WorldWideScience

Sample records for observation explanation equation

  1. Mesopause Jumps: Observations and Explanation

    Science.gov (United States)

    Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.

    2017-12-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.

  2. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    Science.gov (United States)

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  3. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  4. Explanation and observability of diffraction in time

    International Nuclear Information System (INIS)

    Torrontegui, E.; Muga, J. G.; Munoz, J.; Ban, Yue

    2011-01-01

    Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role in the design of coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.

  5. More Issues in Observed-Score Equating

    Science.gov (United States)

    van der Linden, Wim J.

    2013-01-01

    This article is a response to the commentaries on the position paper on observed-score equating by van der Linden (this issue). The response focuses on the more general issues in these commentaries, such as the nature of the observed scores that are equated, the importance of test-theory assumptions in equating, the necessity to use multiple…

  6. Local Observed-Score Kernel Equating

    Science.gov (United States)

    Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.

    2014-01-01

    Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…

  7. Explanation of climate and human impacts on sediment discharge change in Darwinian hydrology: Derivation of a differential equation

    Science.gov (United States)

    Zhang, Jianjun; Gao, Guangyao; Fu, Bojie; Zhang, Lu

    2018-04-01

    The assessment for impacts of climate variability and human activities on suspended sediment yield (SSY) change has long been a question of great interest. However, the sediment generation processes are sophisticated with high nonlinearity and great uncertainty, which give rise to extreme complexity for SSY change assessment in Newtonian approach. Consequently, few approaches can be simply but widely applied to decompose impacts of climatic variability and human activities on SSY change. Thus, it is an urgent need to develop advanced methods that are simple and robust. Since that the Newtonian approach is hardly achievable due to limitation of either observations or knowledge of mechanisms, there have been repeated calls to capture the hydrologic system in Darwinian approach for hydrological change prediction or explanation. As streamflow is the carrier of suspended sediment, SSY change are thus documented in changes of sediment concentrated flow and suspended sediment concentration - water discharge (C-Q) relationships. By deduced corollaries, a differential equation of sediment discharge change was derived to explicitly decompose impacts of climate variability and human activities in Darwinian hydrology. Besides, a new form of sediment rating curves was proposed and curved as C-Q relationships and probability distribution of sediment concentrated flow. River sediment flux can be revealed by this representation, which simply elucidates mechanism of SSY generation covering a range of time scales from finer than rainfall-event to long term. By the new sediment rating curves, the differential equation was partly solved using a segmentation algorithm proposed and validated in this paper, and then was submitted to water balance framework expressed by Budyko-type equation. Thus, for catchment management, hydrologists can obtain explicit explanation of how climate variation and human activities propagate through landscape and result in sediment discharge change. The

  8. Observation and explanation of the JET n=0 chirping mode

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, C.J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: christopher.boswell@navy.mil; Berk, H.L. [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712-1060 (United States); Borba, D.N. [Centro de Fusao Nuclear Associacao Euratom-IST, Instituto Superior Tecnico, 1049001 Lisbon (Portugal); EFDA Close Support Unit, Culham Science Centre, OX14 3DB (United Kingdom); Johnson, T. [Alfven Laboratory, KTH, Euratom-VR Association (Sweden); Pinches, S.D. [Max-Planck Institute for Plasma Physics, EURATOM Association, D-85748 Garching (Germany); Sharapov, S.E. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2006-10-09

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) have been observed in the JET tokamak when energetic ions, with a mean energy {approx}500keV, were created by high field side ion cyclotron resonance frequency heating. This heating method enables the formation of an energetically inverted ion distribution function that allows ions to spontaneously excite the observed instability, identified as a global geodesic acoustic mode. The interpretation is that phase space structures form and interact with the fluid zonal flow to produce the pronounced frequency chirping.

  9. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  10. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  11. Using Self-Explanations in the Laboratory to Connect Theory and Practice: The Decision/ Explanation/Observation/Inference Writing Method

    Science.gov (United States)

    Van Duzor, Andrea Gay

    2016-01-01

    While many faculty seek to use student-centered, inquiry-based approaches in teaching laboratories, transitioning from traditional to inquiry instruction can be logistically challenging. This paper outlines use of a laboratory notebook and report writing-to-learn method that emphasizes student self-explanations of procedures and outcomes,…

  12. How the explanation of LENR can be made consistent with observed behaviour and natural laws

    International Nuclear Information System (INIS)

    Storms, Edmund

    2015-01-01

    The phenomenon called 'cold fusion' or low energy nuclear reaction has been a challenge to accept and explain. The problem is compounded because an effective explanation must be consistent with the observed behaviour and natural laws. Hundreds of explanations have been published, but none was able to meet this expectation. Consequently, acceptance of the phenomenon by conventional science and application of the energy have been handicapped. The present article summarizes an effort to reduce this problem by identifying a few critical requirements and proposing a mechanism that is consistent with these requirements. This model can also predict many behaviours of importance to science and commercial applications. (author)

  13. equate: An R Package for Observed-Score Linking and Equating

    Directory of Open Access Journals (Sweden)

    Anthony D. Albano

    2016-10-01

    Full Text Available The R package equate contains functions for observed-score linking and equating under single-group, equivalent-groups, and nonequivalent-groups with anchor test(s designs. This paper introduces these designs and provides an overview of observed-score equating with details about each of the supported methods. Examples demonstrate the basic functionality of the equate package.

  14. An explanation for the universal 3.5 power-law observed in currency markets

    Directory of Open Access Journals (Sweden)

    Nicholas A. Johnson

    Full Text Available We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013 in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α∼3.5. This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.’s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents. Keywords: Complex systems, Econophysics, Collective, Power law

  15. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  16. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  17. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem

    2013-01-01

    domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.

  18. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman

    2013-10-01

    A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.

  19. Robust iterative observer for source localization for Poisson equation

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-05

    Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.

  20. Robust iterative observer for source localization for Poisson equation

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2017-01-01

    Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.

  1. Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines

    International Nuclear Information System (INIS)

    Kozyrev, Alexander B.; Weide, Daniel W. van der

    2005-01-01

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator

  2. Localization of Point Sources for Poisson Equation using State Observers

    KAUST Repository

    Majeed, Muhammad Usman

    2016-08-09

    A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  3. Localization of Point Sources for Poisson Equation using State Observers

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2016-01-01

    A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  4. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    International Nuclear Information System (INIS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2001-01-01

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis

  5. Substorm observations in the early morning sector with Equator-S and Geotail

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    1999-12-01

    Full Text Available Data from Equator-S and Geotail are used to study the dynamics of the plasma sheet observed during a substorm with multiple intensifications on 25 April 1998, when both spacecraft were located in the early morning sector (03–04 MLT at a radial distance of 10–11 RE. In association with the onset of a poleward expansion of the aurora and the westward electrojet in the premidnight and midnight sector, both satellites in the morning sector observed plasma sheet thinning and changes toward a more tail-like field configuration. During the subsequent poleward expansion in a wider local time sector (20–04 MLT, on the other hand, the magnetic field configuration at both satellites changed into a more dipolar configuration and both satellites encountered again the hot plasma sheet. High-speed plasma flows with velocities of up to 600 km/s and lasting 2–5 min were observed in the plasma sheet and near its boundary during this plasma sheet expansion. These high-speed flows included significant dawn-dusk flows and had a shear structure. They may have been produced by an induced electric field at the local dipolarization region and/or by an enhanced pressure gradient associated with the injection in the midnight plasma sheet.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; plasma sheet; storms and substorms

  6. Dynamical explanation for the experimentally observed μs lifetime for D3O

    International Nuclear Information System (INIS)

    McLoughlin, P.W.; Gellene, G.I.

    1990-01-01

    The minimum energy pathway (MEP) for H atom addition to H 2 O has been determined by ab initio calculations at the MP3 level using a large Rydberg basis set. In agreement with previous theoretical studies, a local minimum in a C 3v geometry was found lying about 18.4 kcal/mol above the energy of H 2 O + H, but separated from the products by a 3.9 kcal/mol barrier. The well depth is sufficient to contain a quasi-bound zero point level, however, tunneling lifetimes, estimated to be 10 -13 to 10 -12 s, contrast sharply with the experimental results of neutralized ion beam studies which indicate a ∼1 μs lifetime for D 3 O. Exploration of the region of the potential energy surface around the MEP, shows the pathway to preserve a symmetry plane containing the H fragment and bisecting the H 2 O fragment (i.e., C s symmetry) with the dissociation coordinate lying in the A' coordinate subspace. Vibrationally adiabatic potential curves correlating to H 2 O products with excitation in the asymmetric stretch are found to have increased dissociation barriers for increased excitation with ∼μs lifetimes occurring for v ≥ 3. The interpretation that the experimentally observed metastability of D 3 O arises from this essentially dynamical dissociation barrier makes the radical a remarkable example of a quasi-bound species, lasting ∼1 μs with 10.5 kcal/mol of internal energy in excess of the semiclassical dissociation barrier. Isotope effects on the magnitude of possible nonadiabatic kinetic and potential couplings are estimated and discussed in light of the experimental lifetime scaling D 3 16 O>D 3 18 O≥H 3 16 O

  7. Explanation of the observed trend in the mean excitation energy of a target as determined using several projectiles

    International Nuclear Information System (INIS)

    Cabrera-Trujillo, R.; Sabin, J.R.; Oddershede, J.

    2003-01-01

    Recently, Porter observed [L.E. Porter, Int. J. Quantum Chem. 90, 684 (2002)] that the mean excitation energy and stopping cross section of a target, obtained from fitting experimental data at given projectile charge to a modified Bethe-Block theory, gives projectile dependent results. The main result of his work is that there is a trend for the inferred target mean excitation energy, to decrease as the projectile atomic number increases. However, this result is inconsistent with the usual definition of the mean excitation energy as a function of target excitation properties only. Here we present an explanation of Porter's results based on the Bethe theory extended to take projectile electronic structure explicitly into account

  8. Heavy meson observables and Dyson-Schwinger equations

    International Nuclear Information System (INIS)

    Ivanov, M. A.

    1998-01-01

    Dyson-Schwinger equation (DSE) studies show that the b-quark mass-function is approximately constant, and that this is true to a lesser extent for the c-quark. This observation provides the basis for a study of the leptonic and semileptonic decays of heavy pseudoscalar mesons using a ''heavy-quark'' limit of the DSES, which, when exact, reduces the number of independent form factors. Semileptonic decays with light mesons in the final state are also accessible because the DSES provide a description of light-quark propagation characteristics and light-meson structure. A description of B-meson decays is straightforward, however, the study of decays involving the D-meson indicates that c-quark mass-corrections are quantitatively important

  9. Optimal Bandwidth Selection in Observed-Score Kernel Equating

    Science.gov (United States)

    Häggström, Jenny; Wiberg, Marie

    2014-01-01

    The selection of bandwidth in kernel equating is important because it has a direct impact on the equated test scores. The aim of this article is to examine the use of double smoothing when selecting bandwidths in kernel equating and to compare double smoothing with the commonly used penalty method. This comparison was made using both an equivalent…

  10. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    Science.gov (United States)

    Testa, D.; Albergante, M.

    2012-08-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium-tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the so

  11. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    International Nuclear Information System (INIS)

    Testa, D.; Albergante, M.

    2012-01-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium–tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the

  12. A possible explanation for the observed tune shift on the 150GeV front porch at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Norman M.; /Fermilab

    2007-06-01

    It has been known that the tunes of the Tevatron drift on the 150 GeV front porch . The drift is observed to have the same time dependence as the drift in the chromaticity. The variation in the chromaticity is due to the change in the b{sub 2} of the superconducting dipoles, which represents the integrated sextupole moment of the magnet. It is reasonable to assume that the tune drift is due to the feed down from the changing b{sub 2}. Calculations based on this assumption, both here and in earlier attempts to explain the tune drift, show, absent unreasonable assumptions about the closed orbit, that the simple models of the variation of the sextupole moment will not explain the tune drift. An explanation, for both the tune drift and the tune split observed when the Tevatron was first operated, is proposed which is based on the longitudinal variation of the sextupole component in the dipoles and the fact that the dipoles are not perfect sector magnets.

  13. Motivated Explanation

    Directory of Open Access Journals (Sweden)

    Richard ePatterson

    2015-10-01

    Full Text Available Although motivation is a well-established field of study in its own right, and has been fruitfully studied in connection with attribution theory and belief formation under the heading of motivated thinking, its powerful and pervasive influence on explanatory processes is less well explored. Where one has a strong motivation to understand some event correctly, one is thereby motivated to adhere as best one can to normative or epistemic criteria for correct or accurate explanation, even if one does not consciously formulate or apply such criteria. By contrast, many of our motivations to explain introduce bias into the processes involved in generating, evaluating, or giving of explanations. Non-epistemic explanatory motivations, or (following Kunda’s usage, directional motivations, include self-justification, resolution of cognitive dissonance, deliberate deception, teaching, and many more. Some of these motivations lead to the relaxation or violation of epistemic norms, combined with an effort to preserve the appearance of accuracy; others enhance epistemic motivation, so that one engages in more careful and thorough generational and evaluative processes. In short, real life explanatory processes are often constrained by multiple goals, epistemic and directional, where these goals may mutually reinforce one another or may conflict, and where our explanations emerge as a matter of weighing and satisfying those goals. Our proposals are largely programmatic, although we do review a good deal of relevant behavioral and neurological evidence. Specifically, we recognize five generative processes, some of which cover further sub-processes, and six evaluative processes. All of these are potential points of entry for the influence of motivation. We then suggest in some detail how specific sorts of explanatory motivation interact with specific explanatory processes.

  14. Observation problems posed for the Klein-Gordon equation

    Directory of Open Access Journals (Sweden)

    András Szijártó

    2012-01-01

    Sufficient conditions are obtained that guarantee the solvability of each of four observation problems with given state functions $f, \\ g$ at two distinct time instants $-\\inftyobservation problem, and the representability of $t_2-t_1$ as a rational multiple of $\\frac{2l}{a}$. The reconstruction of the unknown initial data $(u(x,0, u_t(x,0$ as the elements of $D^{s+1}(0,l \\times D^s(0,l$ are given by means of the method of Fourier expansions.

  15. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    Science.gov (United States)

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  16. Boundary Observability and Stabilization for Westervelt Type Wave Equations without Interior Damping

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara

    2010-01-01

    In this paper we show boundary observability and boundary stabilizability by linear feedbacks for a class of nonlinear wave equations including the undamped Westervelt model used in nonlinear acoustics. We prove local existence for undamped generalized Westervelt equations with homogeneous Dirichlet boundary conditions as well as global existence and exponential decay with absorbing type boundary conditions.

  17. The Kernel Levine Equipercentile Observed-Score Equating Function. Research Report. ETS RR-13-38

    Science.gov (United States)

    von Davier, Alina A.; Chen, Haiwen

    2013-01-01

    In the framework of the observed-score equating methods for the nonequivalent groups with anchor test design, there are 3 fundamentally different ways of using the information provided by the anchor scores to equate the scores of a new form to those of an old form. One method uses the anchor scores as a conditioning variable, such as the Tucker…

  18. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2017-01-01

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data

  19. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  20. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    International Nuclear Information System (INIS)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-01-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star

  1. Perbedaan hasil belajar fisika siswa antara model pembelajaran Problem Based Learning (PBL dengan model pembelajaran Prediction, Observation, and Explanation (POE di kelas X SMA Negeri 5 Lubuklinggau

    Directory of Open Access Journals (Sweden)

    Tri Ariani

    2016-11-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui Perbedaan Hasil Belajar Fisika Siswa antara Model Pembelajaran Problem Based Learning (PBL dengan Model Pembelajaran Prediction, Observation, And Explanation (POE di Kelas X SMA Negeri 5 Lubuklinggau Tahun Pelajaran 2015/2016. Jenis penelitian ini adalah penelitian kuantitatif dengan metode penelitian eksperimen semu yang dilaksanakan dengan membandingkan kelompok eksperimen I dan kelompok eksperimen II desain penelitian  ini pre-test post-test group design. Populasi penelitian ini adalah seluruh siswa kelas X SMA Negeri 5 Lubuklinggau Tahun Pelajaran 2015/2016, yang terdiri dari 314 siswa dari 9 kelas. Pengambilan sampel dilakukan secara acak (Simple Random Sampling dengan cara pengundian nomor kelas populasi. Pengumpulan data berupa tes, data tes yang sudah dianalisis dengan uji-t, pada taraf  a= 0,05, diperoleh thitung > ttabel (2,17 > 2,00. Rata-rata akhir hasil belajar fisika kelas eksperimen I sebesar 73,4 sedangkan pada kelas kelas eksperimen II  sebesar 69,14. Sehingga dapat disimpulkan ada Perbedaan Hasil Belajar Fisika Siswa antara Model Pembelajaran Problem Based Learning (PBL Dengan Model Pembelajaran Prediction, Observation, And Explanation (POE Di Kelas X SMA Negeri 5 Lubuklinggau Tahun Pelajaran 2015/2016. The aim of this research was to find out the Comparative Results Between Students Studying Physics Learning Model Problem Based Learning (PBL with Learning Model Prediction, Observation, And Explanation (POE in the Class X SMAN 5 Lubuklinggau 2015/2016 Academic Year . This research was a quantitative research methods of experimental research conducted by comparing the experimental group I and group II experimental research design was a pre-test post-test group design. As the population in this research were all students of class X SMA Negeri 5 Lubuklinggau Academic Year 2015/2016, consisting of 314 students from the ninth grade. Sampling is done randomly (Simple Random Sampling by

  2. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  3. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

    KAUST Repository

    Asiri, Sharefa M.; Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

  4. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

    KAUST Repository

    Asiri, Sharefa M.

    2015-08-31

    Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

  5. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary Extension

    DEFF Research Database (Denmark)

    O'Connor, A M; Sargeant, J M; Dohoo, I R

    2016-01-01

    The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers and editors to improve the comprehensiveness of reporting; however, STROBE h...

  6. Structural Observability and Sensor Node Selection for Complex Networks Governed by Nonlinear Balance Equations

    NARCIS (Netherlands)

    Kawano, Yu; Cao, Ming

    2017-01-01

    We define and then study the structural observability for a class of complex networks whose dynamics are governed by the nonlinear balance equations. Although related notions of observability of such complex networks have been studied before and in particular, necessary conditions have been reported

  7. Dynamics and local boundary properties of the dawn-side magnetopause under conditions observed by Equator-S

    Directory of Open Access Journals (Sweden)

    M. W. Dunlop

    Full Text Available Magnetic field measurements, taken by the magnetometer experiment (MAM on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft

  8. Water uptake in free films and coatings using the Brasher and Kingsbury equation: a possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry

    International Nuclear Information System (INIS)

    Vosgien Lacombre, C.; Bouvet, G.; Trinh, D.; Mallarino, S.; Touzain, S.

    2017-01-01

    For many years, the water uptake in organic coatings was measured by EIS and/or gravimetry but differences in water content values were found in almost all studies. The Brasher-Kingsbury equation used in the electrochemical analysis (EIS) is often criticized because elementary assumptions may be unvalid. The origin of the discrepancy between both methods is still of interest because many questions remain open and this study aims to provide new insights to these questions. In this work, free films and coatings of a model epoxy-amine system were immersed in a 3 wt.% NaCl solution. The water uptake in free films was evaluated using gravimetric measurements and EIS, using the Basher-Kingsbury equation. The mass of free-films used in the EIS tests was measured and compare to gravimetric measurements while the water uptake (EIS) in free films was compared to that obtained with coatings. It was found that the mass increase of free films tested with EIS was in agreement with gravimetric measurements but was always lower than the water uptake obtained by EIS. Moreover, the water uptake in free films (EIS) was different from that obtained with coatings. In all cases, it was found that the Basher-Kingsbury equation overestimated the water uptake. It appears that the differences between EIS and gravimetric measurements can be analyzed in terms of geometrical effects. Indeed, the swelling in free films and coatings can be monitored by DMA and SECM during ageing. Finally, by mixing the experimental swelling data and the Brasher-Kingsbury equation, the same value of water uptake was obtained by EIS and gravimetry for coatings.

  9. Explanation of observable secular variations of gravity and alternative methods of determination of drift of the center of mass of the Earth

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    ?-r⊙. Leaning on results of works [2], [3], we shall accept the following values of parameters of drift of the center of mass: ṙC=5.54 mm/yr, φP=70°0 N, λP=104°3 E. On the other hand a displacement of the center of mass of the Earth leads to effect of slow change of heights of gravimetric station: ḣ = -?dotC cos? = -5.54 × cos? mm/yr. Errors in determination of the specified characteristics in the given work we shall neglect. Besides the gravitational attraction of a displaced core leads also to effect of increase of horizontal component of gravitational force of an attraction of the Earth on its surface directed to the North along the corresponding meridian with pole P. For any point of a surface of the Earth this component of force is determined by the formula ?φ = ṙCg sin?-r⊙ and has positive values. And the maximal values ?φ are reached on equator, which plane is orthogonal to axes of drift of the core OP. Thus, final working formulas for studying of secular variations of components of force of a gravitational attraction of the Earth and for a variation of the heights caused by a drift of the center of mass of the Earth become: ?r = 1.74cos?-r⊙ ?Gal/yr, ?φ = 0.87sin?-r⊙ ?Gal/yr, ḣ = -5.54cos?-r⊙ mm/yr. Calculated values of mentioned gravimetric characteristics (2) for the wide list of gravimetry stations are resulted in work [5] and used in the given work. 3 Explanation of observable secular variations of a gravity and heights on gravimetric stations. We have been analysed observed variations of a gravity and heights available and accessible to us, namely their secular changes, for 8 known gravimetry stations. The periods of observations at mentioned stations make the order of 5-10 years, i.e. are not greater, but nevertheless the obtained results unequivocally testify in favour of that the basic contribution to secular variations of a gravity gives the drifting core of the Earth (by means of direct gravitational influence and due to a

  10. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-10

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

  11. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-10-01

    Full Text Available In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic, radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  12. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    International Nuclear Information System (INIS)

    Kumar, Suresh; Xu, Lixin

    2014-01-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch

  13. PEAK COVARIANCE STABILITY OF A RANDOM RICCATI EQUATION ARISING FROM KALMAN FILTERING WITH OBSERVATION LOSSES

    Institute of Scientific and Technical Information of China (English)

    Li XIE; Lihua XIE

    2007-01-01

    We consider the stability of a random Riccati equation with a Markovian binary jump coefficient. More specifically, we are concerned with the boundedness of the solution of a random Riccati difference equation arising from Kalman filtering with measurement losses. A sufficient condition for the peak covariance stability is obtained which has a simpler form and is shown to be less conservative in some cases than a very recent result in existing literature. Furthermore, we show that a known sufficient condition is also necessary when the observability index equals one.

  14. From Neutron Star Observables to the Equation of State. II. Bayesian Inference of Equation of State Pressures

    Science.gov (United States)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2017-08-01

    One of the key goals of observing neutron stars is to infer the equation of state (EoS) of the cold, ultradense matter in their interiors. Here, we present a Bayesian statistical method of inferring the pressures at five fixed densities, from a sample of mock neutron star masses and radii. We show that while five polytropic segments are needed for maximum flexibility in the absence of any prior knowledge of the EoS, regularizers are also necessary to ensure that simple underlying EoS are not over-parameterized. For ideal data with small measurement uncertainties, we show that the pressure at roughly twice the nuclear saturation density, {ρ }{sat}, can be inferred to within 0.3 dex for many realizations of potential sources of uncertainties. The pressures of more complicated EoS with significant phase transitions can also be inferred to within ˜30%. We also find that marginalizing the multi-dimensional parameter space of pressure to infer a mass-radius relation can lead to biases of nearly 1 km in radius, toward larger radii. Using the full, five-dimensional posterior likelihoods avoids this bias.

  15. Facilitating Preschoolers' Scientific Knowledge Construction via Computer Games Regarding Light and Shadow: The Effect of the Prediction-Observation-Explanation (POE) Strategy

    Science.gov (United States)

    Hsu, Chung-Yuan; Tsai, Chin-Chung; Liang, Jyh-Chong

    2011-10-01

    Educational researchers have suggested that computer games have a profound influence on students' motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers' acquisition of scientific concepts regarding light and shadow. The children's alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students' conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding "shadow formation in daylight" and "shadow orientation." However, children in both groups, after playing the games, still expressed some alternative conceptions such as "Shadows always appear behind a person" and "Shadows should be on the same side as the sun."

  16. Explanations - Styles of explanation in science

    Science.gov (United States)

    Cornwell, John

    2004-06-01

    Our lives, states of health, relationships, behavior, experiences of the natural world, and the technologies that shape our contemporary existence are subject to a superfluity of competing, multi-faceted and sometimes incompatible explanations. Widespread confusion about the nature of "explanation" and its scope and limits pervades popular exposition of the natural sciences, popular history and philosophy of science. This fascinating book explores the way explanations work, why they vary between disciplines, periods, and cultures, and whether they have any necessary boundaries. In other words, Explanations aims to achieve a better understanding of explanation, both within the sciences and the humanities. It features contributions from expert writers from a wide range of disciplines, including science, philosophy, mathematics, and social anthropology.

  17. Measuring the neutron star equation of state with gravitational wave observations

    International Nuclear Information System (INIS)

    Read, Jocelyn S.; Markakis, Charalampos; Creighton, Jolien D. E.; Friedman, John L.; Shibata, Masaru; Uryu, Koji

    2009-01-01

    We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron-star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron-star compactness (the ratio of the mass of the neutron-star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point-particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of δR∼1 km at 100 Mpc.

  18. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  19. Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state

    International Nuclear Information System (INIS)

    Sharov, G.S.

    2016-01-01

    Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r s ( z d ). Among the considered models the best value of χ 2 is achieved for the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.

  20. Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations

    Directory of Open Access Journals (Sweden)

    Dali Zhang

    2012-01-01

    Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

  1. Exponential Stability of the Monotubular Heat Exchanger Equation with Time Delay in Boundary Observation

    Directory of Open Access Journals (Sweden)

    Xue-Lian Jin

    2017-01-01

    Full Text Available The exponential stability of the monotubular heat exchanger equation with boundary observation possessing a time delay and inner control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A uniformly bounded C0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists, was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the system and is independent of the time delay, of the exponential stability of the closed-loop system was given.

  2. Analogy, explanation, and proof

    Science.gov (United States)

    Hummel, John E.; Licato, John; Bringsjord, Selmer

    2014-01-01

    People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic) whose truth was not even known prior to the existence of the explanation (proof). What do the cognitive operations underlying the inference that the milk is sour have in common with the proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This seemingly small difference poses a challenge to the task of marshaling our understanding of analogical reasoning to understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence. PMID:25414655

  3. A flux transfer event observed at the magnetopause by the Equator-S spacecraft and in the ionosphere by the CUTLASS HF radar

    Directory of Open Access Journals (Sweden)

    D. A. Neudegg

    1999-06-01

    Full Text Available Observations of a flux transfer event (FTE have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ~226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF which is estimated to have reached the subsolar magnetopause ~77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.Key words. Interplanetary physics (ionosphere-magnetosphere interaction · Magnetospheric physics (magnetopause · cusp · and boundary layers; solar wind-magnetosphere interactions

  4. Constraints on the Equation-of-State of neutron stars from nearby neutron star observations

    International Nuclear Information System (INIS)

    Neuhäuser, R; Hambaryan, V V; Hohle, M M; Eisenbeiss, T

    2012-01-01

    We try to constrain the Equation-of-State (EoS) of supra-nuclear-density matter in neutron stars (NSs) by observations of nearby NSs. There are seven thermally emitting NSs known from X-ray and optical observations, the so-called Magnificent Seven (M7), which are young (up to few Myrs), nearby (within a few hundred pc), and radio-quiet with blackbody-like X-ray spectra, so that we can observe their surfaces. As bright X-ray sources, we can determine their rotational (pulse) period and their period derivative from X-ray timing. From XMM and/or Chandra X-ray spectra, we can determine their temperature. With precise astrometric observations using the Hubble Space Telescope, we can determine their parallax (i.e. distance) and optical flux. From flux, distance, and temperature, one can derive the emitting area - with assumptions about the atmosphere and/or temperature distribution on the surface. This was recently done by us for the two brightest M7 NSs RXJ1856 and RXJ0720. Then, from identifying absorption lines in X-ray spectra, one can also try to determine gravitational redshift. Also, from rotational phase-resolved spectroscopy, we have for the first time determined the compactness (mass/radius) of the M7 NS RBS1223. If also applied to RXJ1856, radius (from luminosity and temperature) and compactness (from X-ray data) will yield the mass and radius - for the first time for an isolated single neutron star. We will present our observations and recent results.

  5. Great Explanations: Opinionated Explanations for Recommendation

    OpenAIRE

    Muhammad, Khalil; Lawlor, Aonghus; Rafter, Rachael; Smyth, Barry

    2015-01-01

    Explaining recommendations helps users to make better, more satisfying decisions. We describe a novel approach to explanation for recommender systems, one that drives the recommendation process, while at the same time providing the user with useful insights into the reason why items have been chosen and the trade-os they may need to consider when making their choice. We describe this approach in the context ofa case-based recommender system that harnesses opinions mined from user-generated re...

  6. Analogy, Explanation, and Proof

    Directory of Open Access Journals (Sweden)

    John eHummel

    2014-11-01

    Full Text Available People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic whose truth was not even known prior to the existence of the explanation (proof. What do the cognitive operations underlying the (inductive inference that the milk is sour have in common with the (deductive proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This small-seeming difference poses a challenge to the task of marshaling our understanding of analogical reasoning in the service of understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence.

  7. Reconstruction of the Dark Energy Equation of State from the Latest Observations

    Science.gov (United States)

    Dai, Ji-Ping; Yang, Yang; Xia, Jun-Qing

    2018-04-01

    Since the discovery of the accelerating expansion of our universe in 1998, studying the features of dark energy has remained a hot topic in modern cosmology. In the literature, dark energy is usually described by w ≡ P/ρ, where P and ρ denote its pressure and energy density. Therefore, exploring the evolution of w is the key approach to understanding dark energy. In this work, we adopt three different methods, polynomial expansion, principal component analysis, and the correlated prior method, to reconstruct w with a collection of the latest observations, including the type-Ia supernova, cosmic microwave background, large-scale structure, Hubble measurements, and baryon acoustic oscillations (BAOs), and find that the concordance cosmological constant model (w = ‑1) is still safely consistent with these observational data at the 68% confidence level. However, when we add the high-redshift BAO measurement from the Lyα forest (Lyα FB) of BOSS DR11 quasars into the calculation, there is a significant impact on the reconstruction result. In the standard ΛCDM model, since the Lyα FB data slightly prefer a negative dark energy density, in order to avoid this problem, a dark energy model with a w significantly smaller than ‑1 is needed to explain this Lyα FB data. In this work, we find the consistent conclusion that there is a strong preference for the time-evolving behavior of dark energy w at high redshifts, when including the Lyα FB data. Therefore, we think that this Lyα FB data needs to be watched carefully attention when studying the evolution of the dark energy equation of state.

  8. Observations and modeling of post-midnight uplifts near the magnetic equator

    Directory of Open Access Journals (Sweden)

    M. J. Nicolls

    2006-07-01

    Full Text Available We report here on post-midnight uplifts near the magnetic equator. We present observational evidence from digital ionosondes in Brazil, a digisonde in Peru, and other measurements at the Jicamarca Radio Observatory that show that these uplifts occur fairly regularly in the post-midnight period, raising the ionosphere by tens of kilometers in the most mild events and by over a hundred kilometers in the most severe events. We show that in general the uplifts are not the result of a zonal electric field reversal, and demonstrate instead that the uplifts occur as the ionospheric response to a decreasing westward electric field in conjunction with sufficient recombination and plasma flux. The decreasing westward electric field may be caused by a change in the wind system related to the midnight pressure bulge, which is associated with the midnight temperature maximum. In order to agree with observations from Jicamarca and Palmas, Brazil, it is shown that there must exist sufficient horizontal plasma flux associated with the pressure bulge. In addition, we show that the uplifts may be correlated with a secondary maximum in the spread-F occurrence rate in the post-midnight period. The uplifts are strongly seasonally dependent, presumably according to the seasonal dependence of the midnight pressure bulge, which leads to the necessary small westward field in the post-midnight period during certain seasons. We also discuss the enhancement of the uplifts associated with increased geomagnetic activity, which may be related to disturbance dynamo winds. Finally, we show that it is possible using simple numerical techniques to estimate the horizontal plasma flux and the vertical drift velocity from electron density measurements in the post-midnight period.

  9. Observations and modeling of post-midnight uplifts near the magnetic equator

    Directory of Open Access Journals (Sweden)

    M. J. Nicolls

    2006-07-01

    Full Text Available We report here on post-midnight uplifts near the magnetic equator. We present observational evidence from digital ionosondes in Brazil, a digisonde in Peru, and other measurements at the Jicamarca Radio Observatory that show that these uplifts occur fairly regularly in the post-midnight period, raising the ionosphere by tens of kilometers in the most mild events and by over a hundred kilometers in the most severe events. We show that in general the uplifts are not the result of a zonal electric field reversal, and demonstrate instead that the uplifts occur as the ionospheric response to a decreasing westward electric field in conjunction with sufficient recombination and plasma flux. The decreasing westward electric field may be caused by a change in the wind system related to the midnight pressure bulge, which is associated with the midnight temperature maximum. In order to agree with observations from Jicamarca and Palmas, Brazil, it is shown that there must exist sufficient horizontal plasma flux associated with the pressure bulge. In addition, we show that the uplifts may be correlated with a secondary maximum in the spread-F occurrence rate in the post-midnight period. The uplifts are strongly seasonally dependent, presumably according to the seasonal dependence of the midnight pressure bulge, which leads to the necessary small westward field in the post-midnight period during certain seasons. We also discuss the enhancement of the uplifts associated with increased geomagnetic activity, which may be related to disturbance dynamo winds. Finally, we show that it is possible using simple numerical techniques to estimate the horizontal plasma flux and the vertical drift velocity from electron density measurements in the post-midnight period.

  10. How well can gravitational wave observations of coalescing binaries involving neutron stars constrain the neutron star equation of state?

    International Nuclear Information System (INIS)

    Bose, Sukanta

    2015-01-01

    The Advanced LIGO detectors began observation runs a few weeks ago. This has afforded relativists and astronomers the opportunity to use gravitational waves to improve our understanding of a variety of astronomical objects and phenomena. In this talk I will examine how well gravitational wave observations of coalescing binaries involving neutron stars might constrain the neutron star (NS) equation of state. These astrophysical constraints can improve our understanding of nuclear interactions in ways that complement the knowledge acquired from terrestrial labs. I will study the effects of different NS equations of states in both NS-NS and NS-Black Hole systems, with and without spin, on these constraint. (author)

  11. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Souley, Mountaka; Ghoreychi, Mehdi; Armand, Gilles

    2010-01-01

    Document available in extended abstract form only. In order to demonstrate the feasibility of a radioactive waste repository in clay-stone formation, French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory CMHM) at Bure located at nearly 300 km East of Paris. The host formation consists of a clay-stone (Callovo-Oxfordian argillites) and lies between 430 m and 550 m deep. On the basis of numerous campaigns of laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) undertaken for characterizing mechanical and hydro-mechanical short-term or long-term behaviour of these argillites, several constitutive models were developed in the framework of MODEXREP European project and scientific cooperation between ANDRA and national institutions. Moreover, more than 400 m horizontal galleries at the main level of -490 m at CMHM laboratory have been instrumented since April 2005 with the aim to understand the rock behaviour (especially the long term behaviour) needed for the repository design. The continuous measurements of convergencies of the galleries are available contributing to better understand the time-dependent response of the argillites at natural scale. Analysis of convergence data over a period of 2 years leads to the following conclusions: (a) viscoplastic strains are anisotropic and depend on the gallery orientation with regard to the initial stress anisotropy in the investigated formation; (b) the viscoplastic strain rates observed in the undamaged area far from the galleries walls are in the same order of magnitude as those obtained on samples, whereas those recorded in the damaged or fractured zone near to the walls are one to two orders of magnitude higher; indicating the damage and created macroscopic fractures influences on the viscoplastic strains. This influence has not been taken into account in the previous constitutive models. From these observations, a macroscopic

  12. Algorithms and Their Explanations

    NARCIS (Netherlands)

    Benini, M.; Gobbo, F.; Beckmann, A.; Csuhaj-Varjú, E.; Meer, K.

    2014-01-01

    By analysing the explanation of the classical heapsort algorithm via the method of levels of abstraction mainly due to Floridi, we give a concrete and precise example of how to deal with algorithmic knowledge. To do so, we introduce a concept already implicit in the method, the ‘gradient of

  13. Observational constraints on scalar field models of dark energy with barotropic equation of state

    International Nuclear Information System (INIS)

    Sergijenko, Olga; Novosyadlyj, Bohdan; Durrer, Ruth

    2011-01-01

    We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level

  14. Explanation and Elaboration Document for the STROBE-Vet Statement: Strengthening the Reporting of Observational Studies in Epidemiology-Veterinary Extension

    DEFF Research Database (Denmark)

    O'Connor, A.M.; Sargeant, J.M.; Dohoo, I.R.

    2016-01-01

    The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement was first published in 2007 and again in 2014. The purpose of the original STROBE was to provide guidance for authors, reviewers, and editors to improve the comprehensiveness of reporting; however, STROBE ...

  15. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2000-09-01

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  16. Hydroxymethane sulfonate as a possible explanation for observed high levels of particulate sulfur during severe winter haze episodes in Beijing, China.

    Science.gov (United States)

    Moch, J.; Jacob, D.; Mickley, L. J.; Cheng, Y.; Li, M.; Munger, J. W.; Wang, Y.

    2017-12-01

    Observed PM2.5 during severe winter haze in Beijing, China, may reach levels as high as 880 μg m-3, with sulfur compounds contributing significantly to PM2.5 composition. Such sulfur has been traditionally assumed to be sulfate, even though models fail to generate such large sulfate enhancements under cold and hazy conditions. We show that particulate sulfur in wintertime Beijing possibly occurs as an S(IV)-HCHO adduct, hydroxymethane sulfonate (HMS), formed by reaction of aqueous-phase HCHO and S(IV) in cloud droplets. We use a 1-D chemistry model extending from the surface through the boundary layer to examine the potential role of HMS during the Beijing haze events of December 2011 and January 2013. Observed and assimilated meteorological fields including cloud liquid water were applied to the model, and we test the sensitivity of HMS formation to cloud pH and ambient SO2 and HCHO. Surface observations from the two haze events show excess ammonium in the aerosol, indicating cloud pH may be relatively high. Model results show that once cloud pH exceeds 4.5, HMS can accumulate rapidly, reaching a few hundred μg m-3 in a few hours. The timing of HMS formation is controlled by the presence of cloud liquid water, with eddy driven diffusion bringing HMS to the surface. The magnitude of HMS peaks is limited by the supply of HCHO. HMS episodes in the model end gradually over 1-3 days as fresh air is entrained into the boundary layer; in observations these episodes typically end when increasing wind speeds destabilize the boundary layer and disperses pollution. We find that consideration of HMS as a source of particulate sulfur significantly improves model match with observations. For example, assuming cloud pH of 5 and average surface SO2 and HCHO levels of 50 ppb and 5.5 ppb, we calculate mean HMS as 43.8 μg m-3 in January 2013, within 7 μg m-3 of observed particulate sulfur. Our 1-D model also captures the timing and magnitude of peak particulate sulfur in January

  17. In vitro induction of protein complexes between bevacizumab, VEGF-A¹⁶⁵ and heparin: explanation for deposits observed on endothelial veins in monkey eyes.

    Science.gov (United States)

    Julien, Sylvie; Biesemeier, Antje; Schraermeyer, Ulrich

    2013-04-01

    By investigating the effects of intravitreal bevacizumab on retinal vessels of monkeys, we found that bevacizumab accumulated locally at high concentration within individual blood vessels. It formed electron-dense fibrous deposits between endothelial cells and erythrocytes or granulocytes inducing retinal vein thrombosis. To better characterise the observed deposits, we investigated in vitro whether these deposits result from a complex between bevacizumab, vascular endothelial growth factor (VEGF)-A(165) and heparin. Cynomolgus monkeys were intravitreally injected with 1.25 mg bevacizumab. The eyes were enucleated between 1 and 14 days after injection and investigated by electron microscopy and immunohistochemistry. Human umbilical vein endothelial cells (HUVEC) were incubated with bevacizumab, VEGF-A(165) and heparin at different concentrations. Treatments with ranibizumab served as control. Bevacizumab and ranibizumab were detected immunohistochemically using Cy-3 or immunogold labelled antibodies. Treated animals showed bevacizumab locally at high concentration within retinal blood vessels. Electron-dense deposits inside retinal vessels and between erythrocytes were detected in three out of four treated monkeys. In vitro, many globular aggregates heavily stained with anti-human IgG were only observed with equimolar amounts (240 nM) of bevacizumab and VEGF-A(165) and 0.2 U/ml heparin and not after ranibizumab treatment. The immunogold labelling specifically localised ultrastructurally the complexes formed between bevacizumab, VEGF-A(165) and heparin at the surfaces of HUVEC cells. Heparin promotes bevacizumab immune complex deposition on to endothelial cells. Our in vitro results could explain the presence of deposits observed on endothelial veins in monkey eyes intravitreally injected with bevacizumab.

  18. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-01-01

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial

  19. Inside case-based explanation

    CERN Document Server

    Schank, Roger C; Riesbeck, Christopher K

    2014-01-01

    This book is the third volume in a series that provides a hands-on perspective on the evolving theories associated with Roger Schank and his students. The primary focus of this volume is on constructing explanations. All of the chapters relate to the problem of building computer programs that can develop hypotheses about what might have caused an observed event. Because most researchers in natural language processing don't really want to work on inference, memory, and learning issues, most of their sample text fragments are chosen carefully to de-emphasize the need for non text-related reasoni

  20. Constraining the Dense Matter Equation of State with ATHENA-WFI observations of Neutron Stars in Quiescent LMXBs

    Science.gov (United States)

    Guillot, Sebastien; Oezel, F.

    2015-09-01

    The study of neutron star quiescent low-mass X-ray binaries (qLMXBs) will address one of the main science goals of the Athena x-ray observatory. The study of the soft X-ray thermal emission from the neutron star surface in qLMXBs is a crucial tool to place constrains on the dense matter equation of state. I will briefly review this method, its strength and current weaknesses and limitations, as well as the current constraints on the equation of state from qLMXBs. The superior sensitivity of Athena will permit the acquisition of unprecedentedly high signal-to-noise spectra from these sources. It has been demonstrated that a single qLMXB, even with high S/N, will not place useful constraints on the EoS. However, a combination of qLMXBs spectra has shown promises of obtaining tight constraints on the equation of state. I will discuss the expected prospects for observations of qLMXBs inside globular clusters -- those that Athena will be able to resolve. I will also present the constraints on the equation of state that Athena will be able to obtain from these qLMXBs and from a population of qLMXBs in the field of the Galaxy, with distance measurements provided by Gaia.

  1. Can a nightside geomagnetic Delta H observed at the equator manifest a penetration electric field?

    Science.gov (United States)

    Wei, Y.; Fraenz, M.; Dubinin, E.; He, M.; Ren, Z.; Zhao, B.; Liu, J.; Wan, W.; Yumoto, K.; Watari, S.; Alex, S.

    2013-06-01

    A prompt penetration electric field (PPEF) usually manifests itself in the form of an equatorial ionospheric electric field being in correlation with a solar wind electric field. Due to the strong Cowling conductivity, a PPEF on the dayside can be inferred from Delta H (ΔH), which is the difference in the magnitudes of the horizontal (H) component between a magnetometer at the magnetic equator and one off the equator. This paper aims to investigate the performance of ΔH in response to a PPEF on the nightside, where the Cowling conductivity is not significant. We first examine the strongest geomagnetically active time during the 20 November 2003 superstorm when the Dst drops to -473 nT and show that the nightside ΔH can indeed manifest a PPEF but with local time dependence and longitude dependence. We then examine a moderately active time by taking advantage of the multiple-penetration event during 11-16 November 2003 when the Dst remains greater than -60 nT. During this event, a series of PPEF pulses recorded in Peru, Japan, and India form a database, allowing us to examine PPEF effects at different local times and longitudes. The results show that (1) the nightside ΔH was caused by attenuation of the effects of the polar electric field with decreasing latitude; (2) the nightside ΔH can manifest a PPEF at least in the midnight-dawn sector (0000-0500 LT), but not always; and (3) the magnitude of the nightside ΔH in the midnight-dawn sector in Peru is on average only 1/18 of that of the dayside ΔH in response to a given PPEF.

  2. Application of Seismic Observation Data in Borehole for the Development of Attenuation Equation of Response Spectra on Bedrock

    International Nuclear Information System (INIS)

    Si, Hongjun

    2014-01-01

    Ground motion data on seismic bedrock is important, but it is very difficult to obtain such data directly. The data from KiK-net and JNES/SODB is valuable and very useful in developing the attenuation relationship of response spectra on seismic bedrock. NIED has approximately 200 observation points on seismic bedrock with S-wave velocity of more than 2000 m/s in Japan. Using data from observation at these points, a Ground Motion Prediction Equation (GMPE) is under development. (author)

  3. Explanations and expectations

    DEFF Research Database (Denmark)

    Järvinen, Margaretha; Ravn, Signe

    2015-01-01

    drug use ‘aetiologies’ drawn upon by the interviewees. These cover childhood experiences, self-medication, the influence of friends and cannabis use as a specific lifestyle. A central argument of the article is that these explanations not only concern the past but also point towards the future......This article analyses how young people enrolled in drug addiction treatment in Copenhagen, Denmark, explain their cannabis careers and how they view their possibilities for quitting drug use again. Inspired by Mead and narrative studies of health and illness, the article identifies four different...

  4. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-01

    the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time

  5. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.

    Science.gov (United States)

    Zollanvari, Amin; Dougherty, Edward R

    2016-12-01

    In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.

  6. Isolated Horizontal Gaze Palsy: Observations and Explanations

    Directory of Open Access Journals (Sweden)

    Renee Ewe

    2017-11-01

    Full Text Available We present three cases that we suggest require a novel diagnosis and a reconsideration of current understandings of pontine anatomy. In this case series, we highlight a series of patients with monophasic, fully recovering inflammatory lesions in the pontine tegmentum not due to any of the currently recognized causes of this syndrome. We highlight other similar cases in the literature and suggest there may be a particular epitope for an as-yet-undiscovered antibody underlying the tropism for this area. We highlight the potential harm of misdiagnosis with relapsing inflammatory or other serious diagnoses with significant adverse impact on the patient. In addition, we propose that this would support a reinterpretation of the currently accepted anatomy of the pontine gaze inputs to the median longitudinal fasciculus and paramedian pontine reticular formation.

  7. Application of iterative method with dynamic weight based on observation equation's constant in NPP's surveying

    International Nuclear Information System (INIS)

    Chen Benfu; Guo Xianchun; Zou Zili

    2009-01-01

    It' s useful to identify the data with errors from the large number of observations during the process of adjustment to decrease the influence of the errors and to improve the quality of the final surveying result. Based on practical conditions of the nuclear power plant's plain control network, it has been given on how to simply calculate the threshold value which used to pre-weight each datum before adjustment calculation; it shows some superiorities in efficiency on data snooping and in quality of the final calculation compared with some traditional methods such as robust estimation, which process data with dynamic weight based the observation' s correction after each iteration. (authors)

  8. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    Science.gov (United States)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  9. Asymptotic theory of generalized estimating equations based on jack-knife pseudo-observations

    DEFF Research Database (Denmark)

    Overgaard, Morten; Parner, Erik Thorlund; Pedersen, Jan

    2017-01-01

    A general asymptotic theory of estimates from estimating functions based on jack-knife pseudo-observations is established by requiring that the underlying estimator can be expressed as a smooth functional of the empirical distribution. Using results in p-variation norms, the theory is applied...

  10. An initial response of magnetic fields at geosynchronous orbit to Pi 2 onset as observed from the dip-equator

    Directory of Open Access Journals (Sweden)

    O. Saka

    1998-05-01

    Full Text Available Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00 with higher accuracy of timing (0.1 s and amplitude resolution (0.01 nT were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT during PROMIS (Polar Region and Outer Magnetosphere International Study periods (1 March–20 June, 1986. It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane. Key words. Magnetospheric physics · Magnetospheric configuration and dynamics · MHD waves and instabilities · Plasmasphere

  11. An initial response of magnetic fields at geosynchronous orbit to Pi 2 onset as observed from the dip-equator

    Directory of Open Access Journals (Sweden)

    O. Saka

    Full Text Available Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00 with higher accuracy of timing (0.1 s and amplitude resolution (0.01 nT were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT during PROMIS (Polar Region and Outer Magnetosphere International Study periods (1 March–20 June, 1986. It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane.

    Key words. Magnetospheric physics · Magnetospheric configuration and dynamics · MHD waves and instabilities · Plasmasphere

  12. The 'generalized Balescu-Lenard' transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1990-01-01

    The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs

  13. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  14. Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations

    CERN Document Server

    Fragnelli, Genni

    2016-01-01

    The authors consider a parabolic problem with degeneracy in the interior of the spatial domain, and they focus on observability results through Carleman estimates for the associated adjoint problem. The novelties of the present paper are two. First, the coefficient of the leading operator only belongs to a Sobolev space. Second, the degeneracy point is allowed to lie even in the interior of the control region, so that no previous result can be adapted to this situation; however, different cases can be handled, and new controllability results are established as a consequence.

  15. Eliciting explanations: Constraints on when self-explanation aids learning.

    Science.gov (United States)

    Rittle-Johnson, Bethany; Loehr, Abbey M

    2017-10-01

    Generating explanations for oneself in an attempt to make sense of new information (i.e., self-explanation) is often a powerful learning technique. Despite its general effectiveness, in a growing number of studies, prompting for self-explanation improved some aspects of learning, but reduced learning of other aspects. Drawing on this recent research, as well as on research comparing self-explanation under different conditions, we propose four constraints on the effectiveness of self-explanation. First, self-explanation promotes attention to particular types of information, so it is better suited to promote particular learning outcomes in particular types of domains, such as transfer in domains guided by general principles or heuristics. Second, self-explaining a variety of types of information can improve learning, but explaining one's own solution methods or choices may reduce learning under certain conditions. Third, explanation prompts focus effort on particular aspects of the to-be-learned material, potentially drawing effort away from other important information. Explanation prompts must be carefully designed to align with target learning outcomes. Fourth, prompted self-explanation often promotes learning better than unguided studying, but alternative instructional techniques may be more effective under some conditions. Attention to these constraints should optimize the effectiveness of self-explanation as an instructional technique in future research and practice.

  16. Azimuthal instabilities of the Gribov-Levin-Ryskin equation

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, Guillermo; Torrieri, Giorgio [State University of Campinas, IFGW, Campinas (Brazil)

    2017-01-15

    We introduce the phenomenology of elliptic flow in nuclear collisions, and argue that its scaling across energies, rapidities and system sizes could be suggestive of a QCD-based rather than a hydrodynamical explanation. As a hypothesis for such an explanation, we show that the GLR equation develops unstable modes when the parton distribution function is generalized to depend on azimuthal angle. This generally means that the structure function acquires an azimuthal dependence. We argue that this process is a plausible alternative explanation for the origin of elliptic flow, one that naturally respects the scaling experimentally observed. (orig.)

  17. Multi-cell vortices observed in fine-mesh solutions to the incompressible Euler equations

    International Nuclear Information System (INIS)

    Rizzi, A.

    1986-01-01

    Results are presented for a three dimensional flow, containing a vortex sheet shed from a delta wing. The numerical solution indicates that the shearing caused by the trailing edge of the wing set up a torsional wave on the vortex core and produces a structure with multiple cells of vorticity. Although observed in coarse grid solutions too, this effect becomes better resolved with mesh refinement to 614 000 grid volumes. In comparison with a potential solution in which the vortex sheet is fitted as a discontinuity, the results are analyzed for the position of the vortex features captured in the Euler flow field, the accuracy of the pressure field, and for the diffusion of the vortex sheets

  18. GPS-VTEC near the magnetic equator during a high solar activity year: Observations and IRI predictions

    International Nuclear Information System (INIS)

    Ezquer, R.G.; Mosert, M.; Brunini, C.; Meza, A.; Cabrera, M.A.; Araoz, L.; Radicella, S.M.

    2002-01-01

    The validity of International Reference Ionosphere model to predict the vertical electron content (VTEC) over Arequipa (-16.5, 289.0; geoma. Lat.: - 5.1), station placed near the magnetic equator, is checked. VTEC measurements obtained with GPS satellite signals during year 2000 are considered. These data correspond to equinoxes and solstices. The results are similar to those obtained for the southern peak of the equatorial anomaly in previous work. In some cases, good VTEC predictions have been observed for hours of maximum ionisation. Overestimation for nighttime, sunrise and sunset hours were observed. The disagreements between predictions and measurements could arise because peak characteristics or the shape of the N profile, or both, are not well predicted. More studies including ionosonde measurements would be useful. (author)

  19. Creating visual explanations improves learning.

    Science.gov (United States)

    Bobek, Eliza; Tversky, Barbara

    2016-01-01

    Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.

  20. Explanation components as interactive tools

    Energy Technology Data Exchange (ETDEWEB)

    Wahlster, W.

    1983-01-01

    The ability to explain itself is probably the most important criterion of the user-friendliness of interactive systems. Explanation aids in the form of simple help functions do not meet this criterion. The reasons for this are outlined. More promising is an explanation component which can give the user intelligible and context-oriented explanations. The essential requirement for this is the development of knowledge-based interactive systems using artificial intelligence methods and techniques. The authors report on experiences with the development of explanation components, in particular a number of examples from the HAM-ANS project. 12 references.

  1. Explanation and inference: Mechanistic and functional explanations guide property generalization

    Directory of Open Access Journals (Sweden)

    Tania eLombrozo

    2014-09-01

    Full Text Available The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1, experimentally provided (Experiment 2, or experimentally induced (Experiment 2. The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  2. Explanation and inference: mechanistic and functional explanations guide property generalization.

    Science.gov (United States)

    Lombrozo, Tania; Gwynne, Nicholas Z

    2014-01-01

    The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  3. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  4. Enhancing human understanding through intelligent explanations

    NARCIS (Netherlands)

    Mioch, T.; Harbers, M.; Doesburg, W.A. van; Bosch, K. van den

    2007-01-01

    Ambient systems that explain their actions promote the user's understanding as they give the user more insight in the e®ects of their behavior on the environment. In order to provide individualized intelligent explanations, we need not only to evaluate a user's observable behavior, but we also need

  5. Automated Explanation for Educational Applications.

    Science.gov (United States)

    Suthers, Daniel D.

    1991-01-01

    Artificial intelligence techniques available for generating explanations for teaching purposes are surveyed, and the way in which they are combined in a computer program that provides explanations is described. The program responds to questions in the physical sciences. Potential contributions of this technology to computer-based education are…

  6. Sequential and simultaneous multiple explanation

    Directory of Open Access Journals (Sweden)

    Robert Litchfield

    2007-02-01

    Full Text Available This paper reports two experiments comparing variants of multiple explanation applied in the early stages of a judgment task (a case involving employee theft where participants are not given a menu of response options. Because prior research has focused on situations where response options are provided to judges, we identify relevant dependent variables that an intervention might affect when such options are not given. We use these variables to build a causal model of intervention that illustrates both the intended effects of multiple explanation and some potentially competing processes that it may trigger. Although multiple explanation clearly conveys some benefits (e.g., willingness to delay action to engage in information search, increased detail, quality and confidence in alternative explanations in the present experiments, we also found evidence that it may initiate or enhance processes that attenuate its advantages (e.g., feelings that one does not need more data if one has multiple good explanations.

  7. An explanation for the shape of nanoindentation unloading curves based on finite element simulation

    International Nuclear Information System (INIS)

    Bolshakov, A.; Pharr, G.M.

    1995-01-01

    Current methods for measuring hardness and modulus from nanoindentation load-displacement data are based on Sneddon's equations for the indentation of an elastic half-space by an axially symmetric rigid punch. Recent experiments have shown that nanoindentation unloading data are distinctly curved in a manner which is not consistent with either the flat punch or the conical indenter geometries frequently used in modeling, but are more closely approximated by a parabola of revolution. Finite element simulations for conical indentation of an elastic-plastic material are presented which corroborate the experimental observations, and from which a simple explanation for the shape of the unloading curve is derived. The explanation is based on the concept of an effective indenter shape whose geometry is determined by the shape of the plastic hardness impression formed during indentation

  8. WPPSS debacle: explanations and lessons

    International Nuclear Information System (INIS)

    Meyer, M.B.

    1984-01-01

    Principal explanations for the WPPSS events to date can be more or less satisfactorily derived. Five explanations appear to dominate: (1) the long and previously successful history of public power in the Pacific Northwest; (2) overoptimism by architect/engineers and consulting engineers about construction costs and construction durations; (3) laxness by bond counsel in scrutinizing and disclosing potential legal impediments to the various transactions involved; (4) WPPSS easy access to capital markets, combined with naivete in those markets; and (5) the inability of WPPSS to manage and oversee the construction process. This paper explains the specific reasons for, and the importance of, each of these five explanations for the WPPSS debacle. It then develops lessons and conclusions for the future which can be derived from this debacle. 12 references

  9. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  10. Economic explanations for concurrent sourcing

    DEFF Research Database (Denmark)

    Mols, Niels Peter

    2010-01-01

    Concurrent sourcing is a phenomenon where firms simultaneously make and buy the same good, i.e. they simultaneously use the governance modes of market and hierarchy. Though concurrent sourcing seems to be widespread, few studies of sourcing have focused on this phenomenon. This paper reviews...... different economic explanations for why firms use concurrent sourcing. The distinctive features of the explanations are compared, and it is discussed how they may serve as a springboard for research on concurrent sourcing. Managerial implications are also offered....

  11. Turing patterns and biological explanation

    DEFF Research Database (Denmark)

    Serban, Maria

    2017-01-01

    , promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific......Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis...

  12. Existing equations to estimate lean body mass are not accurate in the critically ill: Results of a multicenter observational study.

    Science.gov (United States)

    Moisey, Lesley L; Mourtzakis, Marina; Kozar, Rosemary A; Compher, Charlene; Heyland, Daren K

    2017-12-01

    Lean body mass (LBM), quantified using computed tomography (CT), is a significant predictor of clinical outcomes in the critically ill. While CT analysis is precise and accurate in measuring body composition, it may not be practical or readily accessible to all patients in the intensive care unit (ICU). Here, we assessed the agreement between LBM measured by CT and four previously developed equations that predict LBM using variables (i.e. age, sex, weight, height) commonly recorded in the ICU. LBM was calculated in 327 critically ill adults using CT scans, taken at ICU admission, and 4 predictive equations (E1-4) that were derived from non-critically adults since there are no ICU-specific equations. Agreement was assessed using paired t-tests, Pearson's correlation coefficients and Bland-Altman plots. Median LBM calculated by CT was 45 kg (IQR 37-53 kg) and was significantly different (p LBM (error ranged from 7.5 to 9.9 kg), compared with LBM calculated by CT, suggesting insufficient agreement. Our data indicates a large bias is present between the calculation of LBM by CT imaging and the predictive equations that have been compared here. This underscores the need for future research toward the development of ICU-specific equations that reliably estimate LBM in a practical and cost-effective manner. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Supernatural Explanations: Science or Not?

    Science.gov (United States)

    Eastwell, Peter

    2011-01-01

    Contrary to the advice of supposedly authoritative sources, the a priori exclusion of supernatural explanations or claims from scientific scrutiny is not appropriate. This paper shows how supernatural hypotheses or claims should be treated by science and, in the process, differentiates scientific and non-scientific hypotheses or claims.…

  14. Sublime Views and Beautiful Explanations

    DEFF Research Database (Denmark)

    Barry, Daved; Meisiek, Stefan; Hatch, Mary Jo

    To create a generative theory that provides beautiful explanations and sublime views requires both a crafts and an art approach to scientific theorizing. The search for generativity leads scholars to perform various theorizing moves between the confines of simple, yet eloquent beauty...

  15. A hadronic explanation of the lepton anomaly

    DEFF Research Database (Denmark)

    Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    The rise in the positron fraction, observed by PAMELA, Fermi-LAT and most recently by AMS-02, has created a lot of interest, fuelled by speculations about an origin in dark matter annihilation in the Galactic halo. However, other channels, e.g. antiprotons or gamma-rays, now severely constrain dark....... This mechanism is guaranteed if hadronic CRs are present and would also lead to observable signatures in other secondary channels like the boron-to-carbon or antiproton-to-proton ratios. If such features were borne out by upcoming AMS-02 data, this would rule out other explanations....

  16. Dynamical explanation for the high water abundance detected in Orion

    International Nuclear Information System (INIS)

    Elitzur, M.

    1979-01-01

    Shock wave chemistry is suggested as the likely explanation for the high water abundance which has been recently detected in Orion by Phyllips et al. The existence of such a shock and its inferred properties are in agreement with other observations of Orion such as the broad velocity feature and H 2 vibration emission. Shock waves are proposed as the likely explanation for high water abundances observed in other sources such as the strong H 2 O masers

  17. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  18. S-N secular ocean tide: explanation of observably coastal velocities of increase of a global mean sea level and mean sea levels in northern and southern hemispheres and prediction of erroneous altimetry velocities

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    The phenomenon of contrast secular changes of sea levels in the southern and northern hemispheres, predicted on the basis of geodynamic model about the forced relative oscillations and displacements of the Earth shells, has obtained a theoretical explanation. In northern hemisphere the mean sea level of ocean increases with velocity about 2.45±0.32 mm/yr, and in a southern hemisphere the mean sea level increases with velocity about 0.67±0.30 mm/yr. Theoretical values of velocity of increase of global mean sea level of ocean has been estimated in 1.61±0.36 mm/yr. 1 Introduction. The secular drift of the centre of mass of the Earth in the direction of North Pole with velocity about 12-20 mm/yr has been predicted by author in 1995 [1], [2], and now has confirmed with methods of space geodesy. For example the DORIS data in period 1999-2008 let us to estimate velocity of polar drift in 5.24±0.29 mm/yr [3]. To explain this fundamental planetary phenomenon it is possible only, having admitted, that similar northern drift tests the centre of mass of the liquid core relatively to the centre of mass of viscous-elastic and thermodynamically changeable mantle with velocity about 2-3 cm/yr in present [4]. The polar drift of the Earth core with huge superfluous mass results in slow increase of a gravity in northern hemisphere with a mean velocity about 1.4 ?Gal and to its decrease approximately with the same mean velocity in southern hemisphere [5]. This conclusion-prediction has obtained already a number of confirmations in precision gravimetric observations fulfilled in last decade around the world [6]. Naturally, a drift of the core is accompanied by the global changes (deformations) of all layers of the mantle and the core, by inversion changes of their tension states when in one hemisphere the tension increases and opposite on the contrary - decreases. Also it is possible that thermodynamical mechanism actively works with inversion properties of molting and

  19. Generating explanations via analogical comparison.

    Science.gov (United States)

    Hoyos, Christian; Gentner, Dedre

    2017-10-01

    Generating explanations can be highly effective in promoting learning in both adults and children. Our interest is in the mechanisms that underlie this effect and in whether and how they operate in early learning. In adult reasoning, explanation may call on many subprocesses-including comparison, counterfactual reasoning, and reasoning by exclusion; but it is unlikely that all these processes are available to young children. We propose that one process that may serve both children and adults is comparison. In this study, we asked whether children would use the results of a comparison experience when asked to explain why a model skyscraper was stable. We focused on a challenging principle-that diagonal cross-bracing lends stability to physical structures (Gentner et al., Cognitive Science, 40, 224-240, 2016). Six-year-olds either received no training or interacted with model skyscrapers in one of three different conditions, designed to vary in their potential to invite and support comparison. In the Single Model condition, children interacted with a single braced model. In the comparison conditions (Low Alignability and High Alignability), children compared braced and unbraced models. Following experience with the models, children were asked to explain why the braced model was stable. They then received two transfer tasks. We found that children who received highly alignable pairs were most likely to (a) produce brace-based explanations and (b) transfer the brace principle to a dissimilar context. This provides evidence that children can benefit from analogical comparison in generating explanations and also suggests limitations on this ability.

  20. Towards an Explanation Generation System for Robots: Analysis and Recommendations

    Directory of Open Access Journals (Sweden)

    Ben Meadows

    2016-10-01

    Full Text Available A fundamental challenge in robotics is to reason with incomplete domain knowledge to explain unexpected observations and partial descriptions extracted from sensor observations. Existing explanation generation systems draw on ideas that can be mapped to a multidimensional space of system characteristics, defined by distinctions, such as how they represent knowledge and if and how they reason with heuristic guidance. Instances in this multidimensional space corresponding to existing systems do not support all of the desired explanation generation capabilities for robots. We seek to address this limitation by thoroughly understanding the range of explanation generation capabilities and the interplay between the distinctions that characterize them. Towards this objective, this paper first specifies three fundamental distinctions that can be used to characterize many existing explanation generation systems. We explore and understand the effects of these distinctions by comparing the capabilities of two systems that differ substantially along these axes, using execution scenarios involving a robot waiter assisting in seating people and delivering orders in a restaurant. The second part of the paper uses this study to argue that the desired explanation generation capabilities corresponding to these three distinctions can mostly be achieved by exploiting the complementary strengths of the two systems that were explored. This is followed by a discussion of the capabilities related to other major distinctions to provide detailed recommendations for developing an explanation generation system for robots.

  1. Experiences and Explanations of ADHD

    DEFF Research Database (Denmark)

    Nielsen, Mikka

    Research on Attention Deficit Hyperactivity Disorder (ADHD) usually presents the disorder from either a neurobiological perspective, describing the disorder as an impairment in executive functions, or from a critical, sociological perspective, whereby ADHD is explained as a consequence...... of the medicalization of deviant behaviour. Neither of these perspectives tells us about the experience of living with ADHD, or explains how ADHD unfolds within specific contexts and relations. Experiences and Explanations of ADHD addresses this lacuna by exploring bodily experiences of ADHD and people’s experiences...... of obtaining a diagnosis. Drawing on in-depth interviews with adults diagnosed with ADHD, the book provides an examination of how the diagnosis is understood, used and acted upon by the people receiving the diagnosis. This book delves into the phenomenology of ADHD and uncovers the experiences of a highly...

  2. Pluralism, Pragmatism and Functional Explanations

    Directory of Open Access Journals (Sweden)

    Shaw Jamie

    2016-04-01

    Full Text Available While many philosophers speak of ‘pluralism’ within philosophy of biology, there has been little said about what such pluralism amounts to or what its underlying assumptions are. This has provoked so me anxiety about whether pluralism is compatible with their commitment to naturalism (Cussins 1992. This paper surveys three prominent pluralist positions (Sandra Mitchell and Michael Dietrich’s (2006 ‘integrative pluralism’, and both Peter Godfrey-Smith’s (1993 and Beth Preston’s (1998 pluralist analyses of functional explanations in evolutionary biology and demonstrates how all three are committed to a form of pragmatism. This analysis both clarifies the justification and grounding of pluralism and allows these pluralisms to avoid the criticisms of Cussins. I close by making some more general points about pluralism and its relationship to history and integration.

  3. Evaluating the Effects of Differences in Group Abilities on the Tucker and the Levine Observed-Score Methods for Common-Item Nonequivalent Groups Equating. ACT Research Report Series 2010-1

    Science.gov (United States)

    Chen, Hanwei; Cui, Zhongmin; Zhu, Rongchun; Gao, Xiaohong

    2010-01-01

    The most critical feature of a common-item nonequivalent groups equating design is that the average score difference between the new and old groups can be accurately decomposed into a group ability difference and a form difficulty difference. Two widely used observed-score linear equating methods, the Tucker and the Levine observed-score methods,…

  4. Scientific explanation in school: An enactive view

    Science.gov (United States)

    Ibrahim-Didi, Khadeeja

    This study explores explanation-in-action, a corollary to an enactive orientation to cognition. Explanation, understood this way is identified as a semiotic, perceptually driven activity, where the interactions that arise between students that enable the engagement to continue indicate a certain tentative coherence of meaning that is brought forth in interaction in a constraining environment. Challenging summary state views of explanation as statement, this study explores the evolution of scientific explanation in two Grade Eight Maldivian classrooms. Enactivism, understood across different embodied cognitive systems, reconfigures the discourse on explanation by re-orienting the form in which explanation is understood. The notion of explanation-in-action as a topological function implicates the boundary of the cognitive system in the action. Further, it also recognizes that embedding boundaries and the dynamics that create the boundaries can constrain the explanation that occurs in different domains. In effect, the study calls for reconfiguring validation as in-action---as the constraining dynamic feature that emerges in the ongoing explanation-in-action. In the study I pay attention to the different boundaries of some systemic configurations in the classroom. I consider how the boundary conditions create the possibility for signification, and therefore, explanation. This research suggests that in explaining-in-action students are able to draw on the enabling possibilities of personal boundaries and the constraining social boundaries to further structure their explaining in ways that are local to the task at hand.

  5. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P.J. [VTT Electronics, Oulu (Finland). Embedded Software

    1997-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  6. Model-based explanation of plant knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Huuskonen, P J [VTT Electronics, Oulu (Finland). Embedded Software

    1998-12-31

    This thesis deals with computer explanation of knowledge related to design and operation of industrial plants. The needs for explanation are motivated through case studies and literature reviews. A general framework for analysing plant explanations is presented. Prototypes demonstrate key mechanisms for implementing parts of the framework. Power plants, steel mills, paper factories, and high energy physics control systems are studied to set requirements for explanation. The main problems are seen to be either lack or abundance of information. Design knowledge in particular is found missing at plants. Support systems and automation should be enhanced with ways to explain plant knowledge to the plant staff. A framework is formulated for analysing explanations of plant knowledge. It consists of three parts: 1. a typology of explanation, organised by the class of knowledge (factual, functional, or strategic) and by the target of explanation (processes, automation, or support systems), 2. an identification of explanation tasks generic for the plant domain, and 3. an identification of essential model types for explanation (structural, behavioural, functional, and teleological). The tasks use the models to create the explanations of the given classes. Key mechanisms are discussed to implement the generic explanation tasks. Knowledge representations based on objects and their relations form a vocabulary to model and present plant knowledge. A particular class of models, means-end models, are used to explain plant knowledge. Explanations are generated through searches in the models. Hypertext is adopted to communicate explanations over dialogue based on context. The results are demonstrated in prototypes. The VICE prototype explains the reasoning of an expert system for diagnosis of rotating machines at power plants. The Justifier prototype explains design knowledge obtained from an object-oriented plant design tool. Enhanced access mechanisms into on-line documentation are

  7. Investigation of the magnetic neutral line region with the frame of two-fluid equations: A possibility of anomalous resistivity inferred from MMS observations

    Science.gov (United States)

    Kobayashi, Y.; Kitamura, N.; Ieda, A.; Yoshizumi, M.; Imada, S.; Tsugawa, Y.; Burch, J. L.; Russell, C. T.; Moore, T. E.; Giles, B. L.; Paterson, W.; Torbert, R. B.; Ergun, R.; Saito, Y.; Yokota, S.; Machida, S.

    2017-12-01

    Magnetic reconnection is a basic physical process by which energy of magnetic field is converted into the kinetic energy of plasmas. In recent years, MMS missionconsisting of four spacecraft has been conducted aiming at elucidating the physical mechanism of merging themagnetic fields in the vicinity of the magnetic neutral linethat exists in the central part of the structure. In this paper, we examine the magnetic field frozen-in relation near the magnetic neutral line as well as the causal relationship between electron and ion dynamics in the frame of two fluid equations.Theoretically, it is shown that electrons are frozen-in to the magnetic fields while ion's frozen-in relation is broken in the ion dissipation region. However, when we examined the observational data around 1307 UT on October 16, 2015 when MMS spacecraft passed through the vicinity of the magnetic neutral line [Burch et al., Science 2016] , it was confirmed that the frozen-ion relation was not established for electrons in the ion dissipation region. In addition, we found that intense wave electric fields in this region. From the spectral analysis of the waves, it turned out that their characteristic frequencies are the lower-hybrid and electron cyclotron frequencies.In the framework of the two-fluid equation, we can evaluate the values of each term of the equations of motion for both ions and electrons except for the collision term from MMS spacecraft data. Therefore, it is possible to obtain collision terms for both species. Since magnetospheric plasma is basically collisionless, it is considered that the collision term is due to anomalous resistivity associated with the excited waves . On the other hand, in the two-fluid equation system, the two vectors corresponding to the collision terms of ions and electrons have the same absolute value. Because the force exerted between the two is the internal force, they should face in the opposite direction. However, the vectors corresponding to the

  8. Hybrid Adaptive Multilevel Monte Carlo Algorithm for Non-Smooth Observables of Itô Stochastic Differential Equations

    KAUST Repository

    Rached, Nadhir B.

    2014-01-06

    A new hybrid adaptive MC forward Euler algorithm for SDEs with singular coefficients and non-smooth observables is developed. This adaptive method is based on the derivation of a new error expansion with computable leading order terms. When a non-smooth binary payoff is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the multilevel Monte Carlo (MLMC) forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case, it recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs, see [2]. The difficulty to extend Giles’ Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.

  9. Hybrid Adaptive Multilevel Monte Carlo Algorithm for Non-Smooth Observables of Itô Stochastic Differential Equations

    KAUST Repository

    Rached, Nadhir B.; Hoel, Haakon; Tempone, Raul

    2014-01-01

    A new hybrid adaptive MC forward Euler algorithm for SDEs with singular coefficients and non-smooth observables is developed. This adaptive method is based on the derivation of a new error expansion with computable leading order terms. When a non-smooth binary payoff is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the multilevel Monte Carlo (MLMC) forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case, it recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs, see [2]. The difficulty to extend Giles’ Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.

  10. Well-posedness and exact controllability of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation

    Directory of Open Access Journals (Sweden)

    Ruili Wen

    2016-08-01

    Full Text Available We consider an open-loop system of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation. Using the multiplier method on Riemannian manifold we show that that the system is well-posed in the sense of Salamon. This implies that the exponential stability of the closed-loop system under the direct proportional output feedback control and the exact controllability of open-loop system are equivalent. So in order to conclude feedback stabilization from well-posedness, we study the exact controllability under a uniqueness assumption by presenting the observability inequality for the dual system. In addition, we show that the system is regular in the sense of Weiss, and that the feedthrough operator is zero.

  11. Hybrid Adaptive Multilevel Monte Carlo Algorithm for Non-Smooth Observables of Itô Stochastic Differential Equations

    KAUST Repository

    Rached, Nadhir B.

    2013-12-01

    The Monte Carlo forward Euler method with uniform time stepping is the standard technique to compute an approximation of the expected payoff of a solution of an Itô SDE. For a given accuracy requirement TOL, the complexity of this technique for well behaved problems, that is the amount of computational work to solve the problem, is O(TOL-3). A new hybrid adaptive Monte Carlo forward Euler algorithm for SDEs with non-smooth coefficients and low regular observables is developed in this thesis. This adaptive method is based on the derivation of a new error expansion with computable leading-order terms. The basic idea of the new expansion is the use of a mixture of prior information to determine the weight functions and posterior information to compute the local error. In a number of numerical examples the superior efficiency of the hybrid adaptive algorithm over the standard uniform time stepping technique is verified. When a non-smooth binary payoff with either GBM or drift singularity type of SDEs is considered, the new adaptive method achieves the same complexity as the uniform discretization with smooth problems. Moreover, the new developed algorithm is extended to the MLMC forward Euler setting which reduces the complexity from O(TOL-3) to O(TOL-2(log(TOL))2). For the binary option case with the same type of Itô SDEs, the hybrid adaptive MLMC forward Euler recovers the standard multilevel computational cost O(TOL-2(log(TOL))2). When considering a higher order Milstein scheme, a similar complexity result was obtained by Giles using the uniform time stepping for one dimensional SDEs. The difficulty to extend Giles\\' Milstein MLMC method to the multidimensional case is an argument for the flexibility of our new constructed adaptive MLMC forward Euler method which can be easily adapted to this setting. Similarly, the expected complexity O(TOL-2(log(TOL))2) is reached for the multidimensional case and verified numerically.

  12. Kalman filters for assimilating near-surface observations in the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    Science.gov (United States)

    Medina, H.; Romano, N.; Chirico, G. B.

    2012-12-01

    We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.

  13. Mejorar la comunicación de estudios observacionales en epidemiología (STROBE: explicación y elaboración Strengthening the reporting of observational studies in epidemiology (STROBE: explanation and elaboration

    Directory of Open Access Journals (Sweden)

    Jan P. Vandenbroucke

    2009-04-01

    Full Text Available Gran parte de la investigación biomédica es de tipo observacional. Los informes de los estudios observacionales a menudo poseen una calidad insuficiente, lo que dificulta la evaluación de sus fortalezas y debilidades para generalizar los resultados. Teniendo en cuenta la evidencia empírica y consideraciones teóricas, un grupo de expertos en metodología, investigadores y editores de revistas científicas, desarrollaron una lista de recomendaciones para aumentar la calidad de las publicaciones de los estudios observacionales: Strenghtening the Reporting of Observational Studies in Epidemiology (STROBE. La Declaración STROBE consiste en una lista de verificación de 22 puntos que guardan relación con las diferentes secciones de un artículo: título, resumen, introducción, metodología, resultados y discusión. De ellos, 18 puntos son comunes a los tres diseños de estudio: cohorte, casos y controles, y transversales; los otros cuatro son específicos para cada una de estas tres modalidades. La Declaración STROBE proporciona a los autores información sobre cómo mejorar la calidad de los artículos sobre estudios observacionales y facilita a los revisores, editores de revistas y lectores su apreciación crítica y su interpretación. Este documento explicativo tiene el propósito de impulsar el uso, la comprensión y la difusión de la Declaración STROBE. Se presentan el significado y el análisis razonado para cada punto de la lista de verificación, proporcionando uno o varios ejemplos publicados en la literatura y, en lo posible, referencias de estudios empíricos relevantes y literatura metodológica. También se incluyen ejemplos de diagramas de flujo. La Declaración STROBE, el presente documento y la página Web asociada (http://www.strobe-statement.org/ son recursos útiles para mejorar la divulgación de la investigación observacional.Much medical research is observational. The reporting of observational studies is often of

  14. Resting energy expenditure and body composition in patients with head and neck cancer: An observational study leading to a new predictive equation.

    Science.gov (United States)

    Souza, Micheline Tereza Pires; Singer, Pierre; Ozorio, Gislaine Aparecida; Rosa, Vitor Modesto; Alves, Maria Manuela Ferreira; Mendoza López, Rossana Verónica; Waitzberg, Dan L

    2018-02-05

    Patients with head and neck cancer have changes in body composition and resting energy expenditure (REE) related to significant inflammatory processes. We investigated REE and body composition in a population of patients with head and neck cancer, comparing the measured REE with predicted energy expenditure and deriving an equation of anthropometric values and body composition. This retrospective, observational, descriptive study of a single center included patients with head and neck cancer. We evaluated nutritional status by body mass index (BMI) and Patient-Generated Subjective Global Assessment (PG-SGA), body composition by electric bioimpedance, and REE by indirect calorimetry (IC). We included 140 patients, most of whom were men (80.7%), 60 y or older (58.6%), and had advanced disease (77.9%). Most were malnourished by BMI standards (77.9%) and severely malnourished according to the PG-SGA (49.3%), with a fat-free mass below the ideal values (82.9%) associated with sarcopenia (92.1%). Hypermetabolism was 57%. When comparing REE with the Harris-Benedict formula, we found the agreement limits from -546 613 to 240 708, the mean difference was -152 953 (95% confidence interval [CI], -185 844 to -120 062) and Pitman's variance test was r = -0.294 (P = 0.001). When we included the activity factor and the thermogenesis factor in REE and compared with Harris-Benedict, we found the agreement limits from -764.423 to 337.087, a mean difference of -213.668 (95% CI -259.684 to -167.652), and the Pitman's variance text at r = -0.292 (P = 0.001). Predictive equations, generally recommended by guidelines, are imprecise when compared with IC measures. Therefore, we suggest a new predictive equation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Experimental Philosophy of Explanation Rising: The Case for a Plurality of Concepts of Explanation.

    Science.gov (United States)

    Colombo, Matteo

    2017-03-01

    This paper brings together results from the philosophy and the psychology of explanation to argue that there are multiple concepts of explanation in human psychology. Specifically, it is shown that pluralism about explanation coheres with the multiplicity of models of explanation available in the philosophy of science, and it is supported by evidence from the psychology of explanatory judgment. Focusing on the case of a norm of explanatory power, the paper concludes by responding to the worry that if there is a plurality of concepts of explanation, one will not be able to normatively evaluate what counts as good explanation. Copyright © 2016 Cognitive Science Society, Inc.

  16. Kalman filters for assimilating near-surface observations into the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    Science.gov (United States)

    Medina, H.; Romano, N.; Chirico, G. B.

    2014-07-01

    This study presents a dual Kalman filter (DSUKF - dual standard-unscented Kalman filter) for retrieving states and parameters controlling the soil water dynamics in a homogeneous soil column, by assimilating near-surface state observations. The DSUKF couples a standard Kalman filter for retrieving the states of a linear solver of the Richards equation, and an unscented Kalman filter for retrieving the parameters of the soil hydraulic functions, which are defined according to the van Genuchten-Mualem closed-form model. The accuracy and the computational expense of the DSUKF are compared with those of the dual ensemble Kalman filter (DEnKF) implemented with a nonlinear solver of the Richards equation. Both the DSUKF and the DEnKF are applied with two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil water matric pressure head (h). The comparison analyses are conducted with reference to synthetic time series of the true states, noise corrupted observations, and synthetic time series of the meteorological forcing. The performance of the retrieval algorithms are examined accounting for the effects exerted on the output by the input parameters, the observation depth and assimilation frequency, as well as by the relationship between retrieved states and assimilated variables. The uncertainty of the states retrieved with DSUKF is considerably reduced, for any initial wrong parameterization, with similar accuracy but less computational effort than the DEnKF, when this is implemented with ensembles of 25 members. For ensemble sizes of the same order of those involved in the DSUKF, the DEnKF fails to provide reliable posterior estimates of states and parameters. The retrieval performance of the soil hydraulic parameters is strongly affected by several factors, such as the initial guess of the unknown parameters, the wet or dry

  17. Kinds and problems of geomorphological explanation

    Science.gov (United States)

    Cox, Nicholas J.

    2007-07-01

    What characterises satisfactory explanations in geomorphology is a key methodological question deserving continued analysis. In turn it raises the issue of the role played by methodology within the science. At its best, methodology can provide helpful distinctions, identify key issues and yield guidance for researchers. The substantive context for debates on explanation is the apparent complexity and difficulty of geomorphology as a science, which is arguably no greater than that of other Earth or environmental sciences. The logical view of explanation dominant in the 1950s and 1960s still has value, but a broader view is needed of explanations, related to the questions geomorphologists (and others) ask and to the answers that they find interesting. Answers may be sought in terms of purpose, history, mechanisms and statistics. Arguments over what is supposed to be reductionism can be clarified by underlining that both micro- and macro-explanations may be helpful. Although many geomorphologists aspire to mechanistic explanations, they often stop short at statistical explanations, making use of convenient functional forms such as power laws. Explanations have both social and psychological dimensions, the former much stressed in history of science and recent science studies, the latter deserving greater emphasis at present. Complicated models raise the question of how far it can be said that geomorphologists understand them in totality. A bestiary of poor explanations is needed, so that geomorphologists are not seduced by weak arguments and because they often serve as steps towards better explanations. Circular arguments, ad hoc explanations, and mistaking the name of the problem for the solution are cases in point.

  18. Explanation and Categorization: How "Why?" Informs "What?"

    Science.gov (United States)

    Lombrozo, Tania

    2009-01-01

    Recent theoretical and empirical work suggests that explanation and categorization are intimately related. This paper explores the hypothesis that explanations can help structure conceptual representations, and thereby influence the relative importance of features in categorization decisions. In particular, features may be differentially important…

  19. Scientific Explanations and Piagetian Operational Levels.

    Science.gov (United States)

    Bass, Joel E.; Maddux, Cleborne D.

    1982-01-01

    Examined effects of operational levels of ninth-grade (N=16) and college (N=40) students on causal explanations they recalled after instruction. Results indicate concrete/formal students recalled explanations requiring chaining of two implication statements while formal subjects outperformed concrete subjects in reconstruction of complex…

  20. Acquiring General Iterative Concepts by Reformulating Explanations of Observed Examples.

    Science.gov (United States)

    1987-12-01

    CODES I&16 SUBJECT TERMS (Continue on revitn if nectsuty and identify by block number) FIELD GROUP SUE-GROUIP -, artificial intelligence, machine...N00014-86-K-0309, by the National Science Foundation under grant NSF IST 85-11542, and by a University of Illinois Cognitive Science/ Artificial ...Conference o, Arificiel InteLigence . pp 221-22> \\1ilan. 1 alv kugJsI I h Holder, L B., "Discovering Substructures in Examples," \\IS. Thesis (in preparation

  1. Changes in Zinc metabolism after burns : observations, explanations, clinical implications

    NARCIS (Netherlands)

    Haan, de K.E.C.; de Goeij, J.J.M.; Hamer, van den C.J.A.; Boxma, H.; Groot, de C.J.

    1992-01-01

    Zinc in plasma and urine and serum albumin and alpha 2-macroglobulin were measured in 48 patients with burns. Mean total burned surface area amounted to 18%, ranging from 2 to 55%, and mean hospitalization time amounted to 35 days, ranging from 10 to 124 days. All parameters showed a decrease during

  2. Qualitative explanations for red giant formation

    International Nuclear Information System (INIS)

    Bhaskar, R.; Nigam, A.

    1991-01-01

    Recent research on giant formation has focused on the need for qualitative explanations. The explanations have the following general, qualitative form: the polytrope n assumes a certain value, that makes (d ln r)/(d ln z) take on a very large value; large increases in r can then be explained in terms of small changes in the variable z. This form is applicable to all the explanations current in the literature: they all have (1) either implicitly or explicitly, both a hydrostatic component and a luminosity-opacity component, and (2) a reliance on singular solutions. Dimensional analysis reveals that power laws that assume the polytrope n to 5 are identical in both the hydrostatic and luminosity-based explanations. 12 refs

  3. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  4. Axis: Generating Explanations at Scale with Learnersourcing and Machine Learning

    Science.gov (United States)

    Williams, Joseph Jay; Kim, Juho; Rafferty, Anna; Heffernan, Neil; Maldonado, Samuel; Gajos, Krzysztof Z.; Lasecki, Walter S.; Heffernan, Neil

    2016-01-01

    While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve…

  5. Diquarks as an explanation for psi's R, and everything else

    Energy Technology Data Exchange (ETDEWEB)

    Pavkovic, M [Stanford Univ., Calif. (USA). School of Medicine

    1976-06-05

    In order to overcome some contradictions and limitations in the charm model without introducing new quantum numbers, a new quark model is required. The letter presents a candidate for such a model. Some tests of the model are discussed including the explanation of the observed behaviour of R=sigma(e/sup +/e/sup -/..-->..hadrons)/sigma(e/sup +/e/sup -/ ..--> mu..sup(+)..mu..sup(-)) and the narrow width of psi's. Moreover some predictions of the model are illustrated.

  6. A new explanation of the extinction paradox

    International Nuclear Information System (INIS)

    Berg, M.J.; Sorensen, C.M.; Chakrabarti, A.

    2011-01-01

    This work presents a new explanation for the extinction paradox and shows that the canonical explanations are incorrect. This paradox refers to the large size limit of a particle's extinction cross section. It is called a paradox because the geometrical optics approximation, which should be valid in this limit, predicts a cross section that is half of the true value. The new explanation is achieved by formulating the scattered wave in terms of an integral over the particle's surface where the seemingly unrelated Ewald-Oseen theorem appears in the formulation. By expressing the cross section in terms of this surface integral, the Ewald-Oseen theorem is analytically connected to the cross section. Several illustrations are used to reveal the significance of this connection: The paradox is seen to be a consequence of the requirement that the incident wave be canceled within the particle by secondary radiation from its own internal field. Following this, the canonical explanations are examined to reveal serious problems. In the process, the same asymptotic extinction behavior is shown to occur for small highly refractive dielectric particles, and thus is not just a large particle size or small wavelength effect as is often stated. The traditional explanations cannot account for this behavior while the new one actually predicts it. All in all, this work constitutes a fundamental reworking of 60 years of accepted understanding for the cause of the asymptotic behavior of the extinction cross section.

  7. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  8. Examining elementary teachers' knowledge and instruction of scientific explanations for fostering children's explanations in science

    Science.gov (United States)

    Wiebke, Heidi Lynn

    This study employed an embedded mixed methods multi-case study design (Creswell, 2014) with six early childhood (grades K-2) teachers to examine a) what changes occurred to their subject matter knowledge (SMK) and pedagogical content knowledge (PCK) for teaching scientific explanations while participating in a professional development program, b) how they planned for and implemented scientific explanation instruction within a teacher developed unit on properties of matter, and c) what affordances their instruction of scientific explanations had on fostering their students' abilities to generate explanations in science. Several quantitative and qualitative measures were collected and analyzed in accordance to this studies conceptual framework, which consisted of ten instructional practices teachers should consider assimilating or accommodating into their knowledge base (i.e., SMK & PCK) for teaching scientific explanations. Results of this study indicate there was little to no positive change in the teachers' substantive and syntactic SMK. However, all six teachers did make significant changes to all five components of their PCK for teaching explanations in science. While planning for scientific explanation instruction, all six teachers' contributed some ideas for how to incorporate seven of the ten instructional practices for scientific explanations within the properties of matter unit they co-developed. When enacting the unit, the six teachers' employed seven to nine of the instructional practices to varying levels of effectiveness, as measured by researcher developed rubrics. Given the six teachers' scientific explanation instruction, many students did show improvement in their ability to formulate a scientific explanation, particularly their ability to provide multiple pieces of evidence. Implications for professional developers, teacher educators, researchers, policy makers, and elementary teachers regarding how to prepare teachers for and support students

  9. Theory-based explanation as intervention.

    Science.gov (United States)

    Weisman, Kara; Markman, Ellen M

    2017-10-01

    Cogent explanations are an indispensable means of providing new information and an essential component of effective education. Beyond this, we argue that there is tremendous untapped potential in using explanations to motivate behavior change. In this article we focus on health interventions. We review four case studies that used carefully tailored explanations to address gaps and misconceptions in people's intuitive theories, providing participants with a conceptual framework for understanding how and why some recommended behavior is an effective way of achieving a health goal. These case studies targeted a variety of health-promoting behaviors: (1) children washing their hands to prevent viral epidemics; (2) parents vaccinating their children to stem the resurgence of infectious diseases; (3) adults completing the full course of an antibiotic prescription to reduce antibiotic resistance; and (4) children eating a variety of healthy foods to improve unhealthy diets. Simply telling people to engage in these behaviors has been largely ineffective-if anything, concern about these issues is mounting. But in each case, teaching participants coherent explanatory frameworks for understanding health recommendations has shown great promise, with such theory-based explanations outperforming state-of-the-art interventions from national health authorities. We contrast theory-based explanations both with simply listing facts, information, and advice and with providing a full-blown educational curriculum, and argue for providing the minimum amount of information required to understand the causal link between a target behavior and a health outcome. We argue that such theory-based explanations lend people the motivation and confidence to act on their new understanding.

  10. Reasoning in explanation-based decision making.

    Science.gov (United States)

    Pennington, N; Hastie, R

    1993-01-01

    A general theory of explanation-based decision making is outlined and the multiple roles of inference processes in the theory are indicated. A typology of formal and informal inference forms, originally proposed by Collins (1978a, 1978b), is introduced as an appropriate framework to represent inferences that occur in the overarching explanation-based process. Results from the analysis of verbal reports of decision processes are presented to demonstrate the centrality and systematic character of reasoning in a representative legal decision-making task.

  11. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  12. Selective effects of explanation on learning during early childhood.

    Science.gov (United States)

    Legare, Cristine H; Lombrozo, Tania

    2014-10-01

    Two studies examined the specificity of effects of explanation on learning by prompting 3- to 6-year-old children to explain a mechanical toy and comparing what they learned about the toy's causal and non-causal properties with children who only observed the toy, both with and without accompanying verbalization. In Study 1, children were experimentally assigned to either explain or observe the mechanical toy. In Study 2, children were classified according to whether the content of their response to an undirected prompt involved explanation. Dependent measures included whether children understood the toy's functional-mechanical relationships, remembered perceptual features of the toy, effectively reconstructed the toy, and (for Study 2) generalized the function of the toy when constructing a new one. Results demonstrate that across age groups, explanation promotes causal learning and generalization but does not improve (and in younger children can even impair) memory for causally irrelevant perceptual details. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Foreword: Surface Tensions: Between Explanation and Understanding.

    Science.gov (United States)

    Blauvelt, Andrew

    1995-01-01

    Introduces this issue of the journal, which is devoted to new perspectives on critical histories of graphic design. Notes that the essays in this issue offer examples of the variety of interpretative approaches available that serve to question both the previously unchallenged acceptance of historical explanations and the transcendent understanding…

  14. Students' reasons for preferring teleological explanations

    Science.gov (United States)

    Trommler, Friederike; Gresch, Helge; Hammann, Marcus

    2018-01-01

    The teleological bias, a major learning obstacle, involves explaining biological phenomena in terms of purposes and goals. To probe the teleological bias, researchers have used acceptance judgement tasks and preference judgement tasks. In the present study, such tasks were used with German high school students (N = 353) for 10 phenomena from human biology, that were explained both teleologically and causally. A sub-sample (n = 26) was interviewed about the reasons for their preferences. The results showed that the students favoured teleological explanations over causal explanations. Although the students explained their preference judgements etiologically (i.e. teleologically and causally), they also referred to a wide range of non-etiological criteria (i.e. familiarity, complexity, relevance and five more criteria). When elaborating on their preference for causal explanations, the students often focused not on the causality of the phenomenon, but on mechanisms whose complexity they found attractive. When explaining their preference for teleological explanations, they often focused not teleologically on purposes and goals, but rather on functions, which they found familiar and relevant. Generally, students' preference judgements rarely allowed for making inferences about causal reasoning and teleological reasoning, an issue that is controversial in the literature. Given that students were largely unaware of causality and teleology, their attention must be directed towards distinguishing between etiological and non-etiological reasoning. Implications for educational practice as well as for future research are discussed.

  15. Social Groups, Explanation and Ontological Holism | Sheehy ...

    African Journals Online (AJOL)

    The paper begins from the claim that ontological holism is given prima facie plausibility by the apparently ineliminable role of groups in some descriptions and explanations of the social domain. If the individualist accepts the link between indispensabilty and realism, then individualism must show that groups cannot play the ...

  16. Ontological Order in Scientific Explanation | Park | Philosophical ...

    African Journals Online (AJOL)

    A conceptually sound explanation, I claim, respects the ontological order between properties. A dependent property is to be explained in terms of its underlying property, not the other way around. The applicability of this point goes well beyond the realm of the debate between scientific realists and antirealists.

  17. Age and the Explanation of Crime, Revisited

    Science.gov (United States)

    Sweeten, Gary; Piquero, Alex R.; Steinberg, Laurence

    2013-01-01

    Age is one of the most robust correlates of criminal behavior. Yet, explanations for this relationship are varied and conflicting. Developmental theories point to a multitude of sociological, psychological, and biological changes that occur during adolescence and adulthood. One prominent criminological perspective outlined by Gottfredson and…

  18. Competence Matching Tool - Explanations and Implementation

    NARCIS (Netherlands)

    Herder, Eelco; Kärger, Philipp

    2010-01-01

    Herder, E., Kärger, P. (2009) Competence Matching Tool - Explanations and Implementation. The document contains the technical specification of the competence matching tool. The tool can be found at http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp7/CompetenceMatcher/ and the location

  19. Separable explanations of neural network decisions

    DEFF Research Database (Denmark)

    Rieger, Laura

    2017-01-01

    Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...

  20. Theism and Inference to the Best Explanation

    NARCIS (Netherlands)

    Holten, W. van

    2002-01-01

    In this paper the author critically examines the explanatory role of theistic belief. Although talk of religious beliefs as explanations is commonly employed in the context of religious epistemology, it may also serve to simply characterise one of the functions of religious views of life. It is

  1. Theism and inference to the Best Explanation

    NARCIS (Netherlands)

    Holten, Wilko van

    2002-01-01

    In this paper the author critically examines the explanatory role of theistic belief. Although talk of religious beliefs as explanations is commonly employed in the context of religious epistemology, it may also serve to simply characterise one of the functions of religious views of life. It is

  2. Correct Interpretation of Latent Versus Observed Abilities: "Implications From Structural Equation Modeling Applied to the WISC-III and WIAT Linking Sample"

    Science.gov (United States)

    Oh, Hyeon-Joo; Glutting, Joseph J.; Watkins, Marley W.; Youngstrom, Eric A.; McDermott, Paul A.

    2004-01-01

    In this study, the authors used structural equation modeling to investigate relationships between ability constructs from the "Wechsler Intelligence Scale for Children-Third Edition" (WISC-III; Wechsler, 1991) in explaining reading and mathematics achievement constructs on the "Wechsler Individual Achievement Test" (WIAT;…

  3. An prediction and explanation of 'climatic swing

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    Introduction. In works of the author [1, 2] the mechanism has been offered and the scenario of formation of congelations and warming of the Earth and their inversion and asymmetric displays in opposite hemispheres has been described. These planetary thermal processes are connected with gravitational forced oscillations of the core-mantle system of the Earth, controlling and directing submission of heat in the top layers of the mantle and on a surface of the Earth. It is shown, that action of this mechanism should observed in various time scales. In particular significant changes of a climate should occur to the thousand-year periods, with the periods in tens and hundred thousand years. Thus excitation of system the core-mantle is caused by planetary secular orbital perturbations and by perturbations of the Earth rotation which as is known are characterized by significant amplitudes. But also in a short time scale the climate variations with the interannual and decade periods also should be observed, how dynamic consequences of the swing of the core-mantle system of the Earth with the same periods [3]. The fundamental phenomenon of secular polar drift of the core relatively to the viscous-elastic and changeable mantle [4] in last years has obtained convincing confirmations various geosciences. Reliable an attribute of influence of oscillations of the core on a variation of natural processes is their property of inversion when, for example, activity of process accrues in northern hemisphere and decreases in a southern hemisphere. Such contrast secular changes in northern and southern (N/S) hemispheres have been predicted on the base of geodynamic model [1] and revealed according to observations: from gravimetry measurements of a gravity [5]; in determination of a secular trend of a sea level, as global, and in northern and southern hemispheres [6, 7]; in redistribution of air masses [6, 8]; in geodetic measurements of changes of average radiuses of northern and

  4. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  5. Explanation for the Mystical Practice III.

    Directory of Open Access Journals (Sweden)

    Květoslav Minařík

    2016-11-01

    Full Text Available Concentration on feet and legs as a whole, with a special focus on their flesh, has an effect on the development of the intellect and deepening of the sensory discernment, because right here, in the legs, in the flesh of the body, the basis of the inner life is situated. The same concentration with a special focus on their bones – and in particular to the bones of knees – eliminates the instability of the usual attention; it is used to stabilize the entire inner life. The current article is a continuation of Explanation for the Mystical Practice I. and Explanation for the Mystical Practice II., published in the previous editions of Spirituality Studies.

  6. An Explanation of Economic Change and Development

    OpenAIRE

    Fusari, Angelo

    2014-01-01

    The contribution to the explanation of economic change that this paper sets out is centered on a core of interconnected endogenous variables, mainly innovation, radical uncertainty and entrepreneurship, which current economic analyses consider only in part and separately, sometimes as endogenous but for the most as exogenous. The article (and the formalized model) suppose that the functioning of the economy is not disturbed by the operation of pathological factors mainly concer...

  7. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  8. Explanation-based learning in infancy.

    Science.gov (United States)

    Baillargeon, Renée; DeJong, Gerald F

    2017-10-01

    In explanation-based learning (EBL), domain knowledge is leveraged in order to learn general rules from few examples. An explanation is constructed for initial exemplars and is then generalized into a candidate rule that uses only the relevant features specified in the explanation; if the rule proves accurate for a few additional exemplars, it is adopted. EBL is thus highly efficient because it combines both analytic and empirical evidence. EBL has been proposed as one of the mechanisms that help infants acquire and revise their physical rules. To evaluate this proposal, 11- and 12-month-olds (n = 260) were taught to replace their current support rule (that an object is stable when half or more of its bottom surface is supported) with a more sophisticated rule (that an object is stable when half or more of the entire object is supported). Infants saw teaching events in which asymmetrical objects were placed on a base, followed by static test displays involving a novel asymmetrical object and a novel base. When the teaching events were designed to facilitate EBL, infants learned the new rule with as few as two (12-month-olds) or three (11-month-olds) exemplars. When the teaching events were designed to impede EBL, however, infants failed to learn the rule. Together, these results demonstrate that even infants, with their limited knowledge about the world, benefit from the knowledge-based approach of EBL.

  9. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  10. Constants of the Alper and Howard-Flanders oxygen equation for damage to bacterial membrane, deduced from observations on the radiation-induced penicillin-sensitive lesion

    International Nuclear Information System (INIS)

    Obioha, F.I.; Gillies, N.E.; Cullen, B.M.; Walker, H.C.; Alper, T.

    1984-01-01

    E. coli were irradiated in the presence of 100% oxygen, oxygen-free nitrogen and mixtures of 1.01, 0.59, 0.3, 0.1 and 0.06% oxygen in nitrogen. Changes in sensitivity with pO 2 conformed with the Alper and Howard-Flanders equation for bacteria treated after irradiation by penicillin as well as for the untreated ones. Values of m were respectively 4.8 and 3.3; values of K were identical, within experimental error, (4.4 mmHg). Sensitivity to induction of the bacterial membrane penicillin-sensitive lesion was calculated from the difference in the reciprocals of D 0 values proper to untreated and treated bacteria, for every gas used. The value of m could not be directly calculated because the effect of penicillin on anoxically irradiated bacteria was not detectable. For that reason, a transformation of the oxygen equation was used, allowing estimates to be made of both m and K, provided the results conformed with the equation. Within experimental error they did. Calculated values of m and K for induction of the penicillin-sensitive lesion were respectively 8 and 5.9 mmHg, but it is shown that the oxygen enhancement ratio was probably underestimated and the value overestimated. (author)

  11. Ultimate and proximate explanations of strong reciprocity.

    Science.gov (United States)

    Vromen, Jack

    2017-08-23

    Strong reciprocity (SR) has recently been subject to heated debate. In this debate, the "West camp" (West et al. in Evol Hum Behav 32(4):231-262, 2011), which is critical of the case for SR, and the "Laland camp" (Laland et al. in Science, 334(6062):1512-1516, 2011, Biol Philos 28(5):719-745, 2013), which is sympathetic to the case of SR, seem to take diametrically opposed positions. The West camp criticizes advocates of SR for conflating proximate and ultimate causation. SR is said to be a proximate mechanism that is put forward by its advocates as an ultimate explanation of human cooperation. The West camp thus accuses advocates of SR for not heeding Mayr's original distinction between ultimate and proximate causation. The Laland camp praises advocates of SR for revising Mayr's distinction. Advocates of SR are said to replace Mayr's uni-directional view on the relation between ultimate and proximate causes by the bi-directional one of reciprocal causation. The paper argues that both the West camp and the Laland camp misrepresent what advocates of SR are up to. The West camp is right that SR is a proximate cause of human cooperation. But rather than putting forward SR as an ultimate explanation, as the West camp argues, advocates of SR believe that SR itself is in need of ultimate explanation. Advocates of SR tend to take gene-culture co-evolutionary theory as the correct meta-theoretical framework for advancing ultimate explanations of SR. Appearances notwithstanding, gene-culture coevolutionary theory does not imply Laland et al.'s notion of reciprocal causation. "Reciprocal causation" suggests that proximate and ultimate causes interact simultaneously, while advocates of SR assume that they interact sequentially. I end by arguing that the best way to understand the debate is by disambiguating Mayr's ultimate-proximate distinction. I propose to reserve "ultimate" and "proximate" for different sorts of explanations, and to use other terms for distinguishing

  12. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  13. A flat space-time relativistic explanation for the perihelion advance of Mercury

    OpenAIRE

    Behera, Harihar; Naik, P. C.

    2003-01-01

    Starting with the flat space-time relativistic versions of Maxwell-Heaviside's toy model vector theory of gravity and introducing the gravitational analogues for the electromagnetic Lienard-Wiechert potentials together with the notion of a gravitational Thomas Precession; the observed anomalous perihelion advance of Mercury's orbit is here explained as a relativistic effect in flat (Minkowski) space-time, unlike Einstein's curved space-time relativistic explanation. In this new explanation fo...

  14. Monitoring air quality in California's Central Valley with aircraft and continuous mountaintop observations - attribution insights gained by considering the scalar budget equation

    Science.gov (United States)

    Faloona, I. C.; Trousdell, J.; Caputi, D.; Conley, S. A.

    2017-12-01

    Ozone is one of the six criteria pollutants established by the US EPA's Clean Air Act, and one of two that still routinely violates federal standards as it is a secondary pollutant and therefore subject to indirect control strategies on complex, non-linear atmospheric chemistry. While improvements have been seen in many regions where ozone controls are in place, gains in California's San Joaquin Valley have lagged many other districts across the state. We present airborne measurements from several different campaigns in the valley (DISCOVER-AQ, ArvinO3, and CABOTS) along with data from a mountaintop monitoring site on its upwind side near the Pacific coast that has been operational for 5 years, and we shed light on several outstanding questions concerning air pollution in California's vast Central Valley. The framework of analysis is centered on the primitive equation of any atmospheric constituent - the scalar budget equation. By measuring each term in this equation, we gain insights into the relative impacts of exogenous (due to long range transport) vs. endogenous ozone (due to local photochemical production). We further argue that small aircraft campaigns with an emphasis on scalar budgeting sorties are a cost-effective tool in uncovering specific shortcomings of regional air quality models (e.g., lateral boundary conditions can be tested by comparing horizontal advection, turbulence parameterizations by comparing vertical fluxes, and chemical mechanisms by comparing net photochemical production rates.) In the case of NOx and CH4, for instance, we find that solving for surface emissions points toward inventory underestimates of both species by at least a factor of two. We discuss possible causes of these discrepancies, and suggest other ways to specifically vet aspects of regional air quality models with airborne measurements of meteorological and chemical variables.

  15. HIV in Japan: Epidemiologic puzzles and ethnographic explanations

    Directory of Open Access Journals (Sweden)

    Anthony S. DiStefano

    2016-12-01

    Full Text Available Japan is widely perceived to have a low level of HIV occurrence; however, its HIV epidemics also have been the subject of considerable misunderstanding globally. I used a ground truthing conceptual framework to meet two aims: first, to determine how accurately official surveillance data represented Japan's two largest epidemics (urban Kansai and Tokyo as understood and experienced on the ground; and second, to identify explanations for why the HIV epidemics were unfolding as officially reported. I used primarily ethnographic methods while drawing upon epidemiology, and compared government surveillance data to observations at community and institutional sites (459 pages of field notes; 175 persons observed, qualitative interviews with stakeholders in local HIV epidemics (n = 32, and document research (n = 116. This revealed seven epidemiologic puzzles involving officially reported trends and conspicuously missing information. Ethnographically grounded explanations are presented for each. These included factors driving the epidemics, which ranged from waning government and public attention to HIV, to gaps in sex education and disruptive leadership changes in public institutions approximately every two years. Factors constraining the epidemics also contributed to explanations. These ranged from subsidized medical treatment for most people living with HIV, to strong partnerships between government and a well-developed, non-governmental sector of HIV interventionists, and protective norms and built environments in the sex industry. Local and regional HIV epidemics were experienced and understood as worse than government reports indicated, and ground-level data often contradicted official knowledge. Results thus call into question epidemiologic trends, including recent stabilization of the national epidemic, and suggest the need for revisions to the surveillance system and strategies that address factors driving and constraining the epidemics. Based

  16. An explanation of the Hiroshima activation dilemma

    International Nuclear Information System (INIS)

    Rhoades, W.A.; Barnes, J.M.; Santoro, R.T.

    1994-01-01

    A 1987 study of the radiation from the World War II nuclear weapons applied state-of-the-art data and computer techniques, providing an important advance in reliability of the results. Still, a disturbing disagreement remained between slow-neutron activation measurements and calculations for the Hiroshima event. Newer data have confirmed the validity of the discrepancy. This work examines various potential explanations. Of those examined, only an enhancement to the weapon neutron leakage spectrum in the vicinity of the 2.3 MeV oxygen cross section window can fit the data accurately

  17. Explanation and practice on ISO 9000

    International Nuclear Information System (INIS)

    Kwon, Dong Myeong

    2001-01-01

    This book reveals introduction on revision of ISO 9000:2000 with full account and contents of revision and change method change into ISO 9001:2000, the basic principle on ISO 9000:2000 and improvement and aim, definition on explanation, method for detail term, demand for ISO/KS A 9001:2000, quality management system development and transition way, standardization for quality management, manual of quality and making procedure and guide, case of quality manual and procedure and guide and ISO 9001:2000 / KS A 9001:2001 an English-Korean translation.

  18. The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations

    Science.gov (United States)

    Yue, C.; Bortnik, J.; Thorne, R. M.; Ma, Q.; An, X.; Chappell, C. R.; Gerrard, A. J.; Lanzerotti, L. J.; Shi, Q.

    2017-12-01

    Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze 1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.

  19. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  20. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  1. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    International Nuclear Information System (INIS)

    Fernando, C A N; Liyanaarachchi, U S; AARajapaksha, R D

    2013-01-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C 18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu 2 O/M-C 18 /p-CuI are studied by controlling the formation of dye aggregates of M-C 18 Langmuir–Blodgett (LB) films on the p-CuI layer. LB films of M-C 18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu 2 O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10 −2 M) Fe 2+ + Fe 3+ (10 −2 M) and (10 −2 M) NaH 2 PO 4 –Na 2 HPO 4 , pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (φmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C 18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, φ = AD 0 –BD 0 2 , where A = k 1 k 2 /F, B = I k 1 2 k 2 [2k 6 /F 3 + k 2 k 4 /k 3 2 X 2 F 2 ], F = k 2 + k 5 Y + k 7 + k 1 I [1 + k 2 /k 3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C 18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, V oc ≈750 mV and I sc ≈ 5.8 mA cm −2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C 18 LB films. (paper)

  2. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    Science.gov (United States)

    Fernando, C. A. N.; Liyanaarachchi, U. S.; AARajapaksha, R. D.

    2013-04-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu2O/M-C18/p-CuI are studied by controlling the formation of dye aggregates of M-C18 Langmuir-Blodgett (LB) films on the p-CuI layer. LB films of M-C18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu2O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10-2 M) Fe2+ + Fe3+ (10-2 M) and (10-2 M) NaH2PO4-Na2HPO4, pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (Фmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, Ф = AD0-BD02, where A = k1k2/F, B = I k12 k2[2k6/F3 + k2k4/k32 X2F2], F = k2 + k5Y + k7 + k1 I [1 + k2/k3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, Voc ≈750 mV and Isc ≈ 5.8 mA cm-2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C18 LB films.

  3. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    International Nuclear Information System (INIS)

    Fryberger, D.

    2009-01-01

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appear evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated

  4. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    Energy Technology Data Exchange (ETDEWEB)

    Fryberger, David; /SLAC

    2009-08-04

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appear evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.

  5. Introduction to complex theory of differential equations

    CERN Document Server

    Savin, Anton

    2017-01-01

    This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.

  6. Promoting Vicarious Learning of Physics Using Deep Questions with Explanations

    Science.gov (United States)

    Craig, Scotty D.; Gholson, Barry; Brittingham, Joshua K.; Williams, Joah L.; Shubeck, Keith T.

    2012-01-01

    Two experiments explored the role of vicarious "self" explanations in facilitating student learning gains during computer-presented instruction. In Exp. 1, college students with low or high knowledge on Newton's laws were tested in four conditions: (a) monologue (M), (b) questions (Q), (c) explanation (E), and (d) question + explanation (Q + E).…

  7. The status of functional explanation in psychology: reduction and mechanistic explanation

    NARCIS (Netherlands)

    Gervais, H.; Looren De Jong, H.

    2013-01-01

    The validity of functional explanations as they are commonly used in psychology has recently come under attack. Kim's supervenience argument purports to prove that higher-level generalizations have no causal powers of their own, and hence are explanatorily irrelevant. In a nutshell, the

  8. Evaluation of Explanation Interfaces in Recommender Systems

    Directory of Open Access Journals (Sweden)

    Sergio Cleger-Tamayo

    2017-05-01

    Full Text Available Explaining interfaces become a useful tool in systems that have a lot of content to evaluate by users. The different interfaces represent a help for the undecided users or those who consider systems as boxed black smart. These systems present recommendations to users based on different learning models. In this paper, we present the different objectives of the explanation interfaces and some of the criteria that you can evaluate, as well as a proposal of metrics to obtain results in the experiments. Finally, we showed the main results of a study with real users and their interaction with e-commerce systems. Among the main results, highlight the positive impact in relation to the time of interaction with the applications and acceptance of the recommendations received.

  9. An explanation of the mysterious quasars

    International Nuclear Information System (INIS)

    Borissov, O.

    1977-01-01

    The article presents details of a convincing new theory submitted by Russian scientists, concerning the physical nature of quasars. These were discovered in 1963 and for over ten years no satisfactory theory has been forthcoming to explain their seemingly incompatible properties or the associated phenomena. These very distant objects are believed to be sources of the most powerful electromagnetic emission. From the new theory expounded it is concluded that for the first time since their discovery a satisfactory explanation of their nature has been reached. From this it is hoped that the mechanism of energy generation by quasars may ultimately be understood and, though on a much reduced scale, contribute to the solution of energy problems on earth. (R.J.J.)

  10. Bayesianism and inference to the best explanation

    Directory of Open Access Journals (Sweden)

    Valeriano IRANZO

    2008-01-01

    Full Text Available Bayesianism and Inference to the best explanation (IBE are two different models of inference. Recently there has been some debate about the possibility of “bayesianizing” IBE. Firstly I explore several alternatives to include explanatory considerations in Bayes’s Theorem. Then I distinguish two different interpretations of prior probabilities: “IBE-Bayesianism” (IBE-Bay and “frequentist-Bayesianism” (Freq-Bay. After detailing the content of the latter, I propose a rule for assessing the priors. I also argue that Freq-Bay: (i endorses a role for explanatory value in the assessment of scientific hypotheses; (ii avoids a purely subjectivist reading of prior probabilities; and (iii fits better than IBE-Bayesianism with two basic facts about science, i.e., the prominent role played by empirical testing and the existence of many scientific theories in the past that failed to fulfil their promises and were subsequently abandoned.

  11. Complexity and demographic explanations of cumulative culture.

    Science.gov (United States)

    Querbes, Adrien; Vaesen, Krist; Houkes, Wybo

    2014-01-01

    Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition, cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century) to demographic change. According to these models, cumulation of technological complexity is inhibited by decreasing--while favoured by increasing--population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon's definition of complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical evidence doesn't afford discriminating proper from improper definitions of complexity, our robustness analyses put into question the force of recent demographic explanations of particular episodes of cultural change.

  12. Complexity and demographic explanations of cumulative culture.

    Directory of Open Access Journals (Sweden)

    Adrien Querbes

    Full Text Available Formal models have linked prehistoric and historical instances of technological change (e.g., the Upper Paleolithic transition, cultural loss in Holocene Tasmania, scientific progress since the late nineteenth century to demographic change. According to these models, cumulation of technological complexity is inhibited by decreasing--while favoured by increasing--population levels. Here we show that these findings are contingent on how complexity is defined: demography plays a much more limited role in sustaining cumulative culture in case formal models deploy Herbert Simon's definition of complexity rather than the particular definitions of complexity hitherto assumed. Given that currently available empirical evidence doesn't afford discriminating proper from improper definitions of complexity, our robustness analyses put into question the force of recent demographic explanations of particular episodes of cultural change.

  13. On the invariant measure for the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Zhidkov, P.R.

    1991-01-01

    The invariant measure for the nonlinear Schroedinger equation is constructed. In fact, it is assumed that the nonlinearity in the equation is semilinear. The main aim of the paper is the explanation of the Fermi - Past - Ulam phenomenon. Poincare theorem gives the answer to this question. 17 refs

  14. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  15. Memory accessibility shapes explanation: Testing key claims of the inherence heuristic account.

    Science.gov (United States)

    Hussak, Larisa J; Cimpian, Andrei

    2018-01-01

    People understand the world by constructing explanations for what they observe. It is thus important to identify the cognitive processes underlying these judgments. According to a recent proposal, everyday explanations are often constructed heuristically: Because people need to generate explanations on a moment-by-moment basis, they cannot perform an exhaustive search through the space of possible reasons, but may instead use the information that is most easily accessible in memory (Cimpian & Salomon 2014a, b). In the present research, we tested two key claims of this proposal that have so far not been investigated. First, we tested whether-as previously hypothesized-the information about an entity that is most accessible in memory tends to consist of inherent or intrinsic facts about that entity, rather than extrinsic (contextual, historical, etc.) facts about it (Studies 1 and 2). Second, we tested the implications of this difference in the memory accessibility of inherent versus extrinsic facts for the process of generating explanations: Does the fact that inherent facts are more accessible than relevant extrinsic facts give rise to an inherence bias in the content of the explanations generated (Studies 3 and 4)? The findings supported the proposal that everyday explanations are generated in part via a heuristic process that relies on easily accessible-and often inherent-information from memory.

  16. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  17. The Use of the Framingham Equation to Predict Myocardial Infarctions in HIV-infected Patients: Comparison with Observed Events in the D:A:D Study

    DEFF Research Database (Denmark)

    Law, MG; Friis-Møller, Nina; El-Sadr, WM

    2006-01-01

    and predicted rates of MI increased in a parallel fashion with increased CART duration, suggesting that the observed increase in risk of MI may at least in part be explained by CART-induced changes in conventional risk factors. These findings provide guidance in terms of choosing lifestyle or therapeutic...

  18. The stability of locus equation slopes across stop consonant voicing/aspiration

    Science.gov (United States)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  19. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  20. The matchmaking paradox: a statistical explanation

    International Nuclear Information System (INIS)

    Eliazar, Iddo I; Sokolov, Igor M

    2010-01-01

    Medical surveys regarding the number of heterosexual partners per person yield different female and male averages-a result which, from a physical standpoint, is impossible. In this paper we term this puzzle the 'matchmaking paradox', and establish a statistical model explaining it. We consider a bipartite graph with N male and N female nodes (N >> 1), and B bonds connecting them (B >> 1). Each node is associated a random 'attractiveness level', and the bonds connect to the nodes randomly-with probabilities which are proportionate to the nodes' attractiveness levels. The population's average bonds-per-nodes B/N is estimated via a sample average calculated from a survey of size n (n >> 1). A comprehensive statistical analysis of this model is carried out, asserting that (i) the sample average well estimates the population average if and only if the attractiveness levels possess a finite mean; (ii) if the attractiveness levels are governed by a 'fat-tailed' probability law then the sample average displays wild fluctuations and strong skew-thus providing a statistical explanation to the matchmaking paradox.

  1. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

  2. Pupils' evaluation and generation of evidence and explanation in argumentation.

    Science.gov (United States)

    Glassner, Amnon; Weinstock, Michael; Neuman, Yair

    2005-03-01

    Studies on argument have found that participants tend to prefer explanations to evidence. This apparent bias toward explanation has been qualified recently by research that has found it to diminish with the availability of evidence. This study examines the use of explanation versus evidence in the context of argumentation with reference to the goals of particular argument situations. Seventy-nine eighth-grade pupils at a regular, urban middle school. The pupils read argumentation scenarios, each having the stated goal of either explaining or proving a claim. The pupils rated the degree to which each of two provided assertions (one a theoretical explanation, and the other evidence-based) helped achieve the goal of the argument. On a second task, the pupils chose which of the two assertions should be more effective in achieving the argument goal. On the third task, the pupils generated either an explanation or evidence for each of the argumentation scenarios. Pupils demonstrated sensitivity to the relative epistemic strength of explanation and evidence. They rated explanations as more advantageous in achieving the explanation goal, and evidence as more advantageous in achieving the proof goal. Conversely, however, when asked to generate or recall an explanation or evidence, pupils produced more explanations than evidence independent of the argumentation goal. The study refines the definition of argumentation context to include specific goals. Pupils were sensitive to the context of the argumentation situation (e.g.goals, availability of evidence). However, they appeared to have a disposition toward explanation when asked to produce an explanation or evidence-based justification.

  3. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  4. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    Cosmology; Raychaudhuri equation; Universe; quantum gravity; loop quan- tum gravity ... than the observation verifying the prediction of theory. This gave .... which was now expanding, would have had a singular beginning in a hot Big Bang.

  5. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing; Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained

  6. The Limits of Materialism: Auspicious for Teleological Explanation?

    Science.gov (United States)

    Athearn, Daniel

    2012-09-01

    The idea that scientific explanation runs up against certain inherent limits beyond which the field is open for other kinds of explanation is based on flawed assumptions. Modern physical knowledge, as I read it, does contain at least one important implication for theology having to do with how "Creation" is understood, if indeed the term remains usable and suitable.

  7. Mind and Meaning: Piaget and Vygotsky on Causal Explanation.

    Science.gov (United States)

    Beilin, Harry

    1996-01-01

    Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…

  8. Strategic Explanations for a Diagnostic Consultation System. Technical Report #8.

    Science.gov (United States)

    Hasling, Diane Warner; And Others

    This paper examines the problem of automatic explanation of reasoning, or the ability of a program to discuss what it is doing in some understandable way, particularly as part of an expert system. An introduction presents a general framework in which to view explanation and reviews some of the research in this area. This is followed by a…

  9. 5 CFR 1201.101 - Explanation and definitions.

    Science.gov (United States)

    2010-01-01

    ... definitions. (a) Explanation. An ex parte communication is an oral or written communication between a decision... outcome of a proceeding before the Board. (2) Decision-making official means any judge, officer or other... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Explanation and definitions. 1201.101...

  10. Teacher Explanation of Physics Concepts: A Video Study

    Science.gov (United States)

    Geelan, David

    2013-01-01

    Video recordings of Year 11 physics lessons were analyzed to identify key features of teacher explanations. Important features of the explanations used included teachers' ability to move between qualitative and quantitative modes of discussion, attention to what students require to succeed in high stakes examinations, thoughtful use of…

  11. Exploring Dominant Types of Explanations Built by General Chemistry Students

    Science.gov (United States)

    Talanquer, Vicente

    2010-01-01

    The central goal of our study was to explore the nature of the explanations generated by science and engineering majors with basic training in chemistry to account for the colligative properties of solutions. The work was motivated by our broader interest in the characterisation of the dominant types of explanations that science college students…

  12. Explanation and teleology in Aristotle's Philosophy of Nature

    NARCIS (Netherlands)

    Leunissen, Mariska Elisabeth Maria Philomena Johannes

    2007-01-01

    This dissertation explores Aristotle’s use of teleology as a principle of explanation, especially as it is used in the natural treatises. Its main purposes are, first, to determine the function, structure, and explanatory power of teleological explanations in four of Aristotle’s natural treatises,

  13. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  14. How to Program a Domain Independent Tracer for Explanations

    Science.gov (United States)

    Ishizaka, Alessio; Lusti, Markus

    2006-01-01

    Explanations are essential in the teaching process. Tracers are one possibility to provide students with explanations in an intelligent tutoring system. Their development can be divided into four steps: (a) the definition of the trace model; (b) the extraction of the information from this model; (c) the analysis and abstraction of the extracted…

  15. "Ratio via Machina": Three Standards of Mechanistic Explanation in Sociology

    Science.gov (United States)

    Aviles, Natalie B.; Reed, Isaac Ariail

    2017-01-01

    Recently, sociologists have expended much effort in attempts to define social mechanisms. We intervene in these debates by proposing that sociologists in fact have a choice to make between three standards of what constitutes a good mechanistic explanation: substantial, formal, and metaphorical mechanistic explanation. All three standards are…

  16. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  17. Method and metaphysics in Clements's and Gleason's ecological explanations.

    Science.gov (United States)

    Eliot, Christopher

    2007-03-01

    To generate explanatory theory, ecologists must wrestle with how to represent the extremely many, diverse causes behind phenomena in their domain. Early twentieth-century plant ecologists Frederic E. Clements and Henry A. Gleason provide a textbook example of different approaches to explaining vegetation, with Clements allegedly committed, despite abundant exceptions, to a law of vegetation, and Gleason denying the law in favor of less organized phenomena. However, examining Clements's approach to explanation reveals him not to be expressing a law, and instead to be developing an explanatory structure without laws, capable of progressively integrating causal complexity. Moreover, Clements and Gleason largely agree on the causes of vegetation; but, since causal understanding here underdetermines representation, they differ on how to integrate recognized causes into general theory--that is, in their methodologies. Observers of the case may have mistakenly assumed that scientific representation across the disciplines typically aims at laws like Newton's, and that representations always reveal scientists' metaphysical commitments. Ironically, in the present case, this assumption seems to have been made even by observers who regard Clements as nai ve for his alleged commitment to an ecological law.

  18. Major disruptions, inverse cascades, and the Strauss equations

    International Nuclear Information System (INIS)

    Montgomery, D.

    1982-01-01

    Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics

  19. Volume changes and electrostriction in the primary photoreactions of various photosynthetic systems: estimation of dielectric coefficient in bacterial reaction centers and of the observed volume changes with the Drude-Nernst equation.

    Science.gov (United States)

    Mauzerall, David; Hou, Jian-Min; Boichenko, Vladimir A

    2002-01-01

    Photoacoustics (PA) allows the determination of enthalpy and volume changes of photoreactions in photosynthetic reaction centers on the 0.1-10 mus time scale. These include the bacterial centers from Rb. sphaeroides, PS I and PS II centers from Synechocystis and in whole cells. In vitro and in vivo PA data on PS I and PS II revealed that both the volume change (-26 A(3)) and reaction enthalpy (-0.4 eV) in PS I are the same as those in the bacterial centers. However the volume change in PS II is small and the enthalpy far larger, -1 eV. Assigning the volume changes to electrostriction allows a coherent explanation of these observations. One can explain the large volume decrease in the bacterial centers with an effective dielectric coefficient of approximately 4. This is a unique approach to this parameter so important in estimation of protein energetics. The value of the volume contraction for PS I can only be explained if the acceptor is the super- cluster (Fe(4)S(4))(Cys(4)) with charge change from -1 to -2. The small volume change in PS II is explained by sub-mus electron transfer from Y(Z) anion to P(680) cation, in which charge is only moved from the Y(Z) anion to the Q(A) with no charge separation or with rapid proton transfer from oxidized Y(Z) to a polar region and thus very little change in electrostriction. At more acid pH equally rapid proton transfer from a neighboring histidine to a polar region may be caused by the electric field of the P(680) cation.

  20. Generating Explanations for Internet-based Business Games

    Directory of Open Access Journals (Sweden)

    Martin Fischer

    2007-06-01

    Full Text Available It is widely established debriefing in business games is important and influences the students' learning performance. Most games only support game statistics instead of explaining solution paths. We suggest the automatic generation of explanations for internet-mediated business games to improve the debriefing quality. As a proof of concept we developed a prototype of an internet-based auction game embedding an open simulation model and an automatic explanation component helping students and teachers to analyse the decision making process. This paper describes the usefulness of automated explanations and the underlying generic software architecture.

  1. Prediction and explanation in the multiverse

    International Nuclear Information System (INIS)

    Garriga, J.; Vilenkin, A.

    2008-01-01

    Probabilities in the multiverse can be calculated by assuming that we are typical representatives in a given reference class. But is this class well defined? What should be included in the ensemble in which we are supposed to be typical? There is a widespread belief that this question is inherently vague, and that there are various possible choices for the types of reference objects which should be counted in. Here we argue that the 'ideal' reference class (for the purpose of making predictions) can be defined unambiguously in a rather precise way, as the set of all observers with identical information content. When the observers in a given class perform an experiment, the class branches into subclasses who learn different information from the outcome of that experiment. The probabilities for the different outcomes are defined as the relative numbers of observers in each subclass. For practical purposes, wider reference classes can be used, where we trace over all information which is uncorrelated to the outcome of the experiment, or whose correlation with it is beyond our current understanding. We argue that, once we have gathered all practically available evidence, the optimal strategy for making predictions is to consider ourselves typical in any reference class we belong to, unless we have evidence to the contrary. In the latter case, the class must be correspondingly narrowed

  2. Singularly perturbed Burger-Huxley equation: Analytical solution ...

    African Journals Online (AJOL)

    user

    numbers, Navier-Stokes flows with large Reynolds numbers, chemical reactor ... It is to observe the layer behavior of the solution for smaller values of ε leading to singular ...... Burger equation, momentum gas equation and heat equation.

  3. A curious explanation of some cosmological phenomena

    International Nuclear Information System (INIS)

    Vishwakarma, Ram Gopal

    2013-01-01

    Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy–stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy–stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy–stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory. (paper)

  4. A curious explanation of some cosmological phenomena

    Science.gov (United States)

    Gopal Vishwakarma, Ram

    2013-05-01

    Although observational cosmology has shown tremendous growth over the last decade, deep mysteries continue to haunt our theoretical understanding of the ingredients of the concordance cosmological model, which are mainly ‘dark’. More than 95% of the content of the energy-stress tensor has to be in the form of the inflaton field, dark matter and dark energy, which do not have any non-gravitational or laboratory evidence and remain unidentified. Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. This makes a strong case to discover alternative theories that do not require the dark sectors of the standard approach to explain the observations. In the present situation, it would be important to gain insight about the requirements of the ‘would-be’ final theory from all possible means. In this context, this paper highlights some, hitherto unnoticed, interesting coincidences that may prove useful to develop insight about the ‘holy grail’ of gravitation. It appears that the requirement of the speculative dark sectors by the energy-stress tensor is indicative of a possible way out of the present crisis appearing in the standard cosmology, in terms of a theory wherein the energy-stress tensor does not play a direct role in the dynamics. It is shown that various cosmological observations can be explained satisfactorily in the framework of one such theory—the Milne model, without requiring the dark sectors of the standard approach. Moreover, the model evades the horizon, flatness and the cosmological constant problems afflicting the standard cosmology. Although Milne's theory is an incomplete, phenomenological theory, and cannot be the final theory of gravitation, nevertheless, it would be worthwhile to study these coincidences, which may help us develop insight about the would-be final theory.

  5. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  6. Functional Fourier transforms and the loop equation

    International Nuclear Information System (INIS)

    Bershadskii, M.A.; Vaisburd, I.D.; Migdal, A.A.

    1986-01-01

    The Migdal-Makeenko momentum-space loop equation is investigated. This equation is derived from the ordinary loop equation by taking the Fourier transform of the Wilson functional. A perturbation theory is constructed for the new equation and it is proved that the action of the loop operator is determined by vertex functions which coincide with those of the previous equation. It is shown how the ghost loop arises in direct iterations of the momentum-space equation with respect to the coupling constant. A simple example is used to illustrate the mechanism of appearance of an integration in the interior loops in transition to observables

  7. Vigorous convection as the explanation for Pluto's polygonal terrain.

    Science.gov (United States)

    Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

    2016-06-02

    Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

  8. The discourse of causal explanations in school science

    Science.gov (United States)

    Slater, Tammy Jayne Anne

    Researchers and educators working from a systemic functional linguistic perspective have provided a body of work on science discourse which offers an excellent starting point for examining the linguistic aspects of the development of causal discourse in school science, discourse which Derewianka (1995) claimed is critical to success in secondary school. No work has yet described the development of causal language by identifying the linguistic features present in oral discourse or by comparing the causal discourse of native and non-native (ESL) speakers of English. The current research responds to this gap by examining the oral discourse collected from ESL and non-ESL students at the primary and high school grades. Specifically, it asks the following questions: (1) How do the teachers and students in these four contexts develop causal explanations and their relevant taxonomies through classroom interactions? (2) What are the causal discourse features being used by the students in these four contexts to construct oral causal explanations? The findings of the social practice analysis showed that the teachers in the four contexts differed in their approaches to teaching, with the primary school mainstream teacher focusing largely on the hands-on practice , the primary school ESL teacher moving from practice to theory, the high school mainstream teacher moving from theory to practice, and the high school ESL teacher relying primarily on theory. The findings from the quantitative, small corpus approach suggest that the developmental path of cause which has been identified in the writing of experts shows up not only in written texts but also in the oral texts which learners construct. Moreover, this move appears when the discourse of high school ESL and non-ESL students is compared, suggesting a developmental progression in the acquisition of these features by these students. The findings also reveal that the knowledge constructed, as shown by the concept maps created

  9. Gender differences in attitudes toward nuclear power: a multivariate explanation

    International Nuclear Information System (INIS)

    Baxter, R.K.

    1987-01-01

    The purpose of this study was to examine gender differences in attitudes toward nuclear power and to discover what factors account for these differences. The marginality explanation for these differences suggest that women have less-favorable attitudes toward nuclear power because they are less concerned about energy supplies and economic growth and are less convinced of the benefits of nuclear power for society than are men. The irrationality explanation holds that women are less favorable toward nuclear power because they are less knowledgeable about this technology than are men. The lay-rationality explanation argues that people form attitudes toward nuclear power which are consistent with their relevant beliefs, attitudes and values; thus, this explanation suggests that women's unfavorable attitudes toward nuclear power stem from greater concern about environmental protection, exposing society to risk, and lower faith in science and technology. Data for this study were collected via a mail questionnaire administered to a state wide sample of Washington residents (n= 696)

  10. 32 CFR 516.3 - Explanation of abbreviations and terms.

    Science.gov (United States)

    2010-07-01

    ... Glossary contains explanations of abbreviations and terms. (b) The masculine gender has been used throughout this regulation for simplicity and consistency. Any reference to the masculine gender is intended...

  11. Phase space overpopulation at CERN and possible explanations

    International Nuclear Information System (INIS)

    Pratt, S.

    1998-01-01

    By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)

  12. Social class, sense of control, and social explanation.

    Science.gov (United States)

    Kraus, Michael W; Piff, Paul K; Keltner, Dacher

    2009-12-01

    Lower social class is associated with diminished resources and perceived subordinate rank. On the basis of this analysis, the authors predicted that social class would be closely associated with a reduced sense of personal control and that this association would explain why lower class individuals favor contextual over dispositional explanations of social events. Across 4 studies, lower social class individuals, as measured by subjective socioeconomic status (SES), endorsed contextual explanations of economic trends, broad social outcomes, and emotion. Across studies, the sense of control mediated the relation between subjective SES and contextual explanations, and this association was independent of objective SES, ethnicity, political ideology, and self-serving biases. Finally, experimentally inducing a higher sense of control attenuated the tendency for lower subjective SES individuals to make more contextual explanations (Study 4). Implications for future research on social class as well as theoretical distinctions between objective SES and subjective SES are discussed.

  13. Precisely predictable Dirac observables

    CERN Document Server

    Cordes, Heinz Otto

    2006-01-01

    This work presents a "Clean Quantum Theory of the Electron", based on Dirac’s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac’s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty ...

  14. Reasoning with alternative explanations in physics: The cognitive accessibility rule

    Science.gov (United States)

    Heckler, Andrew F.; Bogdan, Abigail M.

    2018-06-01

    A critical component of scientific reasoning is the consideration of alternative explanations. Recognizing that decades of cognitive psychology research have demonstrated that relative cognitive accessibility, or "what comes to mind," strongly affects how people reason in a given context, we articulate a simple "cognitive accessibility rule", namely that alternative explanations are considered less frequently when an explanation with relatively high accessibility is offered first. In a series of four experiments, we test the cognitive accessibility rule in the context of consideration of alternative explanations for six physical scenarios commonly found in introductory physics curricula. First, we administer free recall and recognition tasks to operationally establish and distinguish between the relative accessibility and availability of common explanations for the physical scenarios. Then, we offer either high or low accessibility explanations for the physical scenarios and determine the extent to which students consider alternatives to the given explanations. We find two main results consistent across algebra- and calculus-based university level introductory physics students for multiple answer formats. First, we find evidence that, at least for some contexts, most explanatory factors are cognitively available to students but not cognitively accessible. Second, we empirically verify the cognitive accessibility rule and demonstrate that the rule is strongly predictive, accounting for up to 70% of the variance of the average student consideration of alternative explanations across scenarios. Overall, we find that cognitive accessibility can help to explain biases in the consideration of alternatives in reasoning about simple physical scenarios, and these findings lend support to the growing number of science education studies demonstrating that tasks relevant to science education curricula often involve rapid, automatic, and potentially predictable processes and

  15. Re-orienting discussions of scientific explanation: A functional perspective.

    Science.gov (United States)

    Woody, Andrea I

    2015-08-01

    Philosophy of science offers a rich lineage of analysis concerning the nature of scientific explanation, but the vast majority of this work, aiming to provide an analysis of the relation that binds a given explanans to its corresponding explanandum, presumes the proper analytic focus rests at the level of individual explanations. There are, however, other questions we could ask about explanation in science, such as: What role(s) does explanatory practice play in science? Shifting focus away from explanations, as achievements, toward explaining, as a coordinated activity of communities, the functional perspective aims to reveal how the practice of explanatory discourse functions within scientific communities given their more comprehensive aims and practices. In this paper, I outline the functional perspective, argue that taking the functional perspective can reveal important methodological roles for explanation in science, and consequently, that beginning here provides resources for developing more adequate responses to traditional concerns. In particular, through an examination of the ideal gas law, I emphasize the normative status of explanations within scientific communities and discuss how such status underwrites a compelling rationale for explanatory power as a theoretical virtue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cultural border crossing: The interaction between fundamental Christian beliefs and scientific explanations

    Science.gov (United States)

    Elimbi, Celestine Nakeli

    The purpose of this study is to investigate the interaction between people's fundamental Christian beliefs and scientific explanations. When people with fundamental Christian beliefs encounter scientific explanations, such explanations may interact with their deeply rooted beliefs in a way that is likely to produce tensions. It is expedient to understand the classroom/professional experiences of such individuals and how they manage these tensions. I will apply Jegede's collateral learning theory as a lens to look at how individuals manage the tensions between their religious and scientific worldviews. Gaining insight into people's experiences in the classroom/work place and how they manage these tensions will potentially inform classroom instruction and ways by which we can help students with fundamental Christian beliefs maintain their pursuit of science related careers by easing the nature of the borders they cross. Sources of data will include participant reported perspectives of how they manage the tensions and observations of real-time resolution of potentially conflicting explanations from their religious and scientific worldviews.

  17. Ordinary differential equations principles and applications

    CERN Document Server

    Nandakumaran, A K; George, Raju K

    2017-01-01

    Written in a clear, logical and concise manner, this comprehensive resource allows students to quickly understand the key principles, techniques and applications of ordinary differential equations. Important topics including first and second order linear equations, initial value problems and qualitative theory are presented in separate chapters. The concepts of two point boundary value problems, physical models and first order partial differential equations are discussed in detail. The text uses tools of calculus and real analysis to get solutions in explicit form. While discussing first order linear systems, linear algebra techniques are used. The real-life applications are interspersed throughout the book to invoke reader's interest. The methods and tricks to solve numerous mathematical problems with sufficient derivations and explanation are provided. The proofs of theorems are explained for the benefit of the readers.

  18. A course in ordinary differential equations

    CERN Document Server

    Swift, Randall J

    2014-01-01

    Praise for the First Edition:"A Course in Ordinary Differential Equations deserves to be on the MAA's Basic Library List … the book with its layout, is very student friendly-it is easy to read and understand; every chapter and explanations flow smoothly and coherently … the reviewer would recommend this book highly for undergraduate introductory differential equation courses." -Srabasti Dutta, College of Saint Elizabeth, MAA Online, July 2008"An important feature is that the exposition is richly accompanied by computer algebra code (equally distributed between MATLAB, Mathematica, and Maple). The major part of the book is devoted to classical theory (both for systems and higher order equations). The necessary material from linear algebra is also covered. More advanced topics include numerical methods, stability of equilibria, bifurcations, Laplace transforms, and the power series method."-EMS Newsletter, June 2007"This is a delightful textbook for a standard one-semester undergraduate course in ordinary d...

  19. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  20. Hierarchy, causation and explanation: ubiquity, locality and pluralism

    Science.gov (United States)

    Love, Alan C.

    2012-01-01

    The ubiquity of top-down causal explanations within and across the sciences is prima facie evidence for the existence of top-down causation. Much debate has been focused on whether top-down causation is coherent or in conflict with reductionism. Less attention has been given to the question of whether these representations of hierarchical relations pick out a single, common hierarchy. A negative answer to this question undermines a commonplace view that the world is divided into stratified ‘levels’ of organization and suggests that attributions of causal responsibility in different hierarchical representations may not have a meaningful basis for comparison. Representations used in top-down and bottom-up explanations are primarily ‘local’ and tied to distinct domains of science, illustrated here by protein structure and folding. This locality suggests that no single metaphysical account of hierarchy for causal relations to obtain within emerges from the epistemology of scientific explanation. Instead, a pluralist perspective is recommended—many different kinds of top-down causation (explanation) can exist alongside many different kinds of bottom-up causation (explanation). Pluralism makes plausible why different senses of top-down causation can be coherent and not in conflict with reductionism, thereby illustrating a productive interface between philosophical analysis and scientific inquiry. PMID:23386966

  1. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  2. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  3. On the nature of explanation: A PDP approach

    Science.gov (United States)

    Churchland, Paul M.

    1990-06-01

    Neural network models of sensory processing and associative memory provide the resources for a new theory of what explanatory understanding consists in. That theory finds the theoretically important factors to reside not at the level of propositions and the relations between them, but at the level of the activation patterns across large populations of neurons. The theory portrays explanatory understanding, perceptual recognition, and abductive inference as being different instances of the same more general sort of cognitive achievement, viz. prototype activation. It thus effects a unification of the theories of explanation, perception, and ampliative inference. It also finds systematic unity in the wide diversity of types of explanation (causal, functional, mathematical, intentional, reductive, etc.), a chronic problem for theories of explanation in the logico-linguistic tradition. Finally, it is free of the many defects, both logical and psychological, that plague models in that older tradition.

  4. Making context explicit for explanation and incremental knowledge acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Brezillon, P. [Univ. Paris (France)

    1996-12-31

    Intelligent systems may be improved by making context explicit in problem solving. This is a lesson drawn from a study of the reasons why a number of knowledge-based systems (KBSs) failed. We discuss the interest to make context explicit in explanation generation and incremental knowledge acquisition, two important aspects of intelligent systems that aim to cooperate with users. We show how context can be used to better explain and incrementally acquire knowledge. The advantages of using context in explanation and incremental knowledge acquisition are discussed through SEPIT, an expert system for supporting diagnosis and explanation through simulation of power plants. We point out how the limitations of such systems may be overcome by making context explicit.

  5. Towards to An Explanation for Conceptual Change: A Mechanistic Alternative

    Science.gov (United States)

    Rusanen, Anna-Mari

    2014-07-01

    Conceptual change is one of the most studied fields in science education and psychology of learning. However, there are still some foundational issues in conceptual change research on which no clear consensus has emerged. Firstly, there is no agreement on what changes in belief and concept systems constitute conceptual change and what changes do not. Secondly, there is no consensus on what the specific mechanisms of conceptual change are. Thirdly, there is no common explanatory framework of how to explain conceptual change. In this paper a sketch for explanations of conceptual change is outlined. According to this account, the explanation for conceptual change requires (1) a description for the information processing task and (2) a sufficiently accurate and detailed description of the cognitive mechanisms responsible for the task. The scope and limits of this type of explanation are discussed.

  6. Is the bias for function-based explanations culturally universal? Children from China endorse teleological explanations of natural phenomena

    Science.gov (United States)

    Schachner, Adena; Zhu, Liqi; Li, Jing; Kelemen, Deborah

    2017-01-01

    Young children in Western cultures tend to endorse teleological (function-based) explanations broadly across many domains, even when scientifically unwarranted. For instance, in contrast to Western adults, they explicitly endorse the idea that mountains were created for climbing, just like hats were created for warmth. Is this bias a product of culture, or a product of universal aspects of human cognition? In two studies, we explored whether adults and children in Mainland China, a highly secular, non-Western culture, show a bias for teleological explanations. When explaining both object properties (Exp. 1) and origins (Exp. 2), we found evidence that they do. While Chinese adults restricted teleological explanations to scientifically warranted cases, Chinese children endorsed them more broadly, extending them across different kinds of natural phenomena. This bias decreased with rising grade level across first, second and fourth grade. Overall, these data provide evidence that children’s bias for teleological explanations is not solely a product of Western Abrahamic cultures. Instead, it extends to other cultures including the East Asian secular culture of modern-day China. This suggests that the bias for function-based explanations may be driven by universal aspects of human cognition. PMID:28110152

  7. Testing the Transivity Explanation of the Allais Paradox

    DEFF Research Database (Denmark)

    Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte

    1999-01-01

    This paper uses a two-dimensional version of a standard common consequence experiment to test the intransitivity explanation of Allais-paradox-type violations of expected utility theory. We compare the common consequence effect of two choice problems differing only with respect to whether...... intransitivity as an explanation of the Allais Paradox. The question whether violations of expected utility are mainly due to intransitivity or to violation of independence is important since it is exactly on this issue the main new decision theories differ...

  8. "Quod Erat Demonstrandum": Understanding and Explaining Equations in Physics Teacher Education

    Science.gov (United States)

    Karam, Ricardo; Krey, Olaf

    2015-01-01

    In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this…

  9. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  10. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  11. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  12. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  13. The Importance of Qualitative Research for Causal Explanation in Education

    Science.gov (United States)

    Maxwell, Joseph A.

    2012-01-01

    The concept of causation has long been controversial in qualitative research, and many qualitative researchers have rejected causal explanation as incompatible with an interpretivist or constructivist approach. This rejection conflates causation with the positivist "theory" of causation, and ignores an alternative understanding of causation,…

  14. Why have socio-economic explanations between favoured over ...

    African Journals Online (AJOL)

    explanations trump cultural ones in the South African HIV aetiological literature? In this article, we explore how three factors (a belief in monogamy as a universal norm, HIV's emergence in a time of the construction of non-racialism, and a simplified understanding of HIV epidemiology) have intersected to produce this bias ...

  15. Infant Preferences for Attractive Faces: A Cognitive Explanation.

    Science.gov (United States)

    Rubenstein, Adam J.; Kalakanis, Lisa; Langlois, Judith H.

    1999-01-01

    Four studies assessed a cognitive explanation for development of infants' preference for attractive faces: cognitive averaging and preferences for mathematically averaged faces, or prototypes. Findings indicated that adults and 6-month olds prefer prototypical, mathematically averaged faces and that 6-month olds can abstract the central tendency…

  16. Children Balance Theories and Evidence in Exploration, Explanation, and Learning

    Science.gov (United States)

    Bonawitz, Elizabeth Baraff; van Schijndel, Tessa J. P.; Friel, Daniel; Schulz, Laura

    2012-01-01

    We look at the effect of evidence and prior beliefs on exploration, explanation and learning. In Experiment 1, we tested children both with and without differential prior beliefs about balance relationships (Center Theorists, mean: 82 months; Mass Theorists, mean: 89 months; No Theory children, mean: 62 months). Center and Mass Theory children who…

  17. Children balance theories and evidence in exploration, explanation, and learning

    NARCIS (Netherlands)

    Bonawitz, E.B.; van Schijndel, T.J.P.; Friel, D.; Schulz, L.

    2012-01-01

    We look at the effect of evidence and prior beliefs on exploration, explanation and learning. In Experiment 1, we tested children both with and without differential prior beliefs about balance relationships (Center Theorists, mean: 82 months; Mass Theorists, mean: 89 months; No Theory children,

  18. Explanations of Freud's Psychoanalysis Theories on the Lives and ...

    African Journals Online (AJOL)

    This paper examines some of the various explanations of Freud's theories on a selected number of Western Artist and their works. It highlights the impact of his findings on the authenticity of the concept as regards, dreams, the Oedipus complex and imagery. Its objective is to prove that a number of Western European artist ...

  19. Psychosocial explanations of complaints in Dutch general practice

    NARCIS (Netherlands)

    Joosten, A; Mazeland, H; Meyboom-de Jong, B

    BACKGROUND: Dutch GPs are frequently consulted by patients presenting physical complaints which have a psychosocial cause. Until now, this type of complaint has often been the subject of study, but the way in which psychosocial explanations for complaints are broached and discussed has not yet been

  20. Prediction and explanation over DL-Lite data streams

    CSIR Research Space (South Africa)

    Klarman, S

    2013-12-01

    Full Text Available the popular DL-Lite family, and study the logic foundations of prediction and explanation over DL-Lite data streams, i.e., reasoning from finite segments of streaming data to conjectures about the content of the streams in the future or in the past. We propose...

  1. Social selection is a powerful explanation for prosociality.

    Science.gov (United States)

    Nesse, Randolph M

    2016-01-01

    Cultural group selection helps explain human cooperation, but social selection offers a complementary, more powerful explanation. Just as sexual selection shapes extreme traits that increase matings, social selection shapes extreme traits that make individuals preferred social partners. Self-interested partner choices create strong and possibly runaway selection for prosocial traits, without requiring group selection, kin selection, or reciprocity.

  2. Phase space overpopulation at CERN and possible explanations

    International Nuclear Information System (INIS)

    Pratt, S.

    1999-01-01

    Complete text of publication follows. By combining information from correlations from Pb+Pb collisions at CERN, one comes to the conclusion that pionic phase space is significantly overpopulated compared to expectations based on chemical equilibrium. A variety of explanations will be addressed. (author)

  3. A skin-picking disorder case report: a psychopathological explanation

    Directory of Open Access Journals (Sweden)

    Ângela Ribeiro

    2015-06-01

    Full Text Available We describe the case of a 44-year-old woman, without known previous psychiatric history, hospitalized after a significant hemorrhage caused by self-inflicted deep facial dermal lesions (with muscle exposition. Psychopathological possible explanations of this case, as in similar reviewed ones, are related to frustration, aggression, and impulsivity.

  4. Social class, psychosocial factors and disease : from deception towards explanation.

    NARCIS (Netherlands)

    Ranchor, Adelita Vijaynti

    1994-01-01

    This thesis deals with the question of the extent to which socioeconomic status (sas) is related to disease. The main focus is the explanation of this relation, applying a muitifactor approach aimed at the integration of socioeconomic, psychosocial factors and health-related behavior. ... Zie:

  5. Scientific explanations in Greek upper secondary physics textbooks

    Science.gov (United States)

    Velentzas, Athanasios; Halkia, Krystallia

    2018-01-01

    In this study, an analysis of the structure of scientific explanations included in physics textbooks of upper secondary schools in Greece was completed. In scientific explanations for specific phenomena found in the sample textbooks, the explanandum is a logical consequence of the explanans, which in all cases include at least one scientific law (and/or principle, model or rule) previously presented, as well as statements concerning a specific case or specific conditions. The same structure is also followed in most of the cases in which the textbook authors explain regularities (i.e. laws, rules) as consequences of one or more general law or principle of physics. Finally, a number of the physics laws and principles presented in textbooks are not deduced as consequences from other, more general laws, but they are formulated axiomatically or inductively derived and the authors argue for their validity. Since, as it was found, the scientific explanations presented in the textbooks used in the study have similar structures to the explanations in internationally known textbooks, the findings of the present work may be of interest not only to science educators in Greece, but also to the community of science educators in other countries.

  6. Education's impact on explanations of radical right-wing voting

    NARCIS (Netherlands)

    Lubbers, M.; Tolsma, J.

    2011-01-01

    One of the reactions to the large demographic changes in Europe due to migration has been the rise of radical right-wing parties. Previous research has shown that education is one of the most relevant explanations of this voting behaviour. By pooling the European Social Surveys from 2002, 2004, 2006

  7. Designing Automated Guidance to Promote Productive Revision of Science Explanations

    Science.gov (United States)

    Tansomboon, Charissa; Gerard, Libby F.; Vitale, Jonathan M.; Linn, Marcia C.

    2017-01-01

    Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student written work, we compare forms of automated guidance designed to motivate productive revision and help…

  8. A Self-Categorization Explanation for Opinion Consensus Perceptions

    Science.gov (United States)

    Zhang, Jinguang; Reid, Scott A.

    2013-01-01

    The public expression of opinions (and related communicative activities) hinges upon the perception of opinion consensus. Current explanations for opinion consensus perceptions typically focus on egocentric and other biases, rather than functional cognitions. Using self-categorization theory we showed that opinion consensus perceptions flow from…

  9. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  10. Information performances and illative sequences: Sequential organization of explanations of chemical phase equilibrium

    Science.gov (United States)

    Brown, Nathaniel James Swanton

    While there is consensus that conceptual change is surprisingly difficult, many competing theories of conceptual change co-exist in the literature. This dissertation argues that this discord is partly the result of an inadequate account of the unwritten rules of human social interaction that underlie the field's preferred methodology---semi-structured interviewing. To better understand the contributions of interaction during explanations, I analyze eight undergraduate general chemistry students as they attempt to explain to various people, for various reasons, why phenomena involving chemical phase equilibrium occur. Using the methods of interaction analysis, I characterize the unwritten, but systematic, rules that these participants follow as they explain. The result is a description of the contributions of interaction to explaining. Each step in each explanation is a jointly performed expression of a subject-predicate relation, an interactive accomplishment I call an information performance (in-form, for short). Unlike clauses, in-forms need not have a coherent grammatical structure. Unlike speaker turns, in-forms have the clear function of expressing information. Unlike both clauses and speaker turns, in-forms are a co-construction, jointly performed by both the primary speaker and the other interlocutor. The other interlocutor strongly affects the form and content of each explanation by giving or withholding feedback at the end of each in-form, moments I call feedback-relevant places. While in-forms are the bricks out of which the explanation is constructed, they are secured by a series of inferential links I call an illative sequence. Illative sequences are forward-searching, starting with a remembered fact or observation and following a chain of inferences in the hope it leads to the target phenomenon. The participants treat an explanation as a success if the illative sequence generates an in-form that describes the phenomenon. If the illative sequence does

  11. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  12. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  13. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  14. Beyond Epistemological Deficits: Dynamic explanations of engineering students' difficulties with mathematical sense-making

    Science.gov (United States)

    Gupta, Ayush; Elby, Andrew

    2011-12-01

    Researchers have argued against deficit-based explanations of students' difficulties with mathematical sense-making, pointing instead to factors such as epistemology. Students' beliefs about knowledge and learning can hinder the activation and integration of productive knowledge they have. Such explanations, however, risk falling into a 'deficit trap'-substituting a concepts/skills deficit with an epistemological one. Our interview-based case study of a freshman engineering major, 'Jim,' explains his difficulty solving a physics problem (on hydrostatic pressure) in terms of his epistemology, but avoids a deficit trap by modeling the dynamics of his epistemological stabilities and shifts in terms of fine-grained cognitive elements that include the seeds of epistemological expertise. Specifically, during a problem-solving episode in the interview, Jim reaches and sticks with an incorrect answer that violates common sense. We show that Jim has all the mathematical skills and physics knowledge he would need to resolve the contradiction. We argue that his difficulty doing so stems in part from his epistemological views that (i) physics equations are much more trustworthy than everyday reasoning, and (ii) physics equations do not express meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and formalism as either necessary or plausible to accomplish. But Jim's in-the-moment shift to a more sophisticated epistemological stance highlights the seeds of epistemological expertise that were present all along: he does see common sense as connected to formalism (though not always tractably so), and in some circumstances, this connection is both salient and valued.

  15. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  16. Self-Explanation and Explanatory Feedback in Games: Individual Differences, Gameplay, and Learning

    Science.gov (United States)

    Killingsworth, Stephen S.; Clark, Douglas B.; Adams, Deanne M.

    2015-01-01

    Previous research has demonstrated the efficacy of two explanation-based approaches for increasing learning in educational games. The first involves asking students to explain their answers (self-explanation) and the second involves providing correct explanations (explanatory feedback). This study (1) compared self-explanation and explanatory…

  17. Bipolar disorder: idioms of susceptibility and disease and the role of 'genes' in illness explanations.

    Science.gov (United States)

    Baart, Ingrid; Widdershoven, Guy

    2013-11-01

    This qualitative study explores (1) how members of the Dutch Association for People with Bipolar Disorder explain the affliction of bipolar disorder; (2) the relationship between genetic, environmental and personal factors in these explanations and (3) the relationship between illness explanations, self-management and identity. A total of 40 participants took part in seven different focus group discussions. The results demonstrate that there are two different explanatory idioms, each one centred around an opposing concept, that is, susceptibility and disease. Individuals who construct explanations around the concept of 'disease' attach more importance to 'genes and chemicals' than to environmental components in the onset of the disorder, whereas individuals adhering to the central concept of 'susceptibility' tend to do this much less. Compared with individuals using the 'susceptibility' idiom, those who use a 'disease' idiom tend to observe fewer possibilities for self-management and are less inclined to construct normalcy through a quest for personal growth. Stories of suffering seem more integral to the 'disease' idiom than to the 'susceptibility' idiom. The 'disease' idiom seems less integrated in a contemporary surveillance psychiatric discourse than the 'susceptibility' idiom; however, both vocabularies can offer normative constraints.

  18. On the electrodynamic explanation of the retrograde motion of the electric arc

    International Nuclear Information System (INIS)

    Hong, J.S.; Allen, J.E.

    1992-01-01

    The retrograde motion of the cathode spot in a transverse magnetic field is one of the more intriguing phenomena of the electric arc. Although the phenomenon has been known for nearly ninety years since its discovery by Stark and has stimulated numerous investigations which result in many models giving explanation from different points of view, there is still no theory that can account both qualitatively and quantitatively for all the observations. Most of the explanations of the retrograde motion involve the study of cathode processes to give the preferential formation of new cathode spots along the retrograde direction. One line of explanation, which is rather different from the others, is based on electrodynamics. In this approach the retrograde motion is treated as an electrodynamic event. The present paper develops the theory suggested by Robson and von Engel. A more complete model is proposed and studied in detail by means of electromagnetic field theory. The results obtained not only show that the retrograde motion can be explained by the electrodynamics, but also confirm that the average current density on the cathode spot must be around the order of 10 12 A/m 2 . Recent studies of spot current density have shown values of this order. (author) 22 refs., 4 figs., 1 tab

  19. Developmental Origins of Biological Explanations: The case of infants' internal property bias.

    Science.gov (United States)

    Taborda-Osorio, Hernando; Cheries, Erik W

    2017-10-01

    People's explanations about the biological world are heavily biased toward internal, non-obvious properties. Adults and children as young as 5 years of age find internal properties more causally central than external features for explaining general biological processes and category membership. In this paper, we describe how this 'internal property bias' may be grounded in two different developmental precursors observed in studies with infants: (1) an early understanding of biological agency that is apparent in infants' reasoning about animals, and (2) the acquisition of kind-based representations that distinguish between essential and accidental properties, spanning from animals to artifacts. We argue that these precursors may support the progressive construction of the notion of biological kinds and explanations during childhood. Shortly after their first year of life, infants seem to represent the internal properties of animates as more central and identity-determining that external properties. Over time, this skeletal notion of biological kinds is integrated into diverse explanations about kind membership and biological processes, with an increasingly better understanding of the causal role of internal properties.

  20. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  1. Observational tests of modified gravity

    International Nuclear Information System (INIS)

    Jain, Bhuvnesh; Zhang Pengjie

    2008-01-01

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions).

  2. Dynamical 3-Space: Alternative Explanation of the "Dark Matter Ring"

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available NASA has claimed the discovery of a “Ring of Dark Matter” in the galaxy cluster CL 0024 +17, see Jee M.J. et al. arXiv:0705.2171, based upon gravitational lensing data. Here we show that the lensing can be given an alternative explanation that does not involve “dark matter”. This explanation comes from the new dynamics of 3-space. This dynamics involves two constant G and alpha — the fine structure constant. This dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter”, and also the supernova redshift data without the need for “dark energy”.

  3. Nursing Teaching Strategies by Encouraging Students’ Questioning, Argumentation and Explanation

    Directory of Open Access Journals (Sweden)

    Dayse Neri de Souza

    2014-12-01

    Full Text Available Nursing students need to develop competences in the field of explanation, argumentation and questioning as they are pivotal to foster a relationship with their patients and achieve a greater humanisation of care. The objective of this paper is to analyse the perception of 1st-year nursing students with regard to the humanisation of care provided to patients by encouraging them to discuss real-life episodes. The study is qualitative and content analysis used the students’ questions, explanations and argumentation as core discourses. Among other conclusions, results point towards the importance of promoting activities that encourage the different nursing students’ discourses and the ability to understand the humanisation and dehumanisation patterns arising from the real-life episodes used as case study.

  4. Students' explanations in complex learning of disciplinary programming

    Science.gov (United States)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with

  5. Mechanisms of cold fusion: comprehensive explanations by the Nattoh model

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki

    1995-01-01

    The phenomena of cold fusion seem to be very complicated; inconsistent data between the production rates of heat, neutrons, tritiums and heliums. Our thoughts need to drastically change in order to appropriately understand the mechanisms of cold fusion. Here, a review is described for the Nattoh model, that has been developed extensively to provide comprehensive explanations for the mechanisms of cold fusion. Important experimental findings that prove the model are described. Furthermore several subjects including impacts on other fields are also discussed. (author)

  6. Causation at Different Levels: Tracking the Commitments of Mechanistic Explanations

    DEFF Research Database (Denmark)

    Fazekas, Peter; Kertész, Gergely

    2011-01-01

    connections transparent. These general commitments get confronted with two claims made by certain proponents of the mechanistic approach: William Bechtel often argues that within the mechanistic framework it is possible to balance between reducing higher levels and maintaining their autonomy at the same time...... their autonomy at the same time than standard reductive accounts are, and that what mechanistic explanations are able to do at best is showing that downward causation does not exist....

  7. An Explanation of Nakamoto's Analysis of Double-spend Attacks

    OpenAIRE

    Ozisik, A. Pinar; Levine, Brian Neil

    2017-01-01

    The fundamental attack against blockchain systems is the double-spend attack. In this tutorial, we provide a very detailed explanation of just one section of Satoshi Nakamoto's original paper where the attack's probability of success is stated. We show the derivation of the mathematics relied upon by Nakamoto to create a model of the attack. We also validate the model with a Monte Carlo simulation, and we determine which model component is not perfect.

  8. Superfluous neuroscience information makes explanations of psychological phenomena more appealing.

    Science.gov (United States)

    Fernandez-Duque, Diego; Evans, Jessica; Christian, Colton; Hodges, Sara D

    2015-05-01

    Does the presence of irrelevant neuroscience information make explanations of psychological phenomena more appealing? Do fMRI pictures further increase that allure? To help answer these questions, 385 college students in four experiments read brief descriptions of psychological phenomena, each one accompanied by an explanation of varying quality (good vs. circular) and followed by superfluous information of various types. Ancillary measures assessed participants' analytical thinking, beliefs on dualism and free will, and admiration for different sciences. In Experiment 1, superfluous neuroscience information increased the judged quality of the argument for both good and bad explanations, whereas accompanying fMRI pictures had no impact above and beyond the neuroscience text, suggesting a bias that is conceptual rather than pictorial. Superfluous neuroscience information was more alluring than social science information (Experiment 2) and more alluring than information from prestigious "hard sciences" (Experiments 3 and 4). Analytical thinking did not protect against the neuroscience bias, nor did a belief in dualism or free will. We conclude that the "allure of neuroscience" bias is conceptual, specific to neuroscience, and not easily accounted for by the prestige of the discipline. It may stem from the lay belief that the brain is the best explanans for mental phenomena.

  9. An ancient explanation of presbyopia based on binocular vision.

    Science.gov (United States)

    Barbero, Sergio

    2014-06-01

    Presbyopia, understood as the age-related loss of ability to clearly see near objects, was known to ancient Greeks. However, few references to it can be found in ancient manuscripts. A relevant discussion on presbyopia appears in a book called Symposiacs written by Lucius Mestrius Plutarchus around 100 A.C. In this work, Plutarch provided four explanations of presbyopia, associated with different theories of vision. One of the explanations is particularly interesting as it is based on a binocular theory of vision. In this theory, vision is produced when visual rays, emanating from the eyes, form visual cones that impinge on the objects to be seen. Visual rays coming from old people's eyes, it was supposed, are weaker than those from younger people's eyes; so the theory, to be logically coherent, implies that this effect is compensated by the increase in light intensity due to the overlapping, at a certain distance, of the visual cones coming from both eyes. Thus, it benefits the reader to move the reading text further away from the eyes in order to increase the fusion area of both visual cones. The historical hypothesis taking into consideration that the astronomer Hipparchus of Nicaea was the source of Plutarch's explanation of the theory is discussed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Competing explanations for adopting energy innovations for new office buildings

    International Nuclear Information System (INIS)

    Vermeulen, Walter J.V.; Hovens, Jeroen

    2006-01-01

    An integrative model to explain potential adopters' decisions to adopt energy innovations was adapted and applied in the field of new office building construction. We tested the relative effects of competing theoretical explanations (derived from economics, innovation science and policy science) on the decision to adopt. The research covered 35 projects representing 9% of the total volume of new office construction in the Netherlands between 2000 and mid-2002. Two levels of explanations for adopting innovations were derived: (a) the potential adopter's weighed assessments of the innovations and his or her nature of decision making and (b) explanation of those first-level variables. Using multiple regression techniques, we determined the relative influence on innovation-adoption of variables covering economy and technology, government intervention, company characteristics, and influences from market and society. The decision to adopt 'mature' innovations, in contrast to 'young' innovations, is based more on routine procedures than project-specific considerations. Policies need to take this difference into consideration. We also show evidence that in promoting adoption of E-innovations for new office buildings the Dutch system of applying Energy Performance Standards and subsidies proofs to be effective

  11. The circle equation over finite fields

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2017-01-01

    Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...

  12. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  13. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  14. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  15. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  16. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  17. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  18. Defining and Developing "Critical Thinking" Through Devising and Testing Multiple Explanations of the Same Phenomenon

    Science.gov (United States)

    Etkina, Eugenia; Planinšič, Gorazd

    2015-10-01

    Most physics teachers would agree that one of the main reasons for her/his students to take physics is to learn to think critically. However, for years we have been assessing our students mostly on the knowledge of physics content (conceptually and quantitatively). Only recently have science educators started moving systematically towards achieving and assessing this critical thinking goal. In this paper we seek to show how guiding students to devise and test multiple explanations of observed phenomena can be used to improve their critical thinking.

  19. China's coal price disturbances: Observations, explanations, and implications for global energy economies

    International Nuclear Information System (INIS)

    Yang, Chi-Jen; Xuan, Xiaowei; Jackson, Robert B.

    2012-01-01

    Since China decontrolled coal prices, its coal price has risen steadily and been unusually volatile. In 2011 in particular, high coal prices and capped electricity prices in China discouraged coal-fired power generation, triggering widespread power shortages. We suggest that these coal-price disturbances could be symptomatic of a major change in pricing dynamics of global fossil-fuel markets, with increasing correspondence between coal and oil prices globally. Historically, global coal prices have been more stable and lower than oil and natural gas prices on a per-heat basis. In recent years, however, coal prices have been increasingly volatile worldwide and have tracked other fossil fuel prices more closely. Meanwhile, the recent development of unconventional gas has substantially decoupled US natural gas and oil prices. Technically, low US natural gas prices, with potential fuel switching, could drive US domestic coal prices lower. However, this effect is unlikely to counteract the overall trend in increasing coal consumption globally. China's market size and unique, partially-controlled energy system make its reform agenda a key force in the global economy. Policymakers in the US, E.U. and elsewhere should monitor China's economic reform agenda to anticipate and respond to changes accompanying China's increasing importance in the global energy economy. - Highlights: ► Since China decontrolled its coal prices, the price of coal has risen steadily in China, accompanied by unusual volatility. ► Relatively high and volatile coal prices have triggered widespread power shortages in China. ► Coal and oil prices have already become, and continue to become, more closely linked globally. ► China's demand will likely drive up global coal prices and make them as volatile as that of other fossil fuels. ► Policymakers should monitor China's economic reform agenda to anticipate and respond to changes in the global energy economy.

  20. It Happened in Antarctica. A Collection of Observations Requiring Scientific Explanations.

    Science.gov (United States)

    Yaxley, Murray

    There are many reasons for studying Antarctica. It is the key element in the world's climate. Some of the secrets of the earth's past are locked beneath its icecap. It has a fascinating physical environment and a unique and fragile ecosystem. It is a frontier of scientific research and technological development. Its history is an important and…

  1. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  2. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  3. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  4. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  5. Children's success at detecting circular explanations and their interest in future learning.

    Science.gov (United States)

    Mills, Candice M; Danovitch, Judith H; Rowles, Sydney P; Campbell, Ian L

    2017-10-01

    These studies explore elementary-school-aged children's ability to evaluate circular explanations and whether they respond to receiving weak explanations by expressing interest in additional learning. In the first study, 6-, 8-, and 10-year-olds (n = 53) heard why questions about unfamiliar animals. For each question, they rated the quality of single explanations and later selected the best explanation between pairs of circular and noncircular explanations. When judging single explanations, 8- and 10-year-olds, and to some extent 6-year-olds, provided higher ratings for noncircular explanations compared to circular ones. When selecting between pairs of explanations, all age groups preferred noncircular explanations to circular ones, but older children did so more consistently than 6-year-olds. Children who recognized the weakness of the single circular explanations were more interested in receiving additional information about the question topics. In Study 2, all three age groups (n = 87) provided higher ratings for noncircular explanations compared to circular ones when listening to responses to how questions, but older children showed a greater distinction in their ratings than 6-year-olds. Moreover, the link between recognizing circular explanations as weak and interest in future learning could not be accounted for solely by individual differences in verbal intelligence. These findings illustrate the developmental trajectory of explanation evaluation and support that recognition of weak explanations is linked to interest in future learning across the elementary years. Implications for education are discussed.

  6. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  7. Skeletonized wave equation of surface wave dispersion inversion

    KAUST Repository

    Li, Jing; Schuster, Gerard T.

    2016-01-01

    We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel

  8. Chaos in discrete fractional difference equations

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... chaotic behaviour of fractional difference equations for the tent map, Gauss map and 2x(mod 1) map are studied ..... (4) No significant change is observed by changing .... (3) In fractional case, the rational initial condition.

  9. Tutorial dialogues and gist explanations of genetic breast cancer risk.

    Science.gov (United States)

    Widmer, Colin L; Wolfe, Christopher R; Reyna, Valerie F; Cedillos-Whynott, Elizabeth M; Brust-Renck, Priscila G; Weil, Audrey M

    2015-09-01

    The intelligent tutoring system (ITS) BRCA Gist is a Web-based tutor developed using the Shareable Knowledge Objects (SKO) platform that uses latent semantic analysis to engage women in natural-language dialogues to teach about breast cancer risk. BRCA Gist appears to be the first ITS designed to assist patients' health decision making. Two studies provide fine-grained analyses of the verbal interactions between BRCA Gist and women responding to five questions pertaining to breast cancer and genetic risk. We examined how "gist explanations" generated by participants during natural-language dialogues related to outcomes. Using reliable rubrics, scripts of the participants' verbal interactions with BRCA Gist were rated for content and for the appropriateness of the tutor's responses. Human researchers' scores for the content covered by the participants were strongly correlated with the coverage scores generated by BRCA Gist, indicating that BRCA Gist accurately assesses the extent to which people respond appropriately. In Study 1, participants' performance during the dialogues was consistently associated with learning outcomes about breast cancer risk. Study 2 was a field study with a more diverse population. Participants with an undergraduate degree or less education who were randomly assigned to BRCA Gist scored higher on tests of knowledge than those assigned to the National Cancer Institute website or than a control group. We replicated findings that the more expected content that participants included in their gist explanations, the better they performed on outcome measures. As fuzzy-trace theory suggests, encouraging people to develop and elaborate upon gist explanations appears to improve learning, comprehension, and decision making.

  10. Style investing: behavioral explanations of stock market anomalies

    OpenAIRE

    Wouters, T.

    2006-01-01

    Abstract PhD-project The aim of this thesis is to explore the mechanisms of style investing. My project consists of two parts, each with an individual goal: 1. The first objective will be to analyze the implications of the dynamics of value and growth strategies for the US stock market. 2. The second objective will be to find explanations for stock returns by introducing the effects of collective preferences of investors into the dynamics of stock markets. We introduce style popularity as an ...

  11. Coding Scheme for Assessment of Students’ Explanations and Predictions

    Directory of Open Access Journals (Sweden)

    Mihael Gojkošek

    2017-04-01

    Full Text Available In the process of analyzing students’ explanations and predictions for interaction between brightness enhancement film and beam of white light, a need for objective and reliable assessment instrumentarose. Consequently, we developed a codingscheme that was mostly inspired by the rubrics for self-assessment of scientific abilities. In the paper we present the grading categories that were integrated in the coding scheme, and descriptions of criteria used for evaluation of students work. We report the results of reliability analysis of new assessment tool and present some examples of its application.

  12. Radiometric method and abnormal explanation of landslide survey

    International Nuclear Information System (INIS)

    Ye Shulin; Sun Zhanxue; Luo Liangsheng

    2003-01-01

    Radioactivity exploration mechanism of landslide is researched. Radioactive measure technical and its anomaly explanation models of application is introduced. Test verification result of landslide body geological form (boundary and landslide body thickness) in the district of Wanzhou 233 of Chongqing city ancients landslide and the Yunyang new county Zhaiba landslide shows, it can be used in determining the body boundary (reason) line, investigating the underground current direction and landslide body moving direction, explaining that calculation of weathered zone thickness of landslide body. It can also increase the geological effect of landslide exploration in adaption with geology and drilling

  13. Flip-Floppers and Wafflers: Explanations and Repositioning

    DEFF Research Database (Denmark)

    Robison, Joshua

    to this literature by showing that repositioning’s influence on evaluations depends on beliefs citizens make concerning why the policy switch occurred, beliefs that are, in turn, structured by the communication environment surrounding such switches. Specifically, I use two large national survey experiments to show...... that repositioning elites who provide a satisfactory explanation for their change in position escape evaluative harm from their actions and that this occurs even among individuals who lost proximity from the elite’s change in position and among those from a different party as the elite. This study thus has important...

  14. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  15. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  16. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  17. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  18. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  19. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  20. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  1. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  2. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  3. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing

    2016-12-08

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  4. Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine-Cosine method

    International Nuclear Information System (INIS)

    Yusufoglu, E.; Bekir, A.; Alp, M.

    2008-01-01

    In this paper, we establish exact solutions for nonlinear evolution equations. The sine-cosine method is used to construct periodic and solitary wave solutions of the Kawahara and modified Kawahara equations. These solutions may be important of significance for the explanation of some practical physical problems

  5. The Difficulties of Reductionistic Explanation of Moral Knowledge

    Directory of Open Access Journals (Sweden)

    SeyyedAli Asghari

    2016-03-01

    Full Text Available Moral reductionist believes that the reality of moral qualities are the same qualities which can be expressed with immoral words. Such an ontological view has an epistemological aspect which states our understanding of moral facts is either our understanding of immoral facts or our deductions of immoral understanding. From moral reductionists and especially the naturalists’ point of view, the ability to explain moral knowledge without resorting to some theories such as moral intuition is considered to be an important advantage and even a strong reason for their view. Therefore, the present paper is going to study the reductionistic explanations about moral knowledge and justifications of moral believes. We have come to the conclusion that among the explanations presented by the naturalists, analytic knowledge has the same problems which have discredited the theory of analytic reductionism. Also, deducing value from non-value is either facing the logical gap of is-must; or if there is a meaningful descriptive-valuable link, we can’t finally come to unconditional moral results.

  6. Misconceptions about optics: An effect of misleading explanations?

    Science.gov (United States)

    Favale, Fabrizio; Bondani, Maria

    2014-07-01

    During our activities of physics dissemination with High School students especially concerning optics, we are used to distribute a questionnaire about colors and image formation by mirrors and lenses. The answers to some questions clearly show misconceptions and naïve ideas about colors, ray tracing, image formation in reflection and refraction. These misconceptions are widespread and do not depend on the gender, the level, and the age of the students: they seem to depend on some wrong ideas and explanatory models that are not changed by the curricular studies at school. In fact, the same errors are present in groups of students before and after taking optics courses at High School. On the other hand we have also found some misleading explanations of the phenomena both in textbooks and websites. Most of the time, errors occur in the explanatory drawings accompanying the text, which are based on some hybrid description of the optical processes: sometimes the description of the path of the ray light is confused with the image reconstruction by the lenses. We think that to partially avoid some errors it is important to use a teaching path centered on the actual path of the rays and not on what eyes see (the vision). Here we present the results of data collected from more than 200 students and some considerations about figures and explanations found in textbooks.

  7. Acceleration of particles by black holes: Kinematic explanation

    International Nuclear Information System (INIS)

    Zaslavskii, O. B.

    2011-01-01

    A new simple and general explanation of the effect of acceleration of particles by black holes to infinite energies in the center of mass frame is suggested. It is based on kinematics of particles moving near the horizon. This effect arises when particles of two kinds collide near the horizon. For massive particles, the first kind represents a particle with the generic energy and angular momentum (I call them ''usual''). Near the horizon, such a particle has a velocity almost equal to that of light in the frame that corotates with a black hole (the frame is static if a black hole is static). The second kind (called ''critical'') consists of particles with the velocity v< c near the horizon due to special relationship between the energy and angular momentum (or charge). As a result, the relative velocity approaches the speed of light c, and the Lorentz factor grows unbound. This explanation applies both to generic rotating black holes and charged ones (even for radial motion of particles). If one of the colliding particles is massless (photon), the critical particle is distinguished by the fact that its frequency is finite near the horizon. The existence (or absence) of the effect is determined depending on competition of two factors--gravitational blue shift for a photon propagating towards a black hole and the Doppler effect due to transformation from the locally nonrotating frame to a comoving one. Classification of all possible types of collisions is suggested depending on whether massive or massless particle is critical or usual.

  8. Successful child psychotherapy of attention deficit/hyperactive disorder: an agitated depression explanation.

    Science.gov (United States)

    Seitler, Burton Norman

    2008-09-01

    Science tries to explain phenomena in ways that are demonstrable and replicable to develop logical, coherent, parsimonious, and predictive theoretical systems. Yet hyperactive children are given stimulants to "calm" them down, despite the fact that science would predict stimulants would increase hyperactivity. Bradley (1937, 1950) observed that half of the behavior-problem children to whom he administered a stimulant for one week became subdued. He called this finding paradoxical, speculating that inhibitory centers of the central nervous system were stimulated. While Bradley's assertion of a paradoxical reverse effect in children may be an empirical observation, it is not an explanation. The Attention Deficit/Hyperactive Disorder (ADHD) is inferred to exist from hyperactive behavior, which in turn, is inferred to be neurological in origin, a circular argument. An inevitable consequence of the belief in the hypothetical neurological etiology of ADHD is that children are typically given stimulants. Using the case of a seven-year old child, described as experiencing ADHD, who was treated successfully without medication as an illustration, the author provides an alternative, more parsimonious explanation of the etiology, suggesting that ADHD is related to agitated depression.

  9. Dimensions of integration in interdisciplinary explanations of the origin of evolutionary novelty.

    Science.gov (United States)

    Love, Alan C; Lugar, Gary L

    2013-12-01

    Many philosophers of biology have embraced a version of pluralism in response to the failure of theory reduction but overlook how concepts, methods, and explanatory resources are in fact coordinated, such as in interdisciplinary research where the aim is to integrate different strands into an articulated whole. This is observable for the origin of evolutionary novelty-a complex problem that requires a synthesis of intellectual resources from different fields to arrive at robust answers to multiple allied questions. It is an apt locus for exploring new dimensions of explanatory integration because it necessitates coordination among historical and experimental disciplines (e.g., geology and molecular biology). These coordination issues are widespread for the origin of novel morphologies observed in the Cambrian Explosion. Despite an explicit commitment to an integrated, interdisciplinary explanation, some potential disciplinary contributors are excluded. Notable among these exclusions is the physics of ontogeny. We argue that two different dimensions of integration-data and standards-have been insufficiently distinguished. This distinction accounts for why physics-based explanatory contributions to the origin of novelty have been resisted: they do not integrate certain types of data and differ in how they conceptualize the standard of uniformitarianism in historical, causal explanations. Our analysis of these different dimensions of integration contributes to the development of more adequate and integrated explanatory frameworks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Particle physics explanations for ultra-high energy cosmic ray events

    Indian Academy of Sciences (India)

    this talk I briefly summarize several proposed particle physics explanations: a breakdown ... as primaries, and magnetic monopoles with mass below 1010 GeV as primaries. .... these monopoles would be the ultimate test of this explanation.

  11. Self-Explanation and Explanatory Feedback in Games: Individual Differences, Gameplay, and Learning

    OpenAIRE

    Killingsworth, Stephen; Clark, Douglas; Adams, Deanne

    2015-01-01

    Previous research has demonstrated the efficacy of two explanation-based approaches for increasing learning in educational games. The first involves asking students to explain their answers (self-explanation) and the second involves providing correct explanations (explanatory feedback). This study (1) compared self-explanation and explanatory feedback features embedded into a game designed to teach Newtonian dynamics and (2) investigated relationships between learning and individual differenc...

  12. Towards an Explanation of Overeating Patterns Among Normal Weight College Women: Development and Validation of a Structural Equation Model

    OpenAIRE

    Russ, Christine Runyan II

    1998-01-01

    Although research describing relationships between psychosocial factors and various eating patterns is growing, a model which explains the mechanisms through which these factors may operate is lacking. A model to explain overeating patterns among normal weight college females was developed and tested. The model contained the following variables: global adjustment, eating and weight cognitions, emotional eating, and self-efficacy. Three hundred ninety-o...

  13. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  14. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  15. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  16. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  17. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  18. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  19. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  20. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  1. Normative study of theme identifiability: Instructions with and without explanation of the false memory effect.

    Science.gov (United States)

    Beato, Maria Soledad; Cadavid, Sara

    2016-12-01

    False-memory illusions have been widely studied using the Deese/Roediger-McDermott paradigm (DRM). In this paradigm, words semantically related to a single nonpresented critical word are studied. In a later memory test, critical words are often falsely recalled and recognized. The present normative study was conducted to measure the theme identifiability of 60 associative word lists in Spanish that include six words (e.g., stove, coat, blanket, scarf, chill, and bonnet) that are simultaneously associated with three critical words (e.g., HEAT, COLD, and WINTER; Beato & Díez, Psicothema, 26, 457-463, 2011). Different levels of backward associative strength were used in the construction of the DRM lists. In addition, we used two types of instructions to obtain theme identifiability. In the without-explanation condition, traditional instructions were used, requesting participants to write the theme list. In the with-explanation condition, the false-memory effect and how the lists were built were explained, and an example of a DRM list and critical words was shown. Participants then had to discover the critical words. The results showed that all lists produced theme identifiability. Moreover, some lists had a higher theme identifiability rate (e.g., 61 % for the critical words LOVE, BOYFRIEND, COUPLE) than others (e.g., 24 % for CITY, PLACE, VILLAGE). After comparing the theme identifiabilities in the different conditions, the results indicated higher theme identifiability when the false-memory effect was explained than without such an explanation. Overall, these new normative data provide a useful tool for those experiments that, for example, aim to analyze the wide differences observed in false memory with DRM lists and the role of theme identifiability.

  2. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  3. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  4. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  5. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  6. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  7. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  8. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  9. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  10. The equations icons of knowledge

    CERN Document Server

    Bais, Sander

    2005-01-01

    For thousands of years mankind has tried to understand nature. Exploring the world on all scales with instruments of ever more ingenuity, we have been able to unravel some of the great mysteries that surround us. While collecting an overwhelming multitude of observational facts, we discovered fundamental laws that govern the structure and evolution of physical reality. We know that nature speaks to us in the language of mathematics. In this language most of our basic understanding of the physical world can be expressed in an unambiguous and concise way. The most artificial language turns out to be the most natural of all. The laws of nature correspond to equations. These equations are the icons of knowledge that mark crucial turning points in our thinking about the world we happen to live in. They form the symbolic representation of most of what we know, and as such constitute an important and robust part of our culture.

  11. Covariant Conformal Decomposition of Einstein Equations

    Science.gov (United States)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  12. Quasiparticle explanation of ``weak thermalization'' regime under quench in a non-integrable quantum spin chain

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei

    Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Banuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors under different initial quantum states. One particular case termed ``weak thermalization'' regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We use perturbation theory near the ground state of the model, and identify the oscillation frequency as the quasiparticle mass. With this quasiparticle picture, we can then address the long-time behavior of the oscillations.

  13. Simple Explanation for why Parallel-Propagating Photons do not Gravitationally Attract

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2015-09-01

    Full Text Available In this article it is shown that photons of light, when traveling in parallel, do not attract one another gravitationally. This has been shown previously using general relativity, however here it is only assumed a Newtonian approximation to the gravitational attraction between photons. The explanation for the lack of gravitational attraction is simple: as co-moving objects accelerate in parallel, the flow of time is retarded, as observed by a stationary observer, according to special relativity. Hence so is the tendency for the objects to move toward one another. As the velocity of the objects approach c, the time required for the objects to approach one another approaches infinity, and so there is no gravitational attraction between objects which move parallel at the speed of light.

  14. The Dirac equation in the local representation - contributions to the quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Schlueter, P.

    1985-05-01

    In this work three topics related to the theory of positron creation in heavy ion collisions are investigated. The first of these is concerned with the local representation of the Dirac matrices. It consists of a space dependent similarity transformation of the Dirac matrices which is chosen in such a way that for certain orthogonal coordinate systems the Dirac equation assumes a simple standardized form. This form is well suited for analytical as well as numerical calculations. For all generally used coordinate systems the transformation can be given in closed form. The application of this idea is not restricted to the solution of the two-centre Dirac equation but may be used also for different electro-magnetic potentials. In the second of the above mentioned problems, the question is discussed, whether the recently observed peak structures in positron spectra from U-U collisions can originate from nuclear conversion processes. It is demonstrated that, taking this hypothesis at face value, in the photon or delta-electron spectrum corresponding structures should be observed. Moreover, rather large nuclear excitation probabilities in the order of percents are needed to make this explanation plausible. Finally, the third topic is concerned with a more fundamental question: May it be possible that the interaction of the strongly bound electrons in a critical electric field with the radiation field leads to an energy shift which is big enough to prevent the diving of the 1s-state into the negative energy continuum. (orig./HSI) [de

  15. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  16. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  17. Causal explanation, intentionality, and prediction: Evaluating the Criticism of "Deductivism"

    DEFF Research Database (Denmark)

    Koch, Carsten Allan

    2001-01-01

    In a number of influential contributions, Tony Lawson has attacked a view of science that he refers to as deductivism, and criticized economists for implicitly using it in their research. Lawson argues that deductivism is simply the covering-law model, also known as the causal model of scientific...... critisizes the use of universal laws in social science, especially in economics. This view cannot be as easily dismissed as his general criticism of causal explanation. We argue that a number of arguments often used against the existence of (correct) universal laws in the social sciences can be put...... into question. First, it is argued that entities need not be identical, or even remotely alike, to be applicable to the same law. What is necessary is that they have common properties, e.g. mass in physics, and that the law relates to that property (section 6). Second, one might take the so-called model...

  18. Cognitive science as an interface between rational and mechanistic explanation.

    Science.gov (United States)

    Chater, Nick

    2014-04-01

    Cognitive science views thought as computation; and computation, by its very nature, can be understood in both rational and mechanistic terms. In rational terms, a computation solves some information processing problem (e.g., mapping sensory information into a description of the external world; parsing a sentence; selecting among a set of possible actions). In mechanistic terms, a computation corresponds to causal chain of events in a physical device (in engineering context, a silicon chip; in biological context, the nervous system). The discipline is thus at the interface between two very different styles of explanation--as the papers in the current special issue well illustrate, it explores the interplay of rational and mechanistic forces. Copyright © 2014 Cognitive Science Society, Inc.

  19. A flavor-safe composite explanation of $R_K$

    CERN Document Server

    Carmona, Adrian

    2017-05-04

    In these proceedings we discuss a flavor-safe explanation of the anomaly found in $R_K= {\\cal B}(B \\to K \\mu^+ \\mu^-)/{\\cal B}(B \\to K e^+ e^-)$ by LHCb, within the framework of composite Higgs models. We present a model featuring a non-negligible degree of compositeness for all three generations of right-handed leptons, which leads to a violation of lepton-flavor universality in neutral current interactions while other constraints from quark- and lepton-flavor physics are met. Moreoever, the particular embedding of the lepton sector considered in this setup provides a parametrically enhanded contribution to the Higgs mass that can weak considerably the need for ultra-light top partners.

  20. Disordered locality as an explanation for the dark energy

    International Nuclear Information System (INIS)

    Prescod-Weinstein, Chanda; Smolin, Lee

    2009-01-01

    We discuss a novel explanation of the dark energy as a manifestation of macroscopic nonlocality coming from quantum gravity, as proposed by Markopoulou [F. Markopoulou (private communication)]. It has been previously suggested that in a transition from an early quantum geometric phase of the Universe to a low temperature phase characterized by an emergent spacetime metric, locality might have been 'disordered'. This means that there is a mismatch of micro-locality, as determined by the microscopic quantum dynamics and macro-locality as determined by the classical metric that governs the emergent low energy physics. In this paper we discuss the consequences for cosmology by studying a simple extension of the standard cosmological models with disordered locality. We show that the consequences can include a naturally small vacuum energy.

  1. Explanation of significant differences for the TNX groundwater operable unit

    International Nuclear Information System (INIS)

    Palmer, E.R.

    1997-01-01

    This Explanation of Significant Differences (ESD) is being issued by the Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the Environmental Protection Agency-Region IV (EPA) and South Carolina Department of Health and Environmental Control (SCDHEC) to announce changes in the interim remediation strategy selected for the TNX Groundwater Operable Unit. The TNX Area is located adjacent to the Savannah River in the southwestern portion of SRS. The remedy selected in the Interim Record of Decision (IROD) to achieve the interim action goals was the Hybrid Groundwater Corrective Action (HGCA). The HGCA consisted of a recirculation well system and an air stripper with a series of groundwater extraction wells. The original remediation strategy needs to be modified because the recirculation well system was determined to be ineffective in this area due to geological factors and the nature of the contamination

  2. An Explanation of True Dreams: Aristotle and Jung

    Directory of Open Access Journals (Sweden)

    Ali Sanai

    2016-12-01

    Full Text Available The naturalistic explanation of realized dream (or dreams that come true means that this phenomen will be explained regardless of supernatural agents. Aristotle in Parva naturalia and Jung in his works explained dream visionary. In this article by scrutiny on these thinkers’ theory, we will indicate the naturalistic approach to dream that is far- fetched for followers of metaphysics. In spite of this fact that Aristotle and Jung both belongs to different historical contexts, they have common aspects in terms of naturalistic method; in the universal or broad sense of word, but in terms of content both explain the true dream by the term “coincidence” or accidental conformity between objective events and psychological affairs. It also seems that the notion of Neutral monism in Jung is adaptive to Hylomorphism in Aristotle psychology, and this, provides a path for naturalistic approach to dream as one forms of consciousness.

  3. Theories of International Relations and the Explanation of Foreign Aid

    Directory of Open Access Journals (Sweden)

    PAUSELLI, Gino

    2013-06-01

    Full Text Available 50 years after the publication of the first and influential article in international relations (IR analyzing foreign aid motivations, A theory of foreign aid, by Hans Morgenthau, IR scholarship has not yet accomplished a consistent theoretical body explaining international development cooperation. Most of the empirical studies on foreign aid have been contributions from other disciplines, especially economics. Research from the field of international relations has been mostly descriptive or poorly connected with IR paradigms.This article proposes to analyze motivations of foreign aid allocations decisions of donors. These motivations will be examined from the theoretical perspective of the international relations scholarship. In this way, it is sought to contribute, from the discipline of IR, to the explanation of the process in which developed countries make transfers of resources to developing countries.

  4. Rethinking the health selection explanation for health inequalities.

    Science.gov (United States)

    West, P

    1991-01-01

    As one of several explanations for class differentials in health, health selection has received remarkably little systematic attention in the inequalities debate. It is widely regarded as having (at best) a very minor role in the production of inequalities, and a theoretical debt to social Darwinism. This paper examines the validity of those assumptions in terms of the evidence which has emerged since the publication of the 'Black Report'. It is suggested that it is too easy to write off health selection as of little or no significance, and that reconceptualising the issue within a specifically sociological perspective owing much to labelling theory offers much greater potential for understanding the processes involved. From this perspective, health selection has many of the features of discrimination of the sort that characterises race and sex.

  5. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  6. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  7. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  10. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2011-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  11. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2010-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...

  12. Intuitive Understanding of Solutions of Partially Differential Equations

    Science.gov (United States)

    Kobayashi, Y.

    2008-01-01

    This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…

  13. A General Linear Method for Equating with Small Samples

    Science.gov (United States)

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  14. Proverb explanation through the lifespan: a developmental study of adolescents and adults.

    Science.gov (United States)

    Nippold, M A; Uhden, L D; Schwarz, I E

    1997-04-01

    A proverb explanation task consisting of 24 low-familiarity expressions was administered to 353 individuals ranging in age from 13 through 79 years. Half the proverbs were composed of concrete nouns ("A caged bird longs for the clouds") and half were composed of abstract nouns ("Humility often gains more than pride"). The task was designed to examine how patterns of language growth in adults compare to those observed in adolescents. It also served as a tool for examining the "metasemantic hypothesis," the view that complex semantic units, such as proverbs, are learned through active analysis of the words they contain. Performance on the task improved markedly during adolescence and into early adulthood. It reached a plateau during the 20s, remained stable during the 30s, 40s, and 50s, and began a slight decline during the 60s that reached statistical significance during the 70s. Concrete proverbs were easier to explain than abstract proverbs for adolescents and for adults in their 20s, but the two proverb types did not differ for adults in their 30s and older. Thus, the metasemantic hypothesis was supported for adolescents and young adults. For the adults, performance on the proverb explanation task was related to the number of years of formal education they had completed.

  15. Bothered by abstractness or engaged by cohesion? Experts' explanations enhance novices' deep-learning.

    Science.gov (United States)

    Lachner, Andreas; Nückles, Matthias

    2015-03-01

    Experts' explanations have been shown to better enhance novices' transfer as compared with advanced students' explanations. Based on research on expertise and text comprehension, we investigated whether the abstractness or the cohesion of experts' and intermediates' explanations accounted for novices' learning. In Study 1, we showed that the superior cohesion of experts' explanations accounted for most of novices' transfer, whereas the degree of abstractness did not impact novices' transfer performance. In Study 2, we investigated novices' processing while learning with experts' and intermediates' explanations. We found that novices studying experts' explanations actively self-regulated their processing of the explanations, as they showed mainly deep-processing activities, whereas novices learning with intermediates' explanations were mainly engaged in shallow-processing activities by paraphrasing the explanations. Thus, we concluded that subject-matter expertise is a crucial prerequisite for instructors. Despite the abstract character of experts' explanations, their subject-matter expertise enables them to generate highly cohesive explanations that serve as a valuable scaffold for students' construction of flexible knowledge by engaging them in deep-level processing. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  16. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  17. Recent developments in the Virasoro master equation

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1991-01-01

    The Virasoro master equation collects all possible Virasoro constructions which are quadratic in the currents of affine Lie g. The solution space of this system is immense, with generically irrational central charge, and solutions which have so far been observed are generically unitary. Other developments reviewed include the exact C-function, the superconformal master equation and partial classification of solutions by graph theory and generalized graph theories. 37 refs., 1 fig., 1 tab

  18. AHRQ series on complex intervention systematic reviews-paper 7: PRISMA-CI elaboration and explanation.

    Science.gov (United States)

    Guise, Jeanne-Marie; Butler, Mary; Chang, Christine; Viswanathan, Meera; Pigott, Terri; Tugwell, Peter

    2017-10-01

    Complex interventions are widely used in health care, public health, education, criminology, social work, business, and welfare. They have increasingly become the subject of systematic reviews and are challenging to effectively report. The Complex Interventions Methods Workgroup developed an extension to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Complex Interventions (PRISMA-CI). Following the EQUATOR Network guidance for Preferred Reporting Items for Systematic Reviews and Meta-Analysis extensions, this Explanation and Elaboration (EE) document accompanies the PRISMA-CI checklist to promote consistency in reporting of systematic reviews of complex interventions. The EE document explains the meaning and rationale for each unique PRISMA-CI checklist item and provides examples to assist systematic review authors in operationalizing PRISMA-CI guidance. The Complex Interventions Workgroup developed PRISMA-CI as an important start toward increased consistency in reporting of systematic reviews of complex interventions. Because the field is rapidly expanding, the Complex Interventions Methods Workgroup plans to re-evaluate periodically for the need to add increasing specificity and examples as the field matures. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  20. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  1. Geometric Implications of Maxwell's Equations

    Science.gov (United States)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  2. Wave-equation Q tomography

    KAUST Repository

    Dutta, Gaurav

    2016-10-12

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.

  3. Wave-equation Q tomography

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2016-01-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. The amplitude and the dispersion losses from attenuation are often compensated for during prestack depth migration. However, most attenuation compensation or Qcompensation migration algorithms require an estimate of the background Q model. We have developed a wave-equation gradient optimization method that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ∈, where ∈ is the sum of the squared differences between the observed and the predicted peak/centroid-frequency shifts of the early arrivals. The gradient is computed by migrating the observed traces weighted by the frequency shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests determined that an improved accuracy of the Q model by wave-equation Q tomography leads to a noticeable improvement in migration image quality. © 2016 Society of Exploration Geophysicists.

  4. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  5. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  6. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  7. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  8. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  9. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  10. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  11. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  12. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  13. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  14. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  15. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  16. A motion of spacelike curves in the Minkowski 3-space and the KdV equation

    International Nuclear Information System (INIS)

    Ding Qing; Wang Wei; Wang Youde

    2010-01-01

    This Letter shows that soliton solutions to KdV equation describe a motion of spacelike curves in R 2,1 with initial data being suitably restricted. This gives a different geometric interpretation of KdV from that given recently by Musso and Nicolodi, and gives a unified geometric explanation for KdV and MKdV.

  17. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    Science.gov (United States)

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  18. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  19. Mind the gap! Automated concept map feedback supports students in writing cohesive explanations.

    Science.gov (United States)

    Lachner, Andreas; Burkhart, Christian; Nückles, Matthias

    2017-03-01

    Many students are challenged with the demand of writing cohesive explanations. To support students in writing cohesive explanations, we developed a computer-based feedback tool that visualizes cohesion deficits of students' explanations in a concept map. We conducted three studies to investigate the effectiveness of such feedback as well as the underlying cognitive processes. In Study 1, we found that the concept map helped students identify potential cohesion gaps in their drafts and plan remedial revisions. In Study 2, students with concept map feedback conducted revisions that resulted in more locally and globally cohesive, and also more comprehensible, explanations than the explanations of students who revised without concept map feedback. In Study 3, we replicated the findings of Study 2 by and large. More importantly, students who had received concept map feedback on a training explanation 1 week later wrote a transfer explanation without feedback that was more cohesive than the explanation of students who had received no feedback on their training explanation. The automated concept map feedback appears to particularly support the evaluation phase of the revision process. Furthermore, the feedback enabled novice writers to acquire sustainable skills in writing cohesive explanations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Learning from instructional explanations: effects of prompts based on the active-constructive-interactive framework.

    Science.gov (United States)

    Roelle, Julian; Müller, Claudia; Roelle, Detlev; Berthold, Kirsten

    2015-01-01

    Although instructional explanations are commonly provided when learners are introduced to new content, they often fail because they are not integrated into effective learning activities. The recently introduced active-constructive-interactive framework posits an effectiveness hierarchy in which interactive learning activities are at the top; these are then followed by constructive and active learning activities, respectively. Against this background, we combined instructional explanations with different types of prompts that were designed to elicit these learning activities and tested the central predictions of the active-constructive-interactive framework. In Experiment 1, N = 83 students were randomly assigned to one of four combinations of instructional explanations and prompts. To test the active learning hypothesis, the learners received either (1) complete explanations and engaging prompts designed to elicit active activities or (2) explanations that were reduced by inferences and inference prompts designed to engage learners in constructing the withheld information. Furthermore, in order to explore how interactive learning activities can be elicited, we gave the learners who had difficulties in constructing the prompted inferences adapted remedial explanations with either (3) unspecific engaging prompts or (4) revision prompts. In support of the active learning hypothesis, we found that the learners who received reduced explanations and inference prompts outperformed the learners who received complete explanations and engaging prompts. Moreover, revision prompts were more effective in eliciting interactive learning activities than engaging prompts. In Experiment 2, N = 40 students were randomly assigned to either (1) a reduced explanations and inference prompts or (2) a reduced explanations and inference prompts plus adapted remedial explanations and revision prompts condition. In support of the constructive learning hypothesis, the learners who received

  1. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals.

    Science.gov (United States)

    Frasier, Charles C

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  2. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals

    Directory of Open Access Journals (Sweden)

    Charles C. Frasier

    2015-09-01

    Full Text Available The Mass, Metabolism and Length Explanation (MMLE was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymassb. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or

  3. Antimicrobial resistance and biological governance: explanations for policy failure.

    Science.gov (United States)

    Wallinga, D; Rayner, G; Lang, T

    2015-10-01

    The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Strategy in the 20th Century: Explanations from History

    Directory of Open Access Journals (Sweden)

    Leonardo Silveira Conke

    2013-12-01

    Full Text Available In this essay, we argue that an historical perspective helps to understand some of the strategic choices made by organizations. More specifically, the purpose here is to describe the great influence of historical events (related to economy, politics, technological advancement etc. on the creation, acceptance, spreading and / or establishment of the strategic theories and tools developed since the beginning of the 20th century. Texts that usually discuss management and history outline only the Industrial Revolution or the transition from feudalism to capitalism, underestimating other historical forces that offer additional explanations to the evolution of strategic thinking. As a result of an extensive bibliographical research, we were able to identify four periods where the strategic theories developed reveal suitable responses to the challenges created by the environment: in the first one (1900-1938, strategy is concerned with organization and control of business activities, resembling the ideas developed by Scientific Administration; in the second period (1939-1964, strategic planning is formalized and the area is broadly recognized; the next decades (1965-1989 are characterized by competition and uncertainty, making strategy focus on problems emerged from the outside; finally, on the turn of the century (1990-2010, the unlimited information availability enhances the need for strategists’ conceptual and practical knowledge. Also, as a final contribution, we suggest two possible trends to the future of strategy.

  5. Why did Kant reject physiological explanations in his anthropology?

    Science.gov (United States)

    Sturm, Thomas

    2008-12-01

    One of Kant's central tenets concerning the human sciences is the claim that one need not, and should not, use a physiological vocabulary if one studies human cognitions, feelings, desires, and actions from the point of view of his 'pragmatic' anthropology. The claim is well known, but the arguments Kant advances for it have not been closely discussed. I argue against misguided interpretations of the claim, and I present his actual reasons in favor of it. Contemporary critics of a 'physiological anthropology' reject physiological explanations of mental states as more or less epistemologically dubious. Kant does not favor such ignorance claims--and this is for the good, since none of these claims was sufficiently justified at that time. Instead, he develops an original irrelevance thesis concerning the empirical knowledge of the physiological basis of the mind. His arguments for this claim derive from his original and, up to now, little understood criticism of a certain conception of pragmatic history, related to his anthropological insights concerning our ability to create new rules of action, the social dynamics of human action, and the relative inconstancy of human nature. The irrelevance thesis also changes his views of the goal and methodology of anthropology. Kant thereby argues for a distinctive approach in quest for a general 'science of man'.

  6. The logic of counterfactual analysis in case-study explanation.

    Science.gov (United States)

    Mahoney, James; Barrenechea, Rodrigo

    2017-12-19

    In this paper, we develop a set-theoretic and possible worlds approach to counterfactual analysis in case-study explanation. Using this approach, we first consider four kinds of counterfactuals: necessary condition counterfactuals, SUIN condition counterfactuals, sufficient condition counterfactuals, and INUS condition counterfactuals. We explore the distinctive causal claims entailed in each, and conclude that necessary condition and SUIN condition counterfactuals are the most useful types for hypothesis assessment in case-study research. We then turn attention to the development of a rigorous understanding of the 'minimal-rewrite' rule, linking this rule to insights from set theory about the relative importance of necessary conditions. We show why, logically speaking, a comparative analysis of two necessary condition counterfactuals will tend to favour small events and contingent happenings. A third section then presents new tools for specifying the level of generality of the events in a counterfactual. We show why and how the goals of formulating empirically important versus empirically plausible counterfactuals stand in tension with one another. Finally, we use our framework to link counterfactual analysis to causal sequences, which in turn provides advantages for conducting counterfactual projections. © London School of Economics and Political Science 2017.

  7. Simultaneous explanation of the RK and R (D (*)) puzzles

    Science.gov (United States)

    Bhattacharya, Bhubanjyoti; Datta, Alakabha; London, David; Shivashankara, Shanmuka

    2015-03-01

    At present, there are several hints of lepton flavor non-universality. The LHCb Collaboration has measured RK ≡ B (B+ →K+μ+μ-) / B (B+ →K+e+e-), and the BaBar Collaboration has measured R (D (*)) ≡ B (B bar →D (*) +τ-νbarτ) / B (B bar →D (*) +ℓ-νbarℓ) (ℓ = e , μ). In all cases, the experimental results differ from the standard model predictions by 2- 3 σ. Recently, an explanation of the RK puzzle was proposed in which new physics (NP) generates a neutral-current operator involving only third-generation particles. Now, assuming the scale of NP is much larger than the weak scale, this NP operator must be made invariant under the full SU (3)C × SU (2)L × U(1)Y gauge group. In this Letter, we note that, when this is done, a new charged-current operator can appear, and this can explain the R (D (*)) puzzle. A more precise measurement of the double ratio R (D) / R (D*) can rule out this model.

  8. Rotational explanation of the high-velocity meolecular emission from the Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Clark, F.O.; Biretta, J.A.; Martin, H.M.

    1979-01-01

    The high-velocity molecular emission of the Orion Molecular Cloud has been sampled using the J/sub N/=2 2 --1 1 rotational spectral line of the SO molecule. The resulting profile, including the high-velocity wings, has been reproduced using only known large-scale properties of the gas and applications of the results of published theoretical calculations. No new physical mechanism is required; observed rotation and conservation of angular momentum are sufficient to reproduce the line profile. The resulting physical state appears to be consistent with all known physical properties. This solution is not unique, but indicates the strengths and weaknesses of such a model for interpretation of Orion as well as the similarities of alternative explanations

  9. Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Choi, Hyoung Joon; Ihm, Jisoon; Yoon, Young-Gui; Louie, Steven G.

    1999-01-01

    The quantum conductance of a metallic carbon nanotube with one end immersed in a jellium metal is studied. We find that the incident π * -band electrons, having a very high angular momentum with respect to the tube axis, go through the tube without being scattered by the free electrons in surrounding metal and contribute a quantum unit (2e 2 /h) to the conductance. On the other hand, the incident π-band electrons, with the p z atomic orbitals in phase along the tube circumference, experience strong resonant back-scattering because the low-angular-momentum states at the Fermi level have a dominantly metallic character in the nanotube-jellium metal coexistence region. These results provide a possible explanation for the experimentally observed conductance of one quantum unit instead of two for nanotubes with one end dipped into liquid metal such as mercury. (c) 1999 The American Physical Society

  10. Repetition Priming Magnitude Depends on Affirmative Prime Responses: A Test of Two Congruity Explanations.

    Science.gov (United States)

    Fiet, Paula; Sorensen, Linda; Mayne, Zachary; Corgiat, Damon; Woltz, Dan

    2016-01-01

    We conducted 2 experiments to evaluate the impact of positive prime responses on repetition priming effects while decoupling this impact from content congruity and specific evaluation operations. Our first experiment consisted of word-meaning comparison trials that required participants to evaluate synonyms or antonyms. A crossing of evaluation operation with semantic content allowed us to test the goal-content congruity hypothesis against the semantic congruity explanation for greater facilitation from positive response primes. Results suggested that operation-based priming is affected by goal-content congruity. A second experiment tested the observed effect of positive responses on repetition priming using mental rotation of irregular shapes, affording a test of the impact of congruity in evaluation goals and content in a nonverbal stimulus domain. Both experiments produced a pattern of results inconsistent with Schulman's (1974) semantic congruity account and instead implicated a different form of congruity that affects memory for prior operations rather than memory for semantic and episodic content.

  11. Explanation of the quantum phenomenon of off-resonant cavity-mode emission

    Science.gov (United States)

    Echeverri-Arteaga, Santiago; Vinck-Posada, Herbert; Gómez, Edgar A.

    2018-04-01

    We theoretically investigate the unexpected occurrence of an extra emission peak that has been experimentally observed in off-resonant studies of cavity QED systems. Our results within the Markovian master equation approach successfully explain why the central peak arises, and how it reveals that the system is suffering a dynamical phase transition induced by the phonon-mediated coupling. Our findings are in qualitative agreement with previous reported experimental results, and the fundamental physics behind this quantum phenomenon is understood.

  12. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  13. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  14. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  15. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  16. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  17. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  18. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.

  19. dimensional Fokas equation

    Indian Academy of Sciences (India)

    However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...

  20. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  1. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  2. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  3. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  4. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  5. The electromagnetic field equations for moving media

    International Nuclear Information System (INIS)

    Ivezić, T

    2017-01-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)

  6. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  7. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  8. Predictive Temperature Equations for Three Sites at the Grand Canyon

    Science.gov (United States)

    McLaughlin, Katrina Marie Neitzel

    Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.

  9. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  10. An Evaluation of Kernel Equating: Parallel Equating with Classical Methods in the SAT Subject Tests[TM] Program. Research Report. ETS RR-09-06

    Science.gov (United States)

    Grant, Mary C.; Zhang, Lilly; Damiano, Michele

    2009-01-01

    This study investigated kernel equating methods by comparing these methods to operational equatings for two tests in the SAT Subject Tests[TM] program. GENASYS (ETS, 2007) was used for all equating methods and scaled score kernel equating results were compared to Tucker, Levine observed score, chained linear, and chained equipercentile equating…

  11. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  12. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  13. Society by Numbers : Studies on Model-Based Explanations in the Social Sciences

    OpenAIRE

    Kuorikoski, Jaakko

    2010-01-01

    The aim of this dissertation is to provide conceptual tools for the social scientist for clarifying, evaluating and comparing explanations of social phenomena based on formal mathematical models. The focus is on relatively simple theoretical models and simulations, not statistical models. These studies apply a theory of explanation according to which explanation is about tracing objective relations of dependence, knowledge of which enables answers to contrastive why and how-questions. This th...

  14. Global environmental change: local perceptions, understandings, and explanations

    Directory of Open Access Journals (Sweden)

    Aili Pyhälä

    2016-09-01

    Full Text Available Global environmental change (GEC is an increasingly discussed phenomenon in the scientific literature as evidence of its presence and impacts continues to grow. Yet, while the documentation of GEC is becoming more readily available, local perceptions of GEC - particularly in small-scale societies - and preferences about how to deal with it, are still largely overlooked. Local knowledge and perceptions of GEC are important in that agents make decisions (including on natural resource management based on individual perceptions. We carried out a systematic literature review that aims to provide an exhaustive state-of-the-art of the degree to and manner in which the study of local perceptions of change are being addressed in GEC research. We reviewed 126 articles found in peer-reviewed journals (between 1998 and 2014 that address local perceptions of GEC. We used three particular lenses of analysis that are known to influence local perceptions, namely (i cognition, (ii culture and knowledge, and (iii possibilities for adaptation.We present our findings on the geographical distribution of the current research, the most common changes reported, perceived drivers and impacts of change, and local explanations and evaluations of change and impacts. Overall, we found the studies to be geographically biased, lacking methodological reporting, mostly theory based with little primary data, and lacking of indepth analysis of the psychological and ontological influences in perception and implications for adaptation. We provide recommendations for future GEC research and propose the development of a "meta-language" around adaptation, perception, and mediation to encourage a greater appreciation and understanding of the diversity around these phenomena across multiple scales, and improved codesign and facilitation of locally relevant adaptation and mitigation strategies.

  15. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    . However, these are usually pointed to in the 'further reading' section at the end of each chapter. I found this to be a welcome compromise: derivations are important but tedious; you should have access to them, but they would bog down a book such as this. Some of the experimental techniques of modern-day cosmology are of sufficient complexity that they require a thorough explanation of the particulars of an experiment intertwined with the fundamentals of cosmology. This is where the book both shines and stumbles. Learning spherical harmonics as an abstraction is a bore. But if you know it will help you to interpret the latest WMAP results, it seems like a vital tool. Pairing topics like these is great for motivation, but at times the execution is lacking. Spherical harmonics are dispensed with in a few paragraphs and a handful of equations. And there are no exercises provided to help students master the basics. This lack of outlets for students to test their knowledge is a serious issue. There are no problem sets at the end of each chapter. Occasionally an exercise is interspersed into the text, but these are relatively rare. The burden will be on the professor to come up with interesting problems to challenge students on most of the topics. A related problem is that the math in the book is too advanced for most undergraduates. After consultation with a British colleague, I don't think this is just a difference between expectations in the American and British systems. In addition to the aforementioned spherical harmonics, advanced Fourier techniques and complicated matrices are presented, with too little background provided. Even tensors are brushed on. Observational Cosmology also tries to serve as a kind of primer on the terminology used by cosmologists. Perhaps this is to help students understand talks, where knowledge of such esoterica as BzK galaxies, Schmidt laws, and Shapiro delays is assumed. This is admirable, and often succeeds, but the result is a book that is

  16. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  17. Inferring Mathematical Equations Using Crowdsourcing.

    Directory of Open Access Journals (Sweden)

    Szymon Wasik

    Full Text Available Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game-so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players.

  18. Inferring Mathematical Equations Using Crowdsourcing.

    Science.gov (United States)

    Wasik, Szymon; Fratczak, Filip; Krzyskow, Jakub; Wulnikowski, Jaroslaw

    2015-01-01

    Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game-so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players.

  19. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  20. A process for developing and revising a learning progression on sea level rise using learners' explanations

    Science.gov (United States)

    McDonald, Robert Christopher

    The purpose of this study was to explore the process of developing a learning progression (LP) on constructing explanations about sea level rise. I used a learning progressions theoretical framework informed by the situated cognition learning theory. During this exploration, I explicitly described my decision-making process as I developed and revised a hypothetical learning progression. Correspondingly, my research question was: What is a process by which a hypothetical learning progression on sea level rise is developed into an empirical learning progression using learners' explanations? To answer this question, I used a qualitative descriptive single case study with multiple embedded cases (Yin, 2014) that employed analytic induction (Denzin, 1970) to analyze data collected on middle school learners (grades 6-8). Data sources included written artifacts, classroom observations, and semi-structured interviews. Additionally, I kept a researcher journal to track my thinking about the learning progression throughout the research study. Using analytic induction to analyze collected data, I developed eight analytic concepts: participant explanation structures varied widely, global warming and ice melt cause sea level rise, participants held alternative conceptions about sea level rise, participants learned about thermal expansion as a fundamental aspect of sea level rise, participants learned to incorporate authentic scientific data, participants' mental models of the ocean varied widely, sea ice melt contributes to sea level rise, and participants held vague and alternative conceptions about how pollution impacts the ocean. I started with a hypothetical learning progression, gathered empirical data via various sources (especially semi-structured interviews), revised the hypothetical learning progression in response to those data, and ended with an empirical learning progression comprising six levels of learner thinking. As a result of developing an empirically based LP

  1. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  2. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  3. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  4. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  5. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  6. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  7. Calculus for cognitive scientists partial differential equation models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.

  8. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  9. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  10. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  11. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  12. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  13. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  14. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  15. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  16. Population Causes and Consequences of Leading Chronic Diseases: A Comparative Analysis of Prevailing Explanations

    Science.gov (United States)

    Stuckler, David

    2008-01-01

    Context The mortality numbers and rates of chronic disease are rising faster in developing than in developed countries. This article compares prevailing explanations of population chronic disease trends with theoretical and empirical models of population chronic disease epidemiology and assesses some economic consequences of the growth of chronic diseases in developing countries based on the experiences of developed countries. Methods Four decades of male mortality rates of cardiovascular and chronic noncommunicable diseases were regressed on changes in and levels of country income per capita, market integration, foreign direct investment, urbanization rates, and population aging in fifty-six countries for which comparative data were available. Neoclassical economic growth models were used to estimate the effect of the mortality rates of chronic noncommunicable diseases on economic growth in high-income OECD countries. Findings Processes of economic growth, market integration, foreign direct investment, and urbanization were significant determinants of long-term changes in mortality rates of heart disease and chronic noncommunicable disease, and the observed relationships with these social and economic factors were roughly three times stronger than the relationships with the population's aging. In low-income countries, higher levels of country income per capita, population urbanization, foreign direct investment, and market integration were associated with greater mortality rates of heart disease and chronic noncommunicable disease, less increased or sometimes reduced rates in middle-income countries, and decreased rates in high-income countries. Each 10 percent increase in the working-age mortality rates of chronic noncommunicable disease decreased economic growth rates by close to a half percent. Conclusions Macrosocial and macroeconomic forces are major determinants of population rises in chronic disease mortality, and some prevailing demographic explanations

  17. Population causes and consequences of leading chronic diseases: a comparative analysis of prevailing explanations.

    Science.gov (United States)

    Stuckler, David

    2008-06-01

    The mortality numbers and rates of chronic disease are rising faster in developing than in developed countries. This article compares prevailing explanations of population chronic disease trends with theoretical and empirical models of population chronic disease epidemiology and assesses some economic consequences of the growth of chronic diseases in developing countries based on the experiences of developed countries. Four decades of male mortality rates of cardiovascular and chronic noncommunicable diseases were regressed on changes in and levels of country income per capita, market integration, foreign direct investment, urbanization rates, and population aging in fifty-six countries for which comparative data were available. Neoclassical economic growth models were used to estimate the effect of the mortality rates of chronic noncommunicable diseases on economic growth in high-income OECD countries. Processes of economic growth, market integration, foreign direct investment, and urbanization were significant determinants of long-term changes in mortality rates of heart disease and chronic noncommunicable disease, and the observed relationships with these social and economic factors were roughly three times stronger than the relationships with the population's aging. In low-income countries, higher levels of country income per capita, population urbanization, foreign direct investment, and market integration were associated with greater mortality rates of heart disease and chronic noncommunicable disease, less increased or sometimes reduced rates in middle-income countries, and decreased rates in high-income countries. Each 10 percent increase in the working-age mortality rates of chronic noncommunicable disease decreased economic growth rates by close to a half percent. Macrosocial and macroeconomic forces are major determinants of population rises in chronic disease mortality, and some prevailing demographic explanations, such as population aging, are

  18. Solving Abel’s Type Integral Equation with Mikusinski’s Operator of Fractional Order

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of the solution to the integral equation of Abel’s type. The proof of the existence of the inverse of the fractional Mikusinski operator is presented, providing an alternative method of treating the integral equation of Abel’s type.

  19. Animation, audio, and spatial ability: Optimizing multimedia for scientific explanations

    Science.gov (United States)

    Koroghlanian, Carol May

    This study investigated the effects of audio, animation and spatial ability in a computer based instructional program for biology. The program presented instructional material via text or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a biology course were blocked by spatial ability and randomly assigned to one of four treatments (Text-Static Illustration Audio-Static Illustration, Text-Animation, Audio-Animation). The study examined the effects of instructional mode (Text vs. Audio), illustration mode (Static Illustration vs. Animation) and spatial ability (Low vs. High) on practice and posttest achievement, attitude and time. Results for practice achievement indicated that high spatial ability participants achieved more than low spatial ability participants. Similar results for posttest achievement and spatial ability were not found. Participants in the Static Illustration treatments achieved the same as participants in the Animation treatments on both the practice and posttest. Likewise, participants in the Text treatments achieved the same as participants in the Audio treatments on both the practice and posttest. In terms of attitude, participants responded favorably to the computer based instructional program. They found the program interesting, felt the static illustrations or animations made the explanations easier to understand and concentrated on learning the material. Furthermore, participants in the Animation treatments felt the information was easier to understand than participants in the Static Illustration treatments. However, no difference for any attitude item was found for participants in the Text as compared to those in the Audio treatments. Significant differences were found by Spatial Ability for three attitude items concerning concentration and interest. In all three items, the low spatial ability participants responded more positively

  20. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram, E-mail: jatan_buch@brown.edu, E-mail: pranjal6@illinois.edu, E-mail: rentala@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology - Bombay, Powai, Mumbai 400076 (India)

    2017-10-01

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.

  1. Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

    International Nuclear Information System (INIS)

    Buch, Jatan; Ralegankar, Pranjal; Rentala, Vikram

    2017-01-01

    The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large 'boost factor' to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter species over cosmological timescales. Consequently, the lighter species becomes the DM which populates the universe today. We show that annihilation of the lighter DM species with an enhanced cross-section, produced via such a non-thermal mechanism, can explain the observed AMS-02 positron flux while avoiding CMB constraints. The observed DM relic density can be correctly reproduced as well with simple s -wave annihilation cross-sections. We demonstrate that the scenario is safe from CMB constraints on late-time energy depositions during the cosmic 'dark ages'. Interestingly, structure formation constraints force us to consider small mass splittings between the two dark matter species. We explore possible cosmological and particle physics signatures in a toy model that realizes this scenario.

  2. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  3. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  4. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  5. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  6. Optimal Control Problems for Partial Differential Equations on Reticulated Domains

    CERN Document Server

    Kogut, Peter I

    2011-01-01

    In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu

  7. On the solution of the Schroedinger equation through continued fractions

    International Nuclear Information System (INIS)

    Mignaco, J.A.

    1979-05-01

    The domain of interest for the applications of a method to solve the Schroedinger equation through continued fractions is studied. It is argued that the method applies almost equally well to quantum mechanical regimes (lower energy levels, low energy scattering) as well as to semiclassical ones simultaneously; this is illustrated by the example of the central power law potentials r sup(ν)(ν>o). The explanation of this behaviour is given in terms of the mathematical approximations involved and its relationship to physically interesting quantities. (Author) [pt

  8. Structural Equation Modeling with Mplus Basic Concepts, Applications, and Programming

    CERN Document Server

    Byrne, Barbara M

    2011-01-01

    Modeled after Barbara Byrne's other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models expl

  9. ExplaNet: A Collaborative Learning Tool and Hybrid Recommender System for Student-Authored Explanations

    Science.gov (United States)

    Masters, Jessica; Madhyastha, Tara; Shakouri, Ali

    2008-01-01

    ExplaNet is a web-based, anonymous, asynchronous explanation-sharing network. Instructors post questions to the network and students submit explanatory answers. Students then view and rank the explanations submitted by their peers before optionally resubmitting a final and revised answer. Three classroom evaluations of ExplaNet showed that by…

  10. Developing Explanations and Developing Understanding: Students Explain the Phases of the Moon Using Visual Representations

    Science.gov (United States)

    Parnafes, Orit

    2012-01-01

    This article presents a theoretical model of the process by which students construct and elaborate explanations of scientific phenomena using visual representations. The model describes progress in the underlying conceptual processes in students' explanations as a reorganization of fine-grained knowledge elements based on the Knowledge in Pieces…

  11. Investigating the Development of Chinese Oral Explanation and Justification in Singapore Primary Students

    Science.gov (United States)

    Yan, Jing

    2016-01-01

    Explanation and justification require cognitive ability which selects and organises relevant information in a logical way, and linguistic ability which enables speakers to encode the information with linguistic knowledge. This study aims to investigate the development of Chinese oral explanation and justification in Singapore primary students. The…

  12. Sex Differences in Social Behavior: Are the Social Role and Evolutionary Explanations Compatible?

    Science.gov (United States)

    Archer, John

    1996-01-01

    Examines competing claims of two explanations of sex differences in social behavior, social role theory, and evolutionary psychology. Findings associated with social role theory are weighed against evolutionary explanations. It is suggested that evolutionary theory better accounts for the overall pattern of sex differences and for their origins.…

  13. 75 FR 75453 - Proposed Information Collection; Comment Request; Technical Data Letter of Explanation

    Science.gov (United States)

    2010-12-03

    ... Request; Technical Data Letter of Explanation AGENCY: Bureau of Industry and Security. ACTION: Notice....gov . SUPPLEMENTARY INFORMATION: I. Abstract These technical data letters of explanation will assure the Bureau of Industry and Security that U.S.-origin technical data will be exported only for...

  14. Learning the Language of Evolution: Lexical Ambiguity and Word Meaning in Student Explanations

    Science.gov (United States)

    Rector, Meghan A.; Nehm, Ross H.; Pearl, Dennis

    2013-01-01

    Our study investigates the challenges introduced by students' use of lexically ambiguous language in evolutionary explanations. Specifically, we examined students' meaning of five key terms incorporated into their written evolutionary explanations: "pressure", "select", "adapt", "need", and "must". We utilized a new technological tool known as the…

  15. Simple explanations and reasoning: From philosophy of science to expert systems

    Science.gov (United States)

    Rochowiak, Daniel

    1988-01-01

    A preliminary prototype of a simple explanation system was constructed. Although the system, based on the idea of storytelling, did not incorporate all of the principles of simple explanation, it did demonstrate the potential of the approach. The system incorporated a hypertext system, an inference engine, and facilities for constructing contrast type explanations. The continued development of such a system should prove to be valuable. By extending the resources of the expert system paradigm, the knowledge engineer is not forced to learn a new set of skills, and the domain knowledge already acquired by him is not lost. Further, both the beginning user and the more advanced user can be accommodated. For the beginning user, corrective explanations and ES explanations provide facilities for more clearly understanding the way in which the system is functioning. For the more advanced user, the instance and state explanations allow him to focus on the issues at hand. The simple model of explanation attempts to exploit and show how the why and how facilities of the expert system paradigm can be extended by attending to the pragmatics of explanation and adding texture to the ordinary pattern of reasoning in a rule based system.

  16. The many roles of "explanation" in science education: a case study

    Science.gov (United States)

    Rocksén, Miranda

    2016-12-01

    In this paper the role of explanations is discussed in relation to possible consequences originating in the polysemy of the word explanation. The present study is a response to conceptual confusions that have arisen in the intersection between theory and practice, and between science education literature and communication in authentic science classroom settings. Science classroom communication is examined in terms of one teacher's word use during eleven lessons about evolution. The study contributes empirical examples of how disciplinary norms of valid explanations are manifested in science classroom communication. A dialogical analysis shows how the teacher provides three conversational structures: asking for acts of explanation, providing opportunities to talk about what explanations are in this context and providing opportunities to talk about explanations constructed by students. These three structures facilitate the process of learning how to evaluate and justify explanations. Three potential meanings of the word "explanation" are pointed to: an everyday meaning, a pedagogical-professional meaning and a scientific meaning of the word. It is suggested that the co-existence of these three potential meanings has communicative consequences in science education.

  17. Synergy and Students' Explanations: Exploring the Role of Generic and Content-Specific Scaffolds

    Science.gov (United States)

    Delen, Ibrahim; Krajcik, Joseph

    2018-01-01

    In this study, we explored how a teacher used a new mobile application that enables students to collect data inside and outside the classroom, and then use the data to create scientific explanations by using claim-evidence-reasoning framework. Previous technologies designed to support scientific explanations focused on how these programs improve…

  18. The Coexistence of Natural and Supernatural Explanations across Cultures and Development

    Science.gov (United States)

    Legare, Cristine H.; Evans, E. Margaret; Rosengren, Karl S.; Harris, Paul L.

    2012-01-01

    Although often conceptualized in contradictory terms, the common assumption that natural and supernatural explanations are incompatible is psychologically inaccurate. Instead, there is considerable evidence that the same individuals use both natural and supernatural explanations to interpret the very same events and that there are multiple ways in…

  19. Criteria for deciding what is the ’best’ scientific explanation

    NARCIS (Netherlands)

    Wagemans, J.H.M.; Mohammed, D.; Lewiński, M.

    2016-01-01

    In justifying their choice of the ‘best’ scientific explanation from a number of candidate explanations, scientists may employ specific theoretical virtues and other criteria for good scientific theories. This paper is aimed at providing an inventory of such criteria and at analyzing how they

  20. Why the Difference Between Explanation and Argument Matters to Science Education

    Science.gov (United States)

    Brigandt, Ingo

    2016-05-01

    Contributing to the recent debate on whether or not explanations ought to be differentiated from arguments, this article argues that the distinction matters to science education. I articulate the distinction in terms of explanations and arguments having to meet different standards of adequacy. Standards of explanatory adequacy are important because they correspond to what counts as a good explanation in a science classroom, whereas a focus on evidence-based argumentation can obscure such standards of what makes an explanation explanatory. I provide further reasons for the relevance of not conflating explanations with arguments (and having standards of explanatory adequacy in view). First, what guides the adoption of the particular standards of explanatory adequacy that are relevant in a scientific case is the explanatory aim pursued in this context. Apart from explanatory aims being an important aspect of the nature of science, including explanatory aims in classroom instruction also promotes students seeing explanations as more than facts, and engages them in developing explanations as responses to interesting explanatory problems. Second, it is of relevance to science curricula that science aims at intervening in natural processes, not only for technological applications, but also as part of experimental discovery. Not any argument enables intervention in nature, as successful intervention specifically presupposes causal explanations. Students can fruitfully explore in the classroom how an explanatory account suggests different options for intervention.

  1. The Different Effects of Family on Objective Career Success across Gender: A Test of Alternative Explanations

    Science.gov (United States)

    Kirchmeyer, Catherine

    2006-01-01

    Gender gaps in achieved rank and salary, common indicators of objective success, often are attributed to the different family roles and responsibilities of men and women. This study tested three explanations for the different effects of family on careers: that is, choice, performance, and signaling explanations. In a sample of American doctoral…

  2. The Many Roles of "Explanation" in Science Education: A Case Study

    Science.gov (United States)

    Rocksén, Miranda

    2016-01-01

    In this paper the role of explanations is discussed in relation to possible consequences originating in the polysemy of the word explanation. The present study is a response to conceptual confusions that have arisen in the intersection between theory and practice, and between science education literature and communication in authentic science…

  3. The Effects of Two Reality Explanations on Children's Reactions to a Frightening Movie Scene.

    Science.gov (United States)

    Wilson, Barbara J.; Weiss, Audrey J.

    1991-01-01

    Assesses the effectiveness of two reality explanations on children's reactions to frightening programs. Shows that neither influenced younger children's emotional or cognitive reactions, whereas the special tricks explanation reduced older children's emotional responses with no impact on their interpretation. Shows that the real life explanation…

  4. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    Science.gov (United States)

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  5. Impact of Self-Explanation and Analogical Comparison Support on Learning Processes, Motivation, Metacognition, and Transfer

    Science.gov (United States)

    Richey, J. Elizabeth

    Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.

  6. Modes of risk explanation in telephone consultations between nurses and parents for a genetic condition

    DEFF Research Database (Denmark)

    Zayts, Olga; Sarangi, Srikant

    2013-01-01

    as warrants for advice-giving and providing reassurance. We then examine how the genetic nurses interactionally orient themselves to the parents’ existing knowledge regarding G6PD deficiency while delivering these risk explanations. The differences in explanation trajectories are linked to the presence...

  7. What Do Students' Explanations Look Like When They Use Second-Hand Data?

    Science.gov (United States)

    Delen, Ibrahim; Krajcik, Joseph

    2015-01-01

    Explanation studies underlined the importance of using evidence in support of claims. However, few studies have focused on students' use of others' data (second-hand data) in this process. In this study, students collected data from a local water source and then took all the data back to the classroom to create scientific explanations by using…

  8. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  9. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  10. Modified Regge calculus as an explanation of dark energy

    International Nuclear Information System (INIS)

    Stuckey, W M; McDevitt, T J; Silberstein, M

    2012-01-01

    Using the Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: (1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and (2) we assume that luminosity distance D L is related to graphical proper distance D p by the equation D L = (1+z)√D p ·D p , where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and ΛCDM are compared using the data from the Union2 Compilation, i.e. distance moduli and redshifts for type Ia supernovae. We find that a best fit line through logD L versus logz gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit ΛCDM gives SSE = 1.79 using H o = 69.2 kms -1 Mpc, Ω M = 0.29 and Ω Λ = 0.71. The best fit EdS gives SSE = 2.68 using H o 60.9 km s -1 Mpc. The best-fit MORC gives SSE = 1.77 and H o = 73.9 km s -1 Mpc using R = A -1 = 8.38 Gcy and m = 1.71 x 10 52 kg, where R is the current graphical proper distance between nodes, A -1 is the scaling factor from our non-trivial inner product, and m is the nodal mass. Thus, the MORC improves the EdS as well as ΛCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e. there is no dark energy and the universe is always decelerating. (paper)

  11. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...

  12. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  13. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  14. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  15. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  16. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  17. A universal explanation of tunneling conductance in exotic superconductors

    OpenAIRE

    Hong, Jongbae; Abergel, D. S. L.

    2016-01-01

    A longstanding mystery in understanding cuprate superconductors is the inconsistency between the experimental data measured by scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In particular, the gap between prominent side peaks observed in STS is much bigger than the superconducting gap observed by ARPES measurements. Here, we reconcile the two experimental techniques by generalising a theory which was previously applied to zero-dimensional mesoscop...

  18. dimensional Jaulent–Miodek equations

    Indian Academy of Sciences (India)

    (2+1)-dimensional Jaulent–Miodek equation; the first integral method; kinks; ... and effective method for solving nonlinear partial differential equations which can ... of the method employed and exact kink and soliton solutions are constructed ...

  19. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  20. Sustainable development in the EU: a political and economic explanation

    International Nuclear Information System (INIS)

    Creaco, Salvo

    2005-01-01

    envisaged when the recent European environmental policy was adopted. With the inevitable consequence that the most common environmental policy solution had frequently continued to be direct regulations. The scant progress in widening the range of instruments for control and behavioural change confirms the existence of a large disagreement between the normative prescriptions of economic theory and decisions effectively taken within the political process. If a large divergence between theory and practices often prevails, the relevant issue is then to understand why ED and Member States have failed to refer to the proposed wider box of instruments. In this direction, this paper points out the usefulness of the contribution that public choice theory can provide for understanding why particular environmental instruments are actually adopted and implemented. According to the individualistic approach of public choice, the paper deals with the issue concerning the choice and implementation of environmental policy tools through the analysis of the functioning of two strictly connected markets: the political market and the para-political market, and tries to give an explanation as to why in representative democracies, in which forces may be identified as demand and supply, an incentive-oriented environmental policy has many difficulties of being implemented [it