WorldWideScience

Sample records for obtain high-resolution measurements

  1. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  2. High-resolution neutron-diffraction measurements to 8 kbar

    Science.gov (United States)

    Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.

    2017-10-01

    We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.

  3. The measurement and calculation of the X-ray spatial resolution obtained in the analytical electron microscope

    International Nuclear Information System (INIS)

    Michael, J.R.; Williams, D.B.

    1990-01-01

    The X-ray microanalytical spatial resolution is determined experimentally in various analytical electron microscopes by measuring the degradation of an atomically discrete composition profile across an interphase interface in a thin-foil of Ni-Cr-Fe. The experimental spatial resolutions are then compared with calculated values. The calculated spatial resolutions are obtained by the mathematical convolution of the electron probe size with an assumed beam-broadening distribution and the single-scattering model of beam broadening. The probe size is measured directly from an image of the probe in a TEM/SETEM and indirectly from dark-field signal changes resulting from scanning the probe across the edge of an MgO crystal in a dedicated STEM. This study demonstrates the applicability of the convolution technique to the calculation of the microanalytical spatial resolution obtained in the analytical electron microscope. It is demonstrated that, contrary to popular opinion, the electron probe size has a major impact on the measured spatial resolution in foils < 150 nm thick. (author)

  4. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-01-01

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN 2 ). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations

  5. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  6. Effect of image resolution manipulation in rearfoot angle measurements obtained with photogrammetry.

    Science.gov (United States)

    Sacco, I C N; Picon, A P; Ribeiro, A P; Sartor, C D; Camargo-Junior, F; Macedo, D O; Mori, E T T; Monte, F; Yamate, G Y; Neves, J G; Kondo, V E; Aliberti, S

    2012-09-01

    The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter- and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.

  7. Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall

    OpenAIRE

    T. J. Garrett; C. Fallgatter; K. Shkurko; D. Howlett

    2012-01-01

    We describe here a new instrument for imaging hydrometeors in freefall. The Multi-Angle Snowflake Camera (MASC) captures high resolution photographs of hydrometeors from three angles while simultaneously measuring their fallspeed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fallspeed, hydrometeor size, shape, orientation and aspect ratio. From a sel...

  8. High resolution wind measurements for offshore wind energy development

    Science.gov (United States)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  9. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    Science.gov (United States)

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  11. The measurement of the presampled MTF of a high spatial resolution neutron imaging system

    International Nuclear Information System (INIS)

    Cao, Raymond Lei; Biegalski, Steven R.

    2007-01-01

    A high spatial resolution neutron imaging device was developed at the Mark II TRIGA reactor at University of Texas at Austin. As the modulation transfer function (MTF) is recognized as a well-established parameter for evaluation of imaging system resolution, the aliasing associated with digital sampling adds complexity to its measurement. Aliasing is especially problematic when using a high spatial resolution micro-channel plate (MCP) neutron detector that has a pixel grid size similar to that of a CCD array. To compensate for the aliasing an angulated edge method was used to evaluate the neutron imaging facility, overcoming aliasing by obtaining an oversampled edge spread function (ESF). Baseline correction was applied to the ESF to remove the noticeable trends and the LSF was multiplied by Hann window to obtain a smoothed version of presampled MTF. The computing procedure is confirmed by visual inspection of a testing phantom; in addition, it is confirmed by comparison to the MTF measurement of a scintillation screen with a known MTF curve

  12. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas...... of the data for high-resolution studies such as annual layer counting. The presented method uses deconvolution techniques and is robust to the presence of noise in the measurements. If integrated into the data processing, it requires no additional data collection. The method is applied to selected ice core...

  13. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  14. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  15. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  16. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    OpenAIRE

    T. J. Garrett; C. Fallgatter; K. Shkurko; D. Howlett

    2012-01-01

    We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC) captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and asp...

  17. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  18. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  19. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  20. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  1. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  2. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  3. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  4. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  5. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  6. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  7. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla

    DEFF Research Database (Denmark)

    van der Velden, Tijl A; Schmitz, Alexander M Th; Gilhuijs, Kenneth G A

    2016-01-01

    contained 3D T1-weighted gradient echo images obtained with both WSE fat suppression, multi echo Dixon fat suppression, and without fat suppression. Images were acquired at a (0.8mm)(3) or (0.7mm)(3) isotropic resolution with equal field of view and optimized such to obtain a maximal SNR. Image quality...... was scored qualitatively on overall image quality, sharpness of anatomical details, presence of artefacts, inhomogeneous fat suppression and the presence of water-fat shift. A quantitative scoring was obtained from the signal to noise ratio and contrast to noise ratio. RESULTS: WSE scored significantly...... better in terms of overall image quality and the absence of artefacts. No significant difference in contrast to noise ratio was found between the two fat suppression methods. CONCLUSION: When maximizing temporal and spatial resolution of high resolution DCE MRI of the breast, water selective excitation...

  8. Near-optimum procedure for half-life measurement by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Parker, J.L.

    1989-01-01

    A near-optimum procedure for using high-resolution γ-ray spectrometry to measure the half-lives of appropriate γ-ray- emitting-nuclides is presented. Among the important points of the procedure are the employment of the reference source method for implicit correction of pileup and deadtime losses; the use of full-energy peak-area ratios as the fundamental measured quantities; and continuous, high-rate data acquisition to obtain good results in a fraction of a half-life if desired. Equations are given for estimating the precision of the computed half-lives in terms of total measurement time, number of spectral acquisitions, and the precision of peak-area ratios. Results of 169 Yb half-life measurements are given as an example of the procedure's application. 3 refs., 2 tabs

  9. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Wim Devesse

    2017-01-01

    Full Text Available A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields.

  10. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    International Nuclear Information System (INIS)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard

    2013-01-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  11. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard, E-mail: rh15@mrc-lmb.cam.ac.uk

    2013-12-15

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  12. High resolution photofission measurements in 238U and 232Th. Final report

    International Nuclear Information System (INIS)

    Lancman, H.

    1985-12-01

    A novel technique for measuring the photofission cross section with very high photon energy resolution has been developed. The photons are obtained from selected resonances in the (p,γ) reaction on various light nuclei. The photon energy resolution approaches 200 eV in favorable cases. The photon energy spread at each (p,γ) resonance is approx.20 keV on the average. Measurements of the photo-fission cross sections of 232 Th and 238 U have been carried out in the energy range from 5.8 to 12 MeV. Intermediate structure has been found in both nuclei at excitation energies around 6 MeV. Various properties of this structure, such as average areas of resonances, their spacing, width, and the underlying bakground, as well as the experimental fission probability averaged over the intermediate structure have been found to agree with theoretical predictions based on a double-humped fission barrier. In the case of 232 Th, the feature of this barrier, a rather high first hump and a deep secondary well, are quite different from those predicted by current theoretial barrier calculations. 13 refs., 4 figs., 3 tabs

  13. High-resolution measurement of the 16O(γ,pn) reaction

    International Nuclear Information System (INIS)

    Isaksson, L.

    1996-10-01

    The 16 O(γ,pn) reaction has been measured with a resolution high enough to resolve individual low-lying states in the residual 14 N nucleus. Partial cross-sections, available to the acceptance of the detector system, have been extracted for the individual states, and compared to a recent calculation based on absorption on one-pion exchange currents and the Δ resonance current. The experiment was performed at the Maxlab accelerator laboratory in Lund, Sweden, using tagged photons at an energy of 67 - 76 MeV. The proton detector angular range was 60 - 100 deg and the corresponding for the neutron detector 81 - 103 deg. A missing energy resolution of 1.5 MeV was obtained. The relative population of the states in the residual 14 N nucleus indicates that the reaction takes place predominantly on proton-neutron pairs coupled to (J π ,T) = (1 + ,0). The cross-section for absorption on (0 + ,1) pairs is strongly suppressed. Furthermore, the relative population of the states indicates that both L=0 and L=2 pairs participate in the reaction. 45 refs

  14. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  15. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Dong-Xing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Williams, Paul N. [Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL (United Kingdom); Xu, Hua-Cheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Gang [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Luo, Jun, E-mail: esluojun@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Ma, Lena Q. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States)

    2016-10-05

    Highlights: • Two high-resolution diffusive gradients in thin-films samplers were characterized. • For the first time DGT was applied to study the bioavailability of W in soils. • 1D and 2D high resolution profiling of W fluxes across the SWI were obtained. • The apparent diffusion W fluxes across two micro-interfaces were calculated. - Abstract: Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. {sup Ferrihydrite}DGT can measure W at various ionic strengths (0.001–0.5 mol L{sup −1} NaNO{sub 3}) and pH (4–8), while {sup PZ}DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment—water and hotspot—bulk media interfaces from Lake Taihu were obtained using {sup PZ}DGT coupled with laser ablation ICP–MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.

  16. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...

  17. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral banda)

    Science.gov (United States)

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li+ or Li2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV for the 135 Å Li2 + lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  18. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  19. High resolution time-of-flight measurements in small and large scintillation counters

    International Nuclear Information System (INIS)

    D'Agostini, G.; Marini, G.; Martellotti, G.; Massa, F.; Rambaldi, A.; Sciubba, A.

    1981-01-01

    In a test run, the experimental time-of-flight resolution was measured for several different scintillation counters of small (10 x 5 cm 2 ) and large (100 x 15 cm 2 and 75 x 25 cm 2 ) area. The design characteristics were decided on the basis of theoretical Monte Carlo calculations. We report results using twisted, fish-tail, and rectangular light- guides and different types of scintillator (NE 114 and PILOT U). Time resolution up to approx. equal to 130-150 ps fwhm for the small counters and up to approx. equal to 280-300 ps fwhm for the large counters were obtained. The spatial resolution from time measurements in the large counters is also reported. The results of Monte Carlo calculations on the type of scintillator, the shape and dimensions of the light-guides, and the nature of the external wrapping surfaces - to be used in order to optimize the time resolution - are also summarized. (orig.)

  20. High-resolution transmission measurements of CO2 at high temperatures for industrial applications

    DEFF Research Database (Denmark)

    Evseev, Vadim; Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    . The spectra have been recorded in a high-temperature flow gas cell and using a Fourier transform infrared (FTIR) spectrometer at a nominal resolution of 0.125 cm-1. The volume fractions of CO2 in the measurements were 1,10 and 100%. The measurements have been validated by comparison with medium...

  1. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  2. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    Directory of Open Access Journals (Sweden)

    T. J. Garrett

    2012-11-01

    Full Text Available We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size.

  3. Performance of high-resolution X-band radar for rainfall measurement in The Netherlands

    Directory of Open Access Journals (Sweden)

    C. Z. van de Beek

    2010-02-01

    Full Text Available This study presents an analysis of 195 rainfall events gathered with the X-band weather radar SOLIDAR and a tipping bucket rain gauge network near Delft, The Netherlands, between May 1993 and April 1994. The aim of this paper is to present a thorough analysis of a climatological dataset using a high spatial (120 m and temporal (16 s resolution X-band radar. This makes it a study of the potential for high-resolution rainfall measurements with non-polarimetric X-band radar over flat terrain. An appropriate radar reflectivity – rain rate relation is derived from measurements of raindrop size distributions and compared with radar – rain gauge data. The radar calibration is assessed using a long-term comparison of rain gauge measurements with corresponding radar reflectivities as well as by analyzing the evolution of the stability of ground clutter areas over time. Three different methods for ground clutter correction as well as the effectiveness of forward and backward attenuation correction algorithms have been studied. Five individual rainfall events are discussed in detail to illustrate the strengths and weaknesses of high-resolution X-band radar and the effectiveness of the presented correction methods. X-band radar is found to be able to measure the space-time variation of rainfall at high resolution, far greater than what can be achieved by rain gauge networks or a typical operational C-band weather radar. On the other hand, SOLIDAR can suffer from receiver saturation, wet radome attenuation as well as signal loss along the path. During very strong convective situations the signal can even be lost completely. In combination with several rain gauges for quality control, high resolution X-band radar is considered to be suitable for rainfall monitoring over relatively small (urban catchments. These results offer great prospects for the new high resolution polarimetric doppler X-band radar IDRA.

  4. HIGH-TIME-RESOLUTION MEASUREMENTS OF THE POLARIZATION OF THE CRAB PULSAR AT 1.38 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Słowikowska, Agnieszka [Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra (Poland); Stappers, Benjamin W. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Harding, Alice K. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); O' Dell, Stephen L.; Elsner, Ronald F.; Weisskopf, Martin C. [Astrophysics Office, NASA Marshall Space Flight Center, ZP12, Huntsville, AL 35812 (United States); Van der Horst, Alexander J. [Astronomical Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2015-01-20

    Using the Westerbork Synthesis Radio Telescope, we obtained high-time-resolution measurements of the full polarization of the Crab pulsar. At a resolution of 1/8192 of the 34 ms pulse period (i.e., 4.1 μs), the 1.38 GHz linear-polarization measurements are in general agreement with previous lower-time-resolution 1.4 GHz measurements of linear polarization in the main pulse (MP), in the interpulse (IP), and in the low-frequency component (LFC). We find the MP and IP to be linearly polarized at about 24% and 21% with no discernible difference in polarization position angle. However, contrary to theoretical expectations and measurements in the visible, we find no evidence for significant variation (sweep) in the polarization position angle over the MP, the IP, or the LFC. We discuss the implications, which appear to be in contradiction to theoretical expectations. We also detect weak circular polarization in the MP and IP, and strong (≈20%) circular polarization in the LFC, which also exhibits very strong (≈98%) linear polarization at a position angle of 40° from that of the MP or IP. The properties are consistent with the LFC, which is a low-altitude component, and the MP and IP, which are high-altitude caustic components. Current models for the MP and IP emission do not readily account for the absence of pronounced polarization changes across the pulse. We measure IP and LFC pulse phases relative to the MP consistent with recent measurements, which have shown that the phases of these pulse components are evolving with time.

  5. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  6. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Directory of Open Access Journals (Sweden)

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  7. Space resolution obtained with a highly segmented SCIFI e.m. calorimeter

    International Nuclear Information System (INIS)

    De Zorzi, G.; Bertino, M.; Bini, C.; De Pedis, D.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1992-01-01

    During the setting up of the LEP-5 experiment, we tested a longitudinal SCIFI e.m. calorimeter, having a module cross area 25x25 mm 2 and 12.5x12.5 mm 2 for large and small modules respectively. The results were obtained with 10 and 50 GeV electrons, and concern the impact point resolution and the transverse distribution of the e.m. shower energy inside the calorimeter. (orig.)

  8. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  9. Use of high-resolution ultrasound to measure changes in plantar fascia thickness resulting from tissue creep in runners and walkers.

    Science.gov (United States)

    Welk, Aaron B; Haun, Daniel W; Clark, Thomas B; Kettner, Norman W

    2015-01-01

    This study sought to use high-resolution ultrasound to measure changes in plantar fascia thickness as a result of tissue creep generated by walking and running. Independent samples of participants were obtained. Thirty-six walkers and 25 runners walked on a treadmill for 10 minutes or ran for 30 minutes, respectively. Standardized measures of the thickness of the plantar fascia were obtained in both groups using high-resolution ultrasound. The mean thickness of the plantar fascia was measured immediately before and after participation. The mean plantar fascia thickness was decreased by 0.06 ± 0.33 mm SD after running and 0.03 ± 0.22 mm SD after walking. The difference between groups was not significant. Although the parameters of this study did not produce significant changes in the plantar fascia thickness, a slightly higher change in the mean thickness of the plantar fascia in the running group deserves further investigation. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  10. High-resolution measurement of the {sup 16}O({gamma},pn) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Isaksson, L.

    1996-10-01

    The {sup 16}O({gamma},pn) reaction has been measured with a resolution high enough to resolve individual low-lying states in the residual {sup 14}N nucleus. Partial cross-sections, available to the acceptance of the detector system, have been extracted for the individual states, and compared to a recent calculation based on absorption on one-pion exchange currents and the {Delta} resonance current. The experiment was performed at the Maxlab accelerator laboratory in Lund, Sweden, using tagged photons at an energy of 67 - 76 MeV. The proton detector angular range was 60 - 100 deg and the corresponding for the neutron detector 81 - 103 deg. A missing energy resolution of 1.5 MeV was obtained. The relative population of the states in the residual {sup 14}N nucleus indicates that the reaction takes place predominantly on proton-neutron pairs coupled to (J{sup {pi}},T) = (1{sup +},0). The cross-section for absorption on (0{sup +},1) pairs is strongly suppressed. Furthermore, the relative population of the states indicates that both L=0 and L=2 pairs participate in the reaction. 45 refs.

  11. High spatial resolution measurement of depth-of-interaction of a PET LSO crystal

    International Nuclear Information System (INIS)

    Simon, A.; Kalinka, G.; Novak, D.; Sipos, A.; Vegh, J.; Molnar, J.

    2004-01-01

    Complete text of publication follows. A new type of experimental technique to investigate the depth-of-interaction (DOI) dependence in small scintillator elements designed for high-resolution animal PET [1] has been introduced at our institute, recently. A lutetium oxyorthosilicate (LSO) crystal (2x2x10 mm 3 ) was irradiated with a highly focused 2 MeV He + beam at the ATOMKI nuclear microprobe laboratory. Pulse height spectra from a photomultiplier (PMT) attached to one end of the LSO crystal were collected in list mode. Sequential scans of 1000x1000 μm 2 areas along the 10 mm long crystal were made to get high lateral resolution images of pulse height spectra at different distances from the window of the PMT. A mean pulse height algorithm was applied to each pixel to generate two dimensional intensity images and the corresponding spectra of 100 μmx1 mm areas. Representative pulse height spectra are shown in Fig. 1 for different distances between the position of irradiation and the PMT. The mean value of the pulse height spectrum describing the position of the full energy peak is a way to measure DOI effects. It is seen that the closer the DOI to the PMT-end of the crystal the higher the energy of the peak. The centre of the detected peak varies about 30 % along the lateral side of the crystal. This effect is due to the increasing number of reflections with associated loss of light when the distance between the DOI position and the light collecting PMT grows. Further these results, no difference in the light intensity was found depending on which position across (perpendicular to the length of) the crystal was irradiated with the microbeam. The obtained results of the overall DOI dependence confirm previous measurements on LSO crystals with similar geometry and wrapping but based on collimated gamma-ray irradiation. Since the present experimental setup allows obtaining data with several orders of magnitude better spatial resolution (from μm up to mm) than with

  12. SU-E-I-40: New Method for Measurement of Task-Specific, High-Resolution Detector System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Loughran, B; Singh, V; Jain, A; Bednarek, D; Rudin, S [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, was then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  13. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    Science.gov (United States)

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  14. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    Science.gov (United States)

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  15. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  16. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  17. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  18. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  1. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  2. High resolution simultaneous measurements of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Tanaka, K.; Komura, K.

    2006-01-01

    High resolution (2-3 hrs) simultaneous measurements of airborne radionuclides, 212 Pb, 210 Pb and 7 Be, have been performed by using extremely low background Ge detectors at Ogoya Underground Laboratory. We have measured above radionuclides at three monitoring points viz, 1) Low Level Radioactivity Laboratory (LLRL) Kanazawa University, 2) Shishiku Plateau (640 m MSL) located about 8 km from LLRL to investigate vertical difference of activity levels, and 3) Hegura Island (10 m MSL) located about 50 km from Noto Peninsula in the Sea of Japan to evaluate the influences of Asian continent or mainland of Japan on the variation to the activity levels. Variations of short-lived 212 Pb concentration showed noticeable time lags between at LLRL and at Shishiku Plateau. These time lags might be caused by change of height of a planetary boundary layer. On the contrary, variations of long-lived 210 Pb and 7 Be showed simultaneity at three locations because of homogeneity of these concentrations all over the area. (author)

  3. High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow

    Science.gov (United States)

    Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.

    2018-01-01

    We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.

  4. High-resolution 3D dose distribution measured for two low-energy x-ray brachytherapy seeds: 125I and 103Pd

    International Nuclear Information System (INIS)

    Massillon-JL, G.; Minniti, R.; Mitch, M.G.; Soares, C.G.; Hearn, R.A.

    2011-01-01

    In this work, we have investigated the 3D absorbed dose distribution around 125 I and 103 Pd low-energy photon brachytherapy seeds using a high-spatial-resolution gel scanning system to address the current difficulty in measuring absorbed dose at close distances to these sources as a consequence of high dose rate gradient. A new version of BANG-gel coupled with a small format laser CT scanner has been used. Measurements were performed with 100 μm resolution in all dimensions. In particular, radial dose function and absorbed dose rate in the plane parallel to the sources longitudinal-axis were derived at radial distances smaller than or equal to 1 cm. In addition, the energy dependence was evaluated, finding that, within measurement uncertainties, the gel response is independent of the energy for energy photon values between 20 keV and 1250 keV. We have observed that at distances larger than 1.4 mm from the source, the delivered dose is similar to predictions from published Monte Carlo calculations (MC) for the 125 I seed. For distances between 1 mm and 3 mm, differences in magnitude and shape are significant for the 103 Pd seed, where an enhancement is observed. In the enhancement region, a difference of up to 70% in the radial dose function was obtained. Such observation suggests a contribution from other radionuclides emitting beta-particles or electrons, and not considered by MC. To understand the effect, spectrometry measurements were performed. A small contribution of 102 Rh/ 102m Rh radionuclide relative to 103 Pd was observed and its importance on the absorbed dose measured at close distances to the seed is time dependent and consequently, avoids reproducible measurements. Finally, the results obtained in this work underscore the importance of using high-spatial-resolution and water-equivalent detectors for measuring absorbed dose in low-energy photon radiation fields.

  5. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    International Nuclear Information System (INIS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-01-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution

  6. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    Science.gov (United States)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  7. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.

    Science.gov (United States)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R; Murshudov, Garib N; Short, Judith M; Scheres, Sjors H W; Henderson, Richard

    2013-12-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  8. High Spectral Resolution Lidar Based on a Potassium Faraday Dispersive Filter for Daytime Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Abo Makoto

    2016-01-01

    Full Text Available In this paper, a new high-spectral-resolution lidar technique is proposed for measuring the profiles of atmospheric temperature in daytime. Based on the theory of high resolution Rayleigh scattering, the feasibility and advantages of using potassium (K Faraday dispersive optical filters as blocking filters for measuring atmospheric temperature are demonstrated with a numerical simulation. It was found that temperature profiles could be measured within 1K error for the height of 9 km with a 500 m range resolution in 60 min by using laser pulses with 1mJ/pulse and 1 kHz, and a 50 cm diameter telescope. Furthermore, we are developing compact pulsed laser system for temperature lidar transmitter.

  9. Compact high-resolution echelle-AOTF NIR spectrometer for atmospheric measurements

    Science.gov (United States)

    Korablev, Oleg I.; Bertaux, Jean-Loup; Vinogradov, Imant I.; Kalinnikov, Yurii K.; Nevejans, D.; Neefs, E.; Le Barbu, T.; Durry, G.

    2017-11-01

    A new concept of a high-resolution near-IR spectrometer consisting of an echelle grating combined with an acousto-optic tunable filter (AOTF) for separation of diffraction orders, is developed for space-borne studies of planetary atmospheres. A compact design with no moving parts within the mass budget of 3-5 kg allows to reach the resolving power λ/Δλ of 20000-30000. Only a small piece of spectrum in high diffraction orders can be measured at a time, but thanks to flexibility of the AOTF electrical tuning, such pieces of spectrum can be measured randomly and rapidly within the spectral range. This development can be used for accurate measurements of important atmospheric gases, such as CO2 in terrestrial atmosphere, isotopic ratios and minor gases. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is being built for Venus Express (2005) ESA mission. Instruments based on this principle have high potential for the studies of the Earth, in particular for measurements of isotopes of water in the lower atmosphere, either in solar occultation profiling (tangent altitude <10 km), or observing solar glint for integral quantities of the components. Small size of hardware makes them ideal for micro-satellites, which are now agile enough to provide necessary pointing for solar occultation or glint observations. Also, the atmosphere of Mars has never been observed at local scales with such a high spectral resolution. A laboratory prototype consisting of 275-mm echelle spectrometer with Hamamatsu InGaAs 512-pixel linear array and the AOTF has demonstrated λ/Δλ≍30000 in the spectral range of 1-1.7 μm. The next set up, covering the spectral ranges of 1-1.7 μm and 2.3-4.3 μm, and the Venus Express SOIR are briefly discussed.

  10. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    Directory of Open Access Journals (Sweden)

    Javier Roales

    Full Text Available Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  11. Design of a fusion reaction-history measurement system with high temporal resolution

    International Nuclear Information System (INIS)

    Peng Xiaoshi; Wang Feng; Liu Shenye; Jiang Xiaohua; Tang Qi

    2010-01-01

    In order to accurately measure the history of fusion reaction for experimental study of inertial confinement fusion, we advance the design of a fusion reaction-history measurement system with high temporal resolution. The diagnostic system is composed of plastic scintillator and nose cone, an optical imaging system and the system of optic streak camera. Analyzing the capability of the system indicated that the instrument measured fusion reaction history at temporal resolution as low as 55ps and 40ps correspond to 2.45MeV DD neutrons and 14.03MeV DT neutrons. The instrument is able to measure the fusion reaction history at yields 1.5 x 10 9 DD neutrons, about 4 x 10 8 DT neutrons are required for a similar quality signal. (authors)

  12. Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model, obtained from sUAV and Trestima mobile application

    Directory of Open Access Journals (Sweden)

    G. K. Rybakov

    2017-06-01

    Full Text Available This study considers a remote sensing technique for mean volume estimation based on a very high-resolution (VHR aerial RGB imagery obtained using a small-sized unmanned aerial vehicle (sUAV and a high-resolution photogrammetric digital surface model (DSM as well as an innovative technology for field measurements (Trestima. The study area covers approx. 220 ha of forestland in Finland. The work concerns the entire process from remote sensing and field data acquisition to statistical analysis and forest volume wall-to-wall mapping. The study showed that the VHR aerial imagery and the high-resolution DSM produced based on the application of the sUAV have good prospects for forest inventory. For the sUAV based estimation of forest variables such as Height, Basal Area and mean Volume, Root Mean Square Error constituted 6.6 %, 22.6 % and 26.7 %, respectively. Application of Trestima for estimation of the mean volume of the standing forest showed minor difference over the existing Forest Management Plan at all the selected forest compartments. Simultaneously, the results of the study confirmed that the technologies and the tools applied at this work could be a reliable and potentially cost-effective means of forest data acquisition with high potential of operational use.

  13. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  14. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. High resolution simultaneous measurements of airborne radionuclides in the pan-Japan sea area

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Abe, T.; Murata, Y.M.; Manikandan, N.; Tanaka, K.; Komura, K.

    2006-01-01

    By the use of ultra low background Ge detectors at Ogoya Underground Laboratory (OUL), it became possible to detect extremely low levels of environmental radionuclides. In this study, we tried to measure high resolution simultaneous measurements of airborne radionuclides at three monitoring points, i.e., 1) Low Level Radioactivity Laboratory (LLRL 40m asl) in Nomi City as the regular monitoring point, 2) Hegura Island Located 50 km from Noto Peninsula in the Sea of Japan to investigate the influence of Asian continent or mainland of Japan, and 3) Shishiku Plateau (640m asl) located about 8 km from LLRL to know vertical difference. Pb-210 and Be-7 were measured nondestructively by ultra low background gamma spectrometry at OUL, Po-210 by alpha spectrometry using Si detectors after the chemical treatment. Various interesting results on the concentrations and variation patterns of airborne radionuclides were obtained, particularly, during drastic meteorological changes such as the passage of typhoon, snow fall and so on. We have been analyzing the influence of the arrival of yellow sand occurred in this spring. (author)

  16. Fabrication of thin TEM sample of ionic liquid for high-resolution ELNES measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Tomohiro, E-mail: tomo-m@iis.u-tokyo.ac.jp; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    Investigation of the local structure, ionic and molecular behavior, and chemical reactions at high spatial resolutions in liquids has become increasingly important. Improvements in these areas help to develop efficient batteries and improve organic syntheses. Transmission electron microscopy (TEM) and scanning-TEM (STEM) have excellent spatial resolution, and the electron energy-loss near edge structure (ELNES) measured by the accompanied electron energy-loss spectroscopy (EELS) is effective to analyze the liquid local structure owing to reflecting the electronic density of states. In this study, we fabricate a liquid-layer-only sample with thickness of single to tens nanometers using an ionic liquid. Because the liquid film has a thickness much less than the inelastic mean free path (IMFP) of the electron beam, the fine structure of the C-K edge electron energy loss near edge structure (ELNES) can be measured with sufficient resolution to allow meaningful analysis. The ELNES spectrum from the thin liquid film has been interpreted using first principles ELNES calculations. - Highlights: • A fabrication method of thin liquid film samples for STEM-EELS observations is proposed. • The thickness of the fabricated thin liquid film is about 10 nm. • An ELNES is measured from the thin liquid with a high energy resolution. • The peaks of the ELNES are interpreted using first principles calculations.

  17. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  18. In-beam measurement of the position resolution of a highly segmented coaxial germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Lee, I.Y.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Radford, D.C.; Vetter, K.; Clark, R.M.; Deleplanque, M.A.; Stephens, F.S.; Ward, D.

    2005-01-01

    The position resolution of a highly segmented coaxial germanium detector was determined by analyzing the 2055keV γ-ray transition of Zr90 excited in a fusion-evaporation reaction. The high velocity of the Zr90 nuclei imparted large Doppler shifts. Digital analysis of the detector signals recovered the energy and position of individual γ-ray interactions. The location of the first interaction in the crystal was used to correct the Doppler energy shift. Comparison of the measured energy resolution with simulations implied a position resolution (root mean square) of 2mm in three-dimensions

  19. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  20. A high-resolution x-ray spectrometer for a kaon mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Kevin, E-mail: kevin.phelan@oeaw.ac.at [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Suzuki, Ken; Zmeskal, Johann [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Tortorella, Daniele [Payr Engineering GmbH, Wiederschwing 25, A-9564 Patergassen (Austria); Bühler, Matthias; Hertrich, Theo [Low Temperature Solutions UG, Bahnhofstraße 21, D-85737 Ismaning (Germany)

    2017-02-11

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  1. Suppression of Noise to Obtain a High-Performance Low-Cost Optical Encoder

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Rodríguez

    2018-01-01

    Full Text Available Currently, commercial encoders endowed with high precision are expensive sensors, and optical low-cost designs to measure the positioning angle have undesirable levels of system noise which reduce the good performance of devices. This research is devoted to the designing of mathematical filters to suppress noise in polarized transducers, in order to obtain high accuracy, precision, and resolution, along with an adaptive maximum response speed for low-cost optical encoders. This design was proved through a prototype inside a research platform, and experimental results show an accuracy of 3.9, a precision of 26, and a resolution of 17 [arc seconds], at least for the specified working conditions, for the sensing of the angular position of a rotary polarizer. From this work has been obtained a high-performance low-cost polyphase optical encoder, which uses filtering mathematical principles potentially generalizable to other inventions.

  2. High-resolution smile measurement and control of wavelength-locked QCW and CW laser diode bars

    Science.gov (United States)

    Rosenkrantz, Etai; Yanson, Dan; Klumel, Genady; Blonder, Moshe; Rappaport, Noam; Peleg, Ophir

    2018-02-01

    High-power linewidth-narrowed applications of laser diode arrays demand high beam quality in the fast, or vertical, axis. This requires very high fast-axis collimation (FAC) quality with sub-mrad angular errors, especially where laser diode bars are wavelength-locked by a volume Bragg grating (VBG) to achieve high pumping efficiency in solid-state and fiber lasers. The micron-scale height deviation of emitters in a bar against the FAC lens causes the so-called smile effect with variable beam pointing errors and wavelength locking degradation. We report a bar smile imaging setup allowing FAC-free smile measurement in both QCW and CW modes. By Gaussian beam simulation, we establish optimum smile imaging conditions to obtain high resolution and accuracy with well-resolved emitter images. We then investigate the changes in the smile shape and magnitude under thermal stresses such as variable duty cycles in QCW mode and, ultimately, CW operation. Our smile measurement setup provides useful insights into the smile behavior and correlation between the bar collimation in QCW mode and operating conditions under CW pumping. With relaxed alignment tolerances afforded by our measurement setup, we can screen bars for smile compliance and potential VBG lockability prior to assembly, with benefits in both lower manufacturing costs and higher yield.

  3. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  4. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  5. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  6. A high resolution β-detector

    International Nuclear Information System (INIS)

    Charon, Y.; Cuzon, J.C.; Tricoire, H.; Valentin, L.

    1987-01-01

    We present a detector which associates a charge coupled device to a light amplifier. This image sensor must detect weak β-activity, with a 10 μm resolution and should replace the autoradiographic films used for molecular hybridization. The best results are obtained with the 35 S emittor, for which the resolution and the efficiency are respectively 20 μm and 100% (relative to the measured standard source)

  7. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  8. High-resolution thermal expansion measurements under helium-gas pressure

    Science.gov (United States)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  9. A digital approach for real time high-rate high-resolution radiation measurements

    International Nuclear Information System (INIS)

    Gerardi, G.; Abbene, L.

    2014-01-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  10. A digital approach for real time high-rate high-resolution radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, G.; Abbene, L., E-mail: leonardo.abbene@unipa.it

    2014-12-21

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  11. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  12. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  13. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general ...... and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system. © 2010 EURATOM...

  14. High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2007-06-01

    Full Text Available Recent advances in the performance of CCD detectors have enabled a high time resolution study of the high latitude upper thermosphere with Fabry-Perot Interferometers (FPIs to be performed. 10-s integration times were used during a campaign in April 2004 on an FPI located in northern Sweden in the auroral oval. The FPI is used to study the thermosphere by measuring the oxygen red line emission at 630.0 nm, which emits at an altitude of approximately 240 km. Previous time resolutions have been 4 min at best, due to the cycle of look directions normally observed. By using 10 s rather than 40 s integration times, and by limiting the number of full cycles in a night, high resolution measurements down to 15 s were achievable. This has allowed the maximum variability of the thermospheric winds and temperatures, and 630.0 nm emission intensities, at approximately 240 km, to be determined as a few minutes. This is a significantly greater variability than the often assumed value of 1 h or more. A Lomb-Scargle analysis of this data has shown evidence of gravity wave activity with waves with short periods. Gravity waves are an important feature of mesosphere-lower thermosphere (MLT dynamics, observed using many techniques and providing an important mechanism for energy transfer between atmospheric regions. At high latitudes gravity waves may be generated in-situ by localised auroral activity. Short period waves were detected in all four clear nights when this experiment was performed, in 630.0 nm intensities and thermospheric winds and temperatures. Waves with many periodicities were observed, from periods of several hours, down to 14 min. These waves were seen in all parameters over several nights, implying that this variability is a typical property of the thermosphere.

  15. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  16. Confocal pore size measurement based on super-resolution image restoration.

    Science.gov (United States)

    Liu, Dali; Wang, Yun; Qiu, Lirong; Mao, Xinyue; Zhao, Weiqian

    2014-09-01

    A confocal pore size measurement based on super-resolution image restoration is proposed to obtain a fast and accurate measurement for submicrometer pore size of nuclear track-etched membranes (NTEMs). This method facilitates the online inspection of the pore size evolution during etching. Combining confocal microscopy with super-resolution image restoration significantly improves the lateral resolution of the NTEM image, yields a reasonable circle edge-setting criterion of 0.2408, and achieves precise pore edge detection. Theoretical analysis shows that the minimum measuring diameter can reach 0.19 μm, and the root mean square of the residuals is only 1.4 nm. Edge response simulation and experiment reveal that the edge response of the proposed method is better than 80 nm. The NTEM pore size measurement results obtained by the proposed method agree well with that obtained by scanning electron microscopy.

  17. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, L.C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); López-Castro, J.D.; González-Rovira, L. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Escuela Superior de Ingeniería, Laboratorio de Corrosión, Universidad de Cádiz, Puerto Real 11519 (Spain); Vázquez-Martínez, J.M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); Varela-Feria, F.M. [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Marcos, M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); and others

    2017-06-15

    Highlights: • We describe a method to acquire a high-angle tilt series of SEM images that is symmetrical respect to the zero tilt of the sample stage. The method can be applied in any SEM microscope. • Using the method, high-resolution 3D SEM photogrammetry can be applied on planar surfaces. • 3D models of three surfaces patterned with grooves are reconstructed with high resolution using multi-view freeware photogrammetry software as described in LC Gontard et al. Ultramicroscopy, 2016. • From the 3D models roughness parameters are measured • 3D SEM high-resolution photogrammetry is compared with two conventional methods used for roughness characetrization: stereophotogrammetry and contact profilometry. • It provides three-dimensional information with high-resolution that is out of reach for any other metrological technique. - Abstract: We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  18. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  19. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve.

    Science.gov (United States)

    Bellofiore, Alessandro; Quinlan, Nathan J

    2011-09-01

    We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

  20. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  1. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  2. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  3. High-Resolution Energy and Intensity Measurements with CVD Diamond at REX-ISOLDE

    CERN Document Server

    Griesmayer, E; Dobos, D; Wenander, F; Bergoz, J; Bayle, H; Frais-Kölbl, H; Leinweber, J; Aumeyr, T; CERN. Geneva. BE Department

    2009-01-01

    A novel beam instrumentation device for the HIE-REX (High In-tensity and Energy REX) upgrade has been developed and tested at the On-Line Isotope Mass Separator ISOLDE, located at the European Laboratory for Particle Physics (CERN). This device is based on CVD diamond detector technology and is used for measuring the beam intensity, particle counting and measuring the energy spectrum of the beam. An energy resolution of 0.6% was measured at a carbon ion energy of 22.8 MeV. This corresponds to an energy spread of ± 140 keV.

  4. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  5. Analysis of X-ray Spectra of High-Z Elements obtained on Nike with high spectral and spatial resolution

    Science.gov (United States)

    Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2014-10-01

    The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.

  6. Measuring high-resolution sky luminance distributions with a CCD camera.

    Science.gov (United States)

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  7. Measurements of atmospheric mercury with high time resolution: recent applications in environmental research and monitoring.

    Science.gov (United States)

    Ebinghaus, R; Kock, H H; Schmolke, S R

    2001-11-01

    In the past five years automated high time-resolution measurements of mercury species in ambient air have promoted remarkable progress in the understanding of the spatial distribution, short-term variability, and fate of this priority pollutant in the lower troposphere. Examples show the wide range of possible applications of these techniques in environmental research and monitoring. Presented applications of measurement methods for total gaseous mercury (TGM) include long-term monitoring of atmospheric mercury at a coastal station, simultaneous measurements during a south-to-north transect measurement campaign covering a distance of approximately 800 km, the operation on board of a research aircraft, and the quantification of mercury emissions from naturally enriched surface soils. First results obtained with a new method for the determination of reactive gaseous mercury (RGM) are presented. Typical background concentrations of TGM are between 1.5 and 2 ng m(-3) in the lower troposphere. Concentrations of RGM have been determined at a rural site in Germany between 2 and 35 pg m(-3). Flux measurements over naturally enriched surface soils in the Western U.S.A. have revealed emission fluxes of up to 200 ng Hg m(-1) h(-1) under dry conditions.

  8. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    International Nuclear Information System (INIS)

    Oshtrakha, M.I.; Semionkina, V.A.

    2011-01-01

    . Characteristics of this system demonstrated a high stability, precision and accuracy in the measurement of Moessbauer spectra in 4096 channels. In spite of substantial increase in the measurement time, spectra measured with a high velocity resolution permitted to obtain Moessbauer hyperfine parameters with systematic errors at least 8 times less than in the case of spectra measurement in 512 channels as well as to fit complicated Moessbauer spectra with better quality. Various applications of Moessbauer spectroscopy with a high velocity resolution demonstrated new possibilities of technique. Biomedical applications. New results were obtained in the study of human liver ferritin, its pharmaceutically important models as well as liver and spleen tissues from normal and leukemia chicken; in comparative study of various human and animals' normal oxyhemoglobins and oxyhemoglobins from patients; in the study of iron containing pharmaceutical products. Cosmochemical applications. In the study of various meteorites new results were obtained in analysis of Fe-Ni alloys with variations in Ni concentration, in the study of silicate phases and Fe-Ni phosphides with crystallographically non-equivalent sites for Fe. Nanotechnological applications. New results were obtained in the study of cupric ferrite nanoparticles with tin oxide adding as well as in the study of ferric oxide nanoparticles developed for magnetic fluids for biomedical purposes. (author)

  9. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  10. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  11. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  12. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  13. Development of high time-resolution laser flash equipment for thermal diffusivity measurements using miniature-size specimens

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Namba, Chusei; Kosuda, Michinori; Maeda, Yukio.

    1994-01-01

    For measurements of thermal diffusivity of miniature-size specimens heavily irradiated by neutrons, a new Q-switched laser-flash instrument was developed. In the present instrument the time-resolution was improved to 0.1 ms by using a laser-pulse width of 25 ns. The realization of high time-resolution made it possible to measure the thermal diffusivity of thin specimens. It is expected that copper of 0.7 mm thick, and SUS 304 of 0.1 mm could be used for the measurements. In case of ATJ graphite, 0.5 mm thick specimen could be used for the reliable measurement in the temperature range of 300-1300 K. (author)

  14. Absolute high-resolution Se+ photoionization cross-section measurements with Rydberg-series analysis

    International Nuclear Information System (INIS)

    Esteves, D. A.; Bilodeau, R. C.; Sterling, N. C.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Red, E. C.; Aguilar, A.

    2011-01-01

    Absolute single photoionization cross-section measurements for Se + ions were performed at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the photo-ion merged-beams technique. Measurements were made at a photon energy resolution of 5.5 meV from 17.75 to 21.85 eV spanning the 4s 2 4p 3 4 S 3/2 o ground-state ionization threshold and the 2 P 3/2 o , 2 P 1/2 o , 2 D 5/2 o , and 2 D 3/2 o metastable state thresholds. Extensive analysis of the complex resonant structure in this region identified numerous Rydberg series of resonances and obtained the Se 2+ 4s 2 4p 23 P 2 and 4s 2 4p 21 S 0 state energies. In addition, particular attention was given to removing significant effects in the measurements due to a small percentage of higher-order undulator radiation.

  15. Novel high resolution 125I brachytherapy source dosimetry using Ge-doped optical fibres

    International Nuclear Information System (INIS)

    Issa, Fatma; Hugtenburg, Richard P.; Nisbet, Andrew; Bradley, David A.

    2013-01-01

    The steep dose gradients close to brachytherapy sources limit the ability to obtain accurate measurements of dose. Here we use a novel high spatial resolution dosimeter to measure dose around a 125 I source and compare against simulations. Ge-doped optical fibres, used as thermoluminescent dosimeters, offer sub-mm spatial resolution, linear response from 10 cGy to >1 kGy and dose-rate independence. For a 125 I brachytherapy seed in a PMMA phantom, doses were obtained for source-dosimeter separations from 0.1 cm up to several cm, supported by EGSnrc/DOSRZznrc Monte Carlo simulations and treatment planning system data. The measurements agree with simulations to within 2.3%±0.3% along the transverse and perpendicular axes and within 3.0%±0.5% for measurements investigating anisotropy in angular dose distribution. Measured and Veriseed™ brachytherapy treatment planning system (TPS) values agreed to within 2.7%±0.5%. Ge-doped optical fibre dosimeters allow detailed dose mapping around brachytherapy sources, not least in situations of high dose gradient. - Highlights: • We evaluate fall-off in dose for distances from an 125 I source of 1 mm to 60 mm. • The TL of optical fibres accommodate high dose gradients and doses that reduce by a factor of 10 3 across the range of separations. • We verify measured values using DOSRZnrc Monte Carlo code simulations and the Variseed™ Treatment Planning System. • Measured radial and angular dose are obtained with ≤3% uncertainty

  16. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  17. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  18. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Dong, F.; Nesbitt, D. J. [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  19. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  20. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  1. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    2001-08-01

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  2. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  3. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  5. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  6. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  7. Polarized high-brilliance and high-resolution soft x-ray source at ELETTRA: The performance of beamline BACH

    International Nuclear Information System (INIS)

    Zangrando, M.; Zacchigna, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F.

    2004-01-01

    BACH, a soft x-ray beamline for polarization-dependent experiments at the Italian synchrotron radiation facility ELETTRA, was recently completed and characterized. Its performance, in terms of energy resolution, flux and polarization, is presented. Based on two APPLE II undulators, BACH covers the energy range between 35 and 1600 eV with the control of the light polarization. The monochromator is equipped with four gratings and allows one to work either in a high resolution or in a high flux mode. After the monochromator, the beamline is split into two branches with different refocusing properties. One is optimized to exploit the performance of the soft x-ray spectrometer (ComIXS) available at the beamline. Resolving powers between 12000 at 90 eV photon energy and 6600 near 867 eV were achieved using the high-resolution gratings and the smallest available slit width (10 μm). For the high-brilliance grating, which works between 290 and 1600 eV, resolving powers between 7000 at 400 eV and 2200 at 867 eV were obtained. The flux in the experimental chamber, measured with the high-resolution gratings for linearly polarized light at the best achievable resolution, ranges between 4x10 11 photons/s at 125 eV and 2x10 10 photons/s between 900 and 1250 eV. In circularly polarized mode the flux is two times larger for energies up to 380 eV. A gain of nearly one order of magnitude is obtained for the high-brilliance grating, in accordance with theoretical predictions. Flux beyond 1.3x10 11 photons/s was measured up to 1300 eV, and thus over nearly the complete energy range covered by this high-brilliance grating, with a maximum of 1.6x10 11 photons/s between 800 and 1100 eV. First results from polarization measurements confirm a polarization above 99.7% for both linearly and circularly polarized modes at low energies. Circular dichroism experiments indicate a circular polarization beyond 90% at the Fe L 2 /L 3 edge near 720 eV

  8. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    Science.gov (United States)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  9. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    International Nuclear Information System (INIS)

    Sailer, Johannes; Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-01-01

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 μm. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques

  10. Breaking New Ground with High Resolution Turn-By-Turn BPMs at the ESRF

    CERN Document Server

    Farvacque, L; Scheidt, K

    2001-01-01

    This High-Resolution, Turn-by-Turn BPM system is a low-cost extension to the existing BPM system, based on the RF-multiplexing concept, used for slow Closed-Orbit measurements. With this extension Beam Position measurements in both planes, at all (224) BPMs in the 844 m ESRF Storage Ring, for up to 2048 Orbit Turns with 1 μm resolution are performed. The data acquisition is synchronised to a single, flat 1 μs, transverse deflection kick to the 1μs beamfill in the 2.8μs revolution period. The high quality of this synchronisation, together with the good reproducibility of the deflection kick and the overall stability of the Closed Orbit beam allows to repeat the kick and acquisition in many cycles. The subsequent averaging of the data obtained in these cycles yields the 1um resolution. The latter allows lattice measurements with high precision such as the localisation of very small focussing errors and modulation in Beta values and phase advances. It also finds an unique ...

  11. Marvel Analysis of the Measured High-resolution Rovibronic Spectra of TiO

    Science.gov (United States)

    McKemmish, Laura K.; Masseron, Thomas; Sheppard, Samuel; Sandeman, Elizabeth; Schofield, Zak; Furtenbacher, Tibor; Császár, Attila G.; Tennyson, Jonathan; Sousa-Silva, Clara

    2017-02-01

    Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic {}48{{Ti}}16{{O}} molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2-22,160 cm-1 region. Out of the 49,679 measured transitions, 43,885 are triplet-triplet, 5710 are singlet-singlet, and 84 are triplet-singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of {}48{{Ti}}16{{O}}, including 71 triplet and 22 singlet ones. There are 276 (73) triplet-triplet (singlet-singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet {}48{{Ti}}16{{O}} rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for {}48{{Ti}}16{{O}} are deposited in the supporting information to this paper.

  12. Vineyard Yield Estimation Based on the Analysis of High Resolution Images Obtained with Artificial Illumination at Night

    Directory of Open Access Journals (Sweden)

    Davinia Font

    2015-04-01

    Full Text Available This paper presents a method for vineyard yield estimation based on the analysis of high-resolution images obtained with artificial illumination at night. First, this paper assesses different pixel-based segmentation methods in order to detect reddish grapes: threshold based, Mahalanobis distance, Bayesian classifier, linear color model segmentation and histogram segmentation, in order to obtain the best estimation of the area of the clusters of grapes in this illumination conditions. The color spaces tested were the original RGB and the Hue-Saturation-Value (HSV. The best segmentation method in the case of a non-occluded reddish table-grape variety was the threshold segmentation applied to the H layer, with an estimation error in the area of 13.55%, improved up to 10.01% by morphological filtering. Secondly, after segmentation, two procedures for yield estimation based on a previous calibration procedure have been proposed: (1 the number of pixels corresponding to a cluster of grapes is computed and converted directly into a yield estimate; and (2 the area of a cluster of grapes is converted into a volume by means of a solid of revolution, and this volume is converted into a yield estimate; the yield errors obtained were 16% and −17%, respectively.

  13. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  14. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  15. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    Directory of Open Access Journals (Sweden)

    B. Barret

    2005-01-01

    Full Text Available This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM and are characterized in terms of vertical sensitivity and error budget. It is found that most of the IMG measurements contain between 1.5 and 2.2 independent pieces of information about the vertical distribution of CO from the lower troposphere to the upper troposphere-lower stratosphere (UTLS. The retrievals are validated against coincident NOAA/CMDL in situ surface measurements and NDSC/FTIR total columns measurements. The retrieved global distributions of CO are also found to be in good agreement with the distributions modeled by the GEOS-CHEM 3D CTM, highlighting the ability of IMG to capture the horizontal as well as the vertical structure of the CO distributions.

  16. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  17. High spatial and spectral resolution measurements of Jupiter's auroral regions using Gemini-North-TEXES

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Lacy, J.; Giles, R.; Fletcher, L. N.; Vogt, M.; Irwin, P. G.

    2017-12-01

    Jupiter exhibits auroral emission at a multitude of wavelengths. Auroral emission at X-ray, ultraviolet and near-infrared wavelengths demonstrate the precipitation of ion and electrons in Jupiter's upper atmosphere, at altitudes exceeding 250 km above the 1-bar level. Enhanced mid-infrared emission of CH4, C2H2, C2H4 and further hydrocarbons is also observed coincident with Jupiter's auroral regions. Retrieval analyses of infrared spectra from IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) indicate strong heating at the 1-mbar level and evidence of ion-neutral chemistry, which enriches the abundances of unsaturated hydrocarbons (Sinclair et al., 2017b, doi:10.1002/2017GL073529, Sinclair et al., 2017c (under review)). The extent to which these phenomena in the stratosphere are correlated and coupled physically with the shorter-wavelength auroral emission originating from higher altitudes has been a challenge due to the limited spatial resolution available on the IRTF. Smaller-scale features observed in the near-infrared and ultraviolet emission, such as the main `oval', transient `swirls' and dusk-active regions within the main oval (e.g. Stallard et al., 2014, doi:10.1016/j/Icarus.2015.12.044, Nichols et al., 2017, doi: 10.1002/2017GL073029) are potentially being blurred in the mid-infrared by the diffraction-limited resolution (0.7") of IRTF's 3-metre primary aperture. However, on March 17-19th 2017, we obtained spectral measurements of H2 S(1), CH4, C2H2, C2H4 and C2H6 emission of Jupiter's high latitudes using TEXES on Gemini-North, which has a 8-metre primary aperture. This rare opportunity combines the superior spectral resolving power of TEXES and the high spatial resolution provided by Gemini-North's 8-metre aperture. We will perform a retrieval analyses to determine the 3D distributions of temperature, C2H2, C2H4 and C2H6. The morphology will be compared with near-contemporaneous measurements of H3+ emission from

  18. MARVEL analysis of the measured high-resolution spectra of 14NH3

    International Nuclear Information System (INIS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-01-01

    Accurate, experimental rotational–vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14 NH 3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm −1 region, with a large gap between 7000 and 15 000 cm −1 . The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para- 14 NH 3 , respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14 NH 3 , 8 for ortho- and 22 for para- 14 NH 3 . The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- 14 NH 3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14 NH 3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14 NH 3 ; these lines are also deposited in the Supporting Information to this paper

  19. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Science.gov (United States)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  20. High resolution resistivity measurements at the Down Ampney research site

    International Nuclear Information System (INIS)

    Hallam, J.R.; Jackson, P.D.; Rainsbury, M.; Raines, M.

    1991-01-01

    A new high resolution resistivity surveying method is described for fault detection and characterisation. The resolution is shown to be significantly higher than conventional apparent resistivity profiling when applied to geological discontinuities such as faults. Nominal fault locations have been determined to an accuracy of 0.5 m, as proven by drilling. Two dimensional profiling and image enhancement of the resulting 2-D data set indicated the possibility of subsidiary fractures and/or lateral changes within the clay to clay' fault zone. The increased resolution allows greater confidence to be placed on both the fault detection and lateral perturbations derived from processed resistance and resistivity images. (Author)

  1. Uncertainty in relative energy resolution measurements

    International Nuclear Information System (INIS)

    Volkovitsky, P.; Yen, J.; Cumberland, L.

    2007-01-01

    We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like

  2. ASIC for time-of-flight measurements with picosecond timing resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, Vera; Shen, Wei; Harion, Tobias [Kirchhoff-Institute for Physics, Heidelberg Univ. (Germany)

    2015-07-01

    The Positron Emission Tomography (PET) images are especially affected by a high level of noise. This noise affects the potential to detect and discriminate the tumor in relation to the background. Including Time-of-Flight information, with picosecond time resolution, within the conventional PET scanners will improve the signal-to-noise ratio (SNR) and in sequence the quality of the medical images. A mix-mode ASIC (STIC3) has been developed for high precision timing measurements with Silicon Photomultipliers (SiPM). The STiC3 is 64-channel chip, with fully differential analog front-end for crosstalk and electronic noise immunity. It integrates Time to Digital Converters (TDC) with time binning of 50.2 ps for time and energy measurements. Measurements of the of the analog front-end show a time jitter less than 20 ps and jitter of the TDC together with the digital part is around 37 ps. Further the timing of a channel has been tested by injecting a pulse into two channels and measuring the time difference of the recorded timestamps. A Coincidence Time Resolution (CTR) of 215 ps FWHM has been obtained with 3.1 x 3.1 x 15 mm{sup 2} LYSO:Ce scintillator crystals and Hamamatsu SiPM matric (S12643-050CN(x)). Characterization measurements with the chip and its performances are presented.

  3. First measurements with new high-resolution gadolinium-GEM neutron detectors

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Etxegarai, Maddi; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Llamas-Jansa, Isabel; Oliveri, Eraldo; Oksanen, Esko; Robinson, Linda; Ropelewski, Leszek; Schmidt, Susann; Streli, Christina; Thuiner, Patrik

    2016-05-17

    European Spallation Source instruments like the macromolecular diffractometer, NMX, require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The {\\mu}TPC analysis, proven to improve the spatial resolution in the case of $^{10}$B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with an estimated efficiency of 10% at a wavelength of 2 {\\AA} and a position resolution better than 350 {\\mu}m.

  4. The high-resolution spectrum of the pulsating, pre-white dwarf star PG 1159-035 (GW VIR)

    Science.gov (United States)

    Liebert, James; Wesemael, F.; Husfeld, D.; Wehrse, R.; Starrfield, S. G.

    1989-01-01

    High-resolution and low-resolution UV spectra and a high-resolution optical spectrum were obtained for PG 1159-035, revealing apparent photospheric absorption features with defined cores from N V 1240 A, N IV 1270 A, O V 1371 A, and C IV 1550 A. The photospheric velocity derived using all of these lines except for C IV is about +35 km/s. Equivalent-width measurements determined for all of the features may provide a tighter constraint on the photospheric temperature in a detailed model atmosphere analysis treating the CNO ions.

  5. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  6. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  7. Comparison of high-resolution Scheimpflug and high-frequency ultrasound biomicroscopy to anterior-segment OCT corneal thickness measurements

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-11-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis1 1Laservision.gr Eye Institute, Athens, Greece; 2New York University Medical School, New York, NY, USA Background: The purpose of this study was to compare and correlate central corneal thickness in healthy, nonoperated eyes with three advanced anterior-segment imaging systems: a high-resolution Scheimpflug tomography camera (Oculyzer II, a spectral-domain anterior-segment optical coherence tomography (AS-OCT system, and a high-frequency ultrasound biomicroscopy (HF-UBM system. Methods: Fifty eyes randomly selected from 50 patients were included in the study. Inclusion criteria were healthy, nonoperated eyes examined consecutively by the same examiner. Corneal imaging was performed by three different methods, ie, Oculyzer II, spectral-domain AS-OCT, and FH-UBM. Central corneal thickness measurements were compared using scatter diagrams, Bland-Altman plots (with bias and 95% confidence intervals, and two-paired analysis. Results: The coefficient of determination (r2 between the Oculyzer II and AS-OCT measurements was 0.895. Likewise, the coefficient was 0.893 between the Oculyzer II and HF-UBM and 0.830 between the AS-OCT and HF-UBM. The trend line coefficients of linearity were 0.925 between the Oculyzer II and the AS-OCT, 1.006 between the Oculyzer II and HF-UBM, and 0.841 between the AS-OCT and HF-UBM. The differences in average corneal thickness between the three pairs of CCT measurements were –6.86 µm between the Oculyzer II and HF-UBM, –12.20 µm between the AS-OCT and Oculyzer II, and +19.06 µm between the HF-UBM and AS-OCT. Conclusion: The three methods used for corneal thickness measurement are highly correlated. Compared with the Scheimplug and ultrasound devices, the AS-OCT appears to report a more accurate, but overally thinner corneal pachymetry. Keywords: anterior eye segment, high-frequency ultrasound biomicroscopy, optical coherence tomography, high-resolution Pentacam

  8. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    Science.gov (United States)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  9. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    Science.gov (United States)

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  10. A high resolution interferometric method to measure local swelling due to CO2 exposure in coal and shale

    NARCIS (Netherlands)

    Pluymakers, A.; Liu, J.; Kohler, F.; Renard, F.; Dysthe, D.

    2018-01-01

    We present an experimental method to study time-dependent, CO2-induced, local topography changes in mm-sized composite samples, plus results showing heterogeneous swelling of coal and shale on the nano- to micrometer scale. These results were obtained using high resolution interferometry

  11. High-Resolution UV Relay Lens for Particle Size Distribution Measurements Using Holography

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Robert M.; Capelle, Gene A.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbits, Aric; Turley, William D.

    2008-08-29

    Shock waves passing through a metal sample can produce ejecta particulates at a metal-vacuum interface. Holography records particle size distributions by using a high-power, short-pulse laser to freeze particle motion. The sizes of the ejecta particles are recorded using an in-line Fraunhofer holography technique. Because the holographic plate would be destroyed in an energetic environment, a high-resolution lens has been designed to relay the interference fringes to a safe environment. Particle sizes within a 12-mm-diameter, 5-mm-thick volume are recorded onto holographic film. To achieve resolution down to 0.5 μm, ultraviolet laser (UV) light is needed. The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution and operates at f/0.89 will be described. To set up this lens system, a doublet lens is temporarily attached that enables operation with 532-nm laser light and 1100 lp/mm resolution. Thus, the setup and alignment are performed with green light, but the dynamic recording is done with UV light. During setup, the 532-nm beam provides enough focus shift to accommodate the placement of a resolution target outside the ejecta volume; this resolution target does not interfere with the calibrated wires and pegs surrounding the ejecta volume. A television microscope archives images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens will be presented, and resolution variation through the 5-mm depth of field will be discussed.

  12. High energy resolution measurement of the sup 238 U neutron capture yield from 1 to 100 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering); Perez, R.B. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (United States)); De Saussure, G.; Ingle, R.W. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The purpose of this work is the precise determination of the {sup 238}U neutron capture yield (i.e. the probability of neutron capture) as a function of neutron energy with the highest available neutron energy resolution. The motivation for this undertaking arises from the central role played by the {sup 238}U neutron capture process in the neutron balance of both thermal reactors and fast breeder reactors. The present measurement was performed using the Oak Ridge Electron Linear Accelerator (ORELA) facility. The pulsed beam of neutrons from the ORELA facility is collimated on a sample of {sup 238}U. The neutron capture rate in the sample is measured, as a function of neutron time-of-flight (TOF) by detecting the {gamma}-rays from the {sup 238}U(n, {gamma}){sup 239}U reaction with a large {gamma}-ray detector surrounding the {sup 238}U sample. At each energy, the capture yield is proportional to the observed capture rate divided by the measured intensity of the neutron beam. The constant of proportionality (the normalization constant) is obtained from the ratio of theoretical to experimentally measured areas under small {sup 238}U resonances where the resonance parameters have been determined from high-resolution {sup 238}U transmission measurements. The cross section for the reaction {sup 238}U(n,{gamma}){sup 239}U can be derived from the measured capture yield if one applies appropriate corrections for multiple scattering and resonance self-shielding. Some 200 {sup 238}U neutron resonances in the energy range from 250 eV to 10 keV have been observed which had not been detected in previous measurements. (author).

  13. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  14. Measurement on the density resolution of industrial computerized tomography by using disc specimen with holes

    International Nuclear Information System (INIS)

    Tian, Y.; Gao, D.; Zhang, W.; Xia, Z.; Yang, C.

    2004-01-01

    Several ways mainly used for measuring the density resolution of industrial computerized tomography (ICT) are briefly introduced. Based on the equivalent conversion between volume variation and density variation, a kind of disc specimen with holes is designed to measure the density resolution of ICT. In this experiment, a kind of high quality polymethyl methacylate (PMMA) is selected to make specimens with diameter of 250mm, in which six sets of holes with diameter separately 0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, and 3.0mm are distributed in the radial directions with interval of 60 o between two neighboring sets, and in the same set, the distances of holes departing the center of the specimen are respectively 20mm, 40mm, 60mm, 80mm, and 100mm. The experiment shows that the method is sensitive, simple, flexible, and practical. About 0.2% density resolution of region of interest (ROI) with diameter 20mm can be verified, the relationship between CT value of ROI and its position can be obtained, and at the same time the spatial resolution of ICT can be measured in high quality. (author)

  15. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  16. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  17. Measurements of spatially resolved high resolution spectra of laser-produced plasmas. FY 83 annual report

    International Nuclear Information System (INIS)

    Feldman, U.

    1984-01-01

    A high resolution grazing incidence spectrograph, provided by the Naval Research Laboratory and the Goddard Space Flight Center, has been installed on the Omega laser facility of the Laboratory for Laser Energetics (LLE) at the University of Rochester. This 3 meter instrument, with a 1200 lines/mm grating blazed at 2 0 35', has produced extremely high quality spectra in the wavelength region 10 A to 100 A. Spectra have been obtained from glass microballoon targets that are coated with a variety of high-Z materials. Transitions from the Na-like and Ne-like ionization stages of Fe, Ni, Cu, and Kr have been identified

  18. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  19. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  20. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  1. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    Science.gov (United States)

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  2. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  3. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  4. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high tempera...... to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851are newly assigned to mainly hot bands involving vibrational states as high as v2=5....

  5. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    Science.gov (United States)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  6. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  7. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  8. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  9. High resolution measurements and study of the neutron inelastic scattering reaction on 56Fe

    International Nuclear Information System (INIS)

    Dupont, E.

    1998-01-01

    High resolution measures of neutrons inelastic scattering cross section, have been performed on 56 Fe from 862 KeV to 3 MeV. The time of flight method has been used on the GELINA source of the IRMM in Geel (Belgium). Four barium fluoride scintillators, placed around the samples, recorded the gamma rays emissions coming from the iron and the boron. A study of the correlations between the partial elastic and inelastic lengths has been performed taking into account first transmission measures realized at Geel. (A.L.B.)

  10. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  11. Stress predicts the trajectory of wound healing in living kidney donors as measured by high-resolution ultrasound.

    Science.gov (United States)

    Maple, Hannah; Chilcot, Joseph; Lee, Vanessa; Simmonds, Shanique; Weinman, John; Mamode, Nizam

    2015-01-01

    Psychological stress has been shown to be an influential factor on the rate of wound healing; however these findings have been demonstrated predominantly on artificially created wounds. Due to the absence of major co-morbidities, living kidney donors are a unique group in which to study this relationship. This study investigated the effect of preoperative stress and personality on surgical wound healing through the use of high-resolution ultrasound. Living kidney donors due to undergo a hand-assisted laparoscopic donor nephrectomy were asked to complete the Perceived Stress Scale, the Life Orientation Test-Revised and the Ten Item Personality Inventory prior to surgery. High-resolution ultrasound scans of surgical wounds were performed on the first three post-operative days and once following discharge (mean=15.3 days; s.d. 2.8). Two measurements from each image were obtained: wound width (size of wound) and median intensity (a marker of tissue fluid). Latent Growth Curve Models (LGCMs) were used to evaluate wound healing. 52 living kidney donors participated. Higher pre-operative life stress, lower optimism and lower conscientiousness were associated with delayed wound healing in living kidney donors for both outcomes. Increased emotional stability was associated with faster wound healing as demonstrated by a change in median intensity. Possible confounding factors, such as age, BMI, smoking status, local anaesthetic use and wound drain placement were not influential. This study, which measured wound healing in a novel patient sample using a novel technique, has demonstrated a negative association between stress and wound healing and the positive influence of optimism, conscientiousness and emotional stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  13. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  14. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  15. SAFE for PTSD: noncontact psychophysiological measure based on high-resolution thermal imaging to aid in PTSD diagnosis and assessment of treatment

    Science.gov (United States)

    Familoni, Babajide O.; Ma, Lein; Hutchinson, J. Andrew; Morgan, C. Andrew, III; Rasmusson, Ann; O'Kane, Barbara L.

    2012-06-01

    Post Traumatic Stress Disorder (PTSD) sometimes develops following exposure to very stressful or traumatic events such as motor vehicle accidents, rape, and war. It is arguably the signature injury of the conflicts in Iraq and Afghanistan. Previous studies have demonstrated that PTSD sufferers exhibit autonomic hyper-responsiveness to both neutral and trauma-related stimuli. In this study, we propose using high resolution thermal imaging of sweat-pores to obtain a noncontact, remote, and quantifiable measure of the sympathetic autonomic nervous reactivity to guide diagnosis, assess response to treatment, and tease out important cues to suicidality as a PTSD comorbidity.

  16. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  17. The implementing of high resolution time measuring circuit based on FPGA

    International Nuclear Information System (INIS)

    Zhang Ji; Zeng Yun; Wang Zheng; Li Quiju; Lu Jifang; Wu Jinyuan

    2011-01-01

    It presents the implementing of TDC based on FPGA. The fine timing function part is accomplished through the time interpolators that are composed of the carry chain of intrinsic adders in FPGA. This architecture dates back to the latest technology-WUTDC (Wave Union TDC) that is developed to sub-divide the ultra-wide bins and improve the measure resolution. The board and the online test have been proved that the linearity of converters is satisfying and the time resolution is better than 40 ps. (authors)

  18. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements

    International Nuclear Information System (INIS)

    Spencer, D.F.; Cole, J.; Drigert, M.; Aryaeinejad, R.

    2006-01-01

    A high-resolution, multi-stop, time-to-digital converter (TDC) was designed and developed to precisely measure the times-of-flight (TOF) of incident neutrons responsible for induced fission and capture reactions on actinide targets. The minimum time resolution is ±1 ns. The TDC design was implemented into a single, dual-wide CAMAC module. The CAMAC bus is used for command and control as well as an alternative data output. A high-speed ECL interface, compatible with LeCroy FERA modules, was also provided for the principle data output path. An Actel high-speed field programmable gate array (FPGA) chip was incorporated with an external oscillator and an internal multiple clock phasing system. This device implemented the majority of the high-speed register functions, the state machine for the FERA interface, and the high-speed counting circuit used for the TDC conversion. An external microcontroller was used to monitor and control system-level changes. In this work we discuss the performance of this TDC module as well as its application

  19. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  20. Conceptual design of high resolution and reliable density measurement system on helical reactor FFHR-d1 and demonstration on LHD

    International Nuclear Information System (INIS)

    Akiyama, T.; Yasuhara, R.; Isobe, M.; Sakamoto, R.; Goto, T.; Kawahata, K.; Sagara, A.; Nakayama, K.; Okajima, S.

    2014-10-01

    This paper describes a conceptual design of the density measurement system on the helical reactor FFHR-d1 based on its quantitative operation scenario. The density measurement is required to meet the reactor design, and to have a high density resolution of the order of 10 17 m -3 with a time resolution of 10 ms and high reliability (no fringe jump). “A dispersion interferometer” is designed and a prototype is tested and installed on LHD, which can realize a demo relevant density plasma. The prototype demonstrates the feasibility on a demo reactor. (author)

  1. A chronometric exploration of high-resolution 'sensitive TMS masking' effects on subjective and objective measures of vision.

    Science.gov (United States)

    de Graaf, Tom A; Herring, Jim; Sack, Alexander T

    2011-03-01

    Transcranial magnetic stimulation (TMS) can induce masking by interfering with ongoing neural activity in early visual cortex. Previous work has explored the chronometry of occipital involvement in vision by using single pulses of TMS with high temporal resolution. However, conventionally TMS intensities have been high and the only measure used to evaluate masking was objective in nature. Recent studies have begun to incorporate subjective measures of vision, alongside objective ones. The current study goes beyond previous work in two regards. First, we explored both objective vision (an orientation discrimination task) and subjective vision (a stimulus visibility rating on a four-point scale), across a wide range of time windows with high temporal resolution. Second, we used a very sensitive TMS-masking paradigm: stimulation was at relatively low TMS intensities, with a figure-8 coil, and the small stimulus was difficult to discriminate already at baseline level. We hypothesized that this should increase the effective temporal resolution of our paradigm. Perhaps for this reason, we are able to report a rather interesting masking curve. Within the classical-masking time window, previously reported to encompass broad SOAs anywhere between 60 and 120 ms, we report not one, but at least two dips in objective performance, with no masking in-between. The subjective measure of vision did not mirror this pattern. These preliminary data from our exploratory design suggest that, with sensitive TMS masking, we might be able to reveal visual processes in early visual cortex previously unreported.

  2. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  3. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  4. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  5. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  6. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  7. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  8. A high resolution reflecting crystal spectrometer to measure 3 keV pionic hydrogen and deuterium X-rays

    International Nuclear Information System (INIS)

    Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Knecht, L.; Leisi, H.J.; Schroeder, H.C.; Sigg, D.; Zhao, Z.G.; Chatellard, D.; Egger, J.P.; Jeannet, E.; Aschenauer, E.C.; Gabathuler, K.; Simons, L.M.; Rusi El Hassani, A.J.

    1993-01-01

    A reflecting crystal spectrometer consisting of three cylindrically bent quartz (110) crystals is described. It was designed to measure the 3 keV K β X-rays from pionic hydrogen and deuterium. Charge coupled devices (CCDs) were used as X-ray detectors. Projecting the reflexes of all three crystals on one common focus, an instrumental energy resolution below 1 eV was obtained at an energy of 2.9 keV. (orig.)

  9. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    International Nuclear Information System (INIS)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral ( X and Y ) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization. (paper)

  10. Estimation of residual stress in cold rolled iron-disks from strain measurements on the high resolution Fourier diffractometer

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.; Taran, Yu.V.

    1995-01-01

    The results of estimating residual stresses in cold rolled iron disks by measurements with the high resolution Fourier diffractometer (HRFD) at the IBR-2 pulsed reactor are presented. These measurements were made for calibration of magnetic and ultrasonic measurements carried out at the Fraunhofer-Institute for Nondestructive Testing in Saarbrucken (Germany). The tested objects were cold rolled steel disks of 2.5 mm thickness and diameter of about 500 mm used for forming small, gas pressure tanks. Neutron diffraction experiments were carried out at the scattering angle 2θ=+152 d eg with resolution Δd/d=1.5·10 -3 . The gauge volume was chosen according to the magnetic measurements lateral resolution 20x20 mm 2 . In the nearest future the neutron diffraction measurements with cold rolled iron disks at the scattering angle 2θ=±90 0 are planned. Also the texture analysis will be included in the Rietveld refinement procedure for more correct calculation of residual stress fields in the cold rolled materials. 8 refs., 10 figs., 1 tab

  11. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  12. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    McNeill, D.H.; Kim, J.

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  13. High resolution atlas of the solar spectrum 2678-2931 A

    Science.gov (United States)

    Allen, M. S.; Mcallister, H. C.; Jefferies, J. T.

    1977-01-01

    A portion of the ultraviolet solar spectrum is presented in this high resolution atlas. The data, originating from a rocket echelle spectrogram obtained on 19 June 1974 of a quiet area near the center of the solar disk, extend from 2678 to 2931 A. The instrument had a nominal resolving power of 200,000 at these wavelengths and the rms precision of the rectified wavelength scale is 15 mA. Absolute intensities are computed by calibration to the absolute measurements of Kohl and Parkinson.

  14. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  15. High resolution measurements of Cyg X-1 from rockets

    International Nuclear Information System (INIS)

    Rothschild, R.E.; Boldt, E.A.; Holt, S.S.; Serlemitsos, P.J.

    1976-01-01

    Cyg X-1 was observed on two occasions (Oct. 4, 1973 and Oct. 3, 1974) by the Goddard x-ray rocket payload. This payload consisted of two gas proportional counters (xenon--methane with 710 cm 2 and argon--methane with 610 cm 2 ) using the same 128 channel pulse height analyzer and having 320 μs temporal resolution on the 1973 flight and 160 μs resolution on the 1974 flight. During both flights bursts of 1 ms duration were observed with very high statistical certainty. To date all 13 of these bursts have been analyzed for spectral and temporal character, and the results of this analysis are presented. The spectra of overall x-ray emission from both flights are also presented. In a source known for its variability it is remarkable that the spectra taken one year apart are virtually identical

  16. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  17. High-resolution MR imaging of the knee at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Dept. of Radiology

    2000-07-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology.

  18. High-resolution MR imaging of the knee at 3 T

    International Nuclear Information System (INIS)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y.

    2000-01-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology

  19. High resolution T{sub 2}{sup *}-weighted magnetic resonance imaging at 3 Tesla using PROPELLER-EPI

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Martin; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group

    2014-09-01

    We report the application of PROPELLER-EPI for high resolution T{sub 2}{sup *}-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 x 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T{sub 2}{sup *}-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. (orig.)

  20. High resolution fast neutron spectrometry without time-of-flight

    International Nuclear Information System (INIS)

    Evans, A.E.; Brandenberger, J.D.

    1978-01-01

    Performance tests of a spectrometer tube of the type developed by Cuttler and Shalev show that the measurement of fast neutron spectra with this device can be made with an energy resolution previously obtainable only in large time-of-flight facilities. In preliminary tests, resolutions of 16.4 keV for thermal neutrons and 30.9 keV for 1-MeV neutrons were obtained. A broad-window pulse-shape discrimination (PSD) system is used to remove from pulse-height distributions most of the continua due to 3 He-recoil events, noise, and wall effect. Use of PSD improved the energy resolution to 12.9 keV for thermal neutrons and 29.2 keV for 1-MeV neutrons. The detector is a viable tool for neutron research at nominally equipped accelerator laboratories

  1. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery.

    Science.gov (United States)

    Bazan, I; Ramos, A; Balay, G; Negreira, C

    2018-07-01

    The aim of this work is to develop a new type of ultrasonic analysis of the mechanical properties of an arterial wall with improved resolution, and to confirm its feasibility under laboratory conditions. it is expected that this would facilitate a non-invasive path for accurate predictive diagnosis that enables an early detection & therapy of vascular pathologies. In particular, the objective is to detect and quantify the small elasticity changes (in Young's modulus E) of arterial walls, which precede pathology. A submicron axial resolution is required for this analysis, as the periodic widening of the wall (under oscillatory arterial pressure) varies between ±10 and 20 μm. This high resolution represents less than 1% of the parietal thickness (e.g., harmonics of the wall internal resonance f 0 . This was attained via the implementation of an autoregressive parametric algorithm that accurately detects parietal echo-dynamics during a heartbeat. Thus, it was possible to measure the punctual elasticity of the wall, with a higher resolution (> an order of magnitude) compared to conventional approaches. The resolution of a typical ultrasonic image is limited to several hundred microns, and thus, such small changes are undetected. The proposed procedure provides a non-invasive and direct measure of elasticity by doing an estimation of changes in the Nf 0 harmonics and wall thickness with a resolution of 0.1%, for first time. The results obtained by using the classic temporal cross-correlation method (TCC) were compared to those obtained with the new procedure. The latter allowed the evaluation of alterations in the elastic properties of arterial walls that are 30 times smaller than those being detectable with TCC; in fact, the depth resolution of the TCC approach is limited to ≈20 μm for typical SNRs. These values were calculated based on echoes obtained using a reference pattern (rubber tube). The application of the proposed procedure was also confirmed via

  2. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  3. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  4. 256-pixel microcalorimeter array for high-resolution γ-ray spectroscopy of mixed-actinide materials

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, R., E-mail: rwinkler@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Hoover, A.S.; Rabin, M.W. [Los Alamos National Laboratory, Los Alamos, NM (United States); Bennett, D.A.; Doriese, W.B.; Fowler, J.W.; Hays-Wehle, J.; Horansky, R.D.; Reintsema, C.D.; Schmidt, D.R.; Vale, L.R.; Ullom, J.N. [National Institute of Standards and Technology, Boulder, CO (United States)

    2015-01-11

    The application of cryogenic microcalorimeter detectors to γ-ray spectroscopy allows for measurements with unprecedented energy resolution. These detectors are ideally suited for γ-ray spectroscopy applications for which the measurement quality is limited by the spectral overlap of many closely spaced transitions using conventional detector technologies. The non-destructive analysis of mixed-isotope Pu materials is one such application where the precision can be potentially improved utilizing microcalorimeter detectors compared to current state-of-the-art high-purity Ge detectors (HPGe). The LANL-NIST γ-ray spectrometer, a 256-pixel microcalorimeter array based on transition-edge sensors (TESs), was recently commissioned and used to collect data on a variety of Pu isotopic standards to characterize the instrument performance. These measurements represent the first time the simultaneous readout of all 256 pixels for measurements of mixed-isotope Pu materials has been achieved. The LANL-NIST γ-ray spectrometer has demonstrated an average pixel resolution of 55 eV full-width-at-half-maximum at 100 keV, nearly an order of magnitude better than HPGe detectors. Some challenges of the analysis of many-channel ultra-high resolution data and the techniques used to produce quality spectra for isotopic analysis will be presented. The LANL-NIST γ-ray spectrometer has also demonstrated stable operation and obtained high resolution measurements at total array event rates beyond 1 kHz. For a total event rate of 1.25 kHz, approximately 5.6 cps/pixel, a 72.2 eV average FWHM for the 103 keV photopeak of {sup 153}Gd was achieved.

  5. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1991-07-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN-SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  6. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1992-01-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  7. Reference crop evapotranspiration estimate using high-resolution meteorological network's data

    Directory of Open Access Journals (Sweden)

    C. Lussana

    2009-10-01

    Full Text Available Water management authorities need detailed information about each component of the hydrological balance. This document presents a method to estimate the evapotranspiration rate, initialized in order to obtain the reference crop evapotranspiration rate (ET0. By using an Optimal Interpolation (OI scheme, the hourly observations of several meteorological variables, measured by a high-resolution local meteorological network, are interpolated over a regular grid. The analysed meteorological fields, containing detailed meteorological information, enter a model for turbulent heat fluxes estimation based on Monin-Obukhov surface layer similarity theory. The obtained ET0 fields are then post-processed and disseminated to the users.

  8. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI 2 ) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E g = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG ampersand G/EM on 96 HgI 2 spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI 2 which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs

  9. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  10. Benchmarking NaI(Tl) Electron Energy Resolution Measurements

    International Nuclear Information System (INIS)

    Mengesha, Wondwosen; Valentine, J D.

    2002-01-01

    A technique for validating electron energy resolution results measured using the modified Compton coincidence technique (MCCT) has been developed. This technique relies on comparing measured gamma-ray energy resolution with calculated values that were determined using the measured electron energy resolution results. These gamma-ray energy resolution calculations were based on Monte Carlo photon transport simulations, the measured NaI(Tl) electron response, a simplified cascade sequence, and the measured electron energy resolution results. To demonstrate this technique, MCCT-measured NaI(Tl) electron energy resolution results were used along with measured gamma-ray energy resolution results from the same NaI(Tl) crystal. Agreement to within 5% was observed for all energies considered between the calculated and measured gamma-ray energy resolution results for the NaI(Tl) crystal characterized. The calculated gamma-ray energy resolution results were also compared with previously published gamma-ray energy resolution measurements with good agreement (<10%). In addition to describing the validation technique that was developed in this study and the results, a brief review of the electron energy resolution measurements made using the MCCT is provided. Based on the results of this study, it is believed that the MCCT-measured electron energy resolution results are reliable. Thus, the MCCT and this validation technique can be used in the future to characterize the electron energy resolution of other scintillators and to determine NaI(Tl) intrinsic energy resolution

  11. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  13. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  14. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  15. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  16. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  17. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  18. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  19. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  20. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  1. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  2. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  3. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  4. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    Science.gov (United States)

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  5. Development of a metallic magnetic calorimeter for high resolution spectroscopy

    International Nuclear Information System (INIS)

    Linck, M.

    2007-01-01

    In this thesis the development of a metallic magnetic calorimeter for high resolution detection of single x-ray quanta is described. The detector consists of an X-ray absorber and a paramagnetic temperature sensor. The raise in temperature of the paramagnetic sensor due to the absorption of a single X-ray is measured by the change in magnetization of the sensor using a low-noise SQUID magnetometer. The thermodynamic properties of the detector can be described by a theoretical model based on a mean field approximation. This allows for an optimization of the detector design with respect to signal size. The maximal archivable energy resolution is limited by thermodynamic energy fluctuations between absorber, heat bath and thermometer. An interesting field of application for a metallic magnetic calorimeter is X-ray astronomy and the investigation of X-ray emitting objects. Through high-resolution X-ray spectroscopy it is possible to obtain information about physical processes of even far distant objects. The magnetic calorimeter that was developed in this thesis has a metallic absorber with a quantum efficiency of 98% at 6 keV. The energy resolution of the magnetic calorimeter is EFWHM=2.7 eV at 5.9 keV. The deviation of the detector response from a linear behavior of the detector is only 0.8% at 5.9 keV. (orig.)

  6. Simulation of high-resolution MFM tip using exchange-spring magnet

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan)]. E-mail: hsaito@ipc.akita-u.ac.jp; Yatsuyanagi, D. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ishio, S. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ito, A. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Kawamura, H. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Ise, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Taguchi, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Takahashi, S. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan)

    2007-03-15

    The transfer function of magnetic force microscope (MFM) tips using an exchange-spring trilayer composed of a centered soft magnetic layer and two hard magnetic layers was calculated and the resolution was estimated by considering the thermodynamic noise limit of an MFM cantilever. It was found that reducing the thickness of the centered soft magnetic layer and the magnetization of hard magnetic layer are important to obtain high resolution. Tips using an exchange-spring trilayer with a very thin FeCo layer and isotropic hard magnetic layers, such as CoPt and FePt, are found to be suitable for obtaining a resolution less than 10 nm at room temperature.

  7. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  8. Development Of High-Resolution Mechanical Spectroscopy, HRMS: Status And Perspectives. HRMS Coupled With A Laser Dilatometer

    Directory of Open Access Journals (Sweden)

    Magalas L.B.

    2015-09-01

    Full Text Available Recent achievements in the development of low-frequency high-resolution mechanical spectroscopy (HRMS are briefly reported. It is demonstrated that extremely low values of the loss angle, ϕ, (tanϕb = 1×10−5 can be measured as a function of frequency, and the precision in estimation of the dynamic modulus is better than 1×10−5 in arbitrary units. Three conditions must be fulfilled to obtain high resolution in subresonant and resonant mechanical loss measurements: (1 noise in stress and elastic strain signals must be lower than 70 dB, (2 high quality of stress and strain signals must be tested both in the frequency- and time-domains, and (3 the estimation of the mechanical loss and modulus must be verified by at least two different computing methods operating in the frequency- and time-domains. It is concluded that phase measurements in the subresonant domain are no longer determined by precision in estimation of the loss angle. Recent developments in high-resolution resonant mechanical loss measurements stem from the application of advanced nonparametric and parametric computing methods and algorithms to estimate the logarithmic decrement and the elastic modulus from exponentially damped free decaying oscillations embedded in experimental noise.

  9. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    Science.gov (United States)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  10. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  11. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  12. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    International Nuclear Information System (INIS)

    Ko Ko Naing

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another γ-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  13. Performance characteristics of high resolution semiconductor gamma ray spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Naing, Ko Ko

    1994-05-01

    A high purity germanium (HPGe) gamma-ray detector has been used in Nuclear Research Laboratory, Department of Physics, Yangon University for over fourteen years. Now it is still being used and it is coupled to new peripheral devices, such as spectroscopy amplifier, analog to digital converter and computer fit-in S-100 multichannel analyser. Therefore, it is necessary to determine the important parameters: energy resolution, detecting efficiency and relative efficiency of the system. In the present work, these parameters were obtained by using mixed calibrated source. The results were compared to the data given by the manufacturer. Moreover, the parameters of another {gamma}-ray detecting system NaI(T1) were also determined. In conclusion the results obtained from the above two measurements were compared and discussed

  14. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  15. Study of position resolution for cathode readout MWPC with measurement of induced charge distribution

    International Nuclear Information System (INIS)

    Chiba, J.; Iwasaki, H.; Kageyama, T.; Kuribayashi, S.; Nakamura, K.; Sumiyoshi, T.; Takeda, T.

    1983-01-01

    A readout technqiue of multiwire proportional chambers by measurement of charges induced on cathode strips, orthogonal to anode wires, requires an algorithm to relate the measured charge distribution to the avalanche position. With given chamber parameters and under the influence of noise, resolution limits depend on the chosen algorithm. We have studied the position resolution obtained by the centroid method and by the charge-ratio method, both using three consecutive cathode strips. While the centroid method uses a single number, the center of gravity of the measured charges, the charge-ratio method uses the ratios of the charges Qsub(i-1)/Qsub(i) and Qsub(i+1)/Qsub(i) where Qsub(i) is the largest. To obtain a given resolution, the charge-ratio method generally allows wider cathode strips and therefore a smaller number of readout channels than the centroid method. (orig.)

  16. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  17. A characteristics of East Asian climate using high-resolution regional climate model

    Science.gov (United States)

    Yhang, Y.

    2013-12-01

    Climate research, particularly application studies for water, agriculture, forestry, fishery and energy management require fine scale multi-decadal information of meteorological, oceanographic and land states. Unfortunately, spatially and temporally homogeneous multi-decadal observations of these variables in high horizontal resolution are non-existent. Some long term surface records of temperature and precipitation exist, but the number of observation is very limited and the measurements are often contaminated by changes in instrumentation over time. Some climatologically important variables, such as soil moisture, surface evaporation, and radiation are not even measured over most of East Asia. Reanalysis is one approach to obtaining long term homogeneous analysis of needed variables. However, the horizontal resolution of global reanalysis is of the order of 100 to 200 km, too coarse for many application studies. Regional climate models (RCMs) are able to provide valuable regional finescale information, especially in regions where the climate variables are strongly regulated by the underlying topography and the surface heterogeneity. In this study, we will provide accurately downscaled regional climate over East Asia using the Global/Regional Integrated Model system [GRIMs; Hong et al. 2013]. A mixed layer model is embedded within the GRIMs in order to improve air-sea interaction. A detailed description of the characteristics of the East Asian summer and winter climate will be presented through the high-resolution numerical simulations. The increase in horizontal resolution is expected to provide the high-quality data that can be used in various application areas such as hydrology or environmental model forcing.

  18. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  19. High-resolution spectra of comet C/2013 R1 (Lovejoy)

    Science.gov (United States)

    Rousselot, P.; Decock, A.; Korsun, P. P.; Jehin, E.; Kulyk, I.; Manfroid, J.; Hutsemékers, D.

    2015-08-01

    Context. High-resolution spectra of comets permit deriving the physical properties of the coma. In the optical range, relative production rates can be computed, and information about isotopic ratios and the origin of oxygen atoms can be obtained. Aims: The main objective of the work presented here was to obtain information about the chemical composition of comet C/2013 R1 (Lovejoy), a bright and long-period comet that passed perihelion (0.81 au) on 22 December 2013. Methods: We used the HARPS-North echelle spectrograph at the 3.5 m telescope TNG to obtain high-resolution spectra of comet C/2013 R1 (Lovejoy) in the optical range immediately after its perihelion passage during four consecutive nights in the period December 23 to 26, 2013. Results: Our results demonstrate the ability of HARPS-North to efficiently obtain cometary spectra. Very faint emission lines, such as those of 15NH2, have been detected, leading to a rough estimate of the 14N/15N ratio in NH2. The 12C/13C ratio was measured in the C2 lines and is equal to 80 ± 30. The oxygen lines were studied as well (green to red line intensity ratios and widths), confirming that H2O is the main parent molecule that photodissociates to produce oxygen atoms. This suggests that this comet has a high CO2 abundance. Relative production rates for C2 and NH2 were computed, but we found no significant deviation from a typical NH2/C2 ratio. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  20. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, John Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  1. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  2. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  3. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.

  4. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  5. Spectroscopic Characterisation of CARMENES Target Candidates from FEROS, CAFE and HRS High-Resolution Spectra

    Science.gov (United States)

    Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas

    2016-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.

  6. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  7. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics.

    Directory of Open Access Journals (Sweden)

    Jan Sedlacik

    Full Text Available The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI and dynamic digital subtraction angiography (DSA.The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3-4 mm neck, 3.5 mm parent artery diameter and connected to a peristaltic pump delivering a physiological flow (250 mL/min and pulsation rate (70/min. High-resolution (4 h long 4D phase contrast flow quantification (4D pc-fq MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s through a proximally placed catheter.4D pc-fq measurements showed distinct pulsatile flow velocities (20-80 cm/s as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s, which is in accordance with the 4D pc-fq measurements.The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic.

  8. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known {sup 48}Ca primary beam was performed as a reference. The FRS was set for the reaction {sup 56}Ti{yields}{sup 55}Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes {sup 51,52,53,54,55}Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from {sup 48}Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from {sup 51,52,53,54,55}Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in {sup 48}Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R{sup 3}B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R{sup 3}B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm{sup 2}) test detectors. Samples using new manufacturing methods were characterized. A dose of some 10{sup 11} ions/mm{sup 2} was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even

  9. High time resolution beam-based measurement of the rf-to-laser jitter in a photocathode rf gun

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-03-01

    Full Text Available Characterizing the rf-to-laser jitter in the photocathode rf gun and its possible origins is important for improving the synchronization and beam quality of the linac based on the photocathode rf gun. A new method based on the rf compression effect in the photocathode rf gun is proposed to measure the rf-to-laser jitter in the gun. By taking advantage of the correlation between the rf compression and the laser injection phase, the error caused by the jitter of the accelerating field in the gun is minimized and thus 10 fs time resolution is expected. Experimental demonstration at the Tsinghua Thomson scattering x-ray source with a time resolution better than 35 fs is reported in this paper. The experimental results are successfully used to obtain information on the possible cause of the jitter and the accompanying drifts.

  10. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Ye Weiguo; Han Hui; Li Pengyu

    2003-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronic is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  11. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Li Pengyu; Han Hui; Ye Yanlin

    2005-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronics is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  12. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  13. Ultra-high resolution spectroscopy of the He doubly excited states

    International Nuclear Information System (INIS)

    Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.

    1995-11-01

    Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented

  14. Infrared emission high spectral resolution atlas of the stratospheric limb

    Science.gov (United States)

    Maguire, William C.; Kunde, Virgil G.; Herath, Lawrence W.

    1989-01-01

    An atlas of high resolution infrared emission spectra identifies a number of gaseous atmospheric features significant to stratospheric chemistry in the 770-900/cm and 1100-1360/cm regions at six zenith angles from 86.7 to 95.1 deg. A balloon-borne Michelson interferometer was flown to obtain about 0.03/cm resolution spectra. Two 10/cm extracts are presented here.

  15. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    Science.gov (United States)

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  16. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  17. Development of high-energy resolution inverse photoemission technique

    International Nuclear Information System (INIS)

    Asakura, D.; Fujii, Y.; Mizokawa, T.

    2005-01-01

    We developed a new inverse photoemission (IPES) machine based on a new idea to improve the energy resolution: off-plane Eagle mounting of the optical system in combination with dispersion matching between incoming electron and outgoing photon. In order to achieve dispersion matching, we have employed a parallel plate electron source and have investigated whether the electron beam is obtained as expected. In this paper, we present the principle and design of the new IPES method and report the current status of the high-energy resolution IPES machine

  18. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  19. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  20. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  1. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  2. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  3. New High-Resolution Absorption Cross-Section Measurements of HCFC-142B in the Mid-Ir

    Science.gov (United States)

    Le Bris, Karine; Strong, Kimberly; Melo, Stella

    2009-06-01

    HCFC-142b (1-chloro-1,1-difluoroethane) is a temporary substitute for ozone-depleting chlorofluorocarbons (CFCs). However, due to its high absorption cross-sections in the mid-IR, HCFC-142b is also a highly potent greenhouse gas, now detectable from space by satellite missions. So far, the accuracy of the retrieval has been limited by the lack of reference data in a range of temperatures compatible with atmospheric observations. We present new absorption cross section measurements of HCFC-142b at high-resolution (0.02 cm^{-1}) from 223 K to 283 K in the 600 cm^{-1}- 4000 cm^{-1} spectral window. The composite spectra are calculated for each temperature from a set of acquisitions at different pressures by Fourier transform spectroscopy.

  4. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    International Nuclear Information System (INIS)

    Yap, Thai Leong; Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G.; Lescar, Julien

    2007-01-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration

  5. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Thai Leong [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G. [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); Lescar, Julien, E-mail: julien@ntu.edu.sg [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  6. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  8. Interpretation of measured data and the resolution analysis of the RTP 4-channel pulsed radar

    International Nuclear Information System (INIS)

    Pavlo, P.

    1993-01-01

    The resolution of a 4-channel pulsed radar being built at Rijnhuisen for the RTP tokamak is analyzed. The achievable resolution mainly depends on the accuracy of the time-of-flight measurements and the number of sampling frequencies; since the technological solution and the configuration have already been set, emphasis is put on interpretation of the measured data (the inversion problem) and minimization of the overall error. For this purpose, a specific neural network - the Multi Layer Perceptron (MLP) - has successfully been applied. Central density in the range of 0.2-0.6 x 10 20 m -3 was considered, i.e., one above the critical density for all four frequencies but not so high as to restrict the measurements to just the edge of the plasma. By balancing the inversion error and the time measurement error, for a wide class of density profiles the overall error in estimating the reflection point position of between 0.72 cm (for the lowest frequency) and 0.52 cm (for the highest frequency) root mean square was obtained, assuming an RMS error of 70 ps in the time of flight measurements. This is probably much better than what could be obtained by the Abel transform. Moreover, mapping with the MLP is considerably faster, and it should be considered for routine multichannel pulsed radar data processing. (author) 2 tabs., 4 figs., 6 refs

  9. High resolution 3D gas-jet characterization

    International Nuclear Information System (INIS)

    Landgraf, Bjoern; Kaluza, Malte C.; Spielmann, Christian; Schnell, Michael; Saevert, Alexander

    2011-01-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 x 10 17 cm -3 .

  10. Magnetic properties of iron oxide-based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, M.V. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Semenova, A.S.; Kellerman, D.G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Šepelák, V. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Semionkin, V.A. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Morais, P.C. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Universidade de Brasília, Instituto de Física, DF, Brasília 70910-900 (Brazil)

    2017-06-01

    We review the results of the study of magnetite, maghemite and nickel ferrite nanoparticles (NPs), applying for magnetic fluids, using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. The Mössbauer spectra of these NPs were fitted using a large number of magnetic sextets reflecting NPs complicity. The presence of polar molecules at the magnetite surface in magnetic fluid increases the NPs magnetic moment and the median hyperfine magnetic field. However, surface coating of maghemite NPs with dimeracptosuccinic acid decreases the median hyperfine magnetic field. An example of nickel ferrite NPs demonstrated a new physical model based on distribution of Ni{sup 2+} in the local microenvironment of Fe{sup 3+} which can explain a large number of magnetic sextets in the Mössbauer spectra measured with a high velocity resolution.

  11. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  12. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  13. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  14. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  15. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  16. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  17. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    Science.gov (United States)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  18. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    Directory of Open Access Journals (Sweden)

    Li Jun-Bao

    2017-06-01

    Full Text Available Magnetic Resonance Super-resolution Imaging Measurement (MRIM is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  19. High spatial resolution in laser-induced breakdown spectroscopy of expanding plasmas

    International Nuclear Information System (INIS)

    Siegel, J.; Epurescu, G.; Perea, A.; Gordillo-Vazquez, F.J.; Gonzalo, J.; Afonso, C.N.

    2005-01-01

    We report a technique that is able to achieve high spatial resolution in the measurement of the temporal and spectral emission characteristics of laser-induced expanding plasmas. The plasma is imaged directly onto the slit of an imaging spectrograph coupled to a time-gated intensified camera, with the plasma expansion direction being parallel to the slit extension. In this way, a single hybrid detection system is used to acquire the spatial, spectral and temporal characteristics of the laser induced plasma. The parallel acquisition approach of this technique ensures a much better spatial resolution in the expansion direction, reproducibility and data acquisition speed than commonly obtained by sequential measurements at different distances from the target. We have applied this technique to study the laser-induced plasma in LiNbO 3 and Bi 12 Ge 1 O 20 , revealing phenomena not seen in such detail with standard instruments. These include extreme line broadening up to a few nanometers accompanied by self-absorption near the target surface, as well as different ablation and expansion dynamics for the different species ejected. Overall, the high precision and wealth of quantitative information accessible with this technique open up new possibilities for the study of fundamental plasma expansion processes during pulsed laser ablation

  20. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  1. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  2. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  3. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    Science.gov (United States)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  4. Metrological 2iOF fibre-optic system for position and displacement measurement with 31 pm resolution

    Science.gov (United States)

    Orłowska, Karolina; Świåtkowski, Michał; Kunicki, Piotr; Gotszalk, Teodor

    2018-04-01

    In the present paper, we describe a high sensitivity intensity fibre-optic displacement sensor with tens of picometre resolution combined with a sub-picometre resolution interferometric calibration system. Both integrated components form the so-called "2 in one ferrule" system 2iOF. The design and construction of the presented device depend on integrating two sensors' systems within one fibre-optic measuring head, which allows performing in situ calibration process with no additional time-consuming adjustment procedure. The resolution of the 2iOF system is 31 pm/Hz1/2 obtained with an interferometric Fabry-Perot based calibration system—providing accuracy better than tens of fm/Hz1/2 within 1 MHz bandwidth in the measurement range of up to 100 μm. The direct response from the intensity sensor is then the 2iOF output one. It is faster and more convenient to analyze in comparison, with much better resolution (3 orders of magnitude higher) but on the other hand also more time consuming and dependent on the absolute sample position interferometer. The proposed system is flexible and open to various applications. We will present the results of the piezoelectrical actuator displacement measurements, which were performed using the developed system.

  5. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Science.gov (United States)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  6. High-resolution seismic reflection surveying with a land streamer

    Science.gov (United States)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  7. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  8. DOI resolution measurement and error analysis with LYSO and APDs

    International Nuclear Information System (INIS)

    Lee, Chae-hun; Cho, Gyuseong

    2008-01-01

    Spatial resolution degradation in PET occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and several methods for DOI positioning were proposed. In this paper, a DOI-PET detector module using two 8x4 array avalanche photodiodes (APDs) (Hamamatsu, S8550) and a 2 cm long LYSO scintillation crystal was proposed and its DOI characteristics were investigated experimentally. In order to measure DOI positions, signals from two APDs were compared. Energy resolution was obtained from the sum of two APDs' signals and DOI positioning error was calculated. Finally, an optimum DOI step size in a 2 cm long LYSO were suggested to help to design a DOI-PET

  9. New high resolution measurements of open and hidden charm production in proton-nucleus collisions at √{ s} = 110GeV with LHCb

    Science.gov (United States)

    Maurice, Émilie; LHCb Collaboration

    2017-11-01

    Open and hidden charm production in nucleus-nucleus collisions is considered as a key probe of Quark Gluon Plasma (QGP) formation. In the search of specific QGP effects, proton-nucleus collisions are used as the reference as they account for the corresponding Cold Nuclear Matter (CNM) effects. The LHCb experiment, thanks to its System for Measuring Overlap with Gas (SMOG) can be operated in a fixed target mode with the LHC beams, at an intermediate center-of-mass energy between nominal SPS and RHIC energies. In 2015, for the first time, reactions of incident LHC proton beams on noble gas targets have been recorded by the LHCb experiment at a center-of-mass energy of 110 GeV and within the center-of-mass rapidity range - 2.77 high resolution measurements on open and hidden charm production obtained under these conditions are presented.

  10. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  11. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  12. Variational data assimilation system with nesting model for high resolution ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Yoichi; Igarashi, Hiromichi; Hiyoshi, Yoshimasa; Sasaki, Yuji; Wakamatsu, Tsuyoshi; Awaji, Toshiyuki [Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-Ku, Yokohama 236-0001 (Japan); In, Teiji [Japan Marine Science Foundation, 4-24, Minato-cho, Mutsu, Aomori, 035-0064 (Japan); Nakada, Satoshi [Graduate School of Maritime Science, Kobe University, 5-1-1, Fukae-minamimachi, Higashinada-Ku, Kobe, 658-0022 (Japan); Nishina, Kei, E-mail: ishikaway@jamstec.go.jp [Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-Ku, Kyoto, 606-8502 (Japan)

    2015-10-15

    To obtain the high-resolution analysis fields for ocean circulation, a new incremental approach is developed using a four-dimensional variational data assimilation system with nesting models. The results show that there are substantial biases when using a classical method combined with data assimilation and downscaling, caused by different dynamics resulting from the different resolutions of the models used within the nesting models. However, a remarkable reduction in biases of the low-resolution model relative to the high-resolution model was observed using our new approach in narrow strait regions, such as the Tsushima and Tsugaru straits, where the difference in the dynamics represented by the high- and low-resolution models is substantial. In addition, error reductions are demonstrated in the downstream region of these narrow channels associated with the propagation of information through the model dynamics. (paper)

  13. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  14. Proper-time resolution function for measurement of time evolution of B mesons at the KEK B-Factory

    International Nuclear Information System (INIS)

    Tajima, H.; Aihara, H.; Higuchi, T.; Kawai, H.; Nakadaira, T.; Tanaka, J.; Tomura, T.; Yokoyama, M.; Hazumi, M.; Sakai, Y.; Sumisawa, K.; Kawasaki, T.

    2004-01-01

    The proper-time resolution function for the measurement of the time evolution of B mesons with the Belle detector at KEKB is studied in detail. The obtained resolution function is applied to the measurement of B meson lifetimes, the B0B-bar 0 oscillation frequency and time-dependent CP asymmetries

  15. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  16. Serial isoelectric focusing as an effective and economic way to obtain maximal resolution and high-throughput in 2D-based comparative proteomics of scarce samples: proof-of-principle.

    Science.gov (United States)

    Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A

    2005-01-01

    In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.

  17. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  18. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  20. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  1. Iron-coupled inactivation of phosphorus in sediments by macrozoobenthos (chironomid larvae) bioturbation: Evidences from high-resolution dynamic measurements

    International Nuclear Information System (INIS)

    Chen, Musong; Ding, Shiming; Liu, Ling; Xu, Di; Han, Chao; Zhang, Chaosheng

    2015-01-01

    The effects of chironomid larvae bioturbation on the lability of phosphorus (P) in sediments were investigated through sediment incubation for 140 days. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were applied to obtain soluble and labile P/Fe profiles at a millimeter resolution, respectively. The larvae bioturbation decreased concentrations of soluble/labile P and Fe by up to over half of the control at the sediment depths of influence up to 70 and 90 mm respectively. These effects continued over 116 days and disappeared on the 140th days due to eclosion of chironomid larvae. Labile P was highly correlated with labile Fe, while a weak correlation was observed between soluble P and soluble Fe. It was concluded that Fe(II) oxidation and its enhanced adsorption were the major mechanisms responsible for the decreases of soluble and labile P. - Highlights: • High resolution techniques were employed to study bioturbation effects on P. • Larvae bioturbation decreased the concentrations of soluble/labile P and Fe. • Bioturbation effects continued over 116 days and disappeared on the 140th days. • Labile P was more sensitive than pore water SRP in response to bioturbation. • It proved the mechanism of Fe-coupled inactivation of P in bioturbation sediments. - Chironomid larvae bioturation decreased the lability of P in sediments from Fe(II) oxidation and enhanced adsorption of P

  2. High-Resolution Imaging of K2 Planet Host Stars and the Effect of Stellar Companions

    Science.gov (United States)

    Jasmine Gonzales, Erica; Ciardi, David; Crossfield, Ian; K2 Team

    2018-01-01

    Our K2 planetary candidate follow-up program has obtained high-resolution adaptive optics (AO) imaging of K2 targets in Campaigns 5-8. We observed nearly 200 systems and find that roughly 20% of these systems have nearby (TESS mission. In addition, the pixel size of TESS will be larger than Kepler and thus AO imaging will be even more important to uncovering otherwise unknown compaions contributing to photometric measurements.

  3. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  4. Marker-referred movement measurement with grey-scale coordinate extraction for high-resolution real-time 3D at 100 Hz

    NARCIS (Netherlands)

    Furnée, E.H.; Jobbá, A.; Sabel, J.C.; Veenendaal, H.L.J. van; Martin, F.; Andriessen, D.C.W.G.

    1997-01-01

    A review of early history in photography highlights the origin of cinefilm as a scientific tool for image-based measurement of human and animal motion. The paper is concerned with scanned-area video sensors (CCD) and a computer interface for the real-time, high-resolution extraction of image

  5. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  6. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  7. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility

    Science.gov (United States)

    Tommasini, R.; Bailey, C.; Bradley, D. K.; Bowers, M.; Chen, H.; Di Nicola, J. M.; Di Nicola, P.; Gururangan, G.; Hall, G. N.; Hardy, C. M.; Hargrove, D.; Hermann, M.; Hohenberger, M.; Holder, J. P.; Hsing, W.; Izumi, N.; Kalantar, D.; Khan, S.; Kroll, J.; Landen, O. L.; Lawson, J.; Martinez, D.; Masters, N.; Nafziger, J. R.; Nagel, S. R.; Nikroo, A.; Okui, J.; Palmer, D.; Sigurdsson, R.; Vonhof, S.; Wallace, R. J.; Zobrist, T.

    2017-05-01

    High-resolution, high-energy X-ray backlighters are very active area of research for radiography experiments at the National Ignition Facility (NIF) [Miller et al., Nucl. Fusion 44, S228 (2004)], in particular those aiming at obtaining Compton-scattering produced radiographs from the cold, dense fuel surrounding the hot spot. We report on experiments to generate and characterize point-projection-geometry backlighters using short pulses from the advanced radiographic capability (ARC) [Crane et al., J. Phys. 244, 032003 (2010); Di Nicola et al., Proc. SPIE 2015, 93450I-12], at the NIF, focused on Au micro-wires. We show the first hard X-ray radiographs, at photon energies exceeding 60 keV, of static objects obtained with 30 ps-long ARC laser pulses, and the measurements of strength of the X-ray emission, the pulse duration and the source size of the Au micro-wire backlighters. For the latter, a novel technique has been developed and successfully applied.

  8. A Numerical Method to Generate High Temporal Resolution Precipitation Time Series by Combining Weather Radar Measurements with a Nowcast Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    The topic of this paper is temporal interpolation of precipitation observed by weather radars. Precipitation measurements with high spatial and temporal resolution are, in general, desired for urban drainage applications. An advection-based interpolation method is developed which uses methods...

  9. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  10. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  11. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  12. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  13. High resolution study of high mass pairs and high transverse momentum particles

    International Nuclear Information System (INIS)

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  14. Measurement needs guided by synthetic radar scans in high-resolution model output

    Science.gov (United States)

    Varble, A.; Nesbitt, S. W.; Borque, P.

    2017-12-01

    Microphysical and dynamical process interactions within deep convective clouds are not well understood, partly because measurement strategies often focus on statistics of cloud state rather than cloud processes. While processes cannot be directly measured, they can be inferred with sufficiently frequent and detailed scanning radar measurements focused on the life cycleof individual cloud regions. This is a primary goal of the 2018-19 DOE ARM Cloud, Aerosol, and Complex Terrain Interactions (CACTI) and NSF Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaigns in central Argentina, where orographic deep convective initiation is frequent with some high-impact systems growing into the tallest and largest in the world. An array of fixed and mobile scanning multi-wavelength dual-polarization radars will be coupled with surface observations, sounding systems, multi-wavelength vertical profilers, and aircraft in situ measurements to characterize convective cloud life cycles and their relationship with environmental conditions. While detailed cloud processes are an observational target, the radar scan patterns that are most ideal for observing them are unclear. They depend on the locations and scales of key microphysical and dynamical processes operating within the cloud. High-resolution simulations of clouds, while imperfect, can provide information on these locations and scales that guide radar measurement needs. Radar locations are set in the model domain based on planned experiment locations, and simulatedorographic deep convective initiation and upscale growth are sampled using a number of different scans involving RHIs or PPIs with predefined elevation and azimuthal angles that approximately conform with radar range and beam width specifications. Each full scan pattern is applied to output atsingle model time steps with time step intervals that depend on the length of time

  15. High-resolution measurements of the exited states (n,pn), (n,dn) C-12 cross sections

    Science.gov (United States)

    Pillon, M.; Angelone, M.; Belloni, F.; Geerts, W.; Loreti, S.; Milocco, A.; Plompen, A. J. M.

    2017-09-01

    Measurements of C12 cross sections for the excited states (n,p0) up to (n,p4) and (n,d0), (n,d1) have been carried out. The Van de Graaff neutron generator of the EC-JRC-IRMM laboratory has been used for these measurements. A very thin tritiated target (263 μg/cm2) was employed with deuteron beams energies impinging on the target in the range 2.5-4.0 MeV. Neutrons in the range 18.9-20.7 MeV were produced with an intrinsic energy spread of 0.2-0.25% FWHM. With such narrow neutron energy spread, using a high energy resolution device such as a single crystal diamond detector, several peaks from the outgoing charged particles produced by the (n,pn), (n,dn) and also (n,α0) reactions appear in the pulse height spectrum. The peaks can be identified using the reaction Q-values. The diamond detector used for these measurements has shown an intrinsic energy resolution lower than 0.9% FWHM. The analysis of the peaks has permitted to derive the partial carbon reaction cross sections for several excited states. The results are presented in this paper with the associated uncertainties and they are compared with different versions of TENDL compilation when these data are available (e.g. versions 2009, 2010, 2011 and 2015) and also with experimental results available in the EXFOR database.

  16. High-resolution measurements of the exited states (n,pn, (n,dn C-12 cross sections

    Directory of Open Access Journals (Sweden)

    Pillon M.

    2017-01-01

    Full Text Available Measurements of C12 cross sections for the excited states (n,p0 up to (n,p4 and (n,d0, (n,d1 have been carried out. The Van de Graaff neutron generator of the EC-JRC-IRMM laboratory has been used for these measurements. A very thin tritiated target (263 μg/cm2 was employed with deuteron beams energies impinging on the target in the range 2.5–4.0 MeV. Neutrons in the range 18.9–20.7 MeV were produced with an intrinsic energy spread of 0.2–0.25% FWHM. With such narrow neutron energy spread, using a high energy resolution device such as a single crystal diamond detector, several peaks from the outgoing charged particles produced by the (n,pn, (n,dn and also (n,α0 reactions appear in the pulse height spectrum. The peaks can be identified using the reaction Q-values. The diamond detector used for these measurements has shown an intrinsic energy resolution lower than 0.9% FWHM. The analysis of the peaks has permitted to derive the partial carbon reaction cross sections for several excited states. The results are presented in this paper with the associated uncertainties and they are compared with different versions of TENDL compilation when these data are available (e.g. versions 2009, 2010, 2011 and 2015 and also with experimental results available in the EXFOR database.

  17. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  18. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  19. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  20. Optimised performance of industrial high resolution computerised tomography

    International Nuclear Information System (INIS)

    Maangaard, M.

    2000-01-01

    The purpose of non-destructive evaluation (NDE) is to acquire knowledge of the investigated sample. Digital x-ray imaging techniques such as radiography or computerised tomography (CT) produce images of the interior of a sample. The obtained image quality determines the possibility of detecting sample related features, e.g. details and flaws. This thesis presents a method of optimising the performance of industrial X-ray equipment for the imaging task at issue in order to obtain images with high quality. CT produces maps of the X-ray linear attenuation of the sample's interior. CT can produce two dimensional cross-section images or three-dimensional images with volumetric information on the investigated sample. The image contrast and noise depend on both the investigated sample and the equipment and settings used (X-ray tube potential, X-ray filtration, exposure time, etc.). Hence, it is vital to find the optimal equipment settings in order to obtain images of high quality. To be able to mathematically optimise the image quality, it is necessary to have a model of the X-ray imaging system together with an appropriate measure of image quality. The optimisation is performed with a developed model for an X-ray image-intensifier-based radiography system. The model predicts the mean value and variance of the measured signal level in the collected radiographic images. The traditionally used measure of physical image quality is the signal-to-noise ratio (SNR). To calculate the signal-to-noise ratio, a well-defined detail (flaw) is required. It was found that maximising the SNR leads to ambiguities, the optimised settings found by maximising the SNR were dependent on the material in the detail. When CT is performed on irregular shaped samples containing density and compositional variations, it is difficult to define which SNR to use for optimisation. This difficulty is solved by the measures of physical image quality proposed here, the ratios geometry

  1. Quality of Experience for Large Ultra-High-Resolution Tiled Displays with Synchronization Mismatch

    Directory of Open Access Journals (Sweden)

    Deshpande Sachin

    2011-01-01

    Full Text Available This paper relates to quality of experience when viewing images, video, or other content on large ultra-high-resolution displays made from individual display tiles. We define experiments to measure vernier acuity caused by synchronization mismatch for moving images. The experiments are used to obtain synchronization mismatch acuity threshold as a function of object velocity and as a function of occlusion or gap width. Our main motivation for measuring the synchronization mismatch vernier acuity is its relevance in the application of tiled display systems, which create a single contiguous image using individual discrete panels arranged in a matrix with each panel utilizing a distributed synchronization algorithm to display parts of the overall image. We also propose a subjective assessment method for perception evaluation of synchronization mismatch for large ultra-high-resolution tiled displays. For this, we design a synchronization mismatch measurement test video set for various tile configurations for various interpanel synchronization mismatch values. The proposed method for synchronization mismatch perception can evaluate tiled displays with or without tile bezels. The results from this work can help during design of low-cost tiled display systems, which utilize distributed synchronization mechanisms for a contiguous or bezeled image display.

  2. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  3. High-resolution bent-crystal spectrometer for the ultra-soft x-ray region

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.; Hulse, R.A.; Walling, R.S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 /angstrom/. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (λ/Δλ ∼ 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is Δλ/λ 0 = 8/angstrom/. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic. 43 refs., 23 figs

  4. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  5. The EUV dayglow at high spectral resolution

    International Nuclear Information System (INIS)

    Morrison, M.D.; Bowers, C.W.; Feldman, P.D.; Meier, R.R.

    1990-01-01

    Rocket observations of the dayglow spectrum of the terrestrial atmosphere between 840 angstrom and 1860 angstrom at 2 angstrom resolution were obtained with a sounding rocket payload flown on January 17, 1985. Additionally, spectra were also obtained using a 0.125-m focal length scanning Ebert-Fastie monochromator covering the wavelength interval of 1150-1550 angstrom at 7 angstrom resolution on this flight and on a sounding rocket flight on August 29, 1983, under similar viewing geometries and solar zenith angles. Three bands of the N 2 c' 4 system are seen clearly resolved in the dayglow. Analysis of high-resolution N 2 Lyman-Birge-Hopfield data shows no anomalous vibrational distribution as has been reported from other observations. The altitude profiles of the observed O and N 2 emissions demonstrate that the MSIS-83 model O and N 2 densities are appropriate for the conditions of both the 1983 and 1985 rocket flights. A reduction of a factor of 2 in the model O 2 density is required for both flights to reproduce the low-altitude atomic oxygen emission profiles. The volume excitation rates calculated using the Hinteregger et al. (1981) SC number-sign 21REFW solar reference spectrum and the photoelectron flux model of Strickland and Meier (1982) need to be scaled upward by a factor of 1.4 for both fights to match the observations

  6. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  7. Crosstalk corrections for improved energy resolution with highly segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Wiens, Andreas; Eberth, Juergen; Hess, Herbert; Pascovici, Gheorghe; Warr, Nigel; Aydin, Sezgin; Bazzacco, Dino; Recchia, Francesco

    2009-01-01

    Crosstalk effects of 36-fold segmented, large volume AGATA HPGe detectors cause shifts in the γ-ray energy measured by the inner core and outer segments as function of segment multiplicity. The positions of the segment sum energy peaks vary approximately linearly with increasing segment multiplicity. The resolution of these peaks deteriorates also linearly as a function of segment multiplicity. Based on single event treatment, two methods were developed in the AGATA Collaboration to correct for the crosstalk induced effects by employing a linear transformation. The matrix elements are deduced from coincidence measurements of γ-rays of various energies as recorded with digital electronics. A very efficient way to determine the matrix elements is obtained by measuring the base line shifts of untriggered segments using γ-ray detection events in which energy is deposited in a single segment. A second approach is based on measuring segment energy values for γ-ray interaction events in which energy is deposited in only two segments. After performing crosstalk corrections, the investigated detector shows a good fit between the core energy and the segment sum energy at all multiplicities and an improved energy resolution of the segment sum energy peaks. The corrected core energy resolution equals the segment sum energy resolution which is superior at all folds compared to the individual uncorrected energy resolutions. This is achieved by combining the two independent energy measurements with the core contact on the one hand and the segment contacts on the other hand.

  8. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  9. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  10. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  11. Auroral radar measurements at 16-cm wavelength with high range and time resolution

    International Nuclear Information System (INIS)

    Schlegel, K.; Turunen, T.; Moorcroft, D.R.

    1990-01-01

    Auroral radar measurements performed with the EISCAT facility are presented. Backscatter cross sections of the irregularities produced by the two-stream (Farley-Buneman) or gradient drift plasma instabilities have been recorded with a range separation of 1.5 km, corresponding to a spacing of successive values in height of about 0.4 km. The apparent height profiles of the backscatter have a width of about 5-6 km and occur between 95 and 112 km altitude, with a mean at 104 km. Very often, fast motions of the backscatter layers are observed which can be explained as fast moving ionospheric structures controlled by magnetospheric convection. The maximal time resolution of the measurements is 12.5 ms. The statistics of the backscatter amplitudes at this time resolution is close to a Rice distribution with a Rice parameter a ∼ 3.7. The observed backscatter spectra do not change significantly in shape when the integration time is reduced from 5 s to 100 ms

  12. Tumour size measurement in a mouse model using high resolution MRI

    International Nuclear Information System (INIS)

    Montelius, Mikael; Ljungberg, Maria; Horn, Michael; Forssell-Aronsson, Eva

    2012-01-01

    Animal models are frequently used to assess new treatment methods in cancer research. MRI offers a non-invasive in vivo monitoring of tumour tissue and thus allows longitudinal measurements of treatment effects, without the need for large cohorts of animals. Tumour size is an important biomarker of the disease development, but to our knowledge, MRI based size measurements have not yet been verified for small tumours (10 −2 –10 −1 g). The aim of this study was to assess the accuracy of MRI based tumour size measurements of small tumours on mice. 2D and 3D T2-weighted RARE images of tumour bearing mice were acquired in vivo using a 7 T dedicated animal MR system. For the 3D images the acquired image resolution was varied. The images were exported to a PC workstation where the tumour mass was determined assuming a density of 1 g/cm 3 , using an in-house developed tool for segmentation and delineation. The resulting data were compared to the weight of the resected tumours after sacrifice of the animal using regression analysis. Strong correlations were demonstrated between MRI- and necropsy determined masses. In general, 3D acquisition was not a prerequisite for high accuracy. However, it was slightly more accurate than 2D when small (<0.2 g) tumours were assessed for inter- and intraobserver variation. In 3D images, the voxel sizes could be increased from 160 3 μm 3 to 240 3 μm 3 without affecting the results significantly, thus reducing acquisition time substantially. 2D MRI was sufficient for accurate tumour size measurement, except for small tumours (<0.2 g) where 3D acquisition was necessary to reduce interobserver variation. Acquisition times between 15 and 50 minutes, depending on tumour size, were sufficient for accurate tumour volume measurement. Hence, it is possible to include further MR investigations of the tumour, such as tissue perfusion, diffusion or metabolic composition in the same MR session

  13. The XM-1 high resolution x-ray microscope at the ALS

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Johnson, L.E.; Bates, W.; Lucero, A.; Anderson, E.H.; Denbeaux, G.

    2000-01-01

    The XM-1 x-ray microscope was built to obtain a high throughput of high-resolution transmission images with a wide variety of thick (< 10 micron) samples. Modeled after a 'conventional' full-field microscope, the XM-1 makes use of zone plates (ZP) for the condenser and objective elements. We present an overview of the recent activities at XM-1. Over the past year many enhancements have taken place such as the use of more efficient zone plates and the development of a cryogenic sample stage. Moreover, we have been developing the spectromicroscopy capabilities of the microscope to distinguish different element and chemical states within a sample while obtaining high spatial resolution images. We report on these and other advances. Additionally, the microscope has been actively used in many fields including biology, environmental and material science. Some of these recent achievements will be highlighted as well

  14. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    Science.gov (United States)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  15. Day and Night Variability of CO2 Fluxes and Priming Effects under zea Mays Measured in High Resolution

    Science.gov (United States)

    Splettstoesser, Thomas; Pausch, Johanna

    2017-04-01

    Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment which enabled us to monitor CO2 fluxes under Zea mays plants in high resolution. The experiment was conducted in a climate chamber where the plants were grown in tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. Continuous 13C-CO2 label was used to allow differentiation between plant- and soil-derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. Results show an increased soil CO2 efflux at day time periods and an overall increase with increasing plant biomass. No difference in chloroform fumigation extractable microbial biomass has been found but a strong negative priming effect was measured in the short experimental period, suggesting that the microbes shifted to the utilization of plant exudates without actual microbial growth triggered by the new labile C input. This is coherent with the observed shift in enzyme kinetics. With this experimental setup we show that measurement of priming effects in high resolution can be achieved.

  16. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    Science.gov (United States)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  17. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  18. High resolution computed tomography of positron emitters

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Cahoon, J.L.; Huesman, R.H.; Jackson, H.G.

    1976-10-01

    High resolution computed transaxial radionuclide tomography has been performed on phantoms containing positron-emitting isotopes. The imaging system consisted of two opposing groups of eight NaI(Tl) crystals 8 mm x 30 mm x 50 mm deep and the phantoms were rotated to measure coincident events along 8960 projection integrals as they would be measured by a 280-crystal ring system now under construction. The spatial resolution in the reconstructed images is 7.5 mm FWHM at the center of the ring and approximately 11 mm FWHM at a radius of 10 cm. We present measurements of imaging and background rates under various operating conditions. Based on these measurements, the full 280-crystal system will image 10,000 events per sec with 400 μCi in a section 1 cm thick and 20 cm in diameter. We show that 1.5 million events are sufficient to reliably image 3.5-mm hot spots with 14-mm center-to-center spacing and isolated 9-mm diameter cold spots in phantoms 15 to 20 cm in diameter

  19. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  20. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  1. Identifying added value in high-resolution climate simulations over Scandinavia

    DEFF Research Database (Denmark)

    Mayer, Stephania; Fox Maule, Cathrine; Sobolowski, Stefan

    2015-01-01

    High-resolution data are needed in order to assess potential impacts of extreme events on infrastructure in the mid-latitudes. Dynamical downscaling offers one way to obtain this information. However, prior to implementation in any impacts assessment scheme, model output must be validated and det...

  2. Urban Boundary Extraction and Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: a Case Study of China's Provincial

    Science.gov (United States)

    Wang, H.; Ning, X.; Zhang, H.; Liu, Y.; Yu, F.

    2018-04-01

    Urban boundary is an important indicator for urban sprawl analysis. However, methods of urban boundary extraction were inconsistent, and construction land or urban impervious surfaces was usually used to represent urban areas with coarse-resolution images, resulting in lower precision and incomparable urban boundary products. To solve above problems, a semi-automatic method of urban boundary extraction was proposed by using high-resolution image and geographic information data. Urban landscape and form characteristics, geographical knowledge were combined to generate a series of standardized rules for urban boundary extraction. Urban boundaries of China's 31 provincial capitals in year 2000, 2005, 2010 and 2015 were extracted with above-mentioned method. Compared with other two open urban boundary products, accuracy of urban boundary in this study was the highest. Urban boundary, together with other thematic data, were integrated to measure and analyse urban sprawl. Results showed that China's provincial capitals had undergone a rapid urbanization from year 2000 to 2015, with the area change from 6520 square kilometres to 12398 square kilometres. Urban area of provincial capital had a remarkable region difference and a high degree of concentration. Urban land became more intensive in general. Urban sprawl rate showed inharmonious with population growth rate. About sixty percent of the new urban areas came from cultivated land. The paper provided a consistent method of urban boundary extraction and urban sprawl measurement using high-resolution remote sensing images. The result of urban sprawl of China's provincial capital provided valuable urbanization information for government and public.

  3. High-resolution temperature-based optimization for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Kok, H P; Haaren, P M A van; Kamer, J B Van de; Wiersma, J; Dijk, J D P Van; Crezee, J

    2005-01-01

    In regional hyperthermia, optimization techniques are valuable in order to obtain amplitude/phase settings for the applicators to achieve maximal tumour heating without toxicity to normal tissue. We implemented a temperature-based optimization technique and maximized tumour temperature with constraints on normal tissue temperature to prevent hot spots. E-field distributions are the primary input for the optimization method. Due to computer limitations we are restricted to a resolution of 1 x 1 x 1 cm 3 for E-field calculations, too low for reliable treatment planning. A major problem is the fact that hot spots at low-resolution (LR) do not always correspond to hot spots at high-resolution (HR), and vice versa. Thus, HR temperature-based optimization is necessary for adequate treatment planning and satisfactory results cannot be obtained with LR strategies. To obtain HR power density (PD) distributions from LR E-field calculations, a quasi-static zooming technique has been developed earlier at the UMC Utrecht. However, quasi-static zooming does not preserve phase information and therefore it does not provide the HR E-field information required for direct HR optimization. We combined quasi-static zooming with the optimization method to obtain a millimetre resolution temperature-based optimization strategy. First we performed a LR (1 cm) optimization and used the obtained settings to calculate the HR (2 mm) PD and corresponding HR temperature distribution. Next, we performed a HR optimization using an estimation of the new HR temperature distribution based on previous calculations. This estimation is based on the assumption that the HR and LR temperature distributions, though strongly different, respond in a similar way to amplitude/phase steering. To verify the newly obtained settings, we calculate the corresponding HR temperature distribution. This method was applied to several clinical situations and found to work very well. Deviations of this estimation method for

  4. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    Science.gov (United States)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.

  5. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data

    Science.gov (United States)

    Salisbury, Barrett; Haddad, D.E.; Rockwell, T.K.; Arrowsmith, R.; Madugo, C.; Zielke, O.; Scharer, Katherine M.

    2015-01-01

    Studies of active fault zones have flourished with the availability of high-resolution topographic data, particularly where airborne light detection and ranging (lidar) and structure from motion (SfM) data sets provide a means to remotely analyze submeter-scale fault geomorphology. To determine surface offset at a point along a strike-slip earthquake rupture, geomorphic features (e.g., stream channels) are measured days to centuries after the event. Analysis of these and cumulatively offset features produces offset distributions for successive earthquakes that are used to understand earthquake rupture behavior. As researchers expand studies to more varied terrain types, climates, and vegetation regimes, there is an increasing need to standardize and uniformly validate measurements of tectonically displaced geomorphic features. A recently compiled catalog of nearly 5000 earthquake offsets across a range of measurement and reporting styles provides insight into quality rating and uncertainty trends from which we formulate best-practice and reporting recommendations for remote studies. In addition, a series of public and beginner-level studies validate the remote methodology for a number of tools and emphasize considerations to enhance measurement accuracy and precision for beginners and professionals. Our investigation revealed that (1) standardizing remote measurement methods and reporting quality rating schemes is essential for the utility and repeatability of fault-offset measurements; (2) measurement discrepancies often involve misinterpretation of the offset geomorphic feature and are a function of the investigator’s experience; (3) comparison of measurements made by a single investigator in different climatic regions reveals systematic differences in measurement uncertainties attributable to variation in feature preservation; (4) measuring more components of a displaced geomorphic landform produces more consistently repeatable estimates of offset; and (5

  6. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data

    KAUST Repository

    Salisbury, J. Barrett

    2015-10-24

    Studies of active fault zones have flourished with the availability of high-resolution topographic data, particularly where airborne light detection and ranging (lidar) and structure from motion (SfM) data sets provide a means to remotely analyze submeter- scale fault geomorphology. To determine surface offset at a point along a strike-slip earthquake rupture, geomorphic features (e.g., stream channels) are measured days to centuries after the event. Analysis of these and cumulatively offset features produces offset distributions for successive earthquakes that are used to understand earthquake rupture behavior. As researchers expand studies to more varied terrain types, climates, and vegetation regimes, there is an increasing need to standardize and uniformly validate measurements of tectonically displaced geomorphic features. A recently compiled catalog of nearly 5000 earthquake offsets across a range of measurement and reporting styles provides insight into quality rating and uncertainty trends from which we formulate best-practice and reporting recommendations for remote studies. In addition, a series of public and beginner-level studies validate the remote methodology for a number of tools and emphasize considerations to enhance measurement accuracy and precision for beginners and professionals. Our investigation revealed that (1) standardizing remote measurement methods and reporting quality rating schemes is essential for the utility and repeatability of fault-offset measurements; (2) measurement discrepancies often involve misinterpretation of the offset geomorphic feature and are a function of the investigator\\'s experience; (3) comparison of measurements made by a single investigator in different climatic regions reveals systematic differences in measurement uncertainties attributable to variation in feature preservation; (4) measuring more components of a displaced geomorphic landform produces more consistently repeatable estimates of offset; and (5

  7. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  8. High precision measurement of the micro-imaging system to check repeatability of precision

    International Nuclear Information System (INIS)

    Cheng Lin; Song Li; Ma Chuntao; Luo Hongxin; Wang Jie

    2010-01-01

    The beamlines slits of Shanghai Synchrotron Radiation Facility (SSRF) are required to have a repeatability of better than 1 μm. Before the slits installation, the off-line and/or on-line repeatability measurements must be conducted. A machine vision measuring system based on high resolution CCD and adjustable high magnification lens was used in this regard. A multi-level filtering method was used to treat the imaging data. After image binarization, the imaging noises were depressed effectively by using of algebraic mean filtering, statistics median filtering,and the least square filtering. Using the subtracted image between the images before and after slit movement, an average displacement of slit blades could be obtained, and the repeatability of slit could be measured, with a resolution of 0.3 μm of the measurement system. The experimental results show that this measurement system meets the requirements for non-contact measurements to the repeatability of slits. (authors)

  9. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  10. Artifact free T2*-weighted imaging at high spatial resolution using segmented EPI sequences

    International Nuclear Information System (INIS)

    Heiler, Patrick Michael; Schad, Lothar Rudi; Schmitter, Sebastian

    2010-01-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2 * -weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately √2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2 * -weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  11. High-resolution flow imaging of the carotid arteries

    International Nuclear Information System (INIS)

    Masaryk, T.J.; Modic, M.T.; Haacke, E.M.; Lenz, G.W.; Ross, J.S.

    1986-01-01

    Recently, high-contrast vascular images have been demonstrated using short TEs, gating and subtraction. However, to obtain short TE values, large gradients are required. This potentially limits the field of view, signal-to-noise- ratio, and resolution. Furthermore, gating in different parts of the cardiac cycle can lead to pixel misregistration. In this study, additional refocusing gradients were applied so that no velocity-dependent dephasing occurs at the echo restoring signal from moving blood. Two cardiac-gated sequences using the same trigger delay and one acquisition were obtained. Preliminary results indicate that good quality vascular images of the carotid bifurcation can be obtained with modifications of the spin-echo technique of with short TEs utilizing a gradient echo technique

  12. Calibration of high resolution digital camera based on different photogrammetric methods

    International Nuclear Information System (INIS)

    Hamid, N F A; Ahmad, A

    2014-01-01

    This paper presents method of calibrating high-resolution digital camera based on different configuration which comprised of stereo and convergent. Both methods are performed in the laboratory and in the field calibration. Laboratory calibration is based on a 3D test field where a calibration plate of dimension 0.4 m × 0.4 m with grid of targets at different height is used. For field calibration, it uses the same concept of 3D test field which comprised of 81 target points located on a flat ground and the dimension is 9 m × 9 m. In this study, a non-metric high resolution digital camera called Canon Power Shot SX230 HS was calibrated in the laboratory and in the field using different configuration for data acquisition. The aim of the calibration is to investigate the behavior of the internal digital camera whether all the digital camera parameters such as focal length, principal point and other parameters remain the same or vice-versa. In the laboratory, a scale bar is placed in the test field for scaling the image and approximate coordinates were used for calibration process. Similar method is utilized in the field calibration. For both test fields, the digital images were acquired within short period using stereo and convergent configuration. For field calibration, aerial digital images were acquired using unmanned aerial vehicle (UAV) system. All the images were processed using photogrammetric calibration software. Different calibration results were obtained for both laboratory and field calibrations. The accuracy of the results is evaluated based on standard deviation. In general, for photogrammetric applications and other applications the digital camera must be calibrated for obtaining accurate measurement or results. The best method of calibration depends on the type of applications. Finally, for most applications the digital camera is calibrated on site, hence, field calibration is the best method of calibration and could be employed for obtaining accurate

  13. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2011-06-01

    Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s−1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s−1 and are dominated by deposition of ammonium sulphate.

  14. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  15. High-resolution spectroscopy of gases for industrial applications

    OpenAIRE

    Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission s...

  16. High-resolution measurement, line identification, and spectral modeling of the Kβ spectrum of heliumlike argon emitted by a laser-produced plasma using a gas-puff target

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Faenov, A.Y.; Dyakin, V.M.; Fiedorowicz, H.; Bartnik, A.; Szczurek, M.; Beiersdorfer, P.; Nilsen, J.; Osterheld, A.L.

    1997-01-01

    We present an analysis of the spectrum of satellite transitions to the He-β line in ArXVII. High-resolution measurements of the spectra from laser-heated Ar-gas-puff targets are made with spectral resolution of 10000 and spatial resolution of better than 50 μm. These are compared with tokamak measurements. Several different lines are identified in the spectra and the spectral analysis is used to determine the plasma parameters in the gas-puff laser-produced plasma. The data complement those from tokamak measurements to provide more complete information on the satellite spectra. copyright 1997 The American Physical Society

  17. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet

    Science.gov (United States)

    Ryan, Jonathan C.; Hubbard, Alun; Box, Jason E.; Brough, Stephen; Cameron, Karen; Cook, Joseph M.; Cooper, Matthew; Doyle, Samuel H.; Edwards, Arwyn; Holt, Tom; Irvine-Fynn, Tristram; Jones, Christine; Pitcher, Lincoln H.; Rennermalm, Asa K.; Smith, Laurence C.; Stibal, Marek; Snooke, Neal

    2017-05-01

    Measurements of albedo are a prerequisite for modelling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimetre resolution albedo products with accuracies of 5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique will likely become increasingly attractive in field studies and used in a wide range of applications for high temporal and spatial resolution surface mapping of debris, dust, cryoconite and bioalbedo and for directly constraining surface energy balance models.

  18. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  19. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  20. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  1. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  2. An overview of MADONA: A multinational field study of high-resolution meteorology and diffusion over complex terrain

    DEFF Research Database (Denmark)

    Cionco, R.M.; aufm Kampe, W.; Biltoft, C.

    1999-01-01

    The multination, high-resolution field study of Meteorology And Diffusion Over Non-Uniform Areas (MADONA) was conducted by scientists from the United States, the United Kingdom, Germany, Denmark, Sweden, and the Netherlands at Porton Down, Salisbury, Wiltshire, United Kingdom, during September...... and October 1992. The host of the field study was the Chemical and Biological Defence Establishment (CBDE, now part of Defence Evaluation and Research Agency) at Porton Down. MADONA was designed and conducted for high-resolution meteorological data collection and diffusion experiments using smoke......, sulphurhexaflouride (SF6), and propylene gas during unstable, neutral, and stable atmospheric conditions in an effort to obtain terrain-influenced meteorological fields, dispersion, and concentration fluctuation measurements using specialized sensors and tracer generators. Thirty-one days of meteorological data were...

  3. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  4. High-resolution 3D X-ray imaging of intracranial nitinol stents

    International Nuclear Information System (INIS)

    Snoeren, Rudolph M.; With, Peter H.N. de; Soederman, Michael; Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko

    2012-01-01

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  5. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  6. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  7. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  8. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    Science.gov (United States)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  9. Improved self-control system for the DR1 high resolution focusing neutron crystal diffractometer operation

    International Nuclear Information System (INIS)

    Ionita, I; Florescu, V.

    2010-01-01

    During the last decade new principles for the design of high-resolution configurations for crystal neutron diffractometry have been developed leading to the concept of Q-space high-resolution configuration which proved to be an alternative to the existing conventional configuration. The characteristics of such a focusing configuration are the use of open beam geometry (absence of the Soller collimators), use of the bent crystals in asymmetric reflection as monochromators and the rotation of the sample during the diffraction pattern raise, to fulfill the focusing conditions. High-resolution is obtained with no collimators by controlling the curvature and reflectivity of bent monochromators. At the sample position the beam width is rather wide offering the possibility to use wide plate-like samples with a significant raise of intensity; still high-resolution can be obtained by rotating the sample to get the focusing condition (to compensate the sample width contribution to the line-width) for each value of the scattering angle. This paper aims to clarify in which conditions such a Q-space focusing configuration, particularly that existing at INR Pitesti, can be used for stress determinations. Taking account of the characteristics of such measurements, it is quite obvious that the sample cannot be placed in focusing position appearing a limitation of the dimension of the sample region for which stress determinations are made, if we want still to have a reasonable good resolution. This can be done by using corresponding diaphragms in front of the sample holder but, if an optimal use of the available neutron beam is desired, a real-space focusing at sample position is required. For a two crystals monochromators unit the conditions to get real-space focusing were extensively analyzed by M. Popovici and W.B.Yelon. For the case of a single crystal monochromator, though such instruments are used at HMI Berlin or NRI Rez, a real space focusing is not possible to be achieved

  10. High resolution measurement of the 237Np(n,f) cross section from 100keV to 2MeV

    International Nuclear Information System (INIS)

    Plattard, S.; Pranal, Y.; Blons, J.

    1975-01-01

    237 Np fission is one of the reactions utilized in the threshold detector method of neutron spectrometry for the determination of fast neutron spectra in nuclear reactors. Therefore, an accurate knowledge of the energy-dependent fission cross section is essential for a precise generation of the spectral indices of this method. A high resolution measurement of the fission cross section is presented [fr

  11. Indications for application of a high resolution coil in MR tomography. Indikationen zur Applikation einer Hochaufloesungsspule in der MR-Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Maeurer, J. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Requardt, H. (Siemens AG, Erlangen (Germany)); Mueller, F. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Steinkamp, H.J. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Hosten, N. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Langer, R. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)); Felix, R. (Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany))

    1994-04-01

    This is the first study with high spatial resolution Magnetic Resonance Imaging (MRI), performed with a high resolution coil in a clinical whole-body system. Measurements were recorded with a slice thickness of 2 mm. A 256x256 matrix and a 2.5 cm field of view were used resulting in a pixel size of 1.01 mm[sup 2]. MR images of the skin, hand, wrist, knee and ankle of 14 healthy volunteers, of three anatomic pathology tissue specimens and of three formalin-fixed specimens were obtained. Normal anatomy was identified and compared with the three gross anatomic pathology sections. The skin, hands, wrists and ankles of 30 patients were examined and a variety of pathological lesions were detected, including cutaneous neoplasms and ulceration, acute and chronic tendon lesions and pathologic features of the bone and wrist. Based on the excellent imaging of anatomic detail and superior contrast resolution, high resolution MRI proved an important complement for preoperative diagnosis. (orig.)

  12. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    Science.gov (United States)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  13. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  14. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  15. High-resolution satellite image segmentation using Hölder exponents

    Indian Academy of Sciences (India)

    Keywords. High resolution image; texture analysis; segmentation; IKONOS; Hölder exponent; cluster. ... are that. • it can be used as a tool to measure the roughness ... uses reinforcement learning to learn the reward values of ..... The numerical.

  16. Classification of Small-Scale Eucalyptus Plantations Based on NDVI Time Series Obtained from Multiple High-Resolution Datasets

    Directory of Open Access Journals (Sweden)

    Hailang Qiao

    2016-02-01

    Full Text Available Eucalyptus, a short-rotation plantation, has been expanding rapidly in southeast China in recent years owing to its short growth cycle and high yield of wood. Effective identification of eucalyptus, therefore, is important for monitoring land use changes and investigating environmental quality. For this article, we used remote sensing images over 15 years (one per year with a 30-m spatial resolution, including Landsat 5 thematic mapper images, Landsat 7-enhanced thematic mapper images, and HJ 1A/1B images. These data were used to construct a 15-year Normalized Difference Vegetation Index (NDVI time series for several cities in Guangdong Province, China. Eucalyptus reference NDVI time series sub-sequences were acquired, including one-year-long and two-year-long growing periods, using invested eucalyptus samples in the study region. In order to compensate for the discontinuity of the NDVI time series that is a consequence of the relatively coarse temporal resolution, we developed an inverted triangle area methodology. Using this methodology, the images were classified on the basis of the matching degree of the NDVI time series and two reference NDVI time series sub-sequences during the growing period of the eucalyptus rotations. Three additional methodologies (Bounding Envelope, City Block, and Standardized Euclidian Distance were also tested and used as a comparison group. Threshold coefficients for the algorithms were adjusted using commission–omission error criteria. The results show that the triangle area methodology out-performed the other methodologies in classifying eucalyptus plantations. Threshold coefficients and an optimal discriminant function were determined using a mosaic photograph that had been taken by an unmanned aerial vehicle platform. Good stability was found as we performed further validation using multiple-year data from the high-resolution Gaofen Satellite 1 (GF-1 observations of larger regions. Eucalyptus planting dates

  17. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Directory of Open Access Journals (Sweden)

    Gasmi Taieb

    2018-01-01

    Full Text Available An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  18. CO2-Tea pulse clipping using pulsed high voltage preionization for high spatial resolution I.R. Lidar systems

    Science.gov (United States)

    Gasmi, Taieb

    2018-04-01

    An extra-cavity CO2-TEA laser pulse clipper for high spatial resolution atmospheric monitoring is presented. The clipper uses pulsed high voltageto facilitate the breakdown of the gas within the clipper cell. Complete extinction of the nitrogen tail, that degrades the range resolution of LIDARS, is obtained at pressures from 375 up to 1500 Torr for nitrogen and argon gases whereas an attenuation coefficient of almost 102 is achieved for helium. Excellent energy stability and pulse width repeatability were achieved using high voltage pre-ionized gas technique.

  19. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation

    Science.gov (United States)

    Huang, Wei; Ma, Chengfu; Chen, Yuhang

    2014-12-01

    A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.

  20. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  1. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Science.gov (United States)

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  2. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Aslam

    2014-06-01

    Full Text Available This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design.

  3. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  4. High-Resolution Imaging of Colliding and Merging Galaxies

    Science.gov (United States)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  5. Study and design of a very high spatial resolution beta imaging system

    International Nuclear Information System (INIS)

    Donnard, J.

    2008-01-01

    The b autoradiography is a widely used technique in pharmacology or biological fields. It is able to locate in two dimensions molecules labeled with beta emitters. The development of a gaseous detector incorporating micro-mesh called PIM in the Subatech laboratory leads to the construction of a very high spatial resolution apparatus dedicated to b imaging. This device is devoted to small analysis surface of a half microscope slide in particular of 3 H or 14 C and the measured spatial resolution is 20 μm FWHM. The recent development of a new reconstruction method allows enlarging the field of investigation to high energy beta emitters such as 131 I, 18 F or 46 Sc. A new device with a large active area of 18*18 cm 2 has been built with a user friendly design. This allows to image simultaneously 10 microscope slides. Thanks to a multi-modality solution, it retains the good characteristics of spatial resolution obtained previously on a small surface. Moreover, different kinds of samples, like microscope slides or scotches can be analysed. The simulation and experimentation work achieved during this thesis led to an optimal disposition of the inner structure of the detector. These results and characterization show that the PIM structure has to be considered for a next generation of b-Imager. (author)

  6. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    Science.gov (United States)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  7. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    International Nuclear Information System (INIS)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-01-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  8. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    Science.gov (United States)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  9. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.

  10. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  11. Comparison of high resolution computed tomography and pulmonary function tests in diagnosis of mild emphysema

    International Nuclear Information System (INIS)

    Kuwano, Kazuyoshi; Matsuba, Kenichi; Ikeda, Togo

    1989-01-01

    To assess the ability of high resolution CT scan and pulmonary function tests in detecting and grading mild emphysema, we correlated the high resolution CT scan and pulmonary function tests with the pathologic grade of emphysema and the destructive index of lung specimens from 42 patients undergoing thoracotomy for solitary pulmonary nodules. Using the high resolution CT scan, we could identify the pathologic grade of mild and moderate emphysema. By measuring diffusing capacity per unit alveolar gas volume (DLco/VA), it seemed to be possible to detect the mildest degree of alveolar destruction assessed by the destructive index, which was not detected by high resolution CT scan. The reason for these results seemed to be that we assessed the severity of emphysema by detecting the air space enlargement on high resolution CT scan images caused by the destruction of alveolar walls, which were detectable by measuring DLco/VA. We conclude that it is possible to detect mild emphysema using the combination of high resolution CT scan and pulmomary function tests. (author)

  12. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  13. Analysis of the positon resolution in centroid measurements in MWPC

    International Nuclear Information System (INIS)

    Gatti, E.; Longoni, A.

    1981-01-01

    Resolution limits in avalanche localization along the anode wires of an MWPC with cathodes connected by resistors and equally spaced amplifiers, are evaluated. A simple weighted-centroid method and a highly linear method based on a linear centroid finding filter, are considered. The contributions to the variance of the estimator of the avalanche position, due to the series noise of the amplifiers and to the thermal noise of the resistive line are separately calculated and compared. A comparison is made with the resolution of the MWPC with isolated cathodes. The calculations are performed with a distributed model of the diffusive line formed by the cathodes and the resistors. A comparison is also made with the results obtained with a simple lumped model of the diffusive line. A number of graphs useful in determining the best parameters of a MWPC, with a specified position and time resolution, are given. It has been found that, for short resolution times, an MWPC with cathodes connected by resitors presents better resolution (lower variance of the estimator of the avalanche position) than an MWPC with isolated cathodes. Conversely, for long resolution times, the variance of the estimator of the avalanche position is lower in an MWPC with isolated cathodes. (orig.)

  14. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  15. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  16. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  17. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    International Nuclear Information System (INIS)

    Aksoy, B; Alaca, B E; Rehman, A; Bayraktar, H

    2017-01-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µ m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  18. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  19. Air pollutant dispersion from a large semi-enclosed stadium in an urban area: high-resolution CFD modeling versus full-scale measurements

    NARCIS (Netherlands)

    Hooff, van T.A.J.; Blocken, B.J.E.; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Abstract: High-resolution CFD simulations and full-scale measurements have been performed to assess the dispersion of air pollutants (CO2) from the large semi-enclosed Amsterdam ArenA football stadium. The dispersion process is driven by natural ventilation by the urban wind flow and by buoyancy,

  20. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  1. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  2. MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution.

    Science.gov (United States)

    Ridolfi, Marco; Magnani, Luca; Carlotti, Massimo; Dinelli, Bianca Maria

    2004-11-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a limb-scanning spectrometer that has operated onboard the Environmental Satellite since the end of March 2002. Common features of limb-scanning experiments are both high vertical resolution and poor horizontal resolution. We exploit the two-dimensional geo-fit retrieval approach [Appl. Opt. 40, 1872-1875 (2001)] to investigate the possibility of improving the horizontal resolution of MIPAS measurements. Two different strategies are considered for this purpose, one exploiting the possibility (offered by the geo-fit analysis method) for an arbitrary definition of the retrieval grid, the other based on the possibility of saving measurement time by degrading the spectral resolution of the interferometer. The performances of the two strategies are compared in terms of the trade-off between the attained horizontal resolution and the retrieval precision. We find that for ozone it is possible to improve by a factor of 2 the horizontal resolution, which in the nominal measurement plan is approximately 530 km. This improvement corresponds to a degradation of the retrieval precision, which on average varies from a factor of 1.4 to 2.5, depending on the adopted spectral resolution.

  3. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  4. Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR - High-frequency Airborne Microwave and Millimeter-wave Radiometer)

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Internally-Calibrated Wide-Band Airborne Microwave Radiometer to Provide High-Resolution Wet-Tropospheric Path Delay Measurements for SWOT (HAMMR -...

  5. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  6. Large microcalorimeter arrays for high-resolution X- and gamma-rayspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, A.S., E-mail: ahoover@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoteling, N.; Rabin, M.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ullom, J.N.; Bennett, D.A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Karpius, P.J.; Vo, D.T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Doriese, W.B.; Hilton, G.C.; Horansky, R.D.; Irwin, K.D.; Kotsubo, V. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Lee, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Vale, L.R. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2011-10-01

    Microcalorimeter detectors provide unprecedented energy resolution for the measurement of X-rays and soft gamma-rays. Energy resolution in the 100 keV region can be up to an order of magnitude better than planar high-purity germanium (HPGe) detectors. The technology is well-suited to analysis of materials with complex spectra presenting closely spaced photopeaks. One application area is the measurement and assay of nuclear materials for safeguards and fuel cycle applications. In this paper, we discuss the operation and performance of a 256-pixel array, and present results of a head-to-head comparison of isotopic determination measurements with high-purity germanium using a plutonium standard. We show that the uncertainty of a single measurement is smaller for the microcalorimeter data compared to the HPGe data when photopeak areas are equal. We identify several key areas where analysis codes can be optimized that will likely lead to improvement in the microcalorimeter performance.

  7. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  8. Artifact free T2{sup *}-weighted imaging at high spatial resolution using segmented EPI sequences

    Energy Technology Data Exchange (ETDEWEB)

    Heiler, Patrick Michael; Schad, Lothar Rudi [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Schmitter, Sebastian [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology

    2010-07-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2{sup *}-weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately {radical}2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2{sup *}-weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  9. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  10. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  11. Physical fundamentals of high-resolution computerized tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Suess, C.

    1985-01-01

    A model is demonstrated allowing on assessment of the influence of various factors on local or spatial resolution. Separate establishment of data collection, picture reconstruction and representation is important. Different aspects depending on device type obtain when collecting data. When assessing and developing device types further, attention should be given to the weakest chain links which determine local resolution. However, we should never forget that local resolution is but one parameter for describing picture quality. Resolution of low contrasts and freedom from artifacts are at least as important parameters for the assessment of the total CT system. (orig.) [de

  12. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  13. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  14. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  15. Chromatic Modulator for High Resolution CCD or APS Devices

    Science.gov (United States)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  16. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  17. Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process

    International Nuclear Information System (INIS)

    Fan, Shanjin; Jiang, Weitao; Li, Xuan; Yu, Haoyu; Lei, Biao; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Liu, Hongzhong

    2016-01-01

    Steel tape scale grating of a reflective incremental linear encoder has a key impact on the measurement accuracy of the optical encoder. However, it is difficult for conventional manufacturing processes to fabricate scale grating with high-resolution grating strips, due to process and material problems. In this paper, self-assembly technology was employed to fabricate high-resolution steel tape scale grating for a reflective incremental linear encoder. Graphene oxide nanoparticles were adopted to form anti-reflective grating strips of steel tape scale grating. They were deposited in the tape, which had a hydrophobic and hydrophilic grating pattern when the dispersion of the nanoparticles evaporated. A standard lift-off process was employed to fabricate the hydrophobic grating strips on the steel tape. Simultaneously, the steel tape itself presents a hydrophilic property. The hydrophobic and hydrophilic grating pattern was thus obtained. In this study, octafluorocyclobutane was used to prepare the hydrophobic grating strips, due to its hydrophobic property. High-resolution graphene oxide steel tape scale grating with a pitch of 20 μ m was obtained through the self-assembly process. The photoelectric signals of the optical encoder containing the graphene oxide scale grating and conventional scale grating were tested under the same conditions. Comparison test results showed that the graphene oxide scale grating has a better performance in its amplitude and harmonic components than that of the conventional steel tape scale. A comparison experiment of position errors was also conducted, demonstrating an improvement in the positioning error of the graphene oxide scale grating. The comparison results demonstrated the applicability of the proposed self-assembly process to fabricate high-resolution graphene oxide scale grating for a reflective incremental linear encoder. (paper)

  18. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  19. High resolution spectrometry: how the analyzer and spectrometer performances and the beam emittance contribute to the results obtained

    International Nuclear Information System (INIS)

    Roussel, P.

    1984-01-01

    Using first order calculations derived for an achromatic system A) (deltaxsub(F)/deltaEsub(i)=0) or an optimised system O) (xsub(F) minima). It is shown that the final resolution measured in the local plane of the spectrometer depends only on the emittance of the accelerator and of the efficient area of the analyser exclusive of the properties of the spectrometer. The use of this result is only limited by higher order terms in the calculation or considerations out of this scope like target effects etc.. [fr

  20. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  1. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  2. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  3. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  4. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  5. Maximum likelihood positioning algorithm for high-resolution PET scanners

    International Nuclear Information System (INIS)

    Gross-Weege, Nicolas; Schug, David; Hallen, Patrick; Schulz, Volkmar

    2016-01-01

    Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods: The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II D PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML

  6. High-Resolution Digital-to-Time Converter Implemented in an FPGA Chip

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2017-01-01

    Full Text Available This paper presents the design and implementation of a new digital-to-time converter (DTC. The obtained resolution is 1.02 ps, and the dynamic range is about 590 ns. The experimental results indicate that the measured differential nonlinearity (DNL and integral nonlinearity (INL are −0.17~+0.13 LSB and −0.35~+0.62 LSB, respectively. This DTC builds coarse and fine Vernier delay lines constructed by programmable delay lines (PDLs to ensure high performance delay. Benefited by the close-loop feedback mechanism of the PDLs’ control module, the presented DTC has excellent voltage and temperature stability. What is more, the proposed DTC can be implemented in a single field programmable gate array (FPGA chip.

  7. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  8. Water-perfused manometry vs three-dimensional high-resolution manometry: a comparative study on a large patient population with anorectal disorders.

    Science.gov (United States)

    Vitton, V; Ben Hadj Amor, W; Baumstarck, K; Grimaud, J-C; Bouvier, M

    2013-12-01

    Our aim was to compare for the first time measurements obtained with water-perfused catheter anorectal manometry and three-dimensional (3D) high-resolution manometry in patients with anorectal disorders. Consecutive patients referred to our centre for anorectal manometry (ARM) were recruited to undergo the two procedures successively. Conventional manometry was carried out using a water-perfused catheter (WPAM) and high-resolution manometry was achieved with a 3D probe (3DHRAM). For each procedure, parameters recorded included the following: anal canal length, resting pressure, squeeze pressure and rectal sensitivity. Two hundred and one patients were included in this study. The mean values for resting and squeeze pressures were correlated and found to be significantly higher when measured with 3DHRAM than with WPAM. However, the length of the anal canal was not significantly different when measured by the two techniques without correlation between the two mean values obtained. The presence of the rectoanal inhibitory reflex was systematically assessed by both WPAM and 3DHRAM and anismus was also systematically diagnosed by both WPAM and 3DHRAM. The pressure values obtained with 3DHRAM are correlated with those measured with conventional manometry but are systematically higher. 3DHRAM has the advantage of providing a pressure recording over the entire length and circumference of the anal canal, allowing a more useful physiological assessment of anorectal function. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  9. High-resolution metabolomics of occupational exposure to trichloroethylene.

    Science.gov (United States)

    Walker, Douglas I; Uppal, Karan; Zhang, Luoping; Vermeulen, Roel; Smith, Martyn; Hu, Wei; Purdue, Mark P; Tang, Xiaojiang; Reiss, Boris; Kim, Sungkyoon; Li, Laiyu; Huang, Hanlin; Pennell, Kurt D; Jones, Dean P; Rothman, Nathaniel; Lan, Qing

    2016-10-01

    Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin's lymphoma and kidney and liver cancer; however, TCE's mode of action for development of these diseases in humans is not well understood. Non-targeted metabolomics analysis of plasma obtained from 80 TCE-exposed workers [full shift exposure range of 0.4 to 230 parts-per-million of air (ppm a )] and 95 matched controls were completed by ultra-high resolution mass spectrometry. Biological response to TCE exposure was determined using a metabolome-wide association study (MWAS) framework, with metabolic changes and plasma TCE metabolites evaluated by dose-response and pathway enrichment. Biological perturbations were then linked to immunological, renal and exposure molecular markers measured in the same population. Metabolic features associated with TCE exposure included known TCE metabolites, unidentifiable chlorinated compounds and endogenous metabolites. Exposure resulted in a systemic response in endogenous metabolism, including disruption in purine catabolism and decreases in sulphur amino acid and bile acid biosynthesis pathways. Metabolite associations with TCE exposure included uric acid (β = 0.13, P-value = 3.6 × 10 -5 ), glutamine (β = 0.08, P-value = 0.0013), cystine (β = 0.75, P-value = 0.0022), methylthioadenosine (β = -1.6, P-value = 0.0043), taurine (β = -2.4, P-value = 0.0011) and chenodeoxycholic acid (β = -1.3, P-value = 0.0039), which are consistent with known toxic effects of TCE, including immunosuppression, hepatotoxicity and nephrotoxicity. Correlation with additional exposure markers and physiological endpoints supported known disease associations. High-resolution metabolomics correlates measured occupational exposure to internal dose and metabolic response, providing insight into molecular mechanisms of exposure-related disease aetiology. © The Author 2016; all rights

  10. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott; McWilliam, Andrew; Cohen, Judith G.

    2009-01-01

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  11. Computer-supported resolution of measurement conflicts: a case-study in materials science

    NARCIS (Netherlands)

    de Jong, Hidde; Mars, Nicolaas; van der Vet, P.E.

    1999-01-01

    Resolving conflicts between different measurements ofa property of a physical system may be a key step in a discovery process. With the emergence of large-scale databases and knowledge bases with property measurements, computer support for the task of conflict resolution has become highly desirable.

  12. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  13. A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume

    Science.gov (United States)

    Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration

    2017-11-01

    An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.

  14. UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements

    Science.gov (United States)

    Xuan, Chuang; Oda, Hirokuni

    2015-11-01

    The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907-3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.

  15. Resolution of a High Performance Cavity Beam Position Monitor System

    International Nuclear Information System (INIS)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; Smith, S.; Smith, T.; White, G.; Orimoto, T.; Hayano, H.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2005-01-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns

  16. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  17. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  18. TH-CD-201-09: High Spatial Resolution Absorbed Dose to Water Measurements Using Optical Calorimetry in Megavoltage External Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Martinez, E; DeWerd, L [School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States); Radtke, J [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop and implement a high spatial resolution calorimeter methodology to measure absorbed dose to water (ADW) using phase shifts (PSs) of light passing through a water phantom and to compare measurements with theoretical calculations. Methods: Radiation-induced temperature changes were measured using the PSs of a He-Ne laser beam passing through a (10×10×10) cm{sup 3} water phantom. PSs were measured using a Michelson interferometer and recording the time-dependent fringe patterns on a CCD camera. The phantom was positioned at the center of the radiation field. A Varian 21EX was used to deliver 500 MU from a 9 MeV beam using a (6×6) cm{sup 2} cone. A 127cm SSD was used and the PSs were measured at depths ranging from of 1.90cm to 2.10cm in steps of 0.05cm by taking profiles at the corresponding rows across the image. PSs were computed by taking the difference between pre- and post-irradiation image frames and then measuring the amplitude of the resulting image profiles. An amplitude-to-PS calibration curve was generated using a piezoelectric transducer to mechanically induce PSs between 0.05 and 1.50 radians in steps of 0.05 radians. The temperature dependence of the refractive index of water at 632.8nm was used to convert PSs to ADW. Measured results were compared with ADW values calculated using the linac output calibration and commissioning data. Results: Milli-radian resolution in PS measurement was achieved using the described methodology. Measured radiation-induced PSs ranged from 0.10 ± 0.01 to 0.12 ± 0.01 radians at the investigated depths. After converting PSs to ADW, measured and calculated ADW values agreed within the measurement uncertainty. Conclusion: This work shows that interferometer-based calorimetry measurements are capable of achieving sub-millimeter resolution measuring 2D temperature/dose distributions, which are particularly useful for characterizing beams from modalities such as SRS, proton therapy, or microbeams.

  19. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  20. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  1. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  2. Pneumonia: high-resolution CT findings in 114 patients

    Energy Technology Data Exchange (ETDEWEB)

    Reittner, Pia [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Department of Radiology, Karl Franzens University and University Hospital Graz, Auenbruggerplatz 9, 8036 Graz (Austria); Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L. [Department of Radiology, Vancouver Hospital and Health Sciences Center, 855 W. 12th Ave., Vancouver, BC (Canada); Johkoh, Takeshi [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0825 (Japan)

    2003-03-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  3. Pneumonia: high-resolution CT findings in 114 patients

    International Nuclear Information System (INIS)

    Reittner, Pia; Ward, Suzanne; Heyneman, Laura; Mueller, Nestor L.; Johkoh, Takeshi

    2003-01-01

    The objective of the present study was to assess the high-resolution CT appearances of different types of pneumonia. The high-resolution CT scans obtained in 114 patients (58 immunocompetent, 59 immunocompromised) with bacterial, Mycoplasma pneumoniae, viral, fungal, and Pneumocystis carinii pneumonias were analyzed retrospectively by two independent observers for presence, pattern, and distribution of abnormalities. Areas of air-space consolidation were not detected in patients with viral pneumonia and were less frequently seen in patients with Pneumocystis carinii pneumonia (2 of 22 patients, 9%) than in bacterial (30 of 35, 85%), Mycoplasma pneumoniae (22 of 28, 79%), and fungal pneumonias (15 of 20, 75%; p<0.01). There was no significant difference in the prevalence or distribution of consolidation between bacterial, Mycoplasma pneumoniae, and fungal pneumonias. Extensive symmetric bilateral areas of ground-glass attenuation were present in 21 of 22 (95%) patients with Pneumocystis carinii pneumonia and were not seen in other pneumonias except in association with areas of consolidation and nodules. Centrilobular nodules were present less commonly in bacterial pneumonia (6 of 35 patients, 17%) than in Mycoplasma pneumoniae (24 of 28, 96%), viral (7 of 9, 78%), or fungal (12 of 20, 92%) pneumonia (p<0.01). Except for Pneumocystis carinii pneumonia and Mycoplasma pneumoniae pneumonia, which often have a characteristic appearance, high-resolution CT is of limited value in the differential diagnosis of the various types of infective pneumonia. (orig.)

  4. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  5. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  6. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    Science.gov (United States)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  7. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  8. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  9. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  10. Parametric fitting of data obtained from detectors with finite resolution and limited acceptance

    International Nuclear Information System (INIS)

    Gagunashvili, N.D.

    2011-01-01

    A goodness-of-fit test for fitting of a parametric model to data obtained from a detector with finite resolution and limited acceptance is proposed. The parameters of the model are found by minimization of a statistic that is used for comparing experimental data and simulated reconstructed data. Numerical examples are presented to illustrate and validate the fitting procedure.

  11. High resolution time-of-flight (TOF) detector for particle identification

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Merlin; Lehmann, Albert; Pfaffinger, Markus; Uhlig, Fred [Physikalisches Institut, Universitaet Erlangen-Nuernberg (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    Several prototype tests were performed with the PANDA DIRC detectors at the CERN T9 beam line. A mixed hadron beam with pions, kaons and protons was used at momenta from 2 to 10 GeV/c. For these tests a good particle identification was mandatory. We report about a high resolution TOF detector built especially for this purpose. It consists of two stations each consisting of a Cherenkov radiator read out by a Microchannel-Plate Photomultiplier (MCP-PMT) and a Scintillating Tile (SciTil) counter read out by silicon photomultipliers (SiPMs). With a flight path of 29 m a pion/kaon separation up to 5 GeV/c and a pion/proton separation up to 10 GeV/c was obtained. From the TOF resolutions of different counter combinations the time resolution (sigma) of the individual MCP-PMTs and SciTils was determined. The best counter reached a time resolution of 50 ps.

  12. Measurement of Dynamic Urethral Pressures with a High Resolution Manometry System in Continent and Incontinent Women

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W.

    2015-01-01

    Objectives Female stress urinary incontinence (SUI) is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under dynamic conditions. An 8-French high resolution manometry catheter (HRM) currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25ms response rate and circumferential pressure sensors along the length of the catheter (ManoScan® ESO, Given Imaging). We evaluated the concordance, repeatability, and tolerability of this catheter. Methods We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. Results The correlation coefficient for resting MUCPs measured by HRM vs. UPP was high (r = 0.79, prest, cough, and strain with HRM: r= 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, strain) were higher in continent than incontinent subjects (all p continent subjects during cough and strain maneuvers compared to rest. Conclusions This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women. PMID:25185595

  13. Measurement of dynamic urethral pressures with a high-resolution manometry system in continent and incontinent women.

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W

    2015-01-01

    Female stress urinary incontinence is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under these conditions. An 8-French high-resolution manometry (HRM) catheter currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25-millisecond response rate and circumferential pressure sensors along the length of the catheter (ManoScan ESO; Given Imaging, Yoqneam, Israel). We evaluated the concordance, repeatability, and tolerability of this catheter. We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water-perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress-incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. The correlation coefficient for resting MUCPs measured by HRM versus UPP was high (r = 0.79, P rest, cough, and strain with HRM: r = 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, and strain) were higher in continent than in incontinent subjects (all P continent subjects during cough and strain maneuvers compared to rest. This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women.

  14. High-resolution lattice-spacing comparator using SR

    International Nuclear Information System (INIS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami

    2004-01-01

    A novel lattice spacing measurement using a high-resolution self-reference d-spacing comparator has been described. Self selection of monochromatic synchrotron x-rays by a monolithic double channel-cut-crystal monochromator (MDCM) comprising silicon 2,6,4 and 6,2,4 reflections may lead to a stable, highly-collimated and narrow bandwidth beam. Also if utilizing 2,6,4 and 6,2,4 Bragg planes of a silicon sample, the interval between two associated Bragg peaks for the X-rays with wavelength of 0.13438 nm can be extremely small, so that the diffraction angle can be determined with high precision and the traveling time from one peak to the other can be marvelously reduced by the order of at least three compared to the established classical methods such as the Bond method. Thus this so-called self-reference comparator method can dramatically save measurement time and provide an absolute measurement on the basis of the x-ray wavelength of the MDCM, therefore a lattice spacing measurement with uncertainty of 10 -8 , for the 1mm 2 area on a silicon crystal within measurement time of a few ten seconds and has been achieved. (author)

  15. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Weinzettl, Vladimir, E-mail: vwei@ipp.cas.cz [Institute of Plasma Physics ASCR, Prague (Czech Republic); Shukla, Gaurav [Institute of Plasma Physics ASCR, Prague (Czech Republic); Department of Applied Physics, Ghent University, Ghent (Belgium); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Ghosh, Joydeep [Institute for Plasma Research, Bhat, Gandhinagar (India); Melich, Radek; Panek, Radomir [Institute of Plasma Physics ASCR, Prague (Czech Republic); Tomes, Matej; Imrisek, Martin; Naydenkova, Diana [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Varju, Josef [Institute of Plasma Physics ASCR, Prague (Czech Republic); Pereira, Tiago [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Gomes, Rui [Instituto de Plasmas e Fusão Nuclear, Lisboa (Portugal); Abramovic, Ivana; Jaspers, Roger [Eindhoven University of Technology, Eindhoven (Netherlands); Pisarik, Michael [SQS Vlaknova optika a.s., Nova Paka (Czech Republic); Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague (Czech Republic); Odstrcil, Tomas [Max-Planck-Institut fur Plasmaphysik, Garching (Germany); Van Oost, Guido [Department of Applied Physics, Ghent University, Ghent (Belgium)

    2015-10-15

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  16. High-resolution spectroscopy diagnostics for measuring impurity ion temperature and velocity on the COMPASS tokamak

    International Nuclear Information System (INIS)

    Weinzettl, Vladimir; Shukla, Gaurav; Ghosh, Joydeep; Melich, Radek; Panek, Radomir; Tomes, Matej; Imrisek, Martin; Naydenkova, Diana; Varju, Josef; Pereira, Tiago; Gomes, Rui; Abramovic, Ivana; Jaspers, Roger; Pisarik, Michael; Odstrcil, Tomas; Van Oost, Guido

    2015-01-01

    Highlights: • We built a new diagnostic of poloidal plasma rotation on the COMPASS tokamak. • Improvements in throughput via toroidal integration and fiber optimizations shown. • Poloidal rotation and ion temperature measured in L- and H-mode and during RMP. • Design and parameters of a new CXRS diagnostic for COMPASS are introduced. - Abstract: High-resolution spectroscopy is a powerful tool for the measurement of plasma rotation as well as ion temperature using the Doppler shift of the emitted spectral lines and their Doppler broadening, respectively. Both passive and active diagnostic variants for the COMPASS tokamak are introduced. The passive diagnostic focused on the C III lines at about 465 nm is utilized for the observation of the poloidal plasma rotation. The current set-up of the measuring system is described, including the intended high-throughput optics upgrade. Different options to increase the fiber collection area are mentioned, including a flower-like fiber bundle, and the use of micro-lenses or tapered fibers. Recent measurements of poloidal plasma rotation of the order of 0–6 km/s are shown. The design of the new active diagnostic using a deuterium heating beam and based on charge exchange recombination spectroscopy (C VI line at 529 nm) is introduced. The tool will provide both space (0.5–5 cm) and time (10 ms) resolved toroidal plasma rotation and ion temperature profiles. The results of the Simulation of Spectra code used to examine the feasibility of charge exchange measurements on COMPASS are shown and connected with a selection of the spectrometer coupled with the CCD camera.

  17. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  18. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  19. Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures

    International Nuclear Information System (INIS)

    Reuss, Matthias; Blom, Hans; Brismar, Hjalmar; Fördős, Ferenc; Högberg, Björn; Öktem, Ozan

    2017-01-01

    A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM. (paper)

  20. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    Science.gov (United States)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  1. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  2. High resolution and simultaneous monitoring of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Muguntha Manikandan, N.; Komura, K.

    2005-01-01

    By using 11 extremely low background Ge detectors at Ogoya Underground Laboratory, it became possible to investigate temporal variations of airborne 212 Pb (T 1/2 =10.6 h) along with 210 Pb and 7 Be with order of magnitude higher time resolution. Then, we have measured airborne nuclides at three monitoring points, (1) roof of our laboratory (LLRL; 40 m ASL), (2) Shinshiku Plateau (640 m ASL) located about 8 km from LLRL as a comparison of vertical distribution, and (3) Hegura Island (10 m ASL) at about 50 km from Wajima located north of Noto Peninsula facing on the Sea of Japan (about 180 km to the north-northeast of LLRL), to investigate influence of Asian continent. Airborne nuclides were collected by high volume air samplers at intervals of a few hours at either two or three points simultaneously. In the same manner, high resolution monitoring was carried out also at the time of passage of typhoon and cold front. In this study, we observed drastic temporal variations of airborne radionuclides and correlations of multiple monitoring points. The results indicate that high resolution and simultaneous monitoring is very useful to understand dynamic state of variations of airborne nuclides due to short and long-term air-mass movement. (author)

  3. Evaluation and optimization of the High Resolution Research Tomograph (HRRT)

    International Nuclear Information System (INIS)

    Knoess, C.

    2004-01-01

    Positron Emission Tomography (PET) is an imaging technique used in medicine to determine qualitative and quantitative metabolic parameters in vivo. The High Resolution Research Tomograph (HRRT) is a new high resolution tomograph that was designed for brain studies (312 mm transaxial field-of-view (FOV), 252 mm axial FOV). The detector blocks are arranged in a quadrant sharing design and consist of two crystal layers with dimensions of 2.1 mm x 2.1 mm x 7.5 mm. The main detector material is the newly developed scintillator lutetium oxyorthosilicate (LSO). Events from the different crystal layers are distinguished by Pulse Shape Discrimination (PSD) to gain Depth of Interaction (DOI) information. This will improve the spatial resolution, especially at the edges of the FOV. A prototype of the tomograph was installed at the Max-Planck Institute for Neurological Research in Cologne, Germany in 1999 and was evaluated with respect to spatial resolution, sensitivity, scatter fraction, and count rate behavior. These performance measurements showed that this prototype provided a spatial resolution of around 2.5 mm in a volume big enough to contain the human brain. A comparison with a single layer HRRT prototype showed a 10% worsening of the resolution, despite the fact that DOI was used. Without DOI, the resolution decreased considerably. The sensitivity, as measured with a 22 Na point source, was 46.5 cps/kBq for an energy window of 350-650 keV and 37.9 cps/kBq for an energy window of 400-650 keV, while the scatter fractions were 56% for 350-650 keV and 51% for 400-650 keV, respectively. A daily quality check was developed and implemented that uses the uniform, natural radioactive background of the scintillator material LSO. In 2001, the manufacturer decided to build a series of additional HRRT scanners to try to improve the design (detector electronics, transmission source design, and shielding against out-of-FOV activity) and to eliminate problems (difficult detector

  4. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Andrew N., E-mail: anlane01@louisville.edu [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Fan, Teresa W.-M. [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States); Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M. [Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States)

    2009-10-05

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile {sup 13}C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U-{sup 13}C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to {approx}1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of {sup 13}C from [U-{sup 13}C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional {sup 13}C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  5. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    International Nuclear Information System (INIS)

    Lane, Andrew N.; Fan, Teresa W.-M.; Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M.

    2009-01-01

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile 13 C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U- 13 C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to ∼1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of 13 C from [U- 13 C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional 13 C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  6. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  7. High-resolution n = 3 to n = 2 spectra of neonlike silver

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Bitter, M.; von Goeler, S.

    1986-01-01

    Spectra of the n = 3 to n = 2 transitions in neonlike silver emitted from the Princeton Large Torus have been recorded with a high-resolution Bragg-crystal spectrometer. The measurements cover the wavelength region 3.3--4.1 A-circle and include the forbidden 3p→2p electric quadrupole lines. Transitions in the adjacent sodiumlike, magnesiumlike, and aluminumlike charge states of silver have also been observed and identified. The Ly-α spectra of hydrogenlike argon and iron, the Kα spectra of heliumlike argon, potassium, manganese, and iron, and the Kβ spectrum of heliumlike argon fall in the same wavelength region in first or second order and have been measured concurrently. These spectra provide a coherent set of wavelength reference data obtained with the same spectrometer and from the same tokamak. This set is used as a basis to compare wavelength predictions for one- and two-electron systems to each other and to determine the transition energies of the silver lines with great accuracy

  8. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  9. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  10. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, Joffray; García-Márquez, Jorge; Truong, Daniel; Wallerand, Jean-Pierre [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Šmíd, Radek [Laboratoire Commun de Métrologie LNE-Cnam (LCM), LNE, 1 rue Gaston Boissier, 75015 Paris (France); Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64 Brno (Czech Republic); Alexandre, Christophe [Centre d’Études et de Recherche en Informatique et Communications (CEDRIC), Cnam, 292 rue St-Martin, 75003 Paris (France)

    2016-07-15

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  11. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  12. High resolution hypernuclear spectroscopy at Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Garibaldi, F.; Bydžovský, P.; Cisbani, E.; Cusanno, F.; De Leo, R.; Frullani, S.; Iodice, M.; LeRose, J.J.; Markowitz, P.; Millener, D.J.; Urciuoli, G.M.

    2013-01-01

    The characteristics of the Jefferson Lab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced (e,e ′ K + ) reactions. Experiment 94-107 started a systematic study on 1p-shell targets, 12 C, 9 Be and 16 O. For 12 C for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p state was shown in the 12 Λ B spectrum. For 16 O a high-quality 16 Λ N spectrum was produced for the first time with sub-MeV energy resolution. A very precise Λ binding energy value for 16 Λ N, calibrated against the elementary (e,e ′ K + ) reaction on hydrogen, has also been obtained. Preliminary data on the 9 Λ Li spectrum shows some disagreement in strength for the second and third doublet with respect to the theory

  13. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  14. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  15. TFTR horizontal high-resolution Bragg x-ray spectrometer

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; Tavernier, M.

    1984-11-01

    A bent quartz crystal spectrometer of the Johann type with a spectral resolution of lambda/Δlambda = 10,000 to 25,000 is used on TFTR to determine central plasma parameters from the spectra of heliumlike and lithiumlike metal impurity ions (Ti, Cr, Fe, and Ni). The spectra are observed along a central radial chord and are recorded by a position sensitive multiwire proportional counter with a spatial resolution of 250. Standard delay-line time-difference readout is employed. The data are histogrammed and stored in 64k of memory providing 128 time groups of 512-channel spectra. The central ion temperature and the toroidal plasma rotation are inferred from the Doppler broadening and Doppler shift of the K lines. The central electron temperature, the distribution of ionization states, and dielectronic recombination rates are obtained from satellite-to-resonance line ratios. The performance of the spectrometer is demonstrated by measurements of the Ti XXI K radiation

  16. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    allowing diffraction information to be obtained from only the active material during battery operation [2]. High resolution synchrotron x-ray powder diffraction technique has been undertaken to obtain detailed structural and compositional information during lithiation/delithiation of commercial LiFePO4...... materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld...... method. Conscientious Rietveld analysis shows slight but continuous deviation of lattice parameters from those of the fully stoichiometric end members LiFePO4 and FePO4 indicating a subsequent variation of stoichiometry during cathode delithiation. The application of an intermittent current pulses during...

  17. High-efficient method for spectrometric data real time processing with increased resolution of a measuring channel

    International Nuclear Information System (INIS)

    Ashkinaze, S.I.; Voronov, V.A.; Nechaev, Yu.I.

    1988-01-01

    Solution of reduction problem as a mean to increase spectrometric tract resolution when it is realized using the digit-by-digit modified method and special strategy, significantly reducing the time of processing, is considered. The results presented confirm that the complex measurement tract plus microcomputer is equivalent to the use of the tract with a higher resolution, and the use of the digit-by-digit modified method permits to process spectrometric information in real time scale

  18. High resolution atomic spectra of rare earths : progress report

    International Nuclear Information System (INIS)

    Saksena, G.D.; Ahmad, S.A.

    1976-01-01

    High resolution studies of atomic spectra of neodymium and gadolinium are being carried out on a recording Fabry-Perot spectrometer. The present progress report concerns work done on new assignments as well as confirmation of recently assigned electronic configurations and evaluation of isotope shifts of energy levels which have been possible from the isotope shift data obtained for several transitions of NdI, NdII and GdI, GdII respectively. (author)

  19. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  20. Thermodesorption studies of ammonium nitrate prills by high-resolution thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-07-01

    Ammonium nitrate prills with fuel oil (ANFO) are commonly used in commercial explosives. The wettability of AN is influenced by porosity and surface area. To date, scanning electron microscopy (SEM), mercury porosimetry, and nuclear magnetic resonance (NMR) microscopy have been used to characterize prill porosities. This study used high-resolution thermogravimetry (TG) to investigate the thermodesorption of octane from ammonium nitrate (AN) prills of different porosities. Samples were immersed in octane. Samples of AN prills were monitored over a temperature range between 25 to 120 degrees C. Mass-loss curves were measured to determine the evaporation of excess liquids as well as the rate of octane thermodesorption from the pores and surfaces of the AN prills. An analysis of the curves suggested that the initial mass loss was caused by evaporation of the bulk liquid. The following step represented the thermodesorption of adsorbed octane on the surface of the AN remote from the monolayer. Properties of the surface liquid differed significantly from the bulk liquid as the adsorbate materials interacted with the solid surface. The study demonstrated that the quantity of octane desorbed in the steps correlated with the volume observed in the pores and the amount adsorbed on the surface. Results of the study were then compared with data obtained using SEM. It was concluded that high resolution TG can be used to characterize AN porosity and adsorption capacity. 16 refs., 1 tab., 5 figs.

  1. DEVELOPMENT OF A HIGH RATE HIGH RESOLUTION DETECTOR FOR EXAFS EXPERIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; O CONNOR,P.; BEUTTENMULLER,R.H.; LI,Z.; KUCZEWSKI,A.J.; SIDDONS,D.P.

    2002-11-10

    A new detector for EXAFS experiments is being developed. It is based on a multi-element Si sensor and dedicated readout ASICs. The sensor is composed of 384 pixels, each having 1 mm{sup 2} area, arranged in four quadrants of 12 x 8 elements, and wire-bonded to 32-channel front-end ASICs. Each channel implements low noise preamplification with self-adaptive continuous reset, high order shaper, band-gap referenced baseline stabilizer, one threshold comparator and two DAC adjustable window comparators, each followed by a 24-bit counter. Fabricated in 0.35{micro}m CMOS dissipates about 8mW per channel. First measurements show at room temperature a resolution of 14 rms electrons without the detector and of 40 rms electrons (340eV) with the detector connected and biased. Cooling at -35C a FWHM of 205eV (167eV from electronics) was measured at the Mn-K{alpha} line. A resolution of about 300eV was measured for rates approaching 100kcps/cm{sup 2} per channel, corresponding to an overall rate in excess of 10MHz/cm{sup 2}. A channel-to-channel threshold dispersion after DACs adjustment of 2.5 rms electrons was also measured.

  2. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  3. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  4. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  5. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  6. Determination of radium-226 by high-resolution alpha spectrometry

    International Nuclear Information System (INIS)

    Sill, C.W.

    1983-01-01

    The determination of radium-226 by alpha spectrometry has been investigated critically to determine experimental conditions under which high resolution and accurate and reliable results can be obtained. Refractory solids such as soils, ores, and tailings from uranium mills are dissolved completely by fusion with potassium fluoride in the presence of barium-133 tracer. The fluoride cake is then transposed with sulfuric acid to a pyrosulfate fusion with simultaneous volatilization of all silica and fluoride. Radium is precipitated with barium already present in the sample by addition of lead perchlorate to a dilute hydrochloric acid solution of the pyrosulfate cake. The resulting insoluble sulfates are dissolved in an alkaline solution of diethylenetriaminepentaacetic acid, and the radium and barium sulfates are reprecipitated with acetic acid. The precipitate is mounted on a membrane filter and analyzed by alpha spectrometry. Water samples are partially evaporated and treated similarly. Resolution of the subsequent alpha spectra is much better than has been achieved previously from barium sulfate, and is almost as good as is obtainable with actinides electrodeposited on polished steel plates. The resolution is about 60 keV full-width-half-maximum with 100 μg of barium on a 1-inch filter with a 450 mm 2 detector at 20% counting efficiency. Recovery is about 97% and accuracy is generally as good as the counting statistics obtained will permit. Grossly inaccurate results can be obtained under certain conditions when barium-133 tracer is used to determine the chemical yield of radium-226. Severe contamination of the surface-barrier detector by polonium-210 and by recoil products of the radium isotopes being counted is demonstrated, amd methods for virtual elimination of both problems are discussed

  7. Characterisation of PM2.5 concentrations and turbulent fluxes on a island of the Venice lagoon using high temporal resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Donateo, A.; Contini, D.; Cesari, D. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Lecce (Italy); Belosi, F.; Santachiara, G.; Prodi, F. [CNR-ISAC, Istituto di Scienze dell' Atmosfera e del Clima, Bologna (Italy); Gambaro, A. [Venice Univ. (Italy). Environmental Sciences Dept.

    2012-08-15

    This work presents an analysis of PM2.5 concentrations and vertical turbulent fluxes on an island of the Venice lagoon. Data were collected during three measurement campaigns in spring, summer and winter periods. Measurements were taken with a high-resolution optical PM2.5 detector, coupled with a micrometeorological station that allowed the evaluation of the vertical turbulent fluxes of PM2.5 using the eddy-correlation technique. The main objective of this paper is to analyse the daily and seasonal pattern in PM2.5 concentrations and fluxes and to discuss their correlation with the main meteorological and micrometeorological parameters using high temporal resolution measurements. Observed data showed a seasonal pattern in turbulent fluxes with daytime average positive value during winter and negative during summer. Deposition velocities, ranged from -60 to 20 mm/s, appeared to be mainly influenced by atmospheric stability. There were larger emissions in cases of high wind velocities blowing from water sector indicating a significant potential contribution of sea spray to PM2.5 fluxes. The local atmospheric circulation, due to the orography of the area, was characterised by diurnal winds coming from the Adriatic Sea and nocturnal wind coming from the Alps. This circulation influenced deposition velocity creating an increase of negative fluxes in the morning at the starting of the sea breeze. A diurnal pattern in concentration has been observed and it is similar for all three measurement campaigns, with higher concentrations in nocturnal periods. The daily pattern was investigated in terms of its correlation with meteorological and micro-meteorological parameters, and was found highly correlated with the diurnal pattern of boundary layer height (BLH) and with relative humidity. (orig.)

  8. Aircraft micro-doppler feature extraction from high range resolution profiles

    CSIR Research Space (South Africa)

    Berndt, RJ

    2015-10-01

    Full Text Available The use of high range resolution measurements and the micro-Doppler effect produced by rotating or vibrating parts of a target has been well documented. This paper presents a technique for extracting features related to helicopter rotors...

  9. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  10. Tropospheric Carbon Monoxide Measurements from the Scanning High-resolution Interferometer Sounder on 7 September 2000 in Southern Africa during SAFARI 2000

    Science.gov (United States)

    McMillan, W. W.; McCourt, M. L.; Revercomb, H. E.; Knuteson, R. O.; Christian, T. J.; Doddridge, B. G.; Hobbs, P. V.; Lukovich, P. C.; Novelli, P. C.; Piketh, S. J.

    2003-01-01

    Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 x 10(exp 18) per square centimeter in background air and up to 1.5 x 10(exp 19) per square centimeter in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 plus or minus 0.25) x 10(exp 18) per square centimeter over background air near the fire and (1.5 plus or minus 0.35) x 10(exp 19) per square centimeter over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke.

  11. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  12. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  13. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  14. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard, E-mail: ebulbul@cfa.harvard.edu [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  15. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  16. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  17. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  18. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    Science.gov (United States)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  19. High resolution study of Kβ' and Kβ1,3 X-ray emission lines from Mn-compounds

    International Nuclear Information System (INIS)

    Limandri, S.; Ceppi, S.; Tirao, G.; Stutz, G.; Sanchez, C.G.; Riveros, J.A.

    2010-01-01

    High-resolution Kβ emission spectra of several manganese compounds were measured in order to characterize the dependence of the Kβ' and Kβ 1,3 features, on the chemical environment. High resolution spectra were obtained using a non-conventional spectrometer based on quasi-back-diffraction geometry at National Synchrotron Light Laboratory (LNLS). It was found that the energy of the Kβ' satellite structure relative to the main Kβ 1,3 line decreases linearly with the formal oxidation state for Mn-O systems. A noticeable dispersion of the relative Kβ' energy for different Mn 2+ compounds could be observed. The dependence of the Kβ' satellite line on the net charge and the effective 3d spin in Mn 2+ compounds was investigated. Calculations of the net charge and the effective 3d spin were performed within the density-functional theory using the package SIESTA. A direct relation between this dispersion and the effective Mn 3d spin was found.

  20. Novel high-resolution temperature probe for radiofrequency dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Schuderer, Juergen [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland); Schmid, Thomas [Schmid and Partner Engineering AG, 8004 Zurich (Switzerland); Urban, Gerald [IMTEK, Albert-Ludwigs University Freiburg, 79110 Freiburg (Germany); Samaras, Theodoros [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland)

    2004-03-21

    A novel integrated thermistor probe for temperature evaluations in radiofrequency-heated environments was realized. The probe's sensitive area is based on a highly resistive 50 {mu}m x 100 {mu}m layer of amorphous germanium processed on a glass tip. The small dimensions allow measurements with a distance as close as 150 {mu}m from solid boundaries. Due to its high temperature resolution of 4 mK and its short response time of the order of 10 ms, the sensor is very well suited for dosimetric measurements in strong absorption gradients. The influence of radiofrequency (RF) electric fields on the signal is minimized due to the high resistance of the sensor and the leads. The probe was successfully used to determine the highly nonuniform absorption distribution resulting from the RF exposure of cell cultures placed in Petri dishes. (note)