the proposed learning algorithm represent memory as a nonlinear line of attraction. The region of convergence around the nonlinear line is defined by the statistical characteristics of the training data. This learned manifold can then be used as a basis for color correction of the images having different color perception to the learned color perception. Experimental results show that the proposed recurrent neural network learning algorithm is capable of color balance the lighting variations in images captured in different environments successfully.

  20. Variability in global ocean phytoplankton distribution over 1979-2007

    Science.gov (United States)

    Masotti, I.; Alvain, S.; Moulin, C.; Antoine, D.

    2009-04-01

    Recently, reanalysis of long-term ocean color data (CZCS and SeaWiFS; Antoine et al., 2005) has shown that world ocean average phytoplankton chlorophyll levels show an increase of 20% over the last two decades. It is however unknown whether this increase is associated with a change in the distribution of phytoplankton groups or if it simply corresponds to an increase of the productivity. Within the framework of the GLOBPHY project, the distribution of the phytoplankton groups was monitored by applying the PHYSAT method (Alvain et al., 2005) to the historical ocean color data series from CZCS, OCTS and SeaWiFS sensors. The PHYSAT algorithm allows identification of several phytoplankton, like nanoeucaryotes, prochlorococcus, synechococcus and diatoms. Because both sensors (OCTS-SeaWiFS) are very similar, OCTS data were processed with the standard PHYSAT algorithm to cover the 1996-1997 period during which a large El Niño event occurred, just before the SeaWiFS era. Our analysis of this dataset (1996-2006) evidences a strong variability in the distribution of phytoplankton groups at both regional and global scales. In the equatorial region (0°-5°S), a three-fold increase of nanoeucaryotes frequency was detected in opposition to a two-fold decrease of synechococcus during the early stages of El Niño conditions (May-June 1997, OCTS). The impact of this El Niño is however not confined to the Equatorial Pacific and has affected the global ocean. The processing of CZCS data with PHYSAT has required several adaptations of this algorithm due to the lower performances and the reduced number of spectral bands of the sensor. Despites higher uncertainties, the phytoplankton groups distribution obtained with CZCS is globally consistent with that of SeaWiFS. A comparison of variability in global phytoplankton distribution between 1979-1982 (CZCS) and 1999-2002 (SeaWiFS) suggests an increase in nanoeucaryotes at high latitudes (>40°) and in the equatorial region (10°S-10

  1. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  2. Automatic color preference correction for color reproduction

    Science.gov (United States)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  3. Chemical and biological data collected as part of the CArbon Retention In A Colored Ocean (CARIACO) program in the Cariaco Basin off the coast of Venezuela, May 23, 2005 - November 11, 2006 (NODC Accession 0038513)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and biological data were collected using bottle casts on the continental shelf of Venezuela from the HERMANO GINES from May 23, 2005 to November 11, 2006....

  4. Chemical and biological data collected as part of the CArbon Retention In A Colored Ocean (CARIACO) program in the Cariaco Basin off the coast of Venezuela, January 17, 2005 - January 16, 2006 (NODC Accession 0013170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical and biological data were collected using bottle casts on the continental shelf of Venezuela from the HERMANO GINES from January 17, 2005 to January 16,...

  5. Physical, chemical and biological profile data collected aboard the vessel HERMANO GINES in support of the Carbon Retention in A Colored Ocean (CARIACO) project in the Caribbean Sea from October 9, 2001 to July 8, 2003 (NODC Accession 0001345)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical and biological profile data collected using bottle and CTD casts aboard the vessel HERMANO GINES by the Fundacion La Salle (Venezuela) in support...

  6. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  7. Impulsive noise removal from color video with morphological filtering

    Science.gov (United States)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  8. Cognitive aspects of color

    Science.gov (United States)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  9. The Disunity of Color

    OpenAIRE

    Matthen, Mohan

    1999-01-01

    What is color? What is color vision? Most philosophers answer by reference to humans: to human color qualia, or to the environmental properties or "quality spaces" perceived by humans. It is argued, with reference to empirical findings concerning comparative color vision and the evolution of color vision, that all such attempts are mistaken. An adequate definition of color vision must eschew reference to its outputs in the human cognition and refer only to inputs: color vision consists in...

  10. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  11. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  12. Hearing Color

    Science.gov (United States)

    Bieryla, Allyson; Diaz Merced, Wanda; Davis, Daniel

    2018-06-01

    In astronomy, the relationship between color and temperature is an important concept. This concept can be demonstrated in a laboratory or seen at telescope when observing stars. A blind/visually-impaired (B/VI) person would not be able to engage in the same observational demonstrations that are typically done to explain this concept. We’ve developed a tool for B/VI students to participate in these types of observational activities. Using an arduino compatible micro controller with and RGB light sensor, we are able to convert filtered light into sound. The device will produce different timbres for different wavelengths of light, which can then be used to distinguish the temperature of an object. The device is handheld, easy to program and inexpensive to reproduce (< $50). It is also fitted to mount on a telescope for observing. The design schematic and code will be open source and available for download.

  13. The colors of icebergs

    Science.gov (United States)

    Warren, S. G.

    2017-12-01

    Ordinary icebergs of meteoric glacier ice appear bluish-white, i.e. intermediate in color between the white of snow and the blue of pure ice, depending on the bubble content. However, clear dark bubble-free icebergs are occasionally seen in the Antarctic Ocean; they originate from freezing of seawater to the base of ice shelves. On parts of the Amery Ice Shelf, frozen seawater contributes up to one-third of the ice-shelf thickness. Many of the icebergs produced by the Amery are therefore composite icebergs; the upper part consists of meteoric glacier ice from snowfall, but the lower part is frozen seawater ("marine ice"). When these icebergs capsize, the marine ice is exposed to view; it can be accessed for study in springtime when the icebergs are embedded in shorefast sea ice. The marine ice varies in color from blue to green depending on the content of dissolved organic matter. The color is therefore an indicator of biological productivity in the seawater from which the ice froze. To infer processes at the ice-shelf base, these icebergs may be examined and cored for spectral reflectance, hydrogen and oxygen isotopes, organic matter, particles, and distribution of cracks and stripes. Seasonal and interannual variations may be quantified from samples collected along the marine ice-growth trajectory at the meteoric/marine-ice interface. The scale of small turbulent eddies at the ice-shelf base, which govern the transfer of heat between ocean and ice, can be inferred from the size of scallops in the iceberg surface (typically a few centimeters). Dark stripes within meteoric ice result from tension-cracks at the grounding line, forming basal crevasses that fill suddenly with seawater; their width, spacing, and salinity can give clues to processes at the grounding line. Results will be shown from icebergs sampled on Australian expeditions near Davis and Mawson stations. Marine ice is more readily accessed by sampling an iceberg than by drilling through an ice shelf

  14. Using color management in color document processing

    Science.gov (United States)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  15. Modeling human color categorization

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Th.E.; Kisters, P.M.F.

    A unique color space segmentation method is introduced. It is founded on features of human cognition, where 11 color categories are used in processing color. In two experiments, human subjects were asked to categorize color stimuli into these 11 color categories, which resulted in markers for a

  16. Ocean Color Underwater Low Light Advanced Radiometer—Ocean Color at Night

    Data.gov (United States)

    National Aeronautics and Space Administration — The OCULLAR activity pairs a miniature and ruggedized photomultiplier tube (PMT) with an existing commercial-off-the-shelf (COTS) silicon photodetector (SiP)...

  17. GLAS/ICESat L2 Ocean Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA15 contains the ocean elevation and small-scale roughness corrected for geodetic and atmospheric affects, calculated from algorithms fine-tuned for ocean returns....

  18. Embedding Color Watermarks in Color Images

    Directory of Open Access Journals (Sweden)

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  19. Urine - abnormal color

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  20. Skin color - patchy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  1. Tooth - abnormal colors

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  3. A framework for interactive image color editing

    KAUST Repository

    Musialski, Przemyslaw

    2012-11-08

    We propose a new method for interactive image color replacement that creates smooth and naturally looking results with minimal user interaction. Our system expects as input a source image and rawly scribbled target color values and generates high quality results in interactive rates. To achieve this goal we introduce an algorithm that preserves pairwise distances of the signatures in the original image and simultaneously maps the color to the user defined target values. We propose efficient sub-sampling in order to reduce the computational load and adapt semi-supervised locally linear embedding to optimize the constraints in one objective function. We show the application of the algorithm on typical photographs and compare the results to other color replacement methods. © 2012 Springer-Verlag Berlin Heidelberg.

  4. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  5. Region-Based Color Image Indexing and Retrieval

    DEFF Research Database (Denmark)

    Kompatsiaris, Ioannis; Triantafyllou, Evangelia; Strintzis, Michael G.

    2001-01-01

    In this paper a region-based color image indexing and retrieval algorithm is presented. As a basis for the indexing, a novel K-Means segmentation algorithm is used, modified so as to take into account the coherence of the regions. A new color distance is also defined for this algorithm. Based on ....... Experimental results demonstrate the performance of the algorithm. The development of an intelligent image content-based search engine for the World Wide Web is also presented, as a direct application of the presented algorithm....

  6. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  7. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  8. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  9. Color correction pipeline optimization for digital cameras

    Science.gov (United States)

    Bianco, Simone; Bruna, Arcangelo R.; Naccari, Filippo; Schettini, Raimondo

    2013-04-01

    The processing pipeline of a digital camera converts the RAW image acquired by the sensor to a representation of the original scene that should be as faithful as possible. There are mainly two modules responsible for the color-rendering accuracy of a digital camera: the former is the illuminant estimation and correction module, and the latter is the color matrix transformation aimed to adapt the color response of the sensor to a standard color space. These two modules together form what may be called the color correction pipeline. We design and test new color correction pipelines that exploit different illuminant estimation and correction algorithms that are tuned and automatically selected on the basis of the image content. Since the illuminant estimation is an ill-posed problem, illuminant correction is not error-free. An adaptive color matrix transformation module is optimized, taking into account the behavior of the first module in order to alleviate the amplification of color errors. The proposed pipelines are tested on a publicly available dataset of RAW images. Experimental results show that exploiting the cross-talks between the modules of the pipeline can lead to a higher color-rendition accuracy.

  10. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  11. Memory for color reactivates color processing region.

    Science.gov (United States)

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  12. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  13. Distributed graph coloring fundamentals and recent developments

    CERN Document Server

    Barenboim, Leonid

    2013-01-01

    The focus of this monograph is on symmetry breaking problems in the message-passing model of distributed computing. In this model a communication network is represented by a n-vertex graph G = (V,E), whose vertices host autonomous processors. The processors communicate over the edges of G in discrete rounds. The goal is to devise algorithms that use as few rounds as possible.A typical symmetry-breaking problem is the problem of graph coloring. Denote by ? the maximum degree of G. While coloring G with ? + 1 colors is trivial in the centralized setting, the problem becomes much more challenging

  14. Coastal Zone Color Scanner studies

    Science.gov (United States)

    Elrod, J.

    1988-01-01

    Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.

  15. Comparatively Studied Color Correction Methods for Color Calibration of Automated Microscopy Complex of Biomedical Specimens

    Directory of Open Access Journals (Sweden)

    T. A. Kravtsova

    2016-01-01

    Full Text Available The paper considers a task of generating the requirements and creating a calibration target for automated microscopy systems (AMS of biomedical specimens to provide the invariance of algorithms and software to the hardware configuration. The required number of color fields of the calibration target and their color coordinates are mostly determined by the color correction method, for which coefficients of the equations are estimated during the calibration process. The paper analyses existing color calibration techniques for digital imaging systems using an optical microscope and shows that there is a lack of published results of comparative studies to demonstrate a particular useful color correction method for microscopic images. A comparative study of ten image color correction methods in RGB space using polynomials and combinations of color coordinate of different orders was carried out. The method of conditioned least squares to estimate the coefficients in the color correction equations using captured images of 217 color fields of the calibration target Kodak Q60-E3 was applied. The regularization parameter in this method was chosen experimentally. It was demonstrated that the best color correction quality characteristics are provided by the method that uses a combination of color coordinates of the 3rd order. The study of the influence of the number and the set of color fields included in calibration target on color correction quality for microscopic images was performed. Six train sets containing 30, 35, 40, 50, 60 and 80 color fields, and test set of 47 color fields not included in any of the train sets were formed. It was found out that the train set of 60 color fields minimizes the color correction error values for both operating modes of digital camera: using "default" color settings and with automatic white balance. At the same time it was established that the use of color fields from the widely used now Kodak Q60-E3 target does not

  16. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  18. Three-coloring graphs with no induced seven-vertex path II : using a triangle

    OpenAIRE

    Chudnovsky, Maria; Maceli, Peter; Zhong, Mingxian

    2015-01-01

    In this paper, we give a polynomial time algorithm which determines if a given graph containing a triangle and no induced seven-vertex path is 3-colorable, and gives an explicit coloring if one exists. In previous work, we gave a polynomial time algorithm for three-coloring triangle-free graphs with no induced seven-vertex path. Combined, our work shows that three-coloring a graph with no induced seven-vertex path can be done in polynomial time.

  19. Multivariate autoregressive algorithms for ocean wave modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Lyons, G.J.; Witz, J.A.

    stream_size 8 stream_content_type text/plain stream_name 2_Int_Offshore_Polar_Eng_Conf_Proc_1992_77.pdf.txt stream_source_info 2_Int_Offshore_Polar_Eng_Conf_Proc_1992_77.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  20. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  1. Microradiometers Reveal Ocean Health, Climate Change

    Science.gov (United States)

    2013-01-01

    When NASA researcher Stanford Hooker is in the field, he pays close attention to color. For Hooker, being in the field means being at sea. On one such research trip to the frigid waters of the Arctic, with a Coast Guard icebreaker looming nearby and the snow-crusted ice shelf a few feet away, Hooker leaned over the edge of his small boat and lowered a tethered device into the bright turquoise water, a new product devised by a NASA partner and enabled by a promising technology for oceanographers and atmospheric scientists alike. Color is a function of light. Pure water is clear, but the variation in color observed during a visit to the beach or a flight along a coastline depends on the water s depth and the constituents in it, how far down the light penetrates and how it is absorbed and scattered by dissolved and suspended material. Hooker cares about ocean color because of what it can reveal about the health of the ocean, and in turn, the health of our planet. "The main thing we are interested in is the productivity of the water," Hooker says. The seawater contains phytoplankton, microscopic plants, which are the food base for the ocean s ecosystems. Changes in the water s properties, whether due to natural seasonal effects or human influence, can lead to problems for delicate ecosystems such as coral reefs. Ocean color can inform researchers about the quantities and distribution of phytoplankton and other materials, providing clues as to how the world ocean is changing. NASA s Coastal Zone Color Scanner, launched in 1978, was the first ocean color instrument flown on a spacecraft. Since then, the Agency s ocean color research capabilities have become increasingly sophisticated with the launch of the SeaWiFS instrument in 1997 and the twin MODIS instruments carried into orbit on NASA s Terra (1999) and Aqua (2002) satellites. The technology provides sweeping, global information on ocean color on a scale unattainable by any other means. One issue that arises from

  2. Sensory Drive, Color, and Color Vision.

    Science.gov (United States)

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  3. Color quality management in advanced flat panel display engines

    Science.gov (United States)

    Lebowsky, Fritz; Neugebauer, Charles F.; Marnatti, David M.

    2003-01-01

    During recent years color reproduction systems for consumer needs have experienced various difficulties. In particular, flat panels and printers could not reach a satisfactory color match. The RGB image stored on an Internet server of a retailer did not show the desired colors on a consumer display device or printer device. STMicroelectronics addresses this important color reproduction issue inside their advanced display engines using novel algorithms targeted for low cost consumer flat panels. Using a new and genuine RGB color space transformation, which combines a gamma correction Look-Up-Table, tetrahedrization, and linear interpolation, we satisfy market demands.

  4. Industrial Color Physics

    CERN Document Server

    Klein, Georg A

    2010-01-01

    This unique book starts with a short historical overview of the development of the theories of color vision and applications of industrial color physics. The three dominant factors producing color - light source, color sample, and observer - are described in detail. The standardized color spaces are shown and related color values are applied to characteristic color qualities of absorption as well as of effect colorants. The fundamentals of spectrometric and colorimetric measuring techniques together with specific applications are described. Theoretical models for radiative transfer in transparent, translucent, and opaque layers are detailed; the two, three, and multi-flux approximations are presented for the first time in a coherent formalism. These methods constitute the fundamentals not only for the important classical methods, but also modern methods of recipe prediction applicable to all known colorants. The text is supplied with 52 tables, more than 200 partially colored illustrations, an appendix, and a...

  5. Color: Physics and Perception

    Science.gov (United States)

    Gilbert, Pupa

    Unless we are colorblind, as soon as we look at something, we know what color it is. Simple, isn't it? No, not really. The color we see is rarely just determined by the physical color, that is, the wavelength of visible light associated with that color. Other factors, such as the illuminating light, or the brightness surrounding a certain color, affect our perception of that color. Most striking, and useful, is understanding how the retina and the brain work together to interpret the color we see, and how they can be fooled by additive color mixing, which makes it possible to have color screens and displays. I will show the physical origin of all these phenomena and give live demos as I explain how they work. Bring your own eyes! For more information: (1) watch TED talk: ``Color: Physics and Perception'' and (2) read book: PUPA Gilbert and W Haeberli ``Physics in the Arts'', ISBN 9780123918789.

  6. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    Science.gov (United States)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better

  7. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    Science.gov (United States)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement

  8. Color models of hadrons

    International Nuclear Information System (INIS)

    Greenberg, O.W.; Nelson, C.A.

    1977-01-01

    The evidence for a three-valued 'color' degree of freedom in hadron physics is reviewed. The structure of color models is discussed. Consequences of color models for elementary particle physics are discussed, including saturation properties of hadronic states, π 0 →2γ and related decays, leptoproduction, and lepton pair annihilation. Signatures are given which distinguish theories with isolated colored particles from those in which color is permanently bound. (Auth.)

  9. The weight of color

    OpenAIRE

    Brunberg, Mikael

    2013-01-01

    This paper explores the weight of color, with the focus lying on the symbolic significance ofcolor. Exploring whether color in itself conveys symbolic significance and is the symbolicsignificance of color permanent, or is it an after construction? It will be looking at differentareas such as what makes us humans able to perceive colors in the first place, beginning withan insight at some of the foundations in the area of color theory. Mentioning experiments ondecomposed white light, that cont...

  10. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  11. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  12. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    Science.gov (United States)

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  13. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  14. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  15. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  16. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  17. Clustering of color map pixels: an interactive approach

    Science.gov (United States)

    Moon, Yiu Sang; Luk, Franklin T.; Yuen, K. N.; Yeung, Hoi Wo

    2003-12-01

    The demand for digital maps continues to arise as mobile electronic devices become more popular nowadays. Instead of creating the entire map from void, we may convert a scanned paper map into a digital one. Color clustering is the very first step of the conversion process. Currently, most of the existing clustering algorithms are fully automatic. They are fast and efficient but may not work well in map conversion because of the numerous ambiguous issues associated with printed maps. Here we introduce two interactive approaches for color clustering on the map: color clustering with pre-calculated index colors (PCIC) and color clustering with pre-calculated color ranges (PCCR). We also introduce a memory model that could enhance and integrate different image processing techniques for fine-tuning the clustering results. Problems and examples of the algorithms are discussed in the paper.

  18. Ocean Quality

    OpenAIRE

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  19. A combination chaotic system and application in color image encryption

    Science.gov (United States)

    Parvaz, R.; Zarebnia, M.

    2018-05-01

    In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.

  20. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S

    1978-01-01

    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  1. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  2. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  3. Color Segmentation of Homogeneous Areas on Colposcopical Images

    Directory of Open Access Journals (Sweden)

    Kosteley Yana

    2016-01-01

    Full Text Available The article provides an analysis of image processing and color segmentation applied to the problem of selection of homogeneous regions in the parameters of the color model. Methods of image processing such as Gaussian filter, median filter, histogram equalization and mathematical morphology are considered. The segmentation algorithm with the parameters of color components is presented, followed by isolation of the resulting connected component of a binary segmentation mask. Analysis of methods performed on images colposcopic research.

  4. Dichromatic Gray Pixel for Camera-agnostic Color Constancy

    OpenAIRE

    Qian, Yanlin; Chen, Ke; Nikkanen, Jarno; Kämäräinen, Joni-Kristian; Matas, Jiri

    2018-01-01

    We propose a novel statistical color constancy method, especially suitable for the Camera-agnostic Color Constancy, i.e. the scenario where nothing is known a priori about the capturing devices. The method, called Dichromatic Gray Pixel, or DGP, relies on a novel gray pixel detection algorithm derived using the Dichromatic Reflection Model. DGP is suitable for camera-agnostic color constancy since varying devices are set to make achromatic pixels look gray under standard neutral illumination....

  5. Guided color consistency optimization for image mosaicking

    Science.gov (United States)

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  6. Coloring mixed hypergraphs

    CERN Document Server

    Voloshin, Vitaly I

    2002-01-01

    The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th

  7. Comparing objective and subjective error measures for color constancy

    NARCIS (Netherlands)

    Lucassen, M.P.; Gijsenij, A.; Gevers, T.

    2008-01-01

    We compare an objective and a subjective performance measure for color constancy algorithms. Eight hyper-spectral images were rendered under a neutral reference illuminant and four chromatic illuminants (Red, Green, Yellow, Blue). The scenes rendered under the chromatic illuminants were color

  8. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  9. Preferred skin color enhancement for photographic color reproduction

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  10. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    Science.gov (United States)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  11. Tests of numerical simulation algorithms for the Kubo oscillator

    International Nuclear Information System (INIS)

    Fox, R.F.; Roy, R.; Yu, A.W.

    1987-01-01

    Numerical simulation algorithms for multiplicative noise (white or colored) are tested for accuracy against closed-form expressions for the Kubo oscillator. Direct white noise simulations lead to spurious decay of the modulus of the oscillator amplitude. A straightforward colored noise algorithm greatly reduces this decay and also provides highly accurate results in the white noise limit

  12. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI on-board the Communication, Ocean, and Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    M. Kim

    2016-02-01

    Full Text Available An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON-northeast (NE Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD from a Meteorological Imager (MI on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS. This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04 in the assumed single scattering albedo (SSA can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May. After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT with the new aerosol model

  13. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    Science.gov (United States)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... away without suffering an eye injury. However, the natural protective mechanisms of the eye – such as the ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are ... this month in the New England Journal of Medicine. Unfortunately, this kind of injury is all too ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ... 2018 By Dan T. Gudgel Do you know what the difference is between ophthalmologists and optometrists? A ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lentes de contacto de color Sep. 26, 2013 It started as an impulsive buy from a souvenir ... Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored contact lenses without ...

  20. Facts About Color Blindness

    Science.gov (United States)

    ... color? Normal Human Retina What color is a strawberry? Most of us would say red, but do ... light and shorter wavelength corresponds to blue light. Strawberries and other objects reflect some wavelengths of light ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the ... Service For Advertisers For Media Ophthalmology Job Center © American ...

  2. Fingers that change color

    Science.gov (United States)

    ... gov/ency/article/003249.htm Fingers that change color To use the sharing features on this page, please enable JavaScript. Fingers or toes may change color when they are exposed to cold temperatures or ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Peligros asociados con los lentes de contacto de color Sep. 26, 2013 It started as an impulsive ... Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ...

  4. Ocean Tide Loading Computation

    Science.gov (United States)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  5. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    Science.gov (United States)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  6. Color and experimental physics

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1975-01-01

    After a brief review of the color hypothesis and the motivations for its introduction, the experimental tests arare discussed. It is assumed that colored states have not been produced at present energies and only experimental tests which apply below the color threshold, when color is a ''hidden symmetry,'' are discussed. Some of these tests offer the possibility of distinguishing between quark models with fractional and integral quark charges. (auth)

  7. Color ordering in QCD

    OpenAIRE

    Schuster, Theodor

    2013-01-01

    We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.

  8. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  9. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  10. Developmental Color Perception

    Science.gov (United States)

    Gaines, Rosslyn; Little, Angela C.

    1975-01-01

    A sample of 107 subjects including kindergarteners, fifth graders, high school sophomores, parents of kindergarteners, and master artists were presented with a 108-item color perception test to investigate surface color perception at these age levels. A set of surface color perception rules was generated. (GO)

  11. Computing color categories

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Rogowitz, B.E.; Pappas, T.N.

    2000-01-01

    This paper is an attempt to develop a coherent framework for understanding, modeling, and computing color categories. The main assumption is that the structure of color category systems originates from the statistical structure of the perceived color environment. This environment can be modeled as

  12. Computational Cognitive Color Perception

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.S.

    2016-01-01

    Comprehension of aesthetical color characteristics based on a computational model of visual perception and color cognition are presented. The computational comprehension is manifested by the machine’s capability of instantly assigning appropriate colors to the objects perceived. They form a scene

  13. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far ... Use Facts About Colored Contacts and Halloween Safety Colored ...

  15. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  16. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  17. Vector sparse representation of color image using quaternion matrix analysis.

    Science.gov (United States)

    Xu, Yi; Yu, Licheng; Xu, Hongteng; Zhang, Hao; Nguyen, Truong

    2015-04-01

    Traditional sparse image models treat color image pixel as a scalar, which represents color channels separately or concatenate color channels as a monochrome image. In this paper, we propose a vector sparse representation model for color images using quaternion matrix analysis. As a new tool for color image representation, its potential applications in several image-processing tasks are presented, including color image reconstruction, denoising, inpainting, and super-resolution. The proposed model represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the channel images to an orthogonal color space. In this new color space, it is significant that the inherent color structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy between the atoms of different color channels. The experimental results demonstrate that the proposed sparse image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in color image analysis and processing domain.

  18. Color Face Recognition Based on Steerable Pyramid Transform and Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Ayşegül Uçar

    2014-01-01

    Full Text Available This paper presents a novel color face recognition algorithm by means of fusing color and local information. The proposed algorithm fuses the multiple features derived from different color spaces. Multiorientation and multiscale information relating to the color face features are extracted by applying Steerable Pyramid Transform (SPT to the local face regions. In this paper, the new three hybrid color spaces, YSCr, ZnSCr, and BnSCr, are firstly constructed using the Cb and Cr component images of the YCbCr color space, the S color component of the HSV color spaces, and the Zn and Bn color components of the normalized XYZ color space. Secondly, the color component face images are partitioned into the local patches. Thirdly, SPT is applied to local face regions and some statistical features are extracted. Fourthly, all features are fused according to decision fusion frame and the combinations of Extreme Learning Machines classifiers are applied to achieve color face recognition with fast and high correctness. The experiments show that the proposed Local Color Steerable Pyramid Transform (LCSPT face recognition algorithm improves seriously face recognition performance by using the new color spaces compared to the conventional and some hybrid ones. Furthermore, it achieves faster recognition compared with state-of-the-art studies.

  19. Colors, colored overlays, and reading skills

    OpenAIRE

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the ge...

  20. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  1. Extratropical Cyclone in the Southern Ocean

    Science.gov (United States)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  2. Algorithm Development and Validation of CDOM Properties for Estuarine and Continental Shelf Waters Along the Northeastern U.S. Coast

    Science.gov (United States)

    Mannino, Antonio; Novak, Michael G.; Hooker, Stanford B.; Hyde, Kimberly; Aurin, Dick

    2014-01-01

    An extensive set of field measurements have been collected throughout the continental margin of the northeastern U.S. from 2004 to 2011 to develop and validate ocean color satellite algorithms for the retrieval of the absorption coefficient of chromophoric dissolved organic matter (aCDOM) and CDOM spectral slopes for the 275:295 nm and 300:600 nm spectral range (S275:295 and S300:600). Remote sensing reflectance (Rrs) measurements computed from in-water radiometry profiles along with aCDOM() data are applied to develop several types of algorithms for the SeaWiFS and MODIS-Aqua ocean color satellite sensors, which involve least squares linear regression of aCDOM() with (1) Rrs band ratios, (2) quasi-analytical algorithm-based (QAA based) products of total absorption coefficients, (3) multiple Rrs bands within a multiple linear regression (MLR) analysis, and (4) diffuse attenuation coefficient (Kd). The relative error (mean absolute percent difference; MAPD) for the MLR retrievals of aCDOM(275), aCDOM(355), aCDOM(380), aCDOM(412) and aCDOM(443) for our study region range from 20.4-23.9 for MODIS-Aqua and 27.3-30 for SeaWiFS. Because of the narrower range of CDOM spectral slope values, the MAPD for the MLR S275:295 and QAA-based S300:600 algorithms are much lower ranging from 9.9 and 8.3 for SeaWiFS, respectively, and 8.7 and 6.3 for MODIS, respectively. Seasonal and spatial MODIS-Aqua and SeaWiFS distributions of aCDOM, S275:295 and S300:600 processed with these algorithms are consistent with field measurements and the processes that impact CDOM levels along the continental shelf of the northeastern U.S. Several satellite data processing factors correlate with higher uncertainty in satellite retrievals of aCDOM, S275:295 and S300:600 within the coastal ocean, including solar zenith angle, sensor viewing angle, and atmospheric products applied for atmospheric corrections. Algorithms that include ultraviolet Rrs bands provide a better fit to field measurements than

  3. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  4. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  5. Ocean Acidification

    Science.gov (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  6. A Modified Image Comparison Algorithm Using Histogram Features

    OpenAIRE

    Al-Oraiqat, Anas M.; Kostyukova, Natalya S.

    2018-01-01

    This article discuss the problem of color image content comparison. Particularly, methods of image content comparison are analyzed, restrictions of color histogram are described and a modified method of images content comparison is proposed. This method uses the color histograms and considers color locations. Testing and analyzing of based and modified algorithms are performed. The modified method shows 97% average precision for a collection containing about 700 images without loss of the adv...

  7. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  8. Gravity Field Over the S.Ocean - Poster, MGG-6

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a full color 24 by 36 inch poster. In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships are hundreds...

  9. Southern Ocean Predicted Seafloor Topography Poster - MGG9

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 36 by 48 inch full color poster is MGG Report 9. In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships...

  10. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  11. Relating color working memory and color perception.

    Science.gov (United States)

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. On the Color of the Orinoco River Plume

    Science.gov (United States)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going

  13. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  14. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2000) can be carried out in two different ways. The first one is ..... mushroom-like currents forming composite multi- .... eddies. Combination of SAR, IR and color data will ... Fu L-L and Holt B 1982 Seasat views oceans and sea ice with.

  15. Color image digitization and analysis for drum inspection

    International Nuclear Information System (INIS)

    Muller, R.C.; Armstrong, G.A.; Burks, B.L.; Kress, R.L.; Heckendorn, F.M.; Ward, C.R.

    1993-01-01

    A rust inspection system that uses color analysis to find rust spots on drums has been developed. The system is composed of high-resolution color video equipment that permits the inspection of rust spots on the order of 0.25 cm (0.1-in.) in diameter. Because of the modular nature of the system design, the use of open systems software (X11, etc.), the inspection system can be easily integrated into other environmental restoration and waste management programs. The inspection system represents an excellent platform for the integration of other color inspection and color image processing algorithms

  16. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season

    Science.gov (United States)

    Sasaki, Hiroaki; Siswanto, Eko; Nishiuchi, Kou; Tanaka, Katsuhisa; Hasegawa, Toru; Ishizaka, Joji

    2008-02-01

    Absorption coefficients of colored dissolved organic matter (CDOM) [a g(λ)] were measured and relationship with salinity was derived in the East China Sea (ECS) during summer when amount of the Changjiang River discharge is large. Low salinity Changjiang Diluted Water (CDW) was observed widely in the shelf region and was considered to be the main origin of CDOM, resulting in a strong relationship between salinity and a g(λ). Error of satellite a g(λ) estimated by the present ocean color algorithm could be corrected by satellite-retrieved chlorophyll data. Satellite-retrieved salinity could be predicted with about +/-1.0 accuracy from satellite a g(λ) and the relation between salinity and a g(λ). Our study suggests that satellite-derived a g(λ) can be an indicator of the low salinity CDW during summer.

  17. Color Reproduction with a Smartphone

    Science.gov (United States)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  18. Predicting the usefulness and naturalness of color reproductions

    NARCIS (Netherlands)

    Janssen, T.J.W.M.; Blommaert, F.J.J.

    2000-01-01

    We present algorithms for predicting the usefulness and naturalness of color reproductions of natural scenes. The algorithms are based on a computational model of the stages that lead to an observer's impression of the usefulness and naturalness of an image. These stages are (1) the perception, or

  19. Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-05-07

    Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is

  20. Color correction for chromatic distortion in a multi-wavelength digital holographic system

    International Nuclear Information System (INIS)

    Lin, Li-Chien; Huang, Yi-Lun; Tu, Han-Yen; Lai, Xin-Ji; Cheng, Chau-Jern

    2011-01-01

    A multi-wavelength digital holographic (MWDH) system has been developed to record and reconstruct color images. In comparison to working with digital cameras, however, high-quality color reproduction is difficult to achieve, because of the imperfections from the light sources, optical components, optical recording devices and recording processes. Thus, we face the problem of correcting the colors altered during the digital holographic process. We therefore propose a color correction scheme to correct the chromatic distortion caused by the MWDH system. The scheme consists of two steps: (1) creating a color correction profile and (2) applying it to the correction of the distorted colors. To create the color correction profile, we generate two algorithms: the sequential algorithm and the integrated algorithm. The ColorChecker is used to generate the distorted colors and their desired corrected colors. The relationship between these two color patches is fixed into a specific mathematical model, the parameters of which are estimated, creating the profile. Next, the profile is used to correct the color distortion of images, capturing and preserving the original vibrancy of the reproduced colors for different reconstructed images

  1. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  2. Color constancy in 3D-2D face recognition

    Science.gov (United States)

    Meyer, Manuel; Riess, Christian; Angelopoulou, Elli; Evangelopoulos, Georgios; Kakadiaris, Ioannis A.

    2013-05-01

    Face is one of the most popular biometric modalities. However, up to now, color is rarely actively used in face recognition. Yet, it is well-known that when a person recognizes a face, color cues can become as important as shape, especially when combined with the ability of people to identify the color of objects independent of illuminant color variations. In this paper, we examine the feasibility and effect of explicitly embedding illuminant color information in face recognition systems. We empirically examine the theoretical maximum gain of including known illuminant color to a 3D-2D face recognition system. We also investigate the impact of using computational color constancy methods for estimating the illuminant color, which is then incorporated into the face recognition framework. Our experiments show that under close-to-ideal illumination estimates, one can improve face recognition rates by 16%. When the illuminant color is algorithmically estimated, the improvement is approximately 5%. These results suggest that color constancy has a positive impact on face recognition, but the accuracy of the illuminant color estimate has a considerable effect on its benefits.

  3. A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Directory of Open Access Journals (Sweden)

    Y. Xing

    2010-04-01

    Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.

  4. A color based face detection system using multiple templates

    Institute of Scientific and Technical Information of China (English)

    王涛; 卜佳俊; 陈纯

    2003-01-01

    A color based system using multiple templates was developed and implemented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color statistics. Then it separates skin regions from non-skin regions. After that, it locates the frontal human face(s) within the skin regions. In the first step, 250 skin samples from persons of different ethnicities are used to determine the color distribution of human skin in chromatic color space in order to get a chroma chart showing likelihoods of skin colors. This chroma chart is used to generate, from the original color image, a gray scale image whose gray value at a pixel shows its likelihood of representing the skin. The algorithm uses an adaptive thresholding process to achieve the optimal threshold value for dividing the gray scale image into separate skin regions from non skin regions. Finally, multiple face templates matching is used to determine if a given skin region represents a frontal human face or not. Test of the system with more than 400 color images showed that the resulting detection rate was 83%, which is better than most color-based face detection systems. The average speed for face detection is 0.8 second/image (400×300 pixels) on a Pentium 3 (800MHz) PC.

  5. Robust Color Choice for Small-size League RoboCup Competition

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2004-10-01

    Full Text Available In this paper, the problem of choosing a set of most separable colors in a given environment is discussed. The proposed method models the process of generating theoretically computed best colors, printing of these colors through a color printer, and imaging the printed colors through a camera into an integrated framework. Thus, it provides a feasible way to generate practically best separable colors for a given environment with a set of given equipment. A real world application (robust color choice for small-size league RoboCup competition is used as an example to illustrate the proposed method. Experimental results on this example show the competitiveness of the colors learned from our algorithm compared to the colors adopted by other teams which are chosen via an extensive trial and error process using standard color papers.

  6. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  7. VIIRS Product Evaluation at the Ocean PEATE

    Science.gov (United States)

    Patt, Frederick S.; Feldman, Gene C.

    2010-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.

  8. Laser color recording unit

    Science.gov (United States)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  9. Rotation Invariant Color Retrieval

    OpenAIRE

    Swapna Borde; Udhav Bhosle

    2013-01-01

    The new technique for image retrieval using the color features extracted from images based on LogHistogram is proposed. The proposed technique is compared with Global color histogram and histogram ofcorners .It has been observed that number of histogram bins used for retrieval comparison of proposedtechnique (Log Histogram)is less as compared to Global Color Histogram and Histogram of corners. Theexperimental results on a database of 792 images with 11 classes indicate that proposed method (L...

  10. Colored fused filament fabrication

    OpenAIRE

    Song, Haichuan; Lefebvre, Sylvain

    2017-01-01

    Filament fused fabrication is the method of choice for printing 3D models at low cost, and is the de-facto standard for hobbyists, makers and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating ...

  11. Realtime Color Stereovision Processing

    National Research Council Canada - National Science Library

    Formwalt, Bryon

    2000-01-01

    .... This research takes a step forward in real time machine vision processing. It investigates techniques for implementing a real time stereovision processing system using two miniature color cameras...

  12. Characterization of Optical Attenuation by Colored Dissolved Organic Matter (CDOM) in the Red Sea

    KAUST Repository

    Tiwari, Surya Prakash

    2016-02-01

    Optical properties of colored dissolved organic matter (CDOM) control the downward irradiance in the ultraviolet and visible range of the electromagnetic radiation. CDOM is a strong absorber in shorter wavelengths (ultraviolet light) with steeper spectral slopes in the open ocean. Despite the importance of CDOM in understanding physical and biogeochemical processes in the marine environment, in situ measurements of optical properties in the Red Sea are sparse. This study comprises CDOM absorption from two different instruments (i.e. a spectrophotometer and WET Labs ac-s sensor), and assesses the variations in optical properties of CDOM in the Red Sea using data collected in 2014 and 2015. Three global inversion algorithms (Garver-Siegel-Maritorena model - GSM, Quasi-Analytical Algorithm - QAA, and the Constrained Linear-Matrix inversion model - CLM) were applied to recent data collected in the Red Sea, providing the comparison at five key selected wavelengths (412, 443, 490, 510, and 555 nm) demonstrated that in situ aCDOM values were higher than the values predicted from the three inversion algorithms and leads to underestimating in situ measurements. This finding is consistent with the conclusion of Brewin et al. (2015) that overestimation of chlorophyll in the Red Sea could be due to excessive CDOM.

  13. Evolution of pygmy angelfishes: Recent divergences, introgression, and the usefulness of color in taxonomy

    KAUST Repository

    Gaither, Michelle R.; Schultz, Jennifer K.; Bellwood, David R.; Pyle, Richard L.; DiBattista, Joseph; Rocha, Luiz A.; Bowen, Brian W.

    2014-01-01

    The pygmy angelfishes (genus Centropyge, family Pomacanthidae) are brightly colored species that occupy reef habitats in every tropical ocean. Some species are rarely observed because they occur below conventional scuba depths. Their striking

  14. Luminance contours can gate afterimage colors and "real" colors.

    Science.gov (United States)

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  15. STAR Algorithm Integration Team - Facilitating operational algorithm development

    Science.gov (United States)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  16. Encyclopedia of color science and technology

    CERN Document Server

    2016-01-01

    The Encyclopedia of Color Science and Technology provides an authoritative single source for understanding and applying the concepts of color to all fields of science and technology, including artistic and historical aspects of color. Many topics are discussed in this timely reference, including an introduction to the science of color, and entries on the physics, chemistry and perception of color. Color is described as it relates to optical phenomena of color and continues on through colorants and materials used to modulate color and also to human vision of color. The measurement of color is provided as is colorimetry, color spaces, color difference metrics, color appearance models, color order systems and cognitive color. Other topics discussed include industrial color, color imaging, capturing color, displaying color and printing color. Descriptions of color encodings, color management, processing color and applications relating to color synthesis for computer graphics are included in this work. The Encyclo...

  17. Comprehensive eye evaluation algorithm

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  18. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2016-12-01

    Full Text Available Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO. However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution, simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  19. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.

    Science.gov (United States)

    Zeng, Chen; Xu, Huiping; Fischer, Andrew M

    2016-12-07

    Ocean color remote sensing significantly contributes to our understanding of phytoplankton distribution and abundance and primary productivity in the Southern Ocean (SO). However, the current SO in situ optical database is still insufficient and unevenly distributed. This limits the ability to produce robust and accurate measurements of satellite-based chlorophyll. Based on data collected on cruises around the Antarctica Peninsula (AP) on January 2014 and 2016, this research intends to enhance our knowledge of SO water and atmospheric optical characteristics and address satellite algorithm deficiency of ocean color products. We collected high resolution in situ water leaving reflectance (±1 nm band resolution), simultaneous in situ chlorophyll-a concentrations and satellite (MODIS and VIIRS) water leaving reflectance. Field samples show that clouds have a great impact on the visible green bands and are difficult to detect because NASA protocols apply the NIR band as a cloud contamination threshold. When compared to global case I water, water around the AP has lower water leaving reflectance and a narrower blue-green band ratio, which explains chlorophyll-a underestimation in high chlorophyll-a regions and overestimation in low chlorophyll-a regions. VIIRS shows higher spatial coverage and detection accuracy than MODIS. After coefficient improvement, VIIRS is able to predict chlorophyll a with 53% accuracy.

  20. Reading color barcodes using visual snakes.

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Hanspeter (ORION International Technologies, Albuquerque, NM)

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method, the numeric bar codes reveal if the target is right-side-up or up-side-down.

  1. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS

    Directory of Open Access Journals (Sweden)

    Tara Blakey

    2016-10-01

    Full Text Available This study evaluated the ability to improve Sea-Viewing Wide Field-of-View Sensor (SeaWiFS chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels’ benthic class. The form of the Ocean Color (OC algorithm was assumed for this study. The operational atmospheric correction producing Level 2 SeaWiFS data was retained since the focus of this study was on establishing the benefit from the alternative specification of the bio-optical algorithm. Benthic class was determined through satellite image-based classification methods. Accuracy of the chl-a algorithms evaluated was determined through comparison with coincident in situ measurements of chl-a. The regionally-tuned models that were allowed to vary by benthic class produced more accurate estimates of chl-a than the single, unified regionally-tuned model. Mean absolute percent difference was approximately 70% for the regionally-tuned, benthic class-specific algorithms. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Atmospheric correction procedures specialized to coastal environments were recognized as areas for future improvement as these procedures would improve both classification and algorithm tuning.

  2. Compressed Subsequence Matching and Packed Tree Coloring

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2017-01-01

    We present a new algorithm for subsequence matching in grammar compressed strings. Given a grammar of size n compressing a string of size N and a pattern string of size m over an alphabet of size \\(\\sigma \\), our algorithm uses \\(O(n+\\frac{n\\sigma }{w})\\) space and \\(O(n+\\frac{n\\sigma }{w}+m\\log N\\log...... w\\cdot occ)\\) or \\(O(n+\\frac{n\\sigma }{w}\\log w+m\\log N\\cdot occ)\\) time. Here w is the word size and occ is the number of minimal occurrences of the pattern. Our algorithm uses less space than previous algorithms and is also faster for \\(occ=o(\\frac{n}{\\log N})\\) occurrences. The algorithm uses...... a new data structure that allows us to efficiently find the next occurrence of a given character after a given position in a compressed string. This data structure in turn is based on a new data structure for the tree color problem, where the node colors are packed in bit strings....

  3. Millennial Teachers of Color

    Science.gov (United States)

    Dilworth, Mary E., Ed.

    2018-01-01

    "Millennial Teachers of Color" explores the opportunities and challenges for creating and sustaining a healthy teaching force in the United States. Millennials are the largest generational cohort in American history, with approximately ninety million members and, of these, roughly 43 percent are people of color. This book, edited by…

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far from the truth." ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the ... Service For Advertisers For Media Ophthalmology Job Center © American ...

  5. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...

  6. On color transparency

    International Nuclear Information System (INIS)

    Jennings, B.K.; Miller, G.A.

    1989-10-01

    A quantum mechanical treatment of high momentum transfer nuclear processes is presented. Color transparency, the suppression of initial and final state interaction effects, is shown to arise from using the closure approximation. New conditions for the appearance of color transparency are derived

  7. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  8. Equivalent Colorings with "Maple"

    Science.gov (United States)

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  9. The Color of Lobsters

    NARCIS (Netherlands)

    Wijk, Arjan van

    2005-01-01

    Synthesis of 13C-enriched carotenoids. Carotenoids are natural colorants, ranging in color from pale yellow to deep purple, with important biological functions. Carotenoids in the human diet have a beneficial health effect, playing a role in the prevention of cardiovascular disease and cancer. To

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care team . Consumer warning about the improper use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the FDA? Check the FDA's database of approved contact lenses . Related Stories Prevent Infection ...

  11. Perceptually optimal color reproduction

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Blommaert, F.J.J.; Ridder, de H.; Rogowitz, B.E.; Pappas, T.N.

    1998-01-01

    What requirements do people place on optimal color reproduction of real-life scenes? We suggest that when people look at images containing familiar categories of objects, two primary factors shape their subjective impression of how optimal colors are reproduced: perceived naturalness and perceived

  12. Global Distribution Adjustment and Nonlinear Feature Transformation for Automatic Colorization

    Directory of Open Access Journals (Sweden)

    Terumasa Aoki

    2018-01-01

    Full Text Available Automatic colorization is generally classified into two groups: propagation-based methods and reference-based methods. In reference-based automatic colorization methods, color image(s are used as reference(s to reconstruct original color of a gray target image. The most important task here is to find the best matching pairs for all pixels between reference and target images in order to transfer color information from reference to target pixels. A lot of attractive local feature-based image matching methods have already been developed for the last two decades. Unfortunately, as far as we know, there are no optimal matching methods for automatic colorization because the requirements for pixel matching in automatic colorization are wholly different from those for traditional image matching. To design an efficient matching algorithm for automatic colorization, clustering pixel with low computational cost and generating descriptive feature vector are the most important challenges to be solved. In this paper, we present a novel method to address these two problems. In particular, our work concentrates on solving the second problem (designing a descriptive feature vector; namely, we will discuss how to learn a descriptive texture feature using scaled sparse texture feature combining with a nonlinear transformation to construct an optimal feature descriptor. Our experimental results show our proposed method outperforms the state-of-the-art methods in terms of robustness for color reconstruction for automatic colorization applications.

  13. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  14. Color Constancy by Deep Learning

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.; Hu, N.; Lucassen, M.P.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    Computational color constancy aims to estimate the color of the light source. The performance of many vision tasks, such as object detection and scene understanding, may benefit from color constancy by estimating the correct object colors. Since traditional color constancy methods are based on

  15. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  16. Color quarks and octonions

    International Nuclear Information System (INIS)

    Guersey, F.

    1974-01-01

    A mathematical framework based on octonions is developed for the description of the color quark scheme in which quarks are unobservable, the color SU(3) is exact, and only color singlets correspond to observable hadrons. The fictitious Hilbert space in which quarks operate is taken to be a space of vectors with octonion components. This space admits as a gauge group an exact SU(3) identified with the color SU/sub C/(3). Because of the nonassociativity of the underlying algebra, nonsinglet representations of SU/sub C/(3) are unobservable, while the subspace of color singlets satisfies associativity along with conditions for observability. Octonion quark fields satisfy the commutation relations of parafermions of order 3, leading to the correct SU(6) multiplets for hadrons. (U.S.)

  17. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  18. Color evaluation of computer-generated color rainbow holography

    International Nuclear Information System (INIS)

    Shi, Yile; Wang, Hui; Wu, Qiong

    2013-01-01

    A color evaluation approach for computer-generated color rainbow holography (CGCRH) is presented. Firstly, the relationship between color quantities of a computer display and a color computer-generated holography (CCGH) colorimetric system is discussed based on color matching theory. An isochromatic transfer relationship of color quantity and amplitude of object light field is proposed. Secondly, the color reproduction mechanism and factors leading to the color difference between the color object and the holographic image that is reconstructed by CGCRH are analyzed in detail. A quantitative color calculation method for the holographic image reconstructed by CGCRH is given. Finally, general color samples are selected as numerical calculation test targets and the color differences between holographic images and test targets are calculated based on our proposed method. (paper)

  19. A color based face detection system using multiple templates

    Institute of Scientific and Technical Information of China (English)

    王涛; 卜佳酸; 陈纯

    2003-01-01

    A color based system using multiple templates was developed and implemented for detecting hu-man faces in color images.The algorithm comsists of three image processing steps.The first step is human skin color statistics.Then it separates skin regions from non-skin regions.After that,it locates the frontal human face(s) within the skin regions.In the first step,250 skin samples from persons of different ethnicities are used to determine the color distribution of human skin in chromatic color space in order to get a chroma chart showing likelihoods of skin colors.This chroma chart is used to generate,from the original color image,a gray scale image whose gray value at a pixel shows its likelihood of representing the shin,The algorithm uses an adaptive thresholding process to achieve the optimal threshold value for dividing the gray scale image into sep-arate skin regions from non skin regions.Finally,multiple face templates matching is used to determine if a given skin region represents a frontal human face or not.Test of the system with more than 400 color images showed that the resulting detection rate was 83%,which is better than most colou-based face detection sys-tems.The average speed for face detection is 0.8 second/image(400×300pixels) on a Pentium 3(800MHz) PC.

  20. Live texturing of augmented reality characters from colored drawings.

    Science.gov (United States)

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  1. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  2. A Fuzzy Logic-Based Video Subtitle and Caption Coloring System

    Directory of Open Access Journals (Sweden)

    Mohsen Davoudi

    2012-01-01

    Full Text Available An approach has been proposed for automatic adaptive subtitle coloring using fuzzy logic-based algorithm. This system changes the color of the video subtitle/caption to “pleasant” color according to color harmony and the visual perception of the image background colors. In the fuzzy analyzer unit, using RGB histograms of background image, the R, G, and B values for the color of the subtitle/caption are computed using fixed fuzzy IF-THEN rules fully driven from the color harmony theories to satisfy complementary color and subtitle-background color harmony conditions. A real-time hardware structure has been proposed for implementation of the front-end processing unit as well as the fuzzy analyzer unit.

  3. Stool Color: When to Worry

    Science.gov (United States)

    Stool color: When to worry Yesterday, my stool color was bright green. Should I be concerned? Answers from Michael ... M.D. Stool comes in a range of colors. All shades of brown and even green are ...

  4. Realizable Triples in Dominator Colorings

    National Research Council Canada - National Science Library

    Fletcher, Douglas M

    2007-01-01

    Given a graph G and its vertex set V(G), the chromatic number, Chi(G), represents the minimum number of colors required to color the vertices of G so that no two adjacent vertices have the same color...

  5. NOAA Integrated Ocean and Coastal Mapping (IOCM) orthorectified mosaic image tiles, Merrimack River and Plum Island Sound, Massachusetts, June 2011 (NODC Accession 0103944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains both true color (RGB) and infrared (IR) ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping...

  6. Biological origins of color categorization

    OpenAIRE

    Skelton, Alice E.; Catchpole, Gemma; Abbott, Joshua T.; Bosten, Jenny M.; Franklin, Anna

    2017-01-01

    The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants’ categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mappe...

  7. Stork Color Proofing Technology

    Science.gov (United States)

    Ekman, C. Frederick

    1989-04-01

    For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.

  8. Colors and contact dermatitis.

    Science.gov (United States)

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  9. The color of money

    DEFF Research Database (Denmark)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni; Einarsdóttir, Kristin Vala

    2014-01-01

    of attention are affected by reward, and whether the effect involves general enhancement or is specific to discrete components of attention. Observers viewed brief displays of differentially colored letters and reported their identity. Each color signified a consistent monetary value and we measured......, by including conditions with color-contingent negative values. This gave an opportunity to compare high-gain with high-loss conditions. We found clear effects of value on selectivity when comparing high- and low-value conditions. When comparing equally valuable high-loss and high-gain conditions there were...

  10. Color Image Evaluation for Small Space Based on FA and GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2014-01-01

    Full Text Available Aiming at the problem that color image is difficult to quantify, this paper proposes an evaluation method of color image for small space based on factor analysis (FA and gene expression programming (GEP and constructs a correlation model between color image factors and comprehensive color image. The basic color samples of small space and color images are evaluated by semantic differential method (SD method, color image factors are selected via dimension reduction in FA, factor score function is established, and by combining the entropy weight method to determine each factor weights then the comprehensive color image score is calculated finally. The best fitting function between color image factors and comprehensive color image is obtained by GEP algorithm, which can predict the users’ color image values. A color image evaluation system for small space is developed based on this model. The color evaluation of a control room on AC frequency conversion rig is taken as an example, verifying the effectiveness of the proposed method. It also can assist the designers in other color designs and provide a fast evaluation tool for testing users’ color image.

  11. Whole Genome Phylogenetic Tree Reconstruction using Colored de Bruijn Graphs

    OpenAIRE

    Lyman, Cole

    2017-01-01

    We present kleuren, a novel assembly-free method to reconstruct phylogenetic trees using the Colored de Bruijn Graph. kleuren works by constructing the Colored de Bruijn Graph and then traversing it, finding bubble structures in the graph that provide phylogenetic signal. The bubbles are then aligned and concatenated to form a supermatrix, from which a phylogenetic tree is inferred. We introduce the algorithm that kleuren uses to accomplish this task, and show its performance on reconstructin...

  12. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    D. Stramski

    2008-02-01

    recommend that these algorithms be implemented for routine processing of ocean color satellite data to produce maps of surface POC with the status of an evaluation data product for continued work on algorithm development and refinements. The two-step algorithms also deserve further attention because they can utilize various models for estimating IOPs from reflectance, offer advantages for developing an understanding of bio-optical variability underlying the algorithms, and provide flexibility for regional or seasonal parameterizations of the algorithms.

  13. A robust human face detection algorithm

    Science.gov (United States)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  14. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  15. A REVIEW OF COLOR MEASURMENTS IN THE TEXTILE INDUSTRY

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2016-05-01

    Full Text Available Color is an important factor in the evaluation of aesthetic appearance and functionality of many products, but especially of textile industry ones. In textiles production process, color can be assessed in different stages: the selection of raw materials, the incoming item tests, the preparation of dyeing ingredients, the crocking resistance testing, the color fastness and in all stages, the quality control. Color evaluation can be done visually or using specialized test instruments such as colorimeters or spectrometers, therefore a high accuracy of measurements must be achieved. Standards describe different procedures and testing techniques depending on the product type and the quality level required by the customer. The paper presents the most common systems of color representation and communication, measurement methods and techniques, and standards that define them. The CIE color representation systems have been reviewed, together with the measurement methods offering the repeatability of the process. Most of the standards have been issued in US, but several European and International are stating the color assessment process. We have also conducted a review of latest published papers in the topic of color measurement, comparison and match. Several image processing applications algorithms offers new opportunities for computer assisted evaluation and control of textile color properties.

  16. Food Coloring and Behavior

    OpenAIRE

    J Gordon Millichap

    1994-01-01

    The association between the ingestion of tartrazine synthetic food coloring and behavioral change in children referred for assessment of hyperactivity was investigated at the Royal Children’s Hospital, University of Melbourne, Australia.

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ... About the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... asociados con los lentes de contacto de color Sep. 26, 2013 It started as an impulsive buy ... to its original shape after wearing orthokeratology lenses? Sep 13, 2017 Histoplasmosis Diagnosis Sep 01, 2017 How ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ... a laser pointer several times, according to a report published this month in the New England Journal ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Eye Health ... Leer en Español: Peligros asociados con los lentes de contacto de color Sep. 26, ...