WorldWideScience

Sample records for obliquity rate precession

  1. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs

    Science.gov (United States)

    Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.

    2018-05-01

    We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in

  2. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling

    International Nuclear Information System (INIS)

    Bills, B.G.

    1990-01-01

    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling is likely to be most important on longer time scales

  3. Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems

    Science.gov (United States)

    Van Laerhoven, Christa

    2015-12-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.

  4. Obliquity histories of Earth and Mars: Influence of inertial and dissipative core-mantle coupling

    Science.gov (United States)

    Bills, Bruce G.

    1990-01-01

    For both the Earth and Mars, secular variations in the angular separation of the spin axis from the orbit normal are suspected of driving major climatic changes. There is considerable interest in determining the amplitude and timing of these obliquity variations. If the orientation of the orbital plane were inertially fixed, and the planet were to act as a rigid body in it response to precessional torques, the spin axis would simply precess around the orbit at a fixed obliquity and at a uniform angular rate. The precession rate parameter depends on the principal moments of inertia and rotation rate of the perturbed body, and on the gravitational masses and semiminor axes of the perturbing bodies. For Mars, the precession rate is not well known, but probably lies in the interval 8 to 10 arcsec/year. Gravitational interactions between the planets lead to secular motions of the orbit planes. In the rigid body case, the spin axis still attempts to precess about the instantaneous orbit normal, but now the obliquity varies. The hydrostatic figure of a planet represents a compromise between gravitation, which attempts to attain spherical symmetry, and rotation, which prefers cylindrical symmetry. Due to their higher mean densities the cores of the Earth and Mars will be more nearly spherical than the outer layers of these planets. On short time scales it is appropriate to consider the core to be an inviscid fluid constrained to move with the ellipsoidal region bounded by the rigid mantle. The inertial coupling provided by this mechanism is effective whenever the ellipticicy of the container exceeds the ratio of precessional to rotational rates. If the mantle were actually rigid, this would be an extremely effective type of coupling. However, on sufficiently long time scales, the mantle will deform viscously and can accommodate the motions of the core fluid. A fundamentally different type of coupling is provided by electromagnetic or viscous torques. This type of coupling

  5. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    Science.gov (United States)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  6. New precession expressions, valid for long time intervals

    Science.gov (United States)

    Vondrák, J.; Capitaine, N.; Wallace, P.

    2011-10-01

    Context. The present IAU model of precession, like its predecessors, is given as a set of polynomial approximations of various precession parameters intended for high-accuracy applications over a limited time span. Earlier comparisons with numerical integrations have shown that this model is valid only for a few centuries around the basic epoch, J2000.0, while for more distant epochs it rapidly diverges from the numerical solution. In our preceding studies we also obtained preliminary developments for the precessional contribution to the motion of the equator: coordinates X,Y of the precessing pole and precession parameters ψA,ωA, suitable for use over long time intervals. Aims: The goal of the present paper is to obtain upgraded developments for various sets of precession angles that would fit modern observations near J2000.0 and at the same time fit numerical integration of the motions of solar system bodies on scales of several thousand centuries. Methods: We used the IAU 2006 solutions to represent the precession of the ecliptic and of the equator close to J2000.0 and, for more distant epochs, a numerical integration using the Mercury 6 package and solutions by Laskar et al. (1993, A&A, 270, 522) with upgraded initial conditions and constants to represent the ecliptic, and general precession and obliquity, respectively. From them, different precession parameters were calculated in the interval ± 200 millennia from J2000.0, and analytical expressions are found that provide a good fit for the whole interval. Results: Series for the various precessional parameters, comprising a cubic polynomial plus from 8 to 14 periodic terms, are derived that allow precession to be computed with an accuracy comparable to IAU 2006 around the central epoch J2000.0, a few arcseconds throughout the historical period, and a few tenths of a degree at the ends of the ± 200 millennia time span. Computer algorithms are provided that compute the ecliptic and mean equator poles and the

  7. Impeller in Precessing Motion

    Directory of Open Access Journals (Sweden)

    Yoshiki Yoshida

    2001-01-01

    destabilizing in the region of negative precessing speed ratio (-0.3<Ω/ω<0, at the design flow rate; (2 At reduced flow rate, the destabilizing fluid force moments occurred at small positive precessing speed ratio (0.2<Ω/ω<0.4; (3 From the comparison of direct measured fluid force moments with those estimated from the unsteady pressure measured on the front and back casing walls, it was found that the destabilizing moments in the backward precession are mainly caused by the fluid forces on the front surface of the present impeller, where there is large clearance between the back shroud and casing.

  8. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field.

    Science.gov (United States)

    Miah, M Idrish

    2009-03-13

    Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (theta) of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function of theta are obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electron g-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  9. Improved Models for Precession and Nutation

    National Research Council Canada - National Science Library

    Mathews, P. M

    2000-01-01

    .... Such a fit is provided by the MHB2000 nutation series (Mathews et al., 2000) based on geophysical theory with a few basic Earth parameters estimated by a fit to nutation-precession data, and its accompanying precession rate...

  10. Electron-Spin Precession in Dependence of the Orientation of the External Magnetic Field

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract Electron-spin dynamics in semiconductor-based heterostructures has been investigated in oblique magnetic fields. Spins are generated optically by a circularly polarized light, and the dynamics of spins in dependence of the orientation (θ of the magnetic field are studied. The electron-spin precession frequency, polarization amplitude, and decay rate as a function ofθare obtained and the reasons for their dependences are discussed. From the measured data, the values of the longitudinal and transverse components of the electrong-factor are estimated and are found to be in good agreement with those obtained in earlier investigations. The possible mechanisms responsible for the observed effects are also discussed.

  11. Equatorial insolation: from precession harmonics to eccentricity frequencies

    Directory of Open Access Journals (Sweden)

    A. Berger

    2006-01-01

    Full Text Available Since the paper by Hays et al. (1976, spectral analyses of climate proxy records provide substantial evidence that a fraction of the climatic variance is driven by insolation changes in the frequency ranges of obliquity and precession variations. However, it is the variance components centered near 100 kyr which dominate most Upper Pleistocene climatic records, although the amount of insolation perturbation at the eccentricity driven periods close to 100-kyr (mainly the 95 kyr- and 123 kyr-periods is much too small to cause directly a climate change of ice-age amplitude. Many attempts to find an explanation to this 100-kyr cycle in climatic records have been made over the last decades. Here we show that the double maximum which characterizes the daily irradiation received in tropical latitudes over the course of the year is at the origin in equatorial insolation of not only strong 95 kyr and 123 kyr periods related to eccentricity, but also of a 11-kyr and a 5.5-kyr periods related to precession.

  12. Change in General Relativistic precession rates due to Lidov-Kozai oscillations in the Solar System

    Science.gov (United States)

    Sekhar, Aswin; Asher, David J.; Werner, Stephanie C.; Vaubaillon, Jeremie; Li, Gongjie

    2017-04-01

    permissible in nature. A real solar system body in this intermediate state is identified using compiled observational records from IAU-Minor Planet Center, Cometary Catalogue, IAU-Meteor Data Center and performing analytical plus numerical tests on them. This intermediate state brings up the interesting possibility of drastic changes in GR precession rates (at some points peaking to about 60 times that of Mercury's GR precession) during orbital evolution due to sungrazing and sun colliding phases induced by the LK mechanism, thus combining both these important effects in a unique and dynamically interesting way. Comet 96P/Machholz 1 stands out as the only real body identified (from our simulations) to be exhibiting these interesting traits, as well as inclination flips, in the near future. Both these phenomena complimenting and co-existing at the same time has interesting implications in the long term impact studies of small bodies in general.

  13. Precessing rotating flows with additional shear: stability analysis.

    Science.gov (United States)

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

  14. Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

    Science.gov (United States)

    Shan, Yutong; Li, Gongjie

    2018-06-01

    Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.

  15. Resonant spin-flavor precession of neutrino and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Bychuk, O.V.; AN SSSR, Moscow

    1989-01-01

    Resonant amplification of spin-flavor precession of neutrinos in solar matter is considered. Some possible consequences of the process are discussed. It is shown that resonant spin-flavor neutrino precession may account for the deficit of solar neutrinos in Davis' experiment and the anticorrelation between the rate of neutrino counting and solar activity. Experiments are considered which should make it possible to distinguish between spin-flavor neutrino precession and the Mikheyev-Smirnov-Wolfenstein effect. A new restriction on the usual spin precession of solar neutrinos is derived

  16. The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars

    International Nuclear Information System (INIS)

    Broeck, Chris van den

    2005-01-01

    Evidence for free precession has been observed in the radio signature of several pulsars. Freely precessing pulsars radiate gravitationally at frequencies near the rotation rate and twice the rotation rate, which for rotation frequencies greater than ∼10 Hz is in the LIGO band. In older work, the gravitational wave spectrum of a precessing neutron star has been evaluated to first order in a small precession angle. Here, we calculate the contributions to second order in the wobble angle, and we find that a new spectral line emerges. We show that for reasonable wobble angles, the second-order line may well be observable with the proposed advanced LIGO detectors for precessing neutron stars as far away as the galactic centre. Observation of the full second-order spectrum permits a direct measurement of the star's wobble angle, oblateness and deviation from axisymmetry, with the potential to significantly increase our understanding of neutron star structure

  17. Tilting Uranus without a Collision

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  18. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  19. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  20. The Pole Orientation, Pole Precession, and Moment of Inertia Factor of Saturn

    Science.gov (United States)

    Jacobson, R. A.; French, R. G.; Nicholson, P. D.; Hedman, M.; Colwell, J. E.; Marouf, E.; Rappaport, N.; McGhee, C.; Sepersky, T.; Lonergan, K.

    2011-01-01

    This paper discusses our determination of the Saturn's pole orientation and precession using a combination of Earthbased and spacecraft based observational data. From our model of the polar motion and the observed precession rate we obtain a value for Saturn's polar moment of inertia

  1. Comparative study of unilateral versus bilateral inferior oblique recession/anteriorization in unilateral inferior oblique overaction.

    Science.gov (United States)

    Mostafa, Attiat M; Kassem, Rehab R

    2018-05-01

    To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.

  2. Precession of the Earth-Moon System

    Science.gov (United States)

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  3. Evidence for free precession in a pulsar

    Science.gov (United States)

    Stairs; Lyne; Shemar

    2000-08-03

    Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.

  4. Spinor approach to gravitational motion and precession

    International Nuclear Information System (INIS)

    Hestenes, D.

    1986-01-01

    The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)

  5. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  6. Thermal transport in oblique finned microminichannels

    CERN Document Server

    Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun

    2015-01-01

    The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques  Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...

  7. Precession effects on a liquid planetary core

    Science.gov (United States)

    Liu, Min; Li, Li-Gang

    2018-02-01

    Motivated by the desire to understand the rich dynamics of precessionally driven flow in a liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a rotating cylindrical annulus, which simultaneously possesses slow precession. The same problemhas been studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus, there is another parameter, the inner-radius-height aspect ratio ϒ, which also plays an important role in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic energy. As the precessional force increases, our simulation suggests that the nonlinear interaction between the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional regime of rich dynamics to disordered flow. The inertial mode u 111, followed by u 113 or u 112, always dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession. Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a laminar to disordered flow.

  8. Gyro precession and Mach's principle

    International Nuclear Information System (INIS)

    Eby, P.

    1979-01-01

    The precession of a gyroscope is calculated in a nonrelativistic theory due to Barbour which satisfies Mach's principle. It is shown that the theory predicts both the geodetic and motional precession of general relativity to within factors of order 1. The significance of the gyro experiment is discussed from the point of view of metric theories of gravity and this is contrasted with its significance from the point of view of Mach's principle. (author)

  9. Single-spin precessing gravitational waveform in closed form

    Science.gov (United States)

    Lundgren, Andrew; O'Shaughnessy, R.

    2014-02-01

    In coming years, gravitational-wave detectors should find black hole-neutron star (BH-NS) binaries, potentially coincident with astronomical phenomena like short gamma ray bursts. These binaries are expected to precess. Gravitational-wave science requires a tractable model for precessing binaries, to disentangle precession physics from other phenomena like modified strong field gravity, tidal deformability, or Hubble flow; and to measure compact object masses, spins, and alignments. Moreover, current searches for gravitational waves from compact binaries use templates where the binary does not precess and are ill-suited for detection of generic precessing sources. In this paper we provide a closed-form representation of the single-spin precessing waveform in the frequency domain by reorganizing the signal as a sum over harmonics, each of which resembles a nonprecessing waveform. This form enables simple analytic calculations of the Fisher matrix for use in template bank generation and coincidence metrics, and jump proposals to improve the efficiency of Markov chain Monte Carlo sampling. We have verified that for generic BH-NS binaries, our model agrees with the time-domain waveform to 2%. Straightforward extensions of the derivations outlined here (and provided in full online) allow higher accuracy and error estimates.

  10. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  11. MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION

    International Nuclear Information System (INIS)

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-01-01

    When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii

  12. Recognition of Milankovitch cycles in the stratigraphic record:application of the CWT and the FFT to well-log data

    Institute of Scientific and Technical Information of China (English)

    YU Ji-feng; SUI Feng-gui; LI Zeng-xue; LIU Hua; WANG Yu-lin

    2008-01-01

    The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFF)methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, 'a,' of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.

  13. The BANANA Project. V. Misaligned and Precessing Stellar Rotation Axes in CV Velorum

    Science.gov (United States)

    Albrecht, Simon; Winn, Joshua N.; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Triaud, Amaury; Queloz, Didier; Snellen, Ignas; Eggleton, Peter

    2014-04-01

    As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of βp = -52° ± 6° and βs = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i sstarf) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i sstarf. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary. Based on observations made with ESOs 2.2 m Telescopes at the La Silla Paranal Observatory under programme ID 084.C-1008 and under MPIA guaranteed time.

  14. Effect of precession on the mixing of a jet

    Energy Technology Data Exchange (ETDEWEB)

    Nobes, D.S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Nathan, G.J. [Adelaide Univ., Adelaide (Australia). Dept. of Mechanical Engineering

    2007-07-01

    The mixing of fuel and oxidant are fundamentally linked to the performance characteristics of a diffusion flame, including radiant emissions, flame stability, pollutant emissions and overall dimensions such as flame length and width. Modification of these characteristics through the mixing field can be achieved by appropriate nozzle design. One method is to precess the nozzle fluid which can be gained by fluidic or mechanical means. This paper described the effect of precession on the mixing field from a mechanical nozzle using a two-dimensional imaging technique based on Mie scattering. The paper discussed the experimental technique as well as the results and discussion. The effect of precessing the jet was to create a large scale helix in the near field that contained two counter-rotating vortices within it. This flow supplied high concentration fluid to a region above the nozzle exit that had low momentum and low shear. The resulting flow field had scale mixing larger than the local length scales of the flow in a region close to the nozzle exit. It was found that the flow field beyond this region had low rate of mixing similar to the far field of a jet. 11 refs., 5 figs.

  15. Stochastic Template Bank for Gravitational Wave Searches for Precessing Neutron Star-Black Hole Coalescence Events

    Science.gov (United States)

    Indik, Nathaniel; Haris, K.; Dal Canton, Tito; Fehrmann, Henning; Krishnan, Badri; Lundgren, Andrew; Nielsen, Alex B.; Pai, Archana

    2017-01-01

    Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.

  16. Searching for gravitational waves from the inspiral of precessing binary systems: New hierarchical scheme using 'spiky' templates

    International Nuclear Information System (INIS)

    Grandclement, Philippe; Kalogera, Vassiliki

    2003-01-01

    In a recent investigation of the effects of precession on the anticipated detection of gravitational-wave inspiral signals from compact object binaries with moderate total masses · , we found that (i) if precession is ignored, the inspiral detection rate can decrease by almost a factor of 10, and (ii) previously proposed 'mimic' templates cannot improve the detection rate significantly (by more than a factor of 2). In this paper we propose a new family of templates that can improve the detection rate by a factor of 5 or 6 in cases where precession is most important. Our proposed method for these new 'mimic' templates involves a hierarchical scheme of efficient, two-parameter template searches that can account for a sequence of spikes that appear in the residual inspiral phase, after one corrects for any oscillatory modification in the phase. We present our results for two cases of compact object masses (10 and 1.4 M · and 7 and 3 M · ) as a function of spin properties. Although further work is needed to fully assess the computational efficiency of this newly proposed template family, we conclude that these 'spiky templates' are good candidates for a family of precession templates used in realistic searches that can improve detection rates of inspiral events

  17. Precise measurement of magnetic field gradients from free spin precession signals of He-3 and Xe-129 magnetometers

    NARCIS (Netherlands)

    Allmendinger, Fabian; Blümler, Peter; Doll, Michael; Grasdijk, Oliver; Heil, Werner; Jungmann, Klaus; Karpuk, Sergej; Krause, Hans-Joachim; Offenhäuser, Andreas; Repetto, Maricel; Schmidt, Ulrich; Sobolev, Yuri; Tullney, Kathlyne; Willmann, Lorenz; Zimmer, Stefan

    2017-01-01

    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized He-3 and (12)9Xe atoms in a spherical cell inside a magnetic guiding field

  18. Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid

    Science.gov (United States)

    Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu

    2018-04-01

    We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.

  19. What forces act in relativistic gyroscope precession?

    Science.gov (United States)

    Semerák, Oldrich

    1996-11-01

    The translation of the relativistic motion into the language of forces, proposed by the author (1995, Nuovo Cimento B 110 973), is employed to interpret the gyroscope precession in general relativity. The precession is referred to the comoving Frenet triad built up along the projection of the gyroscope's trajectory onto the 3-space of the local hypersurface-orthogonal observer. The contributions of the centrifugal, the gravitational and the dragging + Coriolis forces are identified respectively with the Thomas, the geodetic, and the gravitomagnetic components of precession. Explicit expressions are given for several simple types of motion in the Kerr (or simpler) field in order to show that the general formulae obtained are not only very simple, but also yield clear results in accord with intuition in concrete situations.

  20. A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China

    Science.gov (United States)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2016-07-01

    The late Ordovician Pingliang Formation on the southwestern margin of the Ordos Basin, North China, consists of rhythmic alternations of shale, limestone, and siliceous beds. To explore the possible astronomical forcing preserved in this lithological record, continuous lithological rank and magnetic susceptibility (MS) stratigraphic series were obtained from a 34 m thick section of the Pingliang Formation at Guanzhuang. Power spectral analysis of the MS and rank series reveal 85.5 cm to 124 cm, 23 cm to 38 cm, and 15 cm to 27 cm thick sedimentary cycles that in ratio match that of late Ordovician short eccentricity, obliquity and precession astronomical cycles. The power spectrum of the MS time series, calibrated to interpreted short orbital eccentricity cycles, aligns with spectral peaks to astronomical parameters, including 95 kyr short orbital eccentricity, 35.3 kyr and 30.6 kyr obliquity, and 19.6 kyr and 16.3 kyr precession cycles. The 15 cm to 27 cm thick limestone-shale couplets mainly represent precession cycles, and siliceous bed deposition may be related to both precession and obliquity forcing. We propose that precession-forced sea-level fluctuations mainly controlled production of lime mud in a shallow marine environment, and transport to the basin. Precession and obliquity controlled biogenic silica productivity, and temperature-dependent preservation of silica may have been influenced by obliquity forcing.

  1. Gyroscope precession in special and general relativity from basic principles

    Science.gov (United States)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  2. From the Kinematics of Precession Motion to Generalized Rabi Cycles

    Directory of Open Access Journals (Sweden)

    Danail S. Brezov

    2018-01-01

    Full Text Available We use both vector-parameter and quaternion techniques to provide a thorough description of several classes of rotations, starting with coaxial angular velocity Ω of varying magnitude. Then, we fix the magnitude and let Ω precess at constant rate about the z-axis, which yields a particular solution to the free Euler dynamical equations in the case of axially symmetric inertial ellipsoid. The latter appears also in the description of spin precessions in NMR and quantum computing. As we show below, this problem has analytic solutions for a much larger class of motions determined by a simple condition relating the polar angle and z-projection of Ω (expressed in cylindrical coordinates, which are both time-dependent in the generic case. Relevant physical examples are also provided.

  3. Inspiral waveforms for spinning compact binaries in a new precessing convention

    International Nuclear Information System (INIS)

    Gupta, Anuradha; Gopakumar, Achamveedu

    2016-01-01

    It is customary to use a precessing convention, based on Newtonian orbital angular momentum L N , to model inspiral gravitational waves from generic spinning compact binaries. A key feature of such a precessing convention is its ability to remove all spin precession induced modulations from the orbital phase evolution. However, this convention usually employs a postNewtonian (PN) accurate precessional equation, appropriate for the PN accurate orbital angular momentum L , to evolve the L N -based precessing source frame. This motivated us to develop inspiral waveforms for spinning compact binaries in a precessing convention that explicitly use L to describe the binary orbits. Our approach introduces certain additional 3PN order terms in the orbital phase and frequency evolution equations with respect to the usual L N -based implementation of the precessing convention. The implications of these additional terms are explored by computing the match between inspiral waveforms that employ L and L N -based precessing conventions. We found that the match estimates are smaller than the optimal value, namely 0.97, for a non-negligible fraction of unequal mass spinning compact binaries. (paper)

  4. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    Science.gov (United States)

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  5. Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics

    Science.gov (United States)

    Kidder, Lawrence; Ossokine, Sergei; Boyle, Michael; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ~1° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.

  6. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  7. Concise CIO based precession-nutation formulations

    Science.gov (United States)

    Capitaine, N.; Wallace, P. T.

    2008-01-01

    Context: The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients. There are many astronomical applications for which such precision is not required and the associated heavy computations are wasteful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs. Aims: We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compromises between accuracy and computing costs. Methods: The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification. Results: The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three example models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout 1995-2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model. Appendices A to G are only available in electronic form at http://www.aanda.org

  8. Thomas precession in time

    International Nuclear Information System (INIS)

    Strnad, J.

    1983-01-01

    A Thomas precession mechanism is described which would become effective in a symmetric six-dimensional space-time if the time vector of a particle would rotate uniformly. For the effect a discrepancy of the decay time of particles in flight, proportional to their kinetic energy would be characteristic

  9. Non-resonant precession of the neutron magnetic moment in antiferromagnets

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1995-01-01

    It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs

  10. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    International Nuclear Information System (INIS)

    Aspesund, O.; Bjorkman, J.; Trumpy, G.

    1965-05-01

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li 7 (p, n) Be 7 reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found

  11. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aspesund, O; Bjorkman, J; Trumpy, G

    1965-05-15

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li{sup 7} (p, n) Be{sup 7} reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found.

  12. Brown dwarfs in retrogradely precessing cataclysmic variables?

    Directory of Open Access Journals (Sweden)

    Martin E.L.

    2011-07-01

    Full Text Available We compare Smoothed Particle Hydrodynamic simulations of retrogradely precessing accretion disks that have a white dwarf primary and a main sequence secondary with observational data and with theory on retrograde precession via tidal torques like those by the Moon and the Sun on the Earth [1, 2]. Assuming the primary does not accrete much of the mass lost from the secondary, we identify the theoretical low mass star/brown dwarf boundary. We find no observational candidates in our study that could qualify as brown dwarfs.

  13. Implications of the Occurrence of Glitches in Pulsar Free Precession Candidates.

    Science.gov (United States)

    Jones, D I; Ashton, G; Prix, R

    2017-06-30

    The timing properties of radio pulsars provide a unique probe of neutron star interiors. Recent observations have uncovered quasiperiodicities in the timing and pulse properties of some pulsars, a phenomenon that has often been attributed to free precession of the neutron star, with profound implications for the distribution of superfluidity and superconductivity in the star. We advance this program by developing consistency relations between free precession and pulsars glitches, and we show that there are difficulties in reconciling the two phenomena in some precession candidates. This indicates that the precession model used here needs to be modified or some other phenomenon is at work in producing the quasiperiodicities, or even that there is something missing in terms of our understanding of glitches.

  14. 3D reconnection due to oblique modes: a simulation of Harris current sheets

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2000-01-01

    Full Text Available Simulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines.

  15. Sparse representations of gravitational waves from precessing compact binaries.

    Science.gov (United States)

    Blackman, Jonathan; Szilagyi, Bela; Galley, Chad R; Tiglio, Manuel

    2014-07-11

    Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.

  16. Laws of motion and precession for black holes and other bodies

    International Nuclear Information System (INIS)

    Thorne, K.S.; Hartle, J.B.

    1985-01-01

    Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (''isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through post/sup 1.5/-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets

  17. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Wang Xianchao; Xin Zihua; Feng Liya

    2010-01-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Numerical simulations of bistable flows in precessing spheroidal shells

    Science.gov (United States)

    Vormann, J.; Hansen, U.

    2018-05-01

    Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.

  20. Larmor precession reflectometry

    International Nuclear Information System (INIS)

    Lauter, H.J.; Toperverg, B.P.; Lauter-Pasyuk, V.; Petrenko, A.; Aksenov, V.

    2004-01-01

    Larmor precession phase encoding is applied to modulate TOF reflection spectra measured from a polymer multilayer and from an Fe/Cr multilayer. It is proposed that decoding of the spectra can be used to extract the small-angle scattering signal from the polymer film-embedded nanoparticles. The second example is directed to demonstrate one of the plausible realizations of the vector polarization analysis in reflectometry of magnetic systems. This would allow to unambiguously reconstruct the transverse and lateral distribution of the magnetization vectors throughout the multilayered superlattices

  1. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    International Nuclear Information System (INIS)

    Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao

    2017-01-01

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  2. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Houbing, E-mail: hbhuang@ustb.edu.cn; Zhao, Congpeng; Ma, Xingqiao, E-mail: xqma@sas.ustb.edu.cn

    2017-03-15

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4–7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress. - Highlights: • We proposed stress-modulated magnetization precession in spin torque oscillator. • The magnetization precession frequency can be linearly modulated by in-plane stress. • The stress also can widen the magnetization frequency range 4.4–7.0 GHz. • The stress-modulated oscillation frequency can simplify STO devices.

  3. Inferior oblique weakening surgery on ocular torsion in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Jinho Lee

    2015-06-01

    Full Text Available AIM:To investigate changes in fundus excyclotorsion after inferior oblique myectomy or myotomy.METHODS:The records of 21 patients undergoing strabismus surgery by a single surgeon between 2009 and 2012 were examined. Only patients who had undergone an inferior oblique myectomy or myotomy, with or without horizontal rectus muscle surgery, were evaluated. Digital fundus photographs were obtained, and the angle formed by a horizontal line passing through the optic disc center and a reference line connecting the foveola and optic disc center was measured. Associated clinical factors examined include age at the time of surgery, presence or absence of a head tilt, degree of preoperative vertical deviation, torsional angle, inferior oblique muscle overaction/superior oblique muscle underaction, and surgery laterality. Whether the procedure was performed alone or in combination with a horizontal rectus muscle surgery was also examined.RESULTS:Mean preoperative torsional angle was 12.0±6.4°, which decreased to 6.9±5.7° after surgery (P<0.001, paired t-test. Torsional angle also decreased from 15.1±7.0° to 6.2±4.3° in the myectomy group (P<0.001, paired t-test but there were no significant changes in the myotomy group (P=0.093, Wilcoxon signed rank test. Multivariable linear regression analysis showed that preoperative torsional angle, degree of inferior oblique overaction, and age at surgery independently and significantly affected postoperative torsional angle.CONCLUSION:Mean torsional angle decreased after inferior oblique myectomy. Degree of preoperative torsional angle, inferior oblique overaction, and age at surgery influence postoperative torsional angle.

  4. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  5. A new approach for 3D reconstruction from bright field TEM imaging: Beam precession assisted electron tomography

    International Nuclear Information System (INIS)

    Rebled, J.M.; Yedra, Ll.; Estrade, S.; Portillo, J.; Peiro, F.

    2011-01-01

    The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49 o to -61 o at intervals of 2 o and with a precession angle of 0.6 o in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: → Electron beam precession reduces spurious diffraction contrast in bright field mode. → Bend contour related contrast depends on precession angle. → Electron beam precession is combined with bright field electron tomography. → Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.

  6. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  7. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  8. The design and construction of a nuclear free-precession magnetometer; Etude et realisation d'un magnetometre a precession libre nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Baconnier, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-10-15

    After presenting the advantages of nuclear magnetic resonance with respect to electromagnetic processes, as far as the measurement of the earths' magnetic field is concerned, we deal with the macroscopic theory for the Bloch model and analyse Packard and Varions' experiment. The development of a particular absolute free-precession magnetometer is studied, and the conditions are determined for obtaining a maximum amplitude signal as a function of the geometrical form of the detector coil, of the method of cut-off, and of the coupling between various parts of the system. After having described in detail the technology of amplifiers, we consider the problem of the measurement of the frequency of precession for which an original solution, of analogy form, is proposed and discussed. Complete plans of the equipment are given in an appendix. (author) [French] Apres avoir presente les avantages de la resonance magnetique nucleaire relativement aux procedes electromagnetiques, en ce qui concerne la mesure du champ magnetique terrestre, on traite de la theorie macroscopique dans le modele de Bloch et analyse l'experience de Packard et Varian. On etudie une realisation particuliere d'un magnetometre absolu a precession libre et determine les conditions d'obtention d'un signal d'amplitude maximale en fonction de la forme geometrique du bobinage detecteur, de la methode de coupure, et du couplage entre les differents elements du montage. Apres avoir decrit en detail la technologie des amplificateurs, on aborde le probleme de la mesure de la frequence de precession, pour laquelle une solution originale, sous forme analogique, est proposee et discutee. En annexe est joint un dossier complet des plans de la realisation. (auteur)

  9. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    Science.gov (United States)

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (pinternal oblique (pexternal oblique (pinternal oblique (pexternal oblique: pinternal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Book Review: Precession, Nutation, and Wobble of the Earth

    Science.gov (United States)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.

    2016-10-01

    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle

  11. Application of three-dimensional CT reconstruction technology on inferior oblique muscle in congenital superior oblique palsy

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-05-01

    Full Text Available AIM: To investigate the viability of the morphology of inferior oblique muscle observed stereoscopically using 3-dimensional CT reconstruction technique. METHODS: This control study included of 29 cases which were clinically diagnosed with monocular congenital superior oblique palsy, examined by dimensional CT. The images of the inferior oblique muscle were reconstructed by Mimics software. 3D digital images on the basis of CT scanning data of the individuals were established. Observing the morphology of binocular inferior oblique muscle by self-controlled design, we compared the maximum transverse diameter of inferior oblique muscle of paralyzed eye with non-paralyzed one. We chose 5% as the significant level.RESULTS: The reconstructed results of 3-dimensional CT scan showed that not all of the inferior oblique abdominal muscle of paralyzed eyes were thinner than that of the non-paralyzed eye in maximum transverse diameter of cross-sectional area. The maximum transverse diameter of inferior oblique muscle was measured. The average maximum transverse diameter of the paralyzed eye was 6.797±1.083mm and the non-paralyzed eye was 6.507±0.848mm. The maximum transverse diameter of inferior oblique muscle of paralyzed eye did not, however, differ significantly from the normal(P>0.05. CONCLUSION: The three-dimensional CT reconstruction technology can be used for preoperative evaluation of the morphology of inferior oblique muscle.

  12. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  13. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    Directory of Open Access Journals (Sweden)

    2016-10-01

    Full Text Available This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016.]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom and an 11-dimensional nonprecessing effective-one-body (EOB model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR. Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016.], and we quote updated component masses of 35_{-3}^{+5} M_{⊙} and 30_{-4}^{+3} M_{⊙} (where errors correspond to 90% symmetric credible intervals. We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016.] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  14. A new approach for 3D reconstruction from bright field TEM imaging: Beam precession assisted electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rebled, J.M. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Institut de Ciencia de Materials de Barcelona-CSIC, Campus UAB, 08193 Bellaterra (Spain); Yedra, Ll. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Estrade, S.; Portillo, J. [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); TEM-MAT, CCiT-UB, Sole i Sabaris 1, 08028 Barcelona (Spain); Peiro, F., E-mail: francesca.peiro@ub.edu [LENS-MIND-IN2UB, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2011-08-15

    The successful combination of electron beam precession and bright field electron tomography for 3D reconstruction is reported. Beam precession is demonstrated to be a powerful technique to reduce the contrast artifacts due to diffraction and curvature in thin foils. Taking advantage of these benefits, Precession assisted electron tomography has been applied to reconstruct the morphology of Sn precipitates embedded in an Al matrix, from a tilt series acquired in a range from +49{sup o} to -61{sup o} at intervals of 2{sup o} and with a precession angle of 0.6{sup o} in bright field mode. The combination of electron tomography and beam precession in conventional TEM mode is proposed as an alternative procedure to obtain 3D reconstructions of nano-objects without a scanning system or a high angle annular dark field detector. -- Highlights: {yields} Electron beam precession reduces spurious diffraction contrast in bright field mode. {yields} Bend contour related contrast depends on precession angle. {yields} Electron beam precession is combined with bright field electron tomography. {yields} Precession assisted BF tomography allowed 3D reconstruction of a Sn precipitate.

  15. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  16. Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs

    Science.gov (United States)

    Miranda, Ryan; Rafikov, Roman R.

    2018-04-01

    Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.

  17. Bounce Precession Fishbones in the National Spherical Tokamak Experiment

    International Nuclear Information System (INIS)

    Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Liu Chen; Roscoe White

    2003-01-01

    Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population

  18. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  19. A complete solution for GP-B's gyroscopic precession by retarded gravitational theory

    Science.gov (United States)

    Tang, Keyun

    Mainstream physicists generally believe that Mercury’s Perihelion precession and GP-B’ gyroscopic precession are two of the strongest evidences supporting Einstein’ curved spacetime and general relativity. However, most classical literatures and textbooks (e.g. Ohanain: Gravitation and Spacetime) paint an incorrect picture of Mercury’s orbit anomaly, namely Mercury’s perihelion precessed 43 arc-seconds per century; a correct picture should be that Mercury rotated 43 arc-seconds per century more than along Newtonian theoretical orbit. The essence of Le Verrier’s and Newcomb’s observation and analysis is that the angular speed of Mercury is slightly faster than the Newtonian theoretical value. The complete explanation to Mercury’s orbit anomaly should include two factors, perihelion precession is one of two factors, in addition, the change of orbital radius will also cause a change of angular speed, which is another component of Mercury's orbital anomaly. If Schwarzschild metric is correct, then the solution of the Schwarzschild orbit equation must contain three non-ignorable items. The first corresponds to Newtonian ellipse; the second is a nonlinear perturbation with increasing amplitude, which causes the precession of orbit perihelion; this is just one part of the angular speed anomaly of Mercury; the third part is a linear perturbation, corresponding to a similar figure of the Newton's ellipse, but with a minimal radius; this makes no contribution to the perihelion precession of the Schwarzschild orbit, but makes the Schwarzschild orbital radius slightly smaller, leading to a slight increase in Mercury’s angular speed. All classical literatures of general relativity ignored this last factor, which is a gross oversight. If you correctly take all three factors into consideration, the final result is that the difference between the angles rotated along Schwarzschild’s orbit and the angle rotated along Newton’s orbit for one hundred years should

  20. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    Energy Technology Data Exchange (ETDEWEB)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  1. Light variations of a spherical star with two hot precessing spots

    International Nuclear Information System (INIS)

    Kyurkchieva, D.P.; Shkodrov, V.G.

    1984-01-01

    In one of the models of SS443, suggested by Lipunov and Shakura (1982), the second component of the double stellar system is considered a star with two hot spots on the surface. Since the gas jets forming the spots are precessing, the hot spots on the visible disk will do likewise. In this paper, the light variations of a spherical star with two precessing hot spots are analyzed under the following restrictive conditions: (I) the inclination of the precession axis toward the line of sight is i=π/2; (II) the visible disk of the spherical star is considered uniformly illuminated, i.e. the effect of the variation in intensity from the disk center to the limb is neglected. The time variations in the projection area of the precessing spots on the visible stellar disk are investigated. In the studies to follow, the same effect will be analyzed assuming: (1) inot=π/2; (2) the variation in intensity is estimated from center to the stellar boundary; (3) a case of ellipsoidal stars; (4) this effect added to the effect of darkening due to orbital movement in a double stellar system

  2. Extracting the orbital axis from gravitational waves of precessing binary systems

    Science.gov (United States)

    Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Shibata, Masaru

    2018-01-01

    We present a new method for extracting the instantaneous orbital axis only from gravitational wave strains of precessing binary systems observed from a particular observer direction. This method enables us to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics and coprecessing waveforms in our method. We test and measure the accuracy of our method using the numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few times 10-3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely technical tools for understanding the complex nature of precessing waveforms but also direct observables.

  3. Ultrahigh-resolution imaging of the human brain with phase-cycled balanced steady-state free precession at 7 T.

    Science.gov (United States)

    Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K

    2014-05-01

    The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short

  4. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  5. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    Science.gov (United States)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to

  6. EELS signal enhancement by means of beam precession in the TEM

    International Nuclear Information System (INIS)

    Estradé, Sonia; Portillo, Joaquim; Yedra, Lluís; Rebled, José Manuel; Peiró, Francesca

    2012-01-01

    EELS is nowadays a most relevant characterization tool as it provides chemical and electronic information with an extraordinary spatial resolution. When a crystal is viewed in zone axis in the TEM, there is channelling of the electrons along the atom columns, which strongly reduce the EELS signal, so that it is generally advised to work slightly off the zone axis to collect EELS data, which may not always be possible or advantageous. In the present work, we demonstrate the use of precession to compensate for the reduction of EELS signal when in the zone axis. -- Highlights: ► Channelling compromises EELS signal in zone axis. ► Precession can be used to get rid of channelling effects. ► Use of precession to enhance EELS signal in the zone axis is demonstrated.

  7. Oblique lumbar spine radiographs: importance in young patients

    Energy Technology Data Exchange (ETDEWEB)

    Libson, E.; Bloom, R.A.; Dinari, G.; Robin, G.C.

    1984-04-01

    Spondylolysis is a direct precursor of spondylolisthesis and can lead to crippling back pain. Of 1,743 patients surveyed, including 936 who were asymptomatic and 807 with back pain, 165 (including 91 who were asymptomatic and 74 with back pain) had spondylolysis, which was seen only on oblique lumbar views in 20% of cases. Because of the high false-negative rate of AP and lateral views, oblique views are essential in children and young adults. As spondylolysis is rare above L3, radiographs can be limited to L3-S1. Significantly less spondylolysis was seen in persons older than 30 with back pain usually caused by disk degeneration.

  8. Oblique lumbar spine radiographs: importance in young patients

    International Nuclear Information System (INIS)

    Libson, E.; Bloom, R.A.; Dinari, G.; Robin, G.C.

    1984-01-01

    Spondylolysis is a direct precursor of spondylolisthesis and can lead to crippling back pain. Of 1,743 patients surveyed, including 936 who were asymptomatic and 807 with back pain, 165 (including 91 who were asymptomatic and 74 with back pain) had spondylolysis, which was seen only on oblique lumbar views in 20% of cases. Because of the high false-negative rate of AP and lateral views, oblique views are essential in children and young adults. As spondylolysis is rare above L3, radiographs can be limited to L3-S1. Significantly less spondylolysis was seen in persons older than 30 with back pain usually caused by disk degeneration

  9. A Quick and Affine Invariance Matching Method for Oblique Images

    Directory of Open Access Journals (Sweden)

    XIAO Xiongwu

    2015-04-01

    Full Text Available This paper proposed a quick, affine invariance matching method for oblique images. It calculated the initial affine matrix by making full use of the two estimated camera axis orientation parameters of an oblique image, then recovered the oblique image to a rectified image by doing the inverse affine transform, and left over by the SIFT method. We used the nearest neighbor distance ratio(NNDR, normalized cross correlation(NCC measure constraints and consistency check to get the coarse matches, then used RANSAC method to calculate the fundamental matrix and the homography matrix. And we got the matches that they were interior points when calculating the homography matrix, then calculated the average value of the matches' principal direction differences. During the matching process, we got the initial matching features by the nearest neighbor(NN matching strategy, then used the epipolar constrains, homography constrains, NCC measure constrains and consistency check of the initial matches' principal direction differences with the calculated average value of the interior matches' principal direction differences to eliminate false matches. Experiments conducted on three pairs of typical oblique images demonstrate that our method takes about the same time as SIFT to match a pair of oblique images with a plenty of corresponding points distributed evenly and an extremely low mismatching rate.

  10. Double elevator weakening for unilateral congenital superior oblique palsy with ipsilateral superior rectus contracture and lax superior oblique tendon.

    Science.gov (United States)

    Khan, Arif O

    2012-06-01

    In unilateral congenital superior oblique palsy, a large hypertropia is sometimes associated with ipsilateral contracture of the superior rectus muscle and apparent overaction of the contralateral superior oblique. Ipsilateral double elevator weakening is one surgical approach; however, this procedure could compromise supraduction. We report a series of three consecutive patients who underwent ipsilateral superior rectus and inferior oblique recessions for unilateral superior oblique palsy. Intraoperatively, all three patients were found to have a lax ipsilateral superior oblique tendon. Postoperatively, all three patients had satisfactory correction of the hypertropia and abnormal head position with minimal supraduction defect. This procedure seems to be an acceptable initial surgical option for treating congenital superior oblique muscle palsy with ipsilateral contracture of the superior rectus muscle, even when the ipsilateral superior oblique tendon is lax. Copyright © 2012 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  11. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  12. Precessing vortex core in a swirling wake with heat release

    International Nuclear Information System (INIS)

    Gorbunova, A.; Klimov, A.; Molevich, N.; Moralev, I.; Porfiriev, D.; Sugak, S.; Zavershinskii, I.

    2016-01-01

    Highlights: • Precessing vortex core is left-handed co-rotated bending single-vortex structure. • The precession frequency grows with the heat-source power. • Growth of the heat-source power decreases vortex core oscillations. • The left-handed bending mode is the most unstable mode in the low-density wake. - Abstract: Numerical simulation of the non-stationary three-dimensional swirling flow is presented for an open tube with a paraxial heat source. In the considered type of swirling flows, it is shown that a precessing vortex core (PVC) appears. The obtained PVC is a left-handed co-rotated bending single-vortex structure. The influence of the heat release enhancement on parameters of PVC is investigated. Using various turbulence models (the Spalart–Allmaras, k–ω and SST models), it is shown that an increase in the heat-source power leads to an increase in the PVC frequency and to a decrease in the amplitude of PVC oscillations. Moreover, we conduct the linear stability analysis of the simplified flow model with paraxial heating (the Rankine vortex with the piecewise axial flow and density) and demonstrate that its results correspond to the results of numerical simulations rather well. In particular, we prove that the left-handed bending mode (m = +1) is the most unstable one in the low-density wake and its frequency increases with a decrease of density ratio that is similar to the behavior of precession frequency with an increase of heat-source power.

  13. Thomas precession for dressed particles

    Science.gov (United States)

    Oblak, Blagoje

    2018-03-01

    We consider a particle dressed with boundary gravitons in three-dimensional Minkowski space. The existence of BMS transformations implies that the particle’s wavefunction picks up a Berry phase when subjected to changes of reference frames that trace a closed path in the asymptotic symmetry group. We evaluate this phase and show that, for BMS superrotations, it provides a gravitational generalization of Thomas precession. In principle, such phases are observable signatures of asymptotic symmetries.

  14. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  15. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Precession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80-/24 single-board computer. Precession motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer, and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated, and the results are displayed on a liquid crystal display on the front panel of the CPA. The thesis contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down, (2) xenon gas during slip test, steady state, and the addition of gas, and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  16. HAT-P-11: Discovery of a Second Planet and a Clue to Understanding Exoplanet Obliquities

    Science.gov (United States)

    Yee, Samuel W.; Petigura, Erik A.; Fulton, Benjamin J.; Knutson, Heather A.; Batygin, Konstantin; Bakos, Gáspár Á.; Hartman, Joel D.; Hirsch, Lea A.; Howard, Andrew W.; Isaacson, Howard; Kosiarek, Molly R.; Sinukoff, Evan; Weiss, Lauren M.

    2018-06-01

    HAT-P-11 is a mid-K dwarf that hosts one of the first Neptune-sized planets found outside the solar system. The orbit of HAT-P-11b is misaligned with the star’s spin—one of the few known cases of a misaligned planet orbiting a star less massive than the Sun. We find an additional planet in the system based on a decade of precision radial velocity (RV) measurements from Keck/High Resolution Echelle Spectrometer. HAT-P-11c is similar to Jupiter in its mass ({M}P\\sin i=1.6+/- 0.1 M J ) and orbital period (P={9.3}-0.5+1.0 year), but has a much more eccentric orbit (e = 0.60 ± 0.03). In our joint modeling of RV and stellar activity, we found an activity-induced RV signal of ∼7 {{m}} {{{s}}}-1, consistent with other active K dwarfs, but significantly smaller than the 31 {{m}} {{{s}}}-1 reflex motion due to HAT-P-11c. We investigated the dynamical coupling between HAT-P-11b and c as a possible explanation for HAT-P-11b’s misaligned orbit, finding that planet–planet Kozai interactions cannot tilt planet b’s orbit due to general relativistic precession; however, nodal precession operating on million year timescales is a viable mechanism to explain HAT-P-11b’s high obliquity. This leaves open the question of why HAT-P-11c may have such a tilted orbit. At a distance of 38 pc, the HAT-P-11 system offers rich opportunities for further exoplanet characterization through astrometry and direct imaging.

  17. Superior oblique luxation and trochlear luxation as new concepts in superior oblique muscle weakening surgery

    NARCIS (Netherlands)

    Mombaerts, I.; Koornneef, L.; Everhard-Halm, Y. S.; Hughes, D. S.; Maillette de Buy Wenniger-Prick, L. J.

    1995-01-01

    We used superior oblique luxation and trochlear luxation as new surgical procedures to treat acquired Brown's syndrome and superior oblique muscle overaction. We studied nine patients (11 eyes) who underwent trochlear surgery between 1988 and 1993. Four patients had acquired Brown's syndrome and

  18. Are we close to putting the anomalous perihelion precessions from Verlinde's emergent gravity to the test?

    Science.gov (United States)

    Iorio, Lorenzo

    2017-03-01

    In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ≈ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A^* are, instead, not viable because of the excessive smallness of the predicted precessions for them.

  19. Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model

    Science.gov (United States)

    Tabor, C. R.; Poulsen, C. J.; Pollard, D.

    2013-12-01

    greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.

  20. Improved analysis of GW150914 using a fully spin-precessing waveform model

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Brunett, S.; Cahillane, C.

    2016-01-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) mode...

  1. Steady flow in a rotating sphere with strong precession

    Science.gov (United States)

    Kida, Shigeo

    2018-04-01

    The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

  2. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode

    Science.gov (United States)

    Imran, Ali KHAN; G, MURTAZA

    2018-03-01

    Data from spacecrafts suggest that space plasma has an abundance of suprathermal particles which are controlled by the spectral index κ when modeled on kappa particle velocity distribution. In this paper, considering homogeneous plasma, the effect of integer values of κ on the damping rate of an obliquely propagating magnetosonic (MS) wave is studied. The frequency of the MS wave is assumed to be less than ion cyclotron frequency, i.e., ω \\ll {ω }{{i}}. Under this assumption, the dispersion relation is investigated both numerically and analytically, and it is found that the real frequency of the wave is not a sensitive function of κ, but the imaginary part of the frequency is. It is also shown that for those values of κ where a large number of resonant particles participate in wave-particle interaction, the wave is heavily damped, as expected. The possible application of the results to the solar wind is discussed.

  3. The oblique cord of the forearm in man.

    Science.gov (United States)

    Tubbs, R Shane; O'Neil, James T; Key, Christopher D; Zarzour, Jessica G; Fulghum, Sarah B; Kim, Eugenia J; Lyerly, Michael J; Shoja, Mohammadali M; George Salter, E; Jerry Oakes, W

    2007-05-01

    There is minimal and often conflicting data in the literature regarding the oblique cord of the forearm. The current study seeks to elucidate further the anatomy of this structure of the upper extremity. In adult cadavers, the oblique cord was observed for and, when found, measurements were made of it. Ranges of motion were carried out while observation of the oblique cord was made. An oblique cord was found on 52.6% of sides. Gantzer's muscle was found on 55% of sides and, when present, had attachment into the oblique cord on five sides. The oblique cord was present on 13 sides with a Gantzer's muscle. Of the 20 sides with an oblique cord, no Gantzer's muscle was found on 10. The mean length of the oblique cord was 3.4 cm. In the majority of specimens, this cord tapered from proximal to distal. The proximal, middle, and distal widths of this structure had means 9, 7, and 4 mm, respectively. The oblique cord was found to travel approximately 45 degrees from a line drawn through the ulna and more or less traveled perpendicular to the insertion site of the bicipital tendon. This ligament was lax in the neutral position and with pronation became lax in all specimens. The oblique cord progressively became taut with increased supination from the neutral position and was maximally taut with the forearm fully supinated. Tautness of this cord was also found with distal distraction of the radius. Following the transection of the oblique cord, no discernable difference was observed in regard to maximal supination of the forearm or distal distraction of the radius. No obvious instability of the proximal forearm was found following transection of the oblique cord. Functionally, although the oblique cord may resist supination, it is unlikely that this structure affords significant stability to the proximal forearm, as it was often absent, of a very small caliber, and based on our observations, following its transection, the amount of supination of the forearm did not increase

  4. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  5. Modulational instability of the obliquely modulated ion acoustic waves in a warm ion plasma

    International Nuclear Information System (INIS)

    Saxena, M.K.; Arora, A.K.; Sharma, S.R.

    1981-01-01

    Using KBM. perturbation technique, it is shown that the modulationally unstable domain in the (kappa - phi) plane for the obliquely modulated ion acoustic waves is appreciably modified due to the finite ion temperature. It is also shown that in a collisionless plasma having small TAUsub(i)/TAUsub(e) ( 0 approximately 0.1) may exceed the Landau damping rate provided the modulation is sufficiently oblique. (author)

  6. The precession of mercury's perihelion via perturbation theory

    International Nuclear Information System (INIS)

    Rosales, M.H.; Castro-Quilantan, J.L.

    1984-01-01

    Perturbation theory is used to solve the problem of the precession of Mercury's perihelion, this phenomenon being a relativistic effect. The expansion parameter appears naturally when the orbit equation is written in an appropriate form and it completely justifies the use of the first order approximation. (author)

  7. Cervical spine trauma radiographs: Swimmers and supine obliques; an exploration of current practice

    Energy Technology Data Exchange (ETDEWEB)

    Fell, Michael, E-mail: michael.fell@mkgeneral.nhs.u [Milton Keynes General Hospital, Radiology Standing Way, Eaglestone, Milton Keynes, Buckinghamshire MK6 5LD (United Kingdom)

    2011-02-15

    The study objectives were: to investigate current cervical spine radiographic imaging practices in conscious adult patients with suspected neck injury; reasons behind variation and consideration of dose estimates were explored. Comparison with a previous survey has been made. Questionnaires were sent to superintendent radiographers responsible for accident and emergency X-ray departments in English trusts with over 8500 emergency admissions per year, with a response rate of 97% (n = 181/186). Departmental cervical spine imaging protocols were reported by 82% of respondents. None use fewer than the three standard projections; if the cervicothoracic junction (C7/T1), is not adequately demonstrated 87% use swimmers projections, 9% supine obliques, 3% CT alone. Following projectional radiography, 97% perform CT. A significant (p = 0.018) increase was found since 1999 in CT use once the swimmers projection fails; fewer now use obliques at this point, continuing with CT instead. No significant difference (p = 0.644) was found in choice of first supplementary radiographs; despite British Trauma Society's recommendation to undertake supine obliques, swimmers remain the most widespread technique. An 85% response rate (n = 103/121) completed a second questionnaire, exploring reasons behind the various practices. Several reported a perceived difficulty in interpreting oblique radiographs, some a concern over high dose of the swimmers. Numerous issues affect the acquisition of cervical spine radiographs. Patient radiation dose should be a major consideration in selection of technique. A potential need for training in interpretation of obliques is highlighted. Specific guidelines for optimum projections should be researched, and protocols issued to ensure best practice.

  8. Oblique and lateral impact response of the PMHS thorax.

    Science.gov (United States)

    Shaw, Joshua M; Herriott, Rodney G; McFadden, Joseph D; Donnelly, Bruce R; Bolte, John H

    2006-11-01

    This study characterizes the PMHS thoracic response to blunt impact in oblique and lateral directions. A significant amount of data has been collected from lateral impacts conducted on human cadavers. Substantially less data has been collected from impacts that are anterior of lateral in an oblique direction. In the past, data collected from the handful of oblique impact studies were considered to be similar enough to the data from purely lateral impacts such that the oblique data were combined with data from lateral impacts. Defining the biomechanical response of the PMHS thorax to oblique impact is of great importance in side impact vehicle crashes where the loading is often anterior-oblique in direction. Data in this study was obtained from a chestband placed on the thorax at the level of impact to measure thoracic deflection. Two low energy impacts were conducted on each of seven subjects at 2.5 m/s, with one lateral impact and one oblique impact to opposite sides of each PMHS. Data was normalized using the Mertz-Viano method for a two mass system to allow for inter-subject comparisons. Force versus deflection response corridors were generated for the two impact types using an objective mathematical approach and compared to one another. Results were also compared to existing data for oblique and lateral thoracic impacts. The oblique thoracic response in low speed pendulum impacts was found to be different than the lateral thoracic response, in terms of force and deflection. Specifically, the lateral force was greater than the oblique force, and oblique deflection greater than lateral deflection for equal energy impacts.

  9. Negative muon spin precession measurement of the hyperfine states of muonic sodium

    International Nuclear Information System (INIS)

    Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.

    2005-01-01

    Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous

  10. Pelvic digital subtraction catheter angiography-Are routine oblique projections necessary?

    International Nuclear Information System (INIS)

    Rane, Neil; Imam, Atique; Foley, Peter; Timmons, Grace; Uberoi, Raman

    2011-01-01

    The oblique projection is used widely in imaging of the lower vascular tree. Much of the evidence justifying the oblique projection is anecdotal. This study compares the sensitivity of the anteroposterior (AP) projection alone in lower limb vascular catheter angiography to that combined with the oblique projection. 110 digitally subtracted angiograms were analysed initially on AP and subsequently on oblique views. Oblique imaging increases confidence, demonstrates stenoses not seen on AP and changes the diagnosis. This supports the use of the oblique projection in lower limb vascular interventional imaging.

  11. Are we close to putting the anomalous perihelion precessions from Verlinde's emergent gravity to the test?

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo [Ministero dell' Istruzione, Universita e della Ricerca (M.I.U.R.)-Istruzione, Bari, BA (Italy)

    2017-03-15

    In the framework of the emergent gravity scenario by Verlinde, it was recently observed by Liu and Prokopec that, among other things, an anomalous pericenter precession would affect the orbital motion of a test particle orbiting an isolated central body. Here, it is shown that, if it were real, its expected magnitude for the inner planets of the Solar System would be at the same level of the present-day accuracy in constraining any possible deviations from their standard perihelion precessions as inferred from long data records spanning about the last century. The most favorable situation for testing the Verlinde-type precession seems to occur for Mars. Indeed, according to recent versions of the EPM and INPOP planetary ephemerides, non-standard perihelion precessions, of whatsoever physical origin, which are larger than some ∼ 0.02-0.11 milliarcseconds per century are not admissible, while the putative precession predicted by Liu and Prokopec amounts to 0.09 milliarcseconds per century. Other potentially interesting astronomical and astrophysical scenarios like, e.g., the Earth's LAGEOS II artificial satellite, the double pulsar system PSR J0737-3039A/B and the S-stars orbiting the Supermassive Black Hole in Sgr A* are, instead, not viable because of the excessive smallness of the predicted precessions for them. (orig.)

  12. Predicting Mercury's precession using simple relativistic Newtonian dynamics

    Science.gov (United States)

    Friedman, Y.; Steiner, J. M.

    2016-03-01

    We present a new simple relativistic model for planetary motion describing accurately the anomalous precession of the perihelion of Mercury and its origin. The model is based on transforming Newton's classical equation for planetary motion from absolute to real spacetime influenced by the gravitational potential and introducing the concept of influenced direction.

  13. First observation of magnetic moment precession of channeled particles in bent crystals

    International Nuclear Information System (INIS)

    Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan

    1992-01-01

    Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process

  14. Oblique photon expansion of QED structure functions

    International Nuclear Information System (INIS)

    Chahine, C.

    1986-01-01

    In the oblique photon expansion, the collinear part of photon emission is summed up to all orders in perturbation theory. The number of oblique or non-collinear photons is the expansion order. Unlike in perturbation theory, every term of the expansion is both infrared finite and gauge invariant. The zero oblique photon contribution to the electromagnetic structure tensor in QED is computed in detail. The behaviors of the structure functions F1 and F2 are discussed in the soft and ultra-soft limits

  15. The Weyl non-Abelian gauge field and the Thomas precession

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Pestov, A.B.

    1998-01-01

    The connection between the Fermi-Walker transport and the Weyl non-Abelian gauge field is established. A theoretical possibility of detecting the Weyl gauge field caused by the Thomas precession of a gyroscope is discussed

  16. Resonant spin-flavor precession constraints on the neutrino ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 1. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data. S Dev Jyoti Dhar Sharma U C Pandey S P Sud B C Chauhan. Research Articles Volume 61 Issue 1 ...

  17. Relativistic shifts of bound negative-muon precession frequencies

    International Nuclear Information System (INIS)

    Brewer, J.H.; Froese, A. M.; Fryer, B.A.; Ghandi, K.

    2005-01-01

    High-field negative-muon spin precession experiments have been performed using a backward-muon beam with substantial transverse spin polarization, facilitating high-precision measurements of the magnetogyric ratio of negative muons bound to nuclei in the ground states of muonic atoms. These results may provide a testing ground for quantum electrodynamics in very strong electromagnetic fields

  18. Bistable flows in precessing spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D, E-mail: david.cebron@ujf-grenoble.fr [Université Grenoble Alpes, CNRS, ISTerre, Grenoble (France)

    2015-04-15

    Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739–51). So far however, no analytical result for the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in detail since their discovery by Noir et al (2003 Geophys. J. Int. 154 407–16). In this work we aim at deriving analytical results for the solutions, aiming in particular at first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412–39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, their conditions of existence, and their stability in a systematic manner. We then successfully compare these analytical results with the theory of Busse (1968). Dynamical model equations are finally proposed to investigate the stability of the solutions, which describe the bifurcation of the unstable flow solution. We also report for the first time the possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids. Numerical integrations of the algebraic and differential equations have been efficiently performed with the dedicated script FLIPPER (supplementary material). (paper)

  19. Precession of a two-layer Earth: contributions of the core and elasticity

    Science.gov (United States)

    Baenas, Tomás; Ferrándiz, José M.; Escapa, Alberto; Getino, Juan; Navarro, Juan F.

    2016-04-01

    The Earth's internal structure contributes to the precession rate in a small but non-negligible amount, given the current accuracy goals demanded by IAG/GGOS to the reference frames, namely 30 μas and 3 μas/yr. These contributions come from a variety of sources. One of those not yet accounted for in current IAU models is associated to the crossed effects of certain nutation-rising terms of a two-layer Earth model; intuitively, it gathers an 'indirect' effect of the core via the NDFW, or FCN, resonance as well as a 'direct' effect arising from terms that account for energy variations depending on the elasticity of the core. Similar order of magnitude reaches the direct effect of the departure of the Earth's rheology from linear elasticity. To compute those effects we work out the problem in a unified way within the Hamiltonian framework developed by Getino and Ferrándiz (2001). It allows a consistent treatment of the problem since all the perturbations are derived from the same tide generating expansion and the crossing effects are rigorously obtained through Hori's canonical perturbation method. The problem admits an asymptotic analytical solution. The Hamiltonian is constructed by considering a two-layer Earth model made up of an anelastic mantle and a fluid core, perturbed by the gravitational action of the Moon and the Sun. The former effects reach some tens of μas/yr in the longitude rate, hence above the target accuracy level. We outline their influence in the estimation of the Earth's dynamical ellipticity, a main parameter factorizing both precession and nutation.

  20. A neutron spin echo spectrometer with two optimal field shape coils for neutron spin precession

    International Nuclear Information System (INIS)

    Takeda, T.; Ebisawa, T.; Tasaki, S.; Ito, Y.; Takahashi, S.; Yoshizawa, H.

    1995-01-01

    We have designed and have been constructing at the C 2-2 cold neutron guide port of JRR-3M, JAERI, a neutron spin echo spectrometer (NSE) which is equipped with two optimal field shape (OFS) coils for neutron spin precession with the maximum field integral of 0.22 T m, an assembly of position sensitive detectors (PSD), a converging polarizer and a wide area analyzer. The dynamic range of scattering vector Q covers from 0.005 A -1 to 0.2 A -1 and that of energy hω from 10 neV to 30 μeV. Performance tests of the OFS coils show that the inhomogeneity of the magnetic field integral in the OFS coils with the spiral coils is so small that the NSE signal amplitude decreases little even for the neutron cross section of 30 mm diameter as the Fourier time t increases up to 25 ns, though the precession coils are close to iron covers of the neighboring neutron guide. This verifies that the OFS precession coils are appropriate for this NSE spectrometer. Another test experiment shows that the homogeneity condition of the precession magnet is loosened by use of PSD. (orig.)

  1. On the precession of the optical star in the Cyg X-1 system

    International Nuclear Information System (INIS)

    Kopylov, I.M.; Sokolov, V.V.

    1984-01-01

    Some results are analysed of previoUs spectroscopic investigation of the supergiant HDE 226868 (based on six-year observations at the 6-m telescope) with the puspose of searching for possible variations in the spectrum connected with the precession of the rotation axis of the star upper layers. It is noted that spectral type and HeI lambda 4471 line halfwidth show a coordinated behaviour with the phase of the 39-day period in the frame of the precession hypothesis. Nonuniform distribution of CNO anomalies over the star latitude seems to be possible

  2. Precession mode on high-K configurations: non-collective axially-symmetric limit of wobbling motion

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2006-01-01

    The precession mode, the rotational excitation built on the high-K isomeric state, in comparison with the recently identified wobbling mode has been studied. The random-phase-approximation (RPA) formalism, which has been developed for the nuclear wobbling motion, is invoked and the precession phonon is obtained by the non-collective axially symmetric limit of the formalism. The excitation energies and the electromagnetic properties of the precession bands in 178 W are calculated, and it is found that the results of RPA calculations well correspond to those of the rotor model; the correspondence can be understood by an adiabatic approximation to the RPA phonon. As a by-product, it is also found that the problem of too small out-of-band B(E2) in our previous RPA wobbling calculations can be solved by a suitable choice of the triaxial deformation which corresponds to the one used in the rotor model

  3. Three-Dimensional Precession Feature Extraction of Ballistic Targets Based on Narrowband Radar Network

    Directory of Open Access Journals (Sweden)

    Zhao Shuang

    2017-02-01

    Full Text Available Micro-motion is a crucial feature used in ballistic target recognition. To address the problem that single-view observations cannot extract true micro-motion parameters, we propose a novel algorithm based on the narrowband radar network to extract three-dimensional precession features. First, we construct a precession model of the cone-shaped target, and as a precondition, we consider the invisible problem of scattering centers. We then analyze in detail the micro-Doppler modulation trait caused by the precession. Then, we match each scattering center in different perspectives based on the ratio of the top scattering center’s micro-Doppler frequency modulation coefficient and extract the 3D coning vector of the target by establishing associated multi-aspect equation systems. In addition, we estimate feature parameters by utilizing the correlation of the micro-Doppler frequency modulation coefficient of the three scattering centers combined with the frequency compensation method. We then calculate the coordinates of the conical point in each moment and reconstruct the 3D spatial portion. Finally, we provide simulation results to validate the proposed algorithm.

  4. Magnetic resonance imaging in congenital superior oblique palsy

    International Nuclear Information System (INIS)

    Sato, Miho; Kondo, Nagako; Awaya, Shinobu; Nomura, Hideki; Yagasaki, Teiji.

    1996-01-01

    MRI examinations were carried out on the defined congenital superior oblique palsy in order to distinguish the congenital and acquired palsies. Subjects were 19 patients diagnosed as congenital and their MRI images of 3 or 5 mm-thick coronary slice were taken. The volume of the oblique muscle was calculated from the images and a comparison was made between the diseased and healthy normal sides. The oblique muscle volume at the diseased side was found reduced in most of congenital superior oblique palsy patients. The reduction was observed even at childhood and was thus considered to be a malformation. Further, it is conceivable that the palsy could be caused by the abnormality in the central nervous system as well as by the present anatomical abnormality. (K.H.)

  5. Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer

    International Nuclear Information System (INIS)

    Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.

    1996-01-01

    Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)

  6. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    Science.gov (United States)

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  7. Self-force correction to geodetic spin precession in Kerr spacetime

    Science.gov (United States)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  8. Camere aeree oblique: sistemi, applicazioni e prospettive future

    Directory of Open Access Journals (Sweden)

    Fabio Remondino

    2014-10-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. We report an overview of the actual oblique commercial systems and the workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given too.

  9. Oblique Alfvén instabilities driven by compensated currents

    Energy Technology Data Exchange (ETDEWEB)

    Malovichko, P. [Main Astronomical Observatory, NASU, Kyiv (Ukraine); Voitenko, Y.; De Keyser, J., E-mail: voitenko@oma.be [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-01-10

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  10. Oblique Alfvén instabilities driven by compensated currents

    International Nuclear Information System (INIS)

    Malovichko, P.; Voitenko, Y.; De Keyser, J.

    2014-01-01

    Compensated-current systems created by energetic ion beams are widespread in space and astrophysical plasmas. The well-known examples are foreshock regions in the solar wind and around supernova remnants. We found a new oblique Alfvénic instability driven by compensated currents flowing along the background magnetic field. Because of the vastly different electron and ion gyroradii, oblique Alfvénic perturbations react differently on the currents carried by the hot ion beams and the return electron currents. Ultimately, this difference leads to a non-resonant aperiodic instability at perpendicular wavelengths close to the beam ion gyroradius. The instability growth rate increases with increasing beam current and temperature. In the solar wind upstream of Earth's bow shock, the instability growth time can drop below 10 proton cyclotron periods. Our results suggest that this instability can contribute to the turbulence and ion acceleration in space and astrophysical foreshocks.

  11. Reaching to virtual targets: The oblique effect reloaded in 3-D.

    Science.gov (United States)

    Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2017-02-20

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    Science.gov (United States)

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  13. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    Abstract. I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body's octupolar mass moment J4. I consider only the effects averaged over one orbital period T of the satellite. I give exact for- mulas, not restricted to any special values ...

  14. Natural Vibration of a Beam with a Breathing Oblique Crack

    Directory of Open Access Journals (Sweden)

    Yijiang Ma

    2017-01-01

    Full Text Available An analytical method is proposed to calculate the natural frequency of a cantilever beam with a breathing oblique crack. A double-linear-springs-model is developed in the modal analysis process to describe the breathing oblique crack, and the breathing behaviour of the oblique crack is objectively simulated. The finite element method (FEM analysis software ABAQUS is used to calculate the geometric correction factors when the cracked plate is subjected to a pure bending moment at different oblique crack angles and relative depths. The Galerkin method is applied to simplify the cracked beam to a single degree of freedom system, allowing the natural frequency of the beam with the breathing oblique crack to be calculated. Compared with the natural frequencies of the breathing oblique cracked beam obtained using the ABAQUS FEM method, the proposed analytical method exhibits a high computational accuracy, with a maximum error of only 4.65%.

  15. Assessment Of An Oblique ECE Diagnostic For ITER

    International Nuclear Information System (INIS)

    Taylor, G.; Harvey, R.W.

    2009-01-01

    A systematic disagreement between the electron temperature measured by electron cyclotron emission (TECE) and laser Thomson scattering (TTS), that increases with TECE, is observed in JET and TFTR plasmas, such that TECE ∼1.2 TTS when TECE ∼10 keV. The disagreement is consistent with a non-Maxwellian distortion in the bulk electron momentum distribution. ITER is projected to operate with Te(0) ∼ 20-40 keV so the disagreement between TECE and TTS could be > 50%, with significant physics implications. The GENRAY ray tracing code predicts that a two-view ECE system, with perpendicular and moderately oblique viewing antennas, would be sufficient to reconstruct a two-temperature bulk distribution. If the electron momentum distribution remains Maxwellian the moderately oblique view could still be used to measure Te(R). A viewing dump will not be required for the oblique view and plasma refraction will be minimal. The oblique view has a similar radial resolution to the perpendicular view, but with some reduction in radial coverage. Oblique viewing angles of up to 20 o can be implemented without a major revision to the front end of the existing ITER ECE diagnostic design.

  16. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique.

    Science.gov (United States)

    Hyong, In Hyouk

    2015-06-01

    [Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.

  17. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    Science.gov (United States)

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  18. Microcomputer-based instrument for the detection and analysis of precession motion in a gas centrifuge machine. Revision 1

    International Nuclear Information System (INIS)

    Paulus, S.S.

    1986-03-01

    The Centrifuge Procession Analyzer (CPA) is a microcomputer-based instrument which detects precession motion in a gas centrifuge machine and calculates the amplitude and frequency of precession. The CPA consists of a printed circuit board which contains signal-conditioning circuitry and a 24-bit counter and an INTEL iSBC 80/24 single/board computer. Pression motion is detected by monitoring a signal generated by a variable reluctance pick-up coil in the top of the centrifuge machine. This signal is called a Fidler signal. The initial Fidler signal triggers a counter which is clocked by a high-precision, 20.000000-MHz, temperature-controlled, crystal oscillator. The contents of the counter are read by the computer and the counter reset after every ten Fidler signals. The speed of the centrifuge machine and the amplitude and frequency of precession are calculated and the results are displayed on a liquid crystal display on the front panel of the CPA. The report contains results from data generated by a Fidler signal simulator and data taken when the centrifuge was operated under three test conditions: (1) nitrogen gas during drive-up, steady state, and drive-down; (2) xenon gas during slip test, steady state, and the addition of gas; and (3) no gas during steady state. The qualitative results were consistent with experience with centrifuge machines using UF 6 in that the amplitude of precession increased and the frequency of precession decreased during drive-up, drive-down and the slip check. The magnitude of the amplitude and frequency of precession were proportional to the molecular weight of the gases in steady state

  19. NUMERICAL SIMULATIONS OF NATURALLY TILTED, RETROGRADELY PRECESSING, NODAL SUPERHUMPING ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2012-01-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  20. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    Science.gov (United States)

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  1. Orientation Strategies for Aerial Oblique Images

    Science.gov (United States)

    Wiedemann, A.; Moré, J.

    2012-07-01

    Oblique aerial images become more and more distributed to fill the gap between vertical aerial images and mobile mapping systems. Different systems are on the market. For some applications, like texture mapping, precise orientation data are required. One point is the stable interior orientation, which can be achieved by stable camera systems, the other a precise exterior orientation. A sufficient exterior orientation can be achieved by a large effort in direct sensor orientation, whereas minor errors in the angles have a larger effect than in vertical imagery. The more appropriate approach is by determine the precise orientation parameters by photogrammetric methods using an adapted aerial triangulation. Due to the different points of view towards the object the traditional aerotriangulation matching tools fail, as they produce a bunch of blunders and require a lot of manual work to achieve a sufficient solution. In this paper some approaches are discussed and results are presented for the most promising approaches. We describe a single step approach with an aerotriangulation using all available images; a two step approach with an aerotriangulation only of the vertical images plus a mathematical transformation of the oblique images using the oblique cameras excentricity; and finally the extended functional model for a bundle block adjustment considering the mechanical connection between vertical and oblique images. Beside accuracy also other aspects like efficiency and required manual work have to be considered.

  2. Type-I superconductivity and neutron star precession

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2005-01-01

    Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars

  3. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    Science.gov (United States)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  4. Effects of extreme obliquity variations on the habitability of exoplanets.

    Science.gov (United States)

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  5. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  6. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  7. Methods for the determination of lunisolar precession from observations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Elsmore, B.

    1976-01-01

    Although it is not practicable at present to determine the position or motion of the equinox using radio techniques, lunisolar precession may be determined from measurements at two epochs of differences of (i) Right Ascension -RA, and (ii) Declinations - Dec., of extragalactic radio sources. The determinations are largely free from systematic errors, and the magnitudes of random errors, arising principally from tropospheric irregularities, are given for observations with the Cambridge 5-km telescope. Some first epoch measure-ments have been made with this instrument and it is estimated that by carrying out second epoch measurements after an interval of 5 yr, the centennial value of lunisolar precession will be determined with a standard error of +- 0''.25. (author)

  8. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  9. Reorientation precession measurements of quadrupole moments in 103Rh

    International Nuclear Information System (INIS)

    Gelberg, A.; Herskind, B.; Kalish, R.; Neiman, M.

    1976-01-01

    The quadrupole moments of the 3/2 - and 5/2 - states in 103 Rh have been determined by measuring the precession of the gamma-ray angular distribution following Coulomb excitation; 16 O and 32 S beams have been used. The structure of the negative-parity states in 103 Rh is found to be in agreement with the model of Arima and Iachello. (orig.) [de

  10. Climate Dynamics and Hysteresis at Low and High Obliquity

    Science.gov (United States)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  11. Utility of A Satellite Vehicle For Reconnaissance.

    Science.gov (United States)

    1951-04-01

    8217Cents& Oblique oblique frame$~ below Wowe.. sc h malic 01 to passing - ~ power9 th~rough 0011’s E ~nca r Sec enIA0onn, ~1 VOO 6 Escapldmle"’ ElectricO ...Fig. 26-Gyro precession require the use of a computer of the type associated with auto -pilots. Such a mechanism should not be difficult to develop but

  12. Subwavelength image manipulation through oblique and herringbone layered acoustic systems

    International Nuclear Information System (INIS)

    Li, Chunhui; Jia, Han; Ke, Manzhu; Li, Yixiang; Liu, Zhengyou

    2014-01-01

    In this paper, an oblique and a herringbone layered acoustic structure are experimentally and theoretically demonstrated to manipulate acoustic subwavelength images. An imaging resolution of less than one tenth of a wavelength is achieved with both optimized systems, and lateral image shift has been realized by an oblique layered system. The thicknesses of both the oblique and the herringbone layered acoustic systems are largely reduced through utilizing the oblique or herringbone wave propagation path instead of the vertical wave propagation path in the rectangular layered planar acoustic system. With smaller size and subwavelength image manipulation, the acoustic systems are more favourable for practical application. (paper)

  13. Thomas precession: correct and incorrect solutions

    International Nuclear Information System (INIS)

    Malykin, Grigorii B

    2006-01-01

    A wealth of different expressions for the frequency of the Thomas precession (TP) can be found in the literature, with the consequence that this issue has been discussed over a long period of time. It is shown that the correct result was obtained in the works of several authors, which were published more than forty years ago but remained unnoticed against the background of numerous erroneous works. Several TP-related physical paradoxes formulated primarily to disprove the special relativity theory are shown to be fallacious. Different techniques for deriving the correct expression are considered and the reasons for the emergence of the main incorrect expressions for the TP frequency are analyzed. (from the history of physics)

  14. A PULSED, PRECESSING JET IN CEPHEUS A

    International Nuclear Information System (INIS)

    Cunningham, Nathaniel J.; Moeckel, Nickolas; Bally, John

    2009-01-01

    We present near-infrared H 2 , radio CO, and thermal infrared observations of the nearby massive star-forming region Cepheus A (Cep A). From H 2 bow shocks arranged along four distinct jet axes, we infer that the massive protostellar source HW2 drives a pulsed, precessing jet that has changed its orientation by about 45 deg. in roughly 10 4 years. The current HW2 radio jet represents the most recent event in this time series of eruptions. This scenario is consistent with the recent discovery of a disk around HW2, perpendicular to the current jet orientation, and with the presence of companions at projected distances comparable to the disk radius. We propose that the Cep A system formed by the disk-assisted capture of a sibling star by HW2. We present a numerical model of a 15 M sun star with a circumstellar disk, orbited by a companion in an inclined, eccentric orbit. Close passages of the companion through or near the disk result in periods of enhanced accretion and mass loss, as well as forced precession of the disk and associated orientation changes in the jet. The observations reveal a second powerful outflow that emerges from radio source HW3c or HW3d. This flow is associated with blueshifted CO emission and a faint H 2 bow shock to the east, and with HH 168 to the west. A collision between the flows from HW2 and HW3c/d may be responsible for X-ray and radio continuum emission in Cep A West.

  15. Inferior Oblique Overaction: Anterior Transposition Versus Myectomy.

    Science.gov (United States)

    Rajavi, Zhale; Feizi, Mohadeseh; Behradfar, Narges; Yaseri, Mehdi; Sayanjali, Shima; Motevaseli, Tahmine; Sabbaghi, Hamideh; Faghihi, Mohammad

    2017-07-01

    To compare the efficacy of inferior oblique myectomy and anterior transposition for correcting inferior oblique overaction (IOOA). This retrospective study was conducted on 56 patients with IOOA who had either myectomy or anterior transposition of the inferior oblique muscle from 2010 to 2015. The authors compared preoperative and postoperative inferior oblique muscle function grading (-4 to +4) as the main outcome measure and vertical and horizontal deviation, dissociated vertical deviation (DVD), and A- and V-pattern between the two surgical groups as secondary outcomes. A total of 99 eyes of 56 patients with a mean age of 5.9 ± 6.5 years were included (47 eyes in the myectomy group and 52 eyes in the anterior transposition group). There were no differences in preoperative best corrected visual acuity, amblyopia, spherical equivalent, and primary versus secondary IOOA between the two groups. Both surgical procedures were effective in reducing IOOA and satisfactory results were similar between the two groups: 61.7% and 67.3% in the myectomy and anterior transposition groups, respectively (P = .56). After adjustment for the preoperative DVD, there was no statistically significant difference between the two groups postoperatively. The preoperative hypertropia was 6 to 14 and 6 to 18 prism diopters (PD) in the myectomy and anterior transposition groups, respectively. After surgery, no patient had a vertical deviation greater than 5 PD. Both the inferior oblique myectomy and anterior transposition procedures are effective in reducing IOOA with similar satisfactory results. DVD and hypertropia were also corrected similarly by these two surgical procedures. [J Pediatr Ophthalmol Strabismus. 2017;54(4):232-237.]. Copyright 2017, SLACK Incorporated.

  16. Injury risk functions for frontal oblique collisions.

    Science.gov (United States)

    Andricevic, Nino; Junge, Mirko; Krampe, Jonas

    2018-03-09

    The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.

  17. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    Science.gov (United States)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  18. A covariant formalism of spin precession with respect to a reference congruence

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    We derive an effectively three-dimensional relativistic spin precession formalism. The formalism is applicable to any spacetime where an arbitrary timelike reference congruence of worldlines is specified. We employ what we call a stopped spin vector which is the spin vector that we would get if we momentarily make a pure boost of the spin vector to stop it relative to the congruence. Starting from the Fermi transport equation for the standard spin vector we derive a corresponding transport equation for the stopped spin vector. Employing a spacetime transport equation for a vector along a worldline, corresponding to spatial parallel transport with respect to the congruence, we can write down a precession formula for a gyroscope relative to the local spatial geometry defined by the congruence. This general approach has already been pursued by Jantzen et al (see e.g. Jantzen R T, Carini P and Bini D 1992 Ann. Phys. 215 1-50), but the algebraic form of our respective expressions differs. We are also applying the formalism to a novel type of spatial parallel transport introduced in Jonsson (2006 Class. Quantum Grav. 23 1), as well as verifying the validity of the intuitive approach of a forthcoming paper (Jonsson 2006 forthcoming) where gyroscope precession is explained entirely as a double Thomas type of effect. We also present the resulting formalism in explicit three-dimensional form (using the boldface vector notation), and give examples of applications

  19. Continuous Faraday measurement of spin precession without light shifts

    Science.gov (United States)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  20. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  1. Oblique-view mamography: adequacy for screening. Work in progress

    International Nuclear Information System (INIS)

    Muir, B.B.; Kirkpatrick, A.E.; Roberts, M.M.; Duffy, S.W.

    1984-01-01

    Single oblique-view mammography has been recommended for screening purposes. The authors present data indicating that using the oblique view only can allow 11% of cancers to remain undetected. The smallest and potentially curable cancers are most likely to be overlooked in this way; any possible benefit of screening is thereby reduced. Data are also presented to show that 39% of women may require other views, for reasons not necessarily related to cancer detection. It is therefore recommended that all women have four-view mammography (oblique plus craniocaudal views of each breast) at their first screening visit

  2. Review of the dynamic behaviour of sports balls during normal and oblique impacts

    Science.gov (United States)

    Haron, Muhammad Adli; Jailani, Azrol; Abdullah, Nik Ahmad Faris Nik; Ismail, Rafis Suizwan; Rahim, Shayfull Zamree Abd; Ghazali, Mohd Fathullah

    2017-09-01

    In this paper are review of impact experiment to study the dynamic behaviour of sports ball during oblique and normal impacts. In previous studies, the investigation was done on the dynamic behaviour of a sports ball during oblique and normal impacts from experimental, numerical, and theoretical viewpoints. The experimental results are analysed and compared with the theories, in order to understand the dynamics behaviours based on the phenomenological occurrence. Throughout the experimental studies previously, there are results of dynamics behaviours examined by many researchers such as the coefficient of restitution, tangential coefficient, local deformation, dynamic impact force, contact time, angle of impact (inbound and rebound), spin rate of the ball, ball stiffness and damping coefficient which dependable of the initial or impact velocity.

  3. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  4. Analyzing RCD30 Oblique Performance in a Production Environment

    Science.gov (United States)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and

  5. ANALYZING RCD30 OBLIQUE PERFORMANCE IN A PRODUCTION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    M. E. Soler

    2016-06-01

    Full Text Available In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial

  6. GPU-based simulation of the two-dimensional unstable structure of gaseous oblique detonations

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H.H.; Kiyanda, C.B.; Ng, H.D. [Department of Mechanical and Industrial Engineering, Concordia University, Montréal, QC, H3G 1M8 (Canada); Morgan, G.H.; Nikiforakis, N. [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE (United Kingdom)

    2015-03-10

    In this paper, the two-dimensional structure of unstable oblique detonations induced by the wedge from a supersonic combustible gas flow is simulated using the reactive Euler equations with a one-step Arrhenius chemistry model. A wide range of activation energy of the combustible mixture is considered. Computations are performed on the Graphical Processing Unit (GPU) to reduce the simulation runtimes. A large computational domain covered by a uniform mesh with high grid resolution is used to properly capture the development of instabilities and the formation of different transverse wave structures. After the initiation point, where the oblique shock transits into a detonation, an instability begins to manifest and in all cases, the left-running transverse waves first appear, followed by the subsequent emergence of right-running transverse waves forming the dual-head triple point structure. This study shows that for low activation energies, a long computational length must be carefully considered to reveal the unstable surface due to the slow growth rate of the instability. For high activation energies, the flow behind the unstable oblique detonation features the formation of unburnt gas pockets and strong vortex-pressure wave interaction resulting in a chaotic-like vortical structure.

  7. OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2014-03-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  8. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  9. Routine oblique radiography of the pediatric lumbar spine: is it necessary. [Oblique radiography entails more than double the gonadal radiation dose of frontal-lateral projections

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-08-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine.

  10. ACCURACY OF MEASUREMENTS IN OBLIQUE AERIAL IMAGES FOR URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    W. Ostrowski

    2016-10-01

    Full Text Available Oblique aerial images have been a source of data for urban areas for several years. However, the accuracy of measurements in oblique images during this time has been limited to a single meter due to the use of direct -georeferencing technology and the underlying digital elevation model. Therefore, oblique images have been used mostly for visualization purposes. This situation changed in recent years as new methods, which allowed for a higher accuracy of exterior orientation, were developed. Current developments include the process of determining exterior orientation and the previous but still crucial process of tie point extraction. Progress in this area was shown in the ISPRS/EUROSDR Benchmark on Multi-Platform Photogrammetry and is also noticeable in the growing interest in the use of this kind of imagery. The higher level of accuracy in the orientation of oblique aerial images that has become possible in the last few years should result in a higher level of accuracy in the measurements of these types of images. The main goal of this research was to set and empirically verify the accuracy of measurements in oblique aerial images. The research focused on photogrammetric measurements composed of many images, which use a high overlap within an oblique dataset and different view angles. During the experiments, two series of images of urban areas were used. Both were captured using five DigiCam cameras in a Maltese cross configuration. The tilt angles of the oblique cameras were 45 degrees, and the position of the cameras during flight used a high grade GPS/INS navigation system. The orientation of the images was set using the Pix4D Mapper Pro software with both measurements of the in-flight camera position and the ground control points (measured with GPS RTK technology. To control the accuracy, check points were used (which were also measured with GPS RTK technology. As reference data for the whole study, an area of the city-based map was used

  11. AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Hankins, M. J.; Herter, T. L. [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Ressler, M. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-02-20

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.

  12. A Pilot Evaluation of On-Road Detection Performance by Drivers with Hemianopia Using Oblique Peripheral Prisms

    Directory of Open Access Journals (Sweden)

    Alex R. Bowers

    2012-01-01

    Full Text Available Aims. Homonymous hemianopia (HH, a severe visual consequence of stroke, causes difficulties in detecting obstacles on the nonseeing (blind side. We conducted a pilot study to evaluate the effects of oblique peripheral prisms, a novel development in optical treatments for HH, on detection of unexpected hazards when driving. Methods. Twelve people with complete HH (median 49 years, range 29–68 completed road tests with sham oblique prism glasses (SP and real oblique prism glasses (RP. A masked evaluator rated driving performance along the 25 km routes on busy streets in Ghent, Belgium. Results. The proportion of satisfactory responses to unexpected hazards on the blind side was higher in the RP than the SP drive (80% versus 30%; P=0.001, but similar for unexpected hazards on the seeing side. Conclusions. These pilot data suggest that oblique peripheral prisms may improve responses of people with HH to blindside hazards when driving and provide the basis for a future, larger-sample clinical trial. Testing responses to unexpected hazards in areas of heavy vehicle and pedestrian traffic appears promising as a real-world outcome measure for future evaluations of HH rehabilitation interventions aimed at improving detection when driving.

  13. Truncation correction for oblique filtering lines

    International Nuclear Information System (INIS)

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-01-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  14. Which oblique plane is more helpful in diagnosing an anterior cruciate ligament tear?

    International Nuclear Information System (INIS)

    Kwon, J.W.; Yoon, Y.C.; Kim, Y.N.; Ahn, J.H.; Choe, B.K.

    2009-01-01

    Aim: To evaluate the diagnostic role of additional oblique coronal and oblique sagittal magnetic resonance imaging (MRI) for an anterior cruciate ligament (ACL) tear. Materials and methods: A total of 101 patients who had undergone preoperative knee MRI examinations with orthogonal and two sets of oblique images were enrolled in the study. Two radiologists evaluated the MRI images by the use of four methods: orthogonal images only (method A); orthogonal and additional oblique coronal images (method B); orthogonal and oblique sagittal images (method C); and orthogonal images with oblique coronal and sagittal images (method D). The status of the ACL (normal or tear) was determined by consensus. The sensitivity, specificity, and accuracy for an ACL tear with the use of each method were calculated in comparison with arthroscopy as the reference standard, and values were statistically analysed using the McNemar test. The diagnostic accuracies were compared using receiver operating characteristic (ROC) analysis. Results: Arthroscopy identified 10 partial ACL tears and 30 complete ACL tears. The specificities and accuracies for methods B, C, and D were significantly higher than the specificities and accuracies for method A (p 0.05). Conclusions: Additional oblique imaging for an ACL tear improved the specificity. Either of the oblique imaging methods is sufficient, and no further improvement in the diagnostic efficacy was achieved by simultaneous use

  15. Radiation transport modelling for the interpretation of oblique ECE measurements

    Directory of Open Access Journals (Sweden)

    Denk Severin S.

    2017-01-01

    Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  16. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  17. Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone

    Science.gov (United States)

    Matsu'ura, Tabito

    2015-04-01

    Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.

  18. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  19. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  20. Development of a nuclear precession magnetometer

    International Nuclear Information System (INIS)

    Virgens Alves, J.G. das.

    1983-12-01

    The objective of this thesis was to develop a proton precession magnetometer for geophysical prospecting and base stations. The proton procession magnetometer measures the total magnetic fields intensity. It operates on the basis of nuclear magnetic resonance by determining the processing frequency of protons of a non viscous liquid in the terrestrial magnetic fields. The instrument was tested in field to evaluate signal/noise ratio, supportable gradient and battery consumption. Application test was carried out to take diurnal variation data and, reconnaissance and detail surveys data on an archaeological site in the Marajo Island-Pa. The test results were confronted with two commercial magnetometers-GP-70, McPhar e G-816, Geometric - and, with data from Observatorio Magnetico Ilha de Tatuoca as well. For all cases, the data comparison showed a good performance of the magnetometer tested. (author)

  1. Ionospheric Oblique Incidence Soundings by Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...

  2. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  3. TOPLAR: Time of Flight with Larmor Precessions - or - How to extend the dynamic range of NSE spectrometers

    International Nuclear Information System (INIS)

    Van Well, A.A.; Bleuel, M.; Pappas, C.

    2011-01-01

    Neutron Spin Echo (NSE) spectrometers typically cover a dynamic range of three orders of magnitude at a given wavelength. At long Fourier times the limits are given by the homogeneity of precession fields. At short Fourier times, the quasi-elastic approximation and the NSE formalism mark a methodological limit. We propose to overcome this limitation and by combining Time Of Flight with Larmor precession to extend the capabilities of Neutron Spin Echo spectrometers towards short Fourier times. TOFLAR should be easily implemented on NSE spectrometers equipped with a chopper system such as IN15 or the planned WASP. (authors)

  4. Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect

    Science.gov (United States)

    Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.

    2017-12-01

    Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.

  5. Research On The Measure Method Of Oblique Pinhole Parameters

    Directory of Open Access Journals (Sweden)

    Ma Yu-Zhen

    2016-01-01

    Full Text Available There are many special advantages in measuring the diameter of blind and deep holes with a capacitive probe, there are still some challenges for the measurement of a oblique pinhole parameters because the measuring device is inconvenient to stretch into the oblique pinhole exactly. A five-dimensional measurement system was adopted in the paper which included a capacitive sensor probe and a three-coordinate measuring machine to accomplish the measurement for oblique pinholes. With the help of the three-dimensional coordinates measured from the pinhole axis, we put forward a comprehensive method of combining the projection method and the least squares method together for fitting spatial straight line to obtain the optimal equation of the spacial axis. Finally, a reliable and entire measurement system was set up.

  6. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    Science.gov (United States)

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (pmyasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene

    Science.gov (United States)

    Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.

    2014-12-01

    Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.

  8. Axial oblique MR imaging of the intrinsic ligaments of the wrist: initial experience

    International Nuclear Information System (INIS)

    Robinson, G.; Chung, T.; Finlay, K.; Friedman, L.

    2006-01-01

    To evaluate two separate MR sequences acquired in the axial oblique plane, parallel to the long axis of the scapholunate (SL) and lunotriquetral (LT) ligaments, to determine whether the addition of these sequences to the standard MR wrist examination improves visualization of the intrinsic ligaments, and the evaluation of their integrity. To our knowledge, this plane has not been described in the literature previously. In total we evaluated 26 patients with chronic wrist pain or instability, referred for MR imaging following assessment by an orthopedic surgeon or physiatrist. All patients underwent initial conventional tri-compartment wrist arthrography, which served as the reference standard. This was immediately followed by MR arthrography, in the standard coronal and true axial planes, as well as in the axial oblique plane. The SL and LT ligaments were initially assessed for the presence or absence of tear, using the standard coronal and true axial sequences, and subsequently re-evaluated with the addition of the axial oblique planes. A total of ten intrinsic ligament tears were identified with conventional arthrography: six SL and four LT tears. Five of the six SL tears were identified on the standard sequences. All six were diagnosed with the addition of the oblique sequences. There were three false-positive SL tears identified using standard MR imaging, and two false-positives with the addition of the oblique sequences. No LT tear was identified on standard sequences, whereas all four were confidently seen with the addition of oblique images. No false-positives of the LT ligament were recorded with either standard or axial oblique sequences. The study suggests that the addition of axial oblique MR sequences helps identify tears to the intrinsic ligaments of the wrist, particularly the LT ligament. In addition, the axial oblique images assist in localization of the tear. (orig.)

  9. Routine oblique radiography of the pediatric lumbar spine: is it necessary

    International Nuclear Information System (INIS)

    Roberts, F.F.; Kishore, P.R.S.; Cunningham, M.E.

    1978-01-01

    A series of 86 pediatric lumbar spine abnormalities was evaluated to determine the diagnostic benefit of radiography in oblique projection as compared to frontal-lateral projections alone. In only four patients was an abnormality apparent on the oblique view which had not already been demonstrated by the frontal-lateral series; each of these represented an isolated spondylolysis. Because the diagnostic yield was low at a patient cost of more than double the gonadal radiation dose, it is recommended that oblique views be eliminated in the routine radiography of the pediatric lumbar spine

  10. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene

    NARCIS (Netherlands)

    Ao, H.; Dekkers, M.J.; Xiao, G.; Yang, X.; Qin, L.; Liu, X; Qiang, X.; Chang, H.; Zhao, H.

    2012-01-01

    Here we construct a Pleistocene astronomical timescale for the Nihewan fluvio–lacustrine sediments (North China), via tuning a stacked summer monsoon index generated from grain size and low-field magnetic susceptibility records to orbital obliquity and precession. Combining the summer monsoon

  11. Kinetic Alfven waves and electron physics. II. Oblique slow shocks

    International Nuclear Information System (INIS)

    Yin, L.; Winske, D.; Daughton, W.

    2007-01-01

    One-dimensional (1D) particle-in-cell (PIC; kinetic ions and electrons) and hybrid (kinetic ions; adiabatic and massless fluid electrons) simulations of highly oblique slow shocks (θ Bn =84 deg. and β=0.1) [Yin et al., J. Geophys. Res., 110, A09217 (2005)] have shown that the dissipation from the ions is too weak to form a shock and that kinetic electron physics is required. The PIC simulations also showed that the downstream electron temperature becomes anisotropic (T e parallel )>T e perpendicular ), as observed in slow shocks in space. The electron anisotropy results, in part, from the electron acceleration/heating by parallel electric fields of obliquely propagating kinetic Alfven waves (KAWs) excited by ion-ion streaming, which cannot be modeled accurately in hybrid simulations. In the shock ramp, spiky structures occur in density and electron parallel temperature, where the ion parallel temperature decreases due to the reduction of the ion backstreaming speed. In this paper, KAW and electron physics in oblique slow shocks are further examined under lower electron beta conditions. It is found that as the electron beta is reduced, the resonant interaction between electrons and the wave parallel electric fields shifts to the tail of the electron velocity distribution, providing more efficient parallel heating. As a consequence, for β e =0.02, the electron physics is shown to influence the formation of a θ Bn =75 deg. shock. Electron effects are further enhanced at a more oblique shock angle (θ Bn =84 deg.) when both the growth rate and the range of unstable modes on the KAW branch increase. Small-scale electron and ion phase-space vortices in the shock ramp formed by electron-KAW interactions and the reduction of the ion backstreaming speed, respectively, are observed in the simulations and confirmed in homogeneous geometries in one and two spatial dimensions in the accompanying paper [Yin et al., Phys. Plasmas 14, 062104 (2007)]. Results from this study

  12. Oblique decision trees using embedded support vector machines in classifier ensembles

    NARCIS (Netherlands)

    Menkovski, V.; Christou, I.; Efremidis, S.

    2008-01-01

    Classifier ensembles have emerged in recent years as a promising research area for boosting pattern recognition systems' performance. We present a new base classifier that utilizes oblique decision tree technology based on support vector machines for the construction of oblique (non-axis parallel)

  13. Surgical Results in Unilateral Superior Oblique Muscle Palsy

    Directory of Open Access Journals (Sweden)

    Aylin Tenlik

    2014-08-01

    Full Text Available Objectives: To evaluate the surgical treatments and results of the patients with superior oblique muscle palsy (SOMP. Materials and Methods: Clinical charts of the patients with unilateral SOMP who were operated in our clinic between 1999 and 2009 were evaluated retrospectively. Patients’ demographics, preoperative signs, surgical procedure, complications, and final results were recorded. Results: Thirty-seven patients were included in the study, [21 (59% male, 15 (41% female]. The mean age was 20.6 years at the time of operation. The mean time interval between diagnosis and operation was 7.3 years. Postoperative follow-up period was 2.04 (ranging 1-10 years. Diplopia was determined in seven (18.9% patients, and abnormal head position in 36 (97.3% patients. Only inferior oblique tenotomy with distal muscle resection was performed in 25 patients. In addition, five patients had recession of the contralateral inferior rectus muscle and two patients had recession of the ipsilateral superior rectus muscle additional to inferior oblique tenotomy. Abnormal head position was completely improved in all of the patients postoperatively. The preoperative average score of the inferior oblique muscle (IOM overaction was +3.3±0.8, and postoperative overaction was found in only two patients (+1.5. There was statistically significant difference between the two periods (p<0.001. The average score of the superior oblique muscle hypofunction was -2.18 preoperatively, and in only three patients, the score was found -1.0 postoperatively. Difference between the two periods was statistically significant (p<0.001. While the preoperative average vertical deviation was 22 PD in primary position, none of the patients had hyperdeviation postoperatively. Diplopia was resolved in all seven affected patients postoperatively. Contralateral IOM hyperfunction was the most common complication (13.5%. Adherence syndrome was seen in none of the patients. Conclusion: It was found

  14. Sedimentación lacustre y ciclicidad: las sucesiones fluvio-lacustres del Oligoceno superior del sector SE de la cuenca del Ebro

    OpenAIRE

    Barberà, X.; Cabrera, L.; Marzo, M.; Ripepe, M.

    1996-01-01

    A cyclostratigraphic study of Late Oligocene fluvio-lacustrine and lacustrine sequences was carried out in the Ebro basin. Fourier spectral analysis was used to analyze four stratigraphic and sedimentological parameters (thickness, colour, lithology and an estimative depth index) and was proved the appearance of periodicities of 39 and 16 to 18 ky which approximately fit the 41 ky (obliquity cycle) and 19 ky (short precession cycle). In all spectra, the obliquity cycle is a strong signal in t...

  15. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    Science.gov (United States)

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  16. Simple Way of Generating Oblique Impact

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Dvořáková, Pavla; Veselý, Eduard

    2007-01-01

    Roč. 31, č. 2 (2007), s. 28-32 ISSN 0732-8818 Institutional research plan: CEZ:AV0Z20760514 Keywords : oblique impact * exploding wire * holography Subject RIV: JR - Other Machinery Impact factor: 0.400, year: 2007

  17. Response of PMHS to high- and low-speed oblique and lateral pneumatic ram impacts.

    Science.gov (United States)

    Rhule, Heather; Suntay, Brian; Herriott, Rodney; Amenson, Tara; Stricklin, Jim; Bolte, John H

    2011-11-01

    In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al. (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al. or similar as observed by ISO. Twelve PMHS were impacted by a 23 kg pneumatic ram with a 152.4 mmx304.8 mm rectangular face plate at the level of the xyphoid process in either the pure lateral or 30° anterior-to-lateral oblique direction. Because these tests were potentially injurious, only one test per subject was conducted. Normalized responses demonstrate similar characteristics for both lateral and oblique impacts, indicating that it may be reasonable to combine lateral and oblique responses together at these higher speeds to define characteristic PMHS response as was done by ISO. The small number of tests conducted indicates that less chest compression may be required to obtain serious thoracic injury in oblique impacts as compared to lateral impacts at speeds of 4.5 or 5.5 m/s.

  18. A Precessing Jet in the CH Cyg Symbiotic System

    Science.gov (United States)

    Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.

    2010-02-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  19. A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM

    International Nuclear Information System (INIS)

    Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P.; Carilli, Christopher L.; Hack, Warren

    2010-01-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ∼300 AU to ∼1400 AU, with the shock front propagating with velocity -1 . The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ∼170 AU, and a SW component ending in several clumps extending out to ∼750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ∼500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  20. Characterization of Oblique Dual Frame Pairs

    DEFF Research Database (Denmark)

    Christensen, Ole; Eldar, Yonina

    2006-01-01

    Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characteriz...... for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space. Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved.......Given a frame for a subspace W of a Hilbert space H, we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative...

  1. Evaluation of macular thickness change after inferior oblique muscle recession surgery

    Directory of Open Access Journals (Sweden)

    Ece Turan-Vural

    2014-01-01

    Full Text Available Purpose: This study aimed to evaluate the changes in macular thickness following inferior oblique muscle recession surgery. Materials and Methods: Thirty-eight eyes from 21 patients undergoing ocular muscle surgery were included. Patients were grouped into three groups based on the type of surgical intervention: Group I (n = 12, inferior oblique recession surgery alone; Group II (n = 12, inferior oblique plus horizontal muscle surgery; Group III (n = 14, horizontal muscle surgery alone. Each eye was scanned using the optical coherence tomography (OCT device preoperatively and on the first postoperative day to measure macular thickness. Results: Following surgery, a significant increase in foveal thickness occurred in Group I (P < 0.05 and Group II (P < 0.01. In addition, a statistically significant difference was observed between the groups with regard to the increase in foveal thickness (P = 0.016, with significantly lower changes in Group III. Conclusion: Our findings suggested that inferior oblique muscle recession surgery is associated with an increase in macular thickness.

  2. A model for precessing helical vortex in the turbine discharge cone

    International Nuclear Information System (INIS)

    Kuibin, P A; University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" data-affiliation=" (Department of Hydraulic Machinery, University Politehnica Timişoara, Bv. Mihai Viteazu 1, RO-300222, Timişoara (Romania))" >Susan-Resiga, R F; Muntean, S

    2014-01-01

    The decelerated swirling flow in the discharge cone of hydraulic turbine develops various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency regime. In particular, the precessing helical vortex ( v ortex rope ) developed at part-load regimes is notoriously difficult and expensive to be computed using full three-dimensional turbulent unsteady flow models. On the other hand, modern design and optimization techniques require robust, tractable and accurate a-priori assessment of the turbine flow unsteadiness level within a wide operating range before actually knowing the runner geometry details. This paper presents the development and validation of a quasi-analytical model of the vortex rope in the discharge cone. The first stage is the computing of the axisymmetrical swirling flow at runner outlet with input information related only to the operating point and to the blade outlet angle. Then, the swirling flow profile further downstream is computed in successive cross-sections through the discharge cone. The second stage is the reconstruction of the precessing vortex core parameters in successive cross-sections of the discharge cone. The final stage lies in assembling 3D unsteady flow field in the discharge cone. The end result is validated against both experimental and numerical data

  3. Deformation-Induced Precession of a Robot Moving on Curved Space

    Science.gov (United States)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  4. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  5. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  6. POTENTIAL OF MULTI-TEMPORAL OBLIQUE AIRBORNE IMAGERY FOR STRUCTURAL DAMAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    A. Vetrivel

    2016-06-01

    Full Text Available Quick post-disaster actions demand automated, rapid and detailed building damage assessment. Among the available technologies, post-event oblique airborne images have already shown their potential for this task. However, existing methods usually compensate the lack of pre-event information with aprioristic assumptions of building shapes and textures that can lead to uncertainties and misdetections. However, oblique images have been already captured over many cities of the world, and the exploitation of pre- and post-event data as inputs to damage assessment is readily feasible in urban areas. In this paper, we investigate the potential of multi-temporal oblique imagery for detailed damage assessment focusing on two methodologies: the first method aims at detecting severe structural damages related to geometrical deformation by combining the complementary information provided by photogrammetric point clouds and oblique images. The developed method detected 87% of damaged elements. The failed detections are due to varying noise levels within the point cloud which hindered the recognition of some structural elements. We observed, in general that the façade regions are very noisy in point clouds. To address this, we propose our second method which aims to detect damages to building façades using the oriented oblique images. The results show that the proposed methodology can effectively differentiate among the three proposed categories: collapsed/highly damaged, lower levels of damage and undamaged buildings, using a computationally light-weight approach. We describe the implementations of the above mentioned methods in detail and present the promising results achieved using multi-temporal oblique imagery over the city of L’Aquila (Italy.

  7. Non-aligned pulsar magnetosphere: an illustrative model for small obliquity

    Energy Technology Data Exchange (ETDEWEB)

    Mestel, L.; Wang, Y.M. (Sussex Univ., Brighton (UK). Astronomy Centre)

    1982-02-01

    The electromagnetic field outside a pulsar of small obliquity is approximated by Goldreich-Julian (GJ) conditions out to the light-cylinder and by an outgoing vacuum wave beyond, matched by the appropriate surface charge-current distribution. The energy supply for the wave requires current flow between the pulsar and the light-cylinder. As in the earlier proposal for the aligned rotator, the cold electrons carrying the current achieve relativistic energies near the light-cylinder; the consequent inertial and radiation damping forces enable the electrons to drift across the field-lines and so complete their circuits back to the pulsar. It is hypothesized that low-obliquity pulsars are essentially emitters of a plasma-modified low-frequency wave and of gamma-radiation near the light-cylinder. Illustrative models are constructed as perturbations about an analogous approximate model for the aligned case. The precessional torque component accompanying the braking component acts so as to reduce the obliquity. As long as the obliquity is not too large there is no prima facie objection to non-relativistic flow near the star. It is emphasized that fully self-consistent models will have a smooth rather than a sharp transition between the GJ and vacuum domains.

  8. Residual symptoms after surgery for unilateral congenital superior oblique palsy.

    Science.gov (United States)

    Caca, Ihsan; Sahin, Alparslan; Cingu, Abdullah; Ari, Seyhmus; Akbas, Umut

    2012-01-01

    To establish the surgical results and residual symptoms in 48 cases with unilateral congenital superior oblique muscle palsy that had surgical intervention to the vertical muscles alone. Myectomy and concomitant disinsertion of the inferior oblique (IO) muscle was performed in 38 cases and myectomy and concomitant IO disinsertion and recession of the superior rectus muscle in the ipsilateral eye was performed in 10 cases. The preoperative and postoperative vertical deviation values and surgical results were compared. Of the patients who had myectomy and concomitant IO disinsertion, 74% achieved an "excellent" result, 21% a "good" result, and 5% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Of the patients who had myectomy and concomitant inferior oblique disinsertion and ipsilateral superior rectus recession, 50% achieved an "excellent" result, 20% a "good" result, and 30% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Both procedures are effective and successful in patients with superior oblique muscle palsy, but a secondary surgery may be required. Copyright 2012, SLACK Incorporated.

  9. [Clinical Therapeutic Effect of Oblique Needling with Tuina in Relieving Sacroiliac Joint Injury].

    Science.gov (United States)

    Kuang, Jia-yi; Li, Yu-xuan; He, Yu-feng; Gan, Lin; Wang, Ai-ming; Tang, Shao-hua; Lu, Fei-yu; Yang, Li-juan; Cat, Xue-ling; Quan, Jian-lin

    2016-04-01

    To observe the therapeutic effect of oblique needling in combination with Tuina at the sacroiliac joint for patients experiencing sacroiliac joint injury. One hundred and twenty patients with sacroiliac joint injury were randomized into routine Tuina group and oblique needling combined with Tuina (Acu+ Tuina) group (n = 60 in each group). For patients of the Tuina group, routine Tuina as rotating, pressing-rubbing, digital pressing, articular moving, etc. was manipulated at Shangliao (BL 31), Ciliao (BL 32), Zhongliao (BL 31), Xialiao (BL 30), Huantiao (GB 30), Zhibian (BL 54), Weizhong (BL 40) and sacroiliac joint area. For patients of the Acu+Tuina group, the anatomical points between the bilateral iliac crests and the sacral joints were punctured obliquely with disposable acupuncture needles. The treatment was conducted for 30 min every time, once daily for 3 weeks except weekends. The Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI, concerning intensity of pain, lifting, ability to care for oneself, ability to walk, ability to sit, sexual function, ability to stand, social life, sleep quality, and ability to travel) were employed to evaluate the patients' reactions and functional activity changes before and after the treatment. Following the treatment, of the two 60 patients in the Tuina and Acu + Tuina groups, 12 and 26 cases were cured, 20 and 20 experienced marked improvement, 16 and 11 were effective, 12 and 3 invalid, with the effective rates being 80% and 95%, respectively. The effective rate of the Acu+ Tuina group was significantly superior to that of the Tuina group (Psacroiliac joint region combined with Tuina manipulation is evidently better than simple Tuina in reducing pain and in improving functional activity and life quality in sacroiliac joint injury patients.

  10. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age

    Science.gov (United States)

    Fang, Qiang; Wu, Huaichun; Hinnov, Linda A.; Tian, Wenqian; Wang, Xunlian; Yang, Tianshui; Li, Haiyan; Zhang, Shihong

    2018-04-01

    At the end of the Late Paleozoic Ice Age (LPIA) from late Early Permian to early Late Permian, the global climate was impacted by a prevailing megamonsoon and Gondwanan deglaciation. To better understand the abiotic and biotic responses to Milankovitch-forced climate changes during this time period, multi-element X-ray fluorescence (XRF) geochemistry analyses were conducted on 948 samples from the late Early-late Middle Permian Maokou Formation at Shangsi, South China. The Fe/Ti, S/Ti, Ba/Ti and Ca time series, which were calibrated with an existing "floating" astronomical time scale (ATS), show the entire suite of Milankovitch rhythms including 405 kyr long eccentricity, 128 and 95 kyr short eccentricity, 33 kyr obliquity and 20 kyr precession. Spectral coherency and cross-phase analysis reveals that chemical weathering (monitored by Fe/Ti) and upwelling (captured by S/Ti and Ba/Ti) are nearly antiphase in the precession band, which suggests a contrast between summer and winter monsoon intensities. Strong obliquity signal in the Ba/Ti series is proposed to derive from changes in thermohaline circulation intensity from glaciation dynamics in southern Gondwana. The abundance of foraminifer, brachiopod and ostracod faunas within the Maokou Formation were mainly controlled by the 1.1 Myr obliquity modulation cycle. The obliquity-forced high-nutrient and oxygen-depleted conditions generally produced a benthic foraminifer bloom, but threatened the brachiopod and ostracod faunas.

  11. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    Science.gov (United States)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  12. Obliquely Propagating Non-Monotonic Double Layer in a Hot Magnetized Plasma

    International Nuclear Information System (INIS)

    Kim, T.H.; Kim, S.S.; Hwang, J.H.; Kim, H.Y.

    2005-01-01

    Obliquely propagating non-monotonic double layer is investigated in a hot magnetized plasma, which consists of a positively charged hot ion fluid and trapped, as well as free electrons. A model equation (modified Korteweg-de Vries equation) is derived by the usual reductive perturbation method from a set of basic hydrodynamic equations. A time stationary obliquely propagating non-monotonic double layer solution is obtained in a hot magnetized-plasma. This solution is an analytic extension of the monotonic double layer and the solitary hole. The effects of obliqueness, external magnetic field and ion temperature on the properties of the non-monotonic double layer are discussed

  13. An "oblique effect" in the visual evoked potential of the cat.

    Science.gov (United States)

    Bonds, A B

    1982-01-01

    An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.

  14. Oblique Modulation of Ion-Acoustic Waves in a Warm Plasma

    International Nuclear Information System (INIS)

    Xue Jukui; Tang Rongan

    2003-01-01

    The stability of oblique modulation of ion-acoustic waves in an unmagnetized warm plasma is studied. A nonlinear Schroedinger equation governing the slow modulation of the wave amplitude is derived. The effect of temperature on the oblique modulational instability of the ion-acoustic wave is investigated. It is found that the ion temperature significantly changes the domain of the modulational instability in the k-θ plane

  15. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    Science.gov (United States)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  16. Orbital rhythms, monsoons, and playa lake response, Olduvai basin, Equatorial East Africa at 1.85-1.75 Ma

    Science.gov (United States)

    Ashley, G. M.

    2001-12-01

    Wet-dry cycles in low latitudes are generally attributed to changes in solar radiation related to the 21 kyr tempo of orbital precession. Stronger insolation drives stronger summer monsoon maxima that increase precipitation and in closed basins produce larger lakes. However, a Plio-Pleistocene record from a closed rift-platform basin near the equator suggests that the obliquity (41 kyr) signal is also present. The 1.85-1.75 Ma sedimentary record deposited in the Olduvai basin, 3oN, reveals clear evidence of periodic expansion and contraction of paleolake Olduvai. The closed basin was 50 km wide and infilled by volcaniclastic material from Ngorongoro volcanic complex in several depositional environments.. A saline-alkaline lake expanded up to 15 km in width and deposited Mg-smectitic claystones. The lake clays in the central basin vary in clay mineralogy and the number of calcite crystal horizons reflecting compositional changes in the lake water. Lake expansions are recorded at the margins where lake clays are intercollated with deltaic and ephemeral fluvial sands and with lake margin wetland deposits. Marine dust records, off both west and east Africa, suggest that the precession signal (21kyr) dominated the climate until 2.8 Ma and the obliquity signal (41kyr) from 2.8 to 0.9 Ma (deMenocal, 1995). In contrast, the stratigraphic sequence for playa lake expansion at Olduvai, that is constrained by the tephra chronology (1.85-1.75 Ma) and paleomagnetic record, documents the combined effects of both obliquity and precession cycles.

  17. What is the Time Scale for Orbital Forcing of the Martian Water Cycle?

    Science.gov (United States)

    Hecht, M. H.

    2003-01-01

    Calculation of the periodic variations in the martian orbital parameters by Ward and subsequent refinements to the theory have inspired numerous models of variation of the martian water cycle. Most of these models have focused on variations in planetary obliquity on a both a short-term (110 kyr) time scale as well as larger oscillations occuring over millions of years. To a lesser extent, variations in planetary eccentricity have also been considered. The third and fastest mode of variation, the precession of the longitude of perihelion, has generally been deemphasized because, among the three parameters, it is the only one that does not change the integrated annual insolation. But as a result of this precession, the asymmetry in peak summer insolation between the poles exceeds 50%, with the maximum cycling between poles every 25.5 kyrs. The relative contribution of these different elements to orbital forcing of climate takes on particular importance in the context of apparently recent waterrelated features such as gullies or polar layered deposits (PLD). Christensen, for example, recently indentified mantling of heavily gullied crater walls as residual dust-covered snow deposits that were responsible for the formation of the gullies in a previous epoch. Christensen assumed that the snow was originally deposited at a period of high obliquity which was stabilized against sublimation by a lag deposit of dust. It is suggested here that not obliquity, but the shortterm oscillations associated with precession of the perihelion may play the dominant role in the formation of gullies, major strata in the polar layered deposits (PLD), and other water-related features.

  18. Free precession of neutron stars: some plain truths, cautionary remarks, and assorted speculations

    International Nuclear Information System (INIS)

    Pines, D.; Shaham, J.

    1974-01-01

    A brief summary is presented of present understanding of free precession in neutron stars. Attention is called to some truths concerning such wobble motion and then one describes some current efforts to devise mechanisms for exciting neutron star wobble with particular attention to the Crab and Vela pulsars and to Her X-1. (U.S.)

  19. High-K precession modes: Axially symmetric limit of wobbling motion in the cranked random-phase approximation description

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2005-01-01

    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178 W: the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives new insight into the wobbling motion in the triaxial superdeformed nuclei from a microscopic viewpoint

  20. Report of the International Astronomical Union Division I working group on precession and the ecliptic

    Czech Academy of Sciences Publication Activity Database

    Hilton, J. L.; Capitaine, N.; Chapront, J.; Ferrandiz, J.M.; Fienga, A.; Fukushima, T.; Getino, J.; Mathews, P. M.; Simon, J.-C.; Soffel, M.; Vondrák, Jan; Wallace, P.; Williams, J.

    2006-01-01

    Roč. 94, č. 3 (2006), s. 351-367 ISSN 0923-2958 Institutional research plan: CEZ:AV0Z10030501 Keywords : precession and the ecliptic * reference systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.175, year: 2006

  1. A QSO with precessing jets: 2300 - 189

    International Nuclear Information System (INIS)

    Hunstead, R.W.; Murdoch, H.S.; Phillips, M.M.

    1984-01-01

    The QSO 2300-189 (z = 0.1287) is found to have a faint companion galaxy at the same redshift. The separation is 6.8 arcsec on the sky. A spectrum of the fuzz around the QSO shows absorption features typical of late-type stars, which argues for its occurence in a normal disc or E galaxy. Radio maps obtained with the VLA at 1465 MHz and 4885 MHz show inversion (or S-shaped) symmetry, which is explained as due to the ejection of jets along an axis which is precessing, probably due to the tidal influence of the nearby galaxy. Several kinematic parameters are deduced including an upper limit for the jet velocity. Further support for tidal interaction comes from the detection of extensive region of low-brightness optical emission in the vicinity of the QSO. (author)

  2. The Oblique Basis Method from an Engineering Point of View

    International Nuclear Information System (INIS)

    Gueorguiev, V G

    2012-01-01

    The oblique basis method is reviewed from engineering point of view related to vibration and control theory. Examples are used to demonstrate and relate the oblique basis in nuclear physics to the equivalent mathematical problems in vibration theory. The mathematical techniques, such as principal coordinates and root locus, used by vibration and control theory engineers are shown to be relevant to the Richardson - Gaudin pairing-like problems in nuclear physics.

  3. The visibility of mandibular canal on orthoradial and oblique CBCT slices at molar implant sites

    International Nuclear Information System (INIS)

    Alkhader, Mustafa; Jarab, Fadi; Shaweesh, Ashraf; Hudieb, Malik

    2016-01-01

    The aim of the present study was to compare visibility of the mandibular canal on cone beam computed tomography (CBCT)-based orthoradial and oblique slices at molar implant sites. CBCT images for 132 mandibular molar implant sites were selected for the study. After generating orthoradial and oblique slices, two observers evaluated the visibility of the mandibular canal using three-point scoring scale (1-3, good to excellent). Wilcoxon signed-rank test compared the visibility scores of the two slices. Both orthoradial and oblique slices obtained from CBCT had only very good to excellent mandibular canal visibility scores. At 114 mandibular molar implant sites, the visibility score was equal on both orthoradial and oblique slices. Although the visibility score was higher on orthoradial slices for 12 implant sites, the visibility score was higher for six implant sites on oblique slices and the difference was not significant. Therefore, the visibility of the mandibular canal was excellent and comparable on most of orthoradial and oblique slices obtained from CBCT images

  4. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    International Nuclear Information System (INIS)

    Hermans, John J.; Ginai, Abida Z.; Beumer, Annechien; Moonen, Adrianus F.C.M.; Hop, Wim C.J.

    2012-01-01

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement (κ) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (κ 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were

  5. Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Energy Technology Data Exchange (ETDEWEB)

    Hermans, John J.; Ginai, Abida Z. [Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands); Beumer, Annechien; Moonen, Adrianus F.C.M. [Amphia Hospital, Department of Orthopaedics, Breda (Netherlands); Hop, Wim C.J. [Erasmus University Medical Center, Department of Biostatistics, Rotterdam (Netherlands)

    2012-02-15

    To evaluate the additional value of a 45 oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45 oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. The interobserver agreement ({kappa}) and agreement score [AS (%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes ({kappa} 0.61-0.92, AS 84-95%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p < 0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p=0.50) nor posteriorly (p=1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86% from 7%) and posterior (to 86% from 48%) syndesmotic injury when compared to the axial plane. Our results show the additional value of an 45 oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique

  6. Effect of bilateral superior oblique split lengthening on torsion

    Directory of Open Access Journals (Sweden)

    Jitendra Jethani

    2015-01-01

    Full Text Available Introduction: Superior oblique split lengthening (SOSL is done for weakening of superior oblique. It corrects the superior oblique overaction (SOOA and A pattern. Its effect on the torsion of the eye is not known. We present our data on the effect of this particular procedure on torsion. Materials and Methods: We did a study of 16 patients (32 eyes who underwent bilateral SOSL and compared the disc foveal angle (DFA preoperatively and postoperatively. The split lengthening was done from 4 mm to 7 mm depending upon the overaction of superior oblique. Results: The mean age was 15.3 ± 8.4 years. Mean preoperative DFA in the right eye (RE was −3.9° and in the left eye (LE was −2.9°. Mean postoperative DFA in RE was 0.2° and in LE was 0.9°. The mean change in the DFA for RE was 4.1° ± 1.3° and for LE was 3.8° ± 1.2°. All the patients were aligned horizontally within 6 prism diopter and no pattern and no diplopia postoperatively. The A pattern was corrected in all the patient postsurgery. For each mm of surgery, an improvement of 0.8° was seen in the DFA. Conclusion: We report the effect of SOSL on torsion. The SOSL reduces intorsion postsurgery and is, therefore, a valuable procedure in SOOA where both pattern and in torsion needs to be corrected.

  7. A note on oblique water entry

    KAUST Repository

    Moore, M. R.; Howison, S. D.; Ockendon, J. R.; Oliver, J. M.

    2012-01-01

    A minor error in Howison et al. (J. Eng. Math. 48:321-337, 2004) obscured the fact that the points at which the free surface turns over in the solution of the Wagner model for the oblique impact of a two-dimensional body are directly related

  8. Youngswick-Austin versus distal oblique osteotomy for the treatment of Hallux Rigidus.

    Science.gov (United States)

    Viladot, Antonio; Sodano, Luca; Marcellini, Lorenzo; Zamperetti, Marco; Hernandez, Elsa Sanchez; Perice, Ramon Viladot

    2017-08-01

    Hallux Rigidus is the most common degenerative joint pathology of the foot. Several procedures are described for the management of this deformity. In this prospective study we compared Youngswick-Austin and distal oblique osteotomy in the treatment of grade II Hallux Rigidus, in terms of clinical outcomes, efficacy and complications. Forty-six patients (50 feet) with moderate Hallux Rigidus (Regnauld grade II) were recruited and operated between March 2009 and December 2012. Surgical technique was Youngswick-Austin osteotomy (Group A) or distal oblique osteotomy (Group B). Mean follow-up was 42.7 ±12.2 (range, 24-70) months. Both groups achieved significant improvement of AOFAS score and first metatarsophalangeal joint range of motion (p value Austin and distal oblique osteotomies provides subjective patient improvement and increases the first metatarsophalangeal joint range of motion. The results of grade II Hallux Rigidus treatment were comparable when using a Youngswick-Austin or distal oblique osteotomy. Level II, prospective comparative study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  10. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  11. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  12. The role of the reversed oblique radiograph in trauma of the foot and ankle

    International Nuclear Information System (INIS)

    Geusens, E.; Geyskens, W.; Brys, P.; Janzing, H.

    2000-01-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  13. The role of the reversed oblique radiograph in trauma of the foot and ankle

    Energy Technology Data Exchange (ETDEWEB)

    Geusens, E.; Geyskens, W.; Brys, P. [Dept. of Radiology, University Hospitals, Leuven (Belgium); Janzing, H. [Dept. of Traumatology, University Hospitals, Leuven (Belgium)

    2000-03-01

    The objective of this study was to demonstrate the statistical significance of a reversed oblique radiograph of the foot in patients with ankle or foot trauma. In 100 consecutive patients a reversed oblique radiograph of the foot was taken in addition to the conventional plain films. Ten of 29 fractures were not visualised on the conventional films of foot and ankle and could only be diagnosed on the reversed oblique film. In 7 of these 10 cases an avulsion fracture at the anterolateral aspect of the calcaneus was present. This additional reversed oblique film of the foot seems to be of considerable importance, especially when an anterolateral avulsion fracture of the calcaneus is clinically suspected. (orig.)

  14. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    Science.gov (United States)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  15. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  16. Larmor-precession based neutron scattering instrumentation

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2009-01-01

    The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)

  17. The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor

    International Nuclear Information System (INIS)

    Suzuki, Yosuke; Matsumoto, Nobue; Morita, Hiroshi; Ohkawa, Hiromitsu

    1998-01-01

    The influence of the oblique incident X-ray that affected the image quality of the X-ray CCD sensor was examined and its correction was investigated. CDR was adopted in this study and evaluated image quality, by measuring MTF. The oblique projection was clinically permissible to about an oblique incident angle of 40 degrees although it exerts an influence on the magnifying power and density. The estimation of the oblique entrance direction and oblique incident angle was possible, by developing an oblique incident correction marker. When an oblique incident angle of θ degrees was measured, a correction is possible, by compressing the image cos (θ) times perpendicular to the rotational axis of CCD sensor. There was small decline of MTF, in the image where a correction for the influence of oblique incidence was made. By observation of the digital subtracted picture of the image after correction of oblique projection and that of normal, the resemblance in the two images indicated that this correction method was reasonable. (author)

  18. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    Science.gov (United States)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  19. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields

    International Nuclear Information System (INIS)

    Zhou Youhe

    1995-01-01

    Ferritic stainless steel has been considered for structural components such as first walls and blankets of fusion power reactors because the material shows low rates of irradiation swelling. Since it is magnetizable, the magnetoelastic interaction between magnetic field and deformation of the structures in a fusion reactor is so strong that their safety is of concern due to the magnetoelastic bending, buckling and magnetic damping, etc. Basic research of the magnetoelastic characteristics of ferromagnetic plate has been paid special attention by researchers. In this paper, the magnetoelastic bending and snapping are studied for a ferromagnetic plate in an oblique magnetic field. The theoretical model is based on the variational principle where the functional is employed as real total energy in the system including external work. The obtained expression of magnetic force on the plate is the same as that derived from the dipole model when the total magnetic field in the ferromagnetic medium is considered. In order to effectively solve the nonlinearly coupled interaction problem between magnetic field and mechanical deformation, a numerical program combining the finite element method for analyzing the magnetic field with the finite difference technique for finding out the bending deformation of the plate is employed to obtain the solution of magnetoelastic bending of a soft ferromagnetic plate. The numerical calculations are carried out for the typical example of a ferromagnetic cantilevered beam-plate in an oblique magnetic field. From the bending curves, that is the tip deflection versus applied magnetic fields, the critical magnetic field for the magnetoelastic snapping is predicted by the Southwell plot. The theoretical predictions show that the critical magnetic field decreases with the increase in incident angle of the oblique magnetic field. By the effect of incident angle on the magnetic buckling, the discrepancy between theoretical and experimental data can

  20. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    Science.gov (United States)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  1. QUALITY INSPECTION AND ANALYSIS OF THREE-DIMENSIONAL GEOGRAPHIC INFORMATION MODEL BASED ON OBLIQUE PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    S. Dong

    2018-04-01

    Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  2. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2015-12-01

    This study explores the possibility of using gradient echo-based sequences other than balanced steady-state free precession (bSSFP) in the magnetic resonance fingerprinting (MRF) framework to quantify the relaxation parameters . An MRF method based on a fast imaging with steady-state precession (FISP) sequence structure is presented. A dictionary containing possible signal evolutions with physiological range of T1 and T2 was created using the extended phase graph formalism according to the acquisition parameters. The proposed method was evaluated in a phantom and a human brain. T1 , T2 , and proton density were quantified directly from the undersampled data by the pattern recognition algorithm. T1 and T2 values from the phantom demonstrate that the results of MRF FISP are in good agreement with the traditional gold-standard methods. T1 and T2 values in brain are within the range of previously reported values. MRF-FISP enables a fast and accurate quantification of the relaxation parameters. It is immune to the banding artifact of bSSFP due to B0 inhomogeneities, which could improve the ability to use MRF for applications beyond brain imaging. © 2014 Wiley Periodicals, Inc.

  3. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    Science.gov (United States)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  4. Microstructural and magnetic properties of thin obliquely deposited films: A simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Solovev, P.N., E-mail: platon.solovev@gmail.com [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Izotov, A.V. [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Belyaev, B.A. [Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38, Akademgorodok, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, 79, pr. Svobodnyi, Krasnoyarsk 660041 (Russian Federation); Reshetnev Siberian State Aerospace University, 31, pr. Imeni Gazety “Krasnoyarskii Rabochii”, Krasnoyarsk 660014 (Russian Federation)

    2017-05-01

    The relation between microstructural and magnetic properties of thin obliquely deposited films has been studied by means of numerical techniques. Using our developed simulation code based on ballistic deposition model and Fourier space approach, we have investigated dependences of magnetometric tensor components and magnetic anisotropy parameters on the deposition angle of the films. A modified Netzelmann approach has been employed to study structural and magnetic parameters of an isolated column in the samples with tilted columnar microstructure. Reliability and validity of used numerical methods is confirmed by a good agreement of the calculation results with each other, as well as with our experimental data obtained by the ferromagnetic resonance measurements of obliquely deposited thin Ni{sub 80}Fe{sub 20} films. The combination of these numerical methods can be used to design a magnetic film with a desirable value of uniaxial magnetic anisotropy and to extract the obliquely deposited film structure from only magnetic measurements. - Highlights: • We present a simulation approach to study a relation between structural and magnetic properties of oblique films. • The calculated dependence of magnetic anisotropy on a deposition angle accords well with the experiment. • A modified Netzelmann approach is proposed. • It allows for the computation of magnetic and structural parameters of an isolated column. • Proposed approach can be used for theoretical studies and for characterization of oblique films.

  5. Differential growth of the northern Tibetan margin: evidence for oblique stepwise rise of the Tibetan Plateau

    Science.gov (United States)

    Wang, Fei; Shi, Wenbei; Zhang, Weibin; Wu, Lin; Yang, Liekun; Wang, Yinzhi; Zhu, Rixiang

    2017-01-01

    Models of how high elevations formed across Tibet predict: (a) the continuous thickening of a “viscous sheet”; (b) time-dependent, oblique stepwise growth; and (c) synchronous deformation across Tibet that accompanied collision. Our new observations may shed light on this issue. Here, we use 40Ar/39Ar and (U-Th)/He thermochronology from massifs in the hanging walls of thrust structures along the Kunlun Belt, the first-order orogenic range at the northern Tibetan margin, to elucidate the exhumation history. The results show that these massifs, and hence the plateau margin, were subject to slow, steady exhumation during the Early Cenozoic, followed by a pulse of accelerated exhumation during 40–35 Ma. The exhumation rate increases westward (from ~0.22 to 0.34 and 0.5 mm/yr). The two-fold increase in exhumation in the western part (0.5 mm/yr) compared to the eastern part suggests westward increases in exhumation and compressional stress along the Kunlun Belt. We relate these observations to the mechanisms responsible for the oblique stepwise rise of Tibet. After collision, oblique subduction beneath Kunlun caused stronger compressional deformation in the western part than in the eastern part, resulting in differential growth and lateral extrusion. PMID:28117351

  6. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  7. Recent progress of obliquely deposited thin films for industrial applications

    Science.gov (United States)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  8. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    NARCIS (Netherlands)

    Chaplin, W.J.; Sanchis-Ojeda, R.; Campante, T.L.; Handberg, R.; Stello, D.; Winn, J.N.; Basu, S.; Christensen-Dalsgaard, J.; Davies, G.R.; Metcalfe, T.S.; Buchhave, L.A.; Fischer, D.A.; Bedding, T.R.; Cochran, W.D.; Elsworth, Y.; Gilliland, R.L.; Hekker, S.; Huber, D.; Isaacson, H.; Karoff, C.; Kawaler, S.D.; Kjeldsen, H.; Latham, D.W.; Lund, M.N.; Lundkvist, M.; Marcy, G.W.; Miglio, A.; Barclay, T.; Lissauer, J.J.

    2013-01-01

    Results on the obliquity of exoplanet host stars?the angle between the stellar spin axis and the planetary orbital axis?provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity

  9. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  10. The oblique occipital sinus: anatomical study using bone subtraction 3D CT venography.

    Science.gov (United States)

    Shin, Hwa Seon; Choi, Dae Seob; Baek, Hye Jin; Choi, Ho Cheol; Choi, Hye Young; Park, Mi Jung; Kim, Ji Eun; Han, Jeong Yeol; Park, SungEun

    2017-06-01

    An occipital sinus draining into the sigmoid sinus has been termed the oblique occipital sinus (OOS). The frequency, anatomical features, patterns, and relationship with the transverse sinus of the oblique occipital sinus were analyzed in this study. The study included 1805 patients who underwent brain CT angiography during a 3-year period from 2013 to 2015. CT examinations were performed using a 64-slice MDCT system. The OOS was identified in 41 patients (2.3%). There were many anatomical variations in the oblique occipital sinuses. A hypoplastic or aplastic TS was seen in 31 (75.6%) of the 41 patients with OOS. Many anatomical variations in the oblique occipital sinus can be seen on CT venography. Some OOSs function as the main drainage route of the intracranial veins instead of the TS. Thus, careful examination is essential for preoperative evaluation in posterior fossa lesions.

  11. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  12. Precession electron diffraction – a topical review

    Directory of Open Access Journals (Sweden)

    Paul A. Midgley

    2015-01-01

    Full Text Available In the 20 years since precession electron diffraction (PED was introduced, it has grown from a little-known niche technique to one that is seen as a cornerstone of electron crystallography. It is now used primarily in two ways. The first is to determine crystal structures, to identify lattice parameters and symmetry, and ultimately to solve the atomic structure ab initio. The second is, through connection with the microscope scanning system, to map the local orientation of the specimen to investigate crystal texture, rotation and strain at the nanometre scale. This topical review brings the reader up to date, highlighting recent successes using PED and providing some pointers to the future in terms of method development and how the technique can meet some of the needs of the X-ray crystallography community. Complementary electron techniques are also discussed, together with how a synergy of methods may provide the best approach to electron-based structure analysis.

  13. High resolution cyclostratigraphy of the early Eocene – new insights into the origin of the Cenozoic cooling trend

    Directory of Open Access Journals (Sweden)

    T. Westerhold

    2009-07-01

    Full Text Available Here we present a high-resolution cyclostratigraphy based on X-ray fluorescence (XRF core scanning data from a new record retrieved from the tropical western Atlantic (Demerara Rise, ODP Leg 207, Site 1258. The Eocene sediments from ODP Site 1258 cover magnetochrons C20 to C24 and show well developed cycles. This record includes the missing interval for reevaluating the early Eocene part of the Geomagnetic Polarity Time Scale (GPTS, also providing key aspects for reconstructing high-resolution climate variability during the Early Eocene Climatic Optimum (EECO. Detailed spectral analysis demonstrates that early Eocene sedimentary cycles are characterized by precession frequencies modulated by short (100 kyr and long (405 kyr eccentricity with a generally minor obliquity component. Counting of both the precession and eccentricity cycles results in revised estimates for the duration of magnetochrons C21r through C24n. Our cyclostratigraphic framework also corroborates that the geochronology of the Eocene Green River Formation (Wyoming, USA is still questionable mainly due to the uncertain correlation of the "Sixth tuff" to the GPTS.

    Right at the onset of the long-term Cenozoic cooling trend the dominant eccentricity-modulated precession cycles of ODP Site 1258 are interrupted by strong obliquity cycles for a period of ~800 kyr in the middle of magnetochron C22r. These distinct obliquity cycles at this low latitude site point to (1 a high-latitude driving mechanism on global climate variability from 50.1 to 49.4 Ma, and (2 seem to coincide with a significant drop in atmospheric CO2 concentration below a critical threshold between 2- and 3-times the pre-industrial level (PAL. The here newly identified orbital configuration of low eccentricity in combination with high obliquity amplitudes during this ~800-kyr period and the crossing of a critical pCO2 threshold may have led to the formation of the first ephemeral

  14. The non-aligned pulsar magnetosphere: an illustrative model for small obliquity

    International Nuclear Information System (INIS)

    Mestel, L.; Wang, Y.M.

    1982-01-01

    The electromagnetic field outside a pulsar of small obliquity is approximated by Goldreich-Julian (GJ) conditions out to the light-cylinder and by an outgoing vacuum wave beyond, matched by the appropriate surface charge-current distribution. The energy supply for the wave requires current flow between the pulsar and the light-cylinder. As in the earlier proposal for the aligned rotator, the cold electrons carrying the current achieve relativistic energies near the light-cylinder; the consequent inertial and radiation damping forces enable the electrons to drift across the field-lines and so complete their circuits back to the pulsar. It is hypothesized that low-obliquity pulsars are essentially emitters of a plasma-modified low-frequency wave and of gamma-radiation near the light-cylinder. Illustrative models are constructed as perturbations about an analogous approximate model for the aligned case. The precessional torque component accompanying the braking component acts so as to reduce the obliquity. As long as the obliquity is not too large there is no prima facie objection to non-relativistic flow near the star. It is emphasized that fully self-consistent models will have a smooth rather than a sharp transition between the GJ and vacuum domains. (author)

  15. Double oblique MR images of the shoulder. Comparison with conventional images

    International Nuclear Information System (INIS)

    Sasaki, Taisuke; Saito, Yoko; Yodono, Hiraku; Miura, Hiroyuki; Shinohara, Atsushi; Abe, Shuichiro

    1998-01-01

    Because the scapula is not only slanted on transverse sections but also inclines on sagittal sections, we now perform shoulder MR imaging using double oblique images (DOI), which are planes perpendicular or parallel to the long axis of the scapula obtained with oblique sagittal scout imaging. The purpose of this study was to evaluate the usefulness of double oblique shoulder MR imaging. MR images of shoulders with operatively or arthroscopically proven lesions (20 cases) that had been examined on both conventional images (CI) and DOI were retrospectively reviewed. DOI were compared with CI not only in terms of diagnostic performance but also in their ability to identify the details of shoulder anatomy. All MR studies were done with a shoulder coil on a high-field (1.5 T) unit. Although the accuracy of DOI in diagnosing shoulder disorders such as rotator cuff tear and labrum injury was not as good as that of CI, DOI were better for identifying or discriminating muscles and tendons of the rotator cuff, labralbicipital junction and anterior band of the inferior gleno-humeral ligament, and for recognizing the correct position of the glenoid labrum. MR double oblique imaging of the shoulder provides more detailed information about shoulder anatomy and disorders than conventional imaging. (author)

  16. When effective theories predict: the inevitability of Mercury's anomalous perihelion precession

    CERN Document Server

    Wells, James D

    2012-01-01

    If the concepts underlying Effective Theory were appreciated from the earliest days of Newtonian gravity, Le Verrier's announcement in 1845 of the anomalous perihelion precession of Mercury would have been no surprise. Furthermore, the size of the effect could have been anticipated through "naturalness" arguments well before the definitive computation in General Relativity. Thus, we have an illustration of how Effective Theory concepts can guide us in extending our knowledge to "new physics", and not just in how to reduce larger theories to restricted (e.g., lower energy) domains.

  17. Are oblique views necessary for detecting space occupying lesions in liver scintigraphy

    International Nuclear Information System (INIS)

    Koizumi, Kiyoshi; Seki, Hiroyasu; Taki, Junichi; Yokoyama, Kunihiko; Tada, Akira

    1983-01-01

    In colloid scanning of the liver to determine the presence or absence of SOL(s), it has been suggested that oblique views are desirable. However, it is not popular in Japan to obtain oblique views in routine liver imgaing. The present study was conducted to determine whether such additional views are necessary or not. Liver images of 20 patients with SOL(s) and 84 patients without SOL, all of which were confirmed by ultrasonography, transmission computed tomography and/or clinical course, were evaluated initially using 4 standard views and then adding oblique views by 6 physicians (3 experts and 3 freshmen in nuclear medicine). The numbers of cases showing different interpretation between 4 views and 6 views were 15, 10 and 13 each when interpreted by 3 experts. However, those were 21, 33 and 18 each when interpreted by 3 freshmen. Sensitivity for detecting SOL was improved in 3 physicians by adding oblique views, but was the same in other 3. Specificity was improved in only one physicinan. Overall accuracy was consequently improved in 4 physicians and was deteriorated in 2 physicians. ROC analysis revealed that in the freshman group more accurate interpretation was attained by using 6 views, but in the expert group false-positive cases were increased by using 6 views. Some cases showing usefulness for detecting SOL were presented. In conclusion, oblique views gave more accurate interpretation in inexpertienced observers, and useful information in some cases. (author)

  18. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    Science.gov (United States)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  19. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    Science.gov (United States)

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  20. Hydro-acoustic resonance behavior in presence of a precessing vortex rope: observation of a lock-in phenomenon at part load Francis turbine operation

    International Nuclear Information System (INIS)

    Favrel, A; Landry, C; Müller, A; Yamamoto, K; Avellan, F

    2014-01-01

    Francis turbines operating at part load condition experience the development of a cavitating helical vortex rope in the draft tube cone at the runner outlet. The precession movement of this vortex rope induces local convective pressure fluctuations and a synchronous pressure pulsation acting as a forced excitation for the hydraulic system, propagating in the entire system. In the draft tube, synchronous pressure fluctuations with a frequency different to the precession frequency may also be observed in presence of cavitation. In the case of a matching between the precession frequency and the synchronous surge frequency, hydro-acoustic resonance occurs in the draft tube inducing high pressure fluctuations throughout the entire hydraulic system, causing torque and power pulsations. The risk of such resonances limits the possible extension of the Francis turbine operating range. A more precise knowledge of the phenomenon occurring at such resonance conditions and prediction capabilities of the induced pressure pulsations needs therefore to be developed. This paper proposes a detailed study of the occurrence of hydro-acoustic resonance for one particular part load operating point featuring a well-developed precessing vortex rope and corresponding to 64% of the BEP. It focuses particularly on the evolution of the local interaction between the pressure fluctuations at the precession frequency and the synchronous surge mode passing through the resonance condition. For this purpose, an experimental investigation is performed on a reduced scale model of a Francis turbine, including pressure fluctuation measurements in the draft tube and in the upstream piping system. Changing the pressure level in the draft tube, resonance occurrences are highlighted for different Froude numbers. The evolution of the hydro-acoustic response of the system suggests that a lock-in effect between the excitation frequency and the natural frequency may occur at low Froude number, inducing a hydro

  1. Spin precession in inversion-asymmetric two-dimensional systems

    International Nuclear Information System (INIS)

    Liu, M.-H.; Chang, C.-R.

    2006-01-01

    We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction

  2. ACCURACY ANALYSIS FOR AUTOMATIC ORIENTATION OF A TUMBLING OBLIQUE VIEWING SENSOR SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Stebner

    2014-03-01

    Full Text Available Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera’s orientation greatly influence the projection of oblique images. In this publication these effects – originating from the kinematic chain of a dynamic camera system – are analysed and validated. A member of the Modular Airborne Camera System family – MACS-TumbleCam – consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  3. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  4. Oblique whistler instability in the earth's foreshock

    International Nuclear Information System (INIS)

    Sentman, D.D.; Thomsen, M.F.; Gary, S.P.; Feldman, W.C.; Hoppe, M.M.

    1983-01-01

    The linear Vlasov stability properties of electron velocity distributions, similar to those observed in the upstream foreshock region in association with obliquely propagating whistler waves at approximately 1 Hz, are studied. These distributions are modeled by a sum of bi-Maxwellians with drift speeds parallel to the magnetic field B. We find such distributions to be stable to modes with wavevectors k parallel to B but unstable to whistler waves propagating obliquely to the magnetic field. The frequencies and wavelengths of these unstable modes agree well with those of whistlers observed upstream of the earth's bow shock. The free energy source driving the instability is a region of positive parallel slope partialf/sub e//partialv/sub parallel/>0 at large pitch angles (about 85 0 ) and intermediate energies (about 20 eV), probably corresponding to the solar wind electrons magnetostatically reflected from the magnetic ramp of the bow shock. The whistlers grow via electromagnetic Landau resonance with this free energy source

  5. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  6. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y.; Lazar, M.; Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Heverlee (Belgium); Viñas, A., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD 20771 (United States)

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  7. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    Science.gov (United States)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  8. 3D MODEL GENERATION USING OBLIQUE IMAGES ACQUIRED BY UAV

    Directory of Open Access Journals (Sweden)

    A. Lingua

    2017-07-01

    Full Text Available In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (including façades and building footprints. Here the acquisition and use of oblique images from a low cost and open source Unmanned Aerial Vehicle (UAV for the 3D high-level-of-detail reconstruction of historical architectures is evaluated. The critical issues of such acquisitions (flight planning strategies, ground control points distribution, etc. are described. Several problems should be considered in the flight planning: best approach to cover the whole object with the minimum time of flight; visibility of vertical structures; occlusions due to the context; acquisition of all the parts of the objects (the closest and the farthest with similar resolution; suitable camera inclination, and so on. In this paper a solution is proposed in order to acquire oblique images with one only flight. The data processing was realized using Structure-from-Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. The achieved results are analysed considering some check points and some reference LiDAR data. The system was tested for surveying a historical architectonical complex: the “Sacro Mo nte di Varallo Sesia” in north-west of Italy. This study demonstrates that the use of oblique images acquired from a low cost UAV system and processed through an open source software is an effective methodology to survey cultural heritage, characterized by limited accessibility, need for detail and rapidity of the acquisition phase, and often reduced budgets.

  9. A case of dorsal oblique fingertip amputation.

    Science.gov (United States)

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai's classification is appropriate for guiding treatment.

  10. The Resilience of Kepler Multi-systems to Stellar Obliquity

    Science.gov (United States)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  11. Arc Motion in an Obliquely Imposed Alternating Magnetic Field

    International Nuclear Information System (INIS)

    Akiho, R; Takeda, K; Sugimoto, M

    2012-01-01

    The arc motion is theoretically investigated under an alternating magnetic field imposed obliquely to the arc. The arc is known to oscillate on a 2-D plane when the alternating magnetic field is imposed perpendicularly to the arc. If the alternating magnetic field is imposed obliquely to the arc, then it is expected that the arc oscillates not on the 2-D plane but in a 3-D space. For this study, 3-D simulation was performed on the motion of the plasma gas under an alternating magnetic field crossing obliquely to the arc. It was also assumed that a stream line of the plasma gas represented the arc profile. The momentum equation for the plasma gas was solved together with the continuity equation. Governing parameters for the gas motion are θ (crossing angle), v 0 (initial velocity of the plasma gas), and λ. Parameter λ is defined as λ = (I a B 0 )/Q 0 . Numerical results are reported under different operating conditions such as magnetic flux densities and the angles between the arc and the magnetic flux. If the crossing angle is larger than 4/π, the arc might be extinguished because of the drastic increase of the arc length.

  12. Three-dimensional oblique water-entry problems at small deadrise angles

    KAUST Repository

    Moore, M. R.

    2012-09-19

    This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.

  13. Three-dimensional oblique water-entry problems at small deadrise angles

    KAUST Repository

    Moore, M. R.; Howison, S. D.; Ockendon, J. R.; Oliver, J. M.

    2012-01-01

    This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.

  14. Obliquely propagating cnoidal waves in a magnetized dusty plasma with variable dust charge

    International Nuclear Information System (INIS)

    Yadav, L. L.; Sayal, V. K.

    2009-01-01

    We have studied obliquely propagating dust-acoustic nonlinear periodic waves, namely, dust-acoustic cnoidal waves, in a magnetized dusty plasma consisting of electrons, ions, and dust grains with variable dust charge. Using reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, we have derived Korteweg-de Vries (KdV) equation for the plasma. It is found that the contribution to the dispersion due to the deviation from plasma approximation is dominant for small angles of obliqueness, while for large angles of obliqueness, the dispersion due to magnetic force becomes important. The cnoidal wave solution of the KdV equation is obtained. It is found that the frequency of the cnoidal wave depends on its amplitude. The effects of the magnetic field, the angle of obliqueness, the density of electrons, the dust-charge variation and the ion-temperature on the characteristics of the dust-acoustic cnoidal wave are also discussed. It is found that in the limiting case the cnoidal wave solution reduces to dust-acoustic soliton solution.

  15. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  16. A case of dorsal oblique fingertip amputation

    OpenAIRE

    Takeda, Shinsuke; Tatebe, Masahiro; Morita, Akimasa; Yoneda, Hidemasa; Iwatsuki, Katsuyuki; Hirata, Hitoshi

    2017-01-01

    Abstract This study reports successful finger replantation in a patient with a dorsal oblique fingertip amputation. When repairing this unique type of injury, an evaluation of the remaining vessels is more useful for successful replantation than the anatomical zone classification. We propose that Kasai?s classification is appropriate for guiding treatment.

  17. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  18. Myocardial tagging with steady state free precession techniques and semi-automatic postprocessing--impact on diagnostic value

    DEFF Research Database (Denmark)

    Johnson, Thorsten R C; Bayrhof, Nicole; Huber, Armin

    2007-01-01

    Our aim was to determine the diagnostic value of myocardial tagging sequences with regard to the evaluable share of the cardiac cycle. Thirty-three patients were examined at 1.5 T using tagging sequences with gradient-echo (GRE) readout, 18 patients at 1.5 T with steady-state free precession (SSF...

  19. Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies

    Science.gov (United States)

    Cantu-Paz, Erick; Kamath, Chandrika

    2000-10-01

    Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.

  20. A numerical simulation of climate changes during the obliquity cycle on Mars

    International Nuclear Information System (INIS)

    Francois, L.M.; Walker, J.C.G.; Kuhn, W.R.

    1990-01-01

    A one-dimensional seasonal energy balance climate model has been developed for the Martian surface and coupled to a model of CO 2 distribution between atmosphere, regolith, and polar caps. This model takes into account the greenhouse warming of carbon dioxide, the meridional transport of heat, the CO 2 condensation and sublimation cycle, and its adsorption in the regolith. The model takes into consideration the diurnal variation of solar irradiation, since it is shown that disregard of this effect yields temperatures too high by several degrees. The yearly-averaged temperatures calculated from this climate model at different obliquities are used to estimate the importance of CO 2 exchanges between the regolith and atmosphere-cap systems during the obliquity cycle. For this purpose, the equation of thermal diffusion into the ground is solved for each latitude belt. The results differ substantially from those of previous studies, due in part to the consideration of the diurnal and seasonal variations of the solar irradiance. The model shows the importance of taking these short-period variations into account instead of using yearly-averaged quantities, due to the strong nonlinearity of the climate system on Mars. The roles of meridional heat transport and greenhouse warming are analyzed and shown to be important. For example, a permanent polar cap of carbon dioxide is destroyed by heat transport when the obliquity is high, while at low obliquity, high-pressure systems without permanent cap can exist if enough exchangeable carbon dioxide is available. Further, the results show the possible existence of hysteresis cycles in the formation and sublimation of permanent deposits during the course of the obliquity cycle

  1. Oblique rotaton in canonical correlation analysis reformulated as maximizing the generalized coefficient of determination.

    Science.gov (United States)

    Satomura, Hironori; Adachi, Kohei

    2013-07-01

    To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.

  2. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  3. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    Energy Technology Data Exchange (ETDEWEB)

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  4. Analysis of variationfor horizontal deviation in the primary position after the inferior oblique muscle weakening

    Directory of Open Access Journals (Sweden)

    Ming-Yu Si

    2015-06-01

    Full Text Available AIM: To analyse the variation of horizontal deviation in the primary position after the inferior oblique muscle weakening, and to explore the effect of the inferior oblique muscle recession on horizontal deviations in primary position.METHODS:, In the study, 30 cases in the Department of ophthalmology of our hospital from January 2014 to September 2014 underwent the inferior oblique muscle recession as the sole without horizontal muscles surgery, who were superior obliquer paralysis and V pattern strabismus with small angle of horizontal strabismus, were analyzed. Of the 30 patients, 25 had unilateral inferior oblique muscle surgery, and then 5 had bilateral surgeries.Followed up for three to six mo, all patients were received full ophthalmologic and orthoptic examinations, including measurement of the deviation in the diagnostic positions of gaze at near 33cm and at distance 6m by prism and alternate cover test, synoptophore, Titmus stereo graph examination, Worth four lighting inspection, eye movement examination, and fundus photography preoperatively and postoperatively. The changes of horizontal deviations in the primary position after procedures were investigated. RESULT:(1The comparison of horizontal deviation showed significant difference pre- and post-operation in the exotropia group(P=0.00. It was postoperative respectively to reduce the original in external oblique average 3.35±2.87△ and 4.37±2.65△.(2The comparison of horizontal deviation showed significant difference pre-and post-operation in the esotropia group(P=0.02, and it decreased postoperatively in average 2.43±1.99△. There was no significant difference for horizontal deviation position between pre- and post-operation(P=0.089. CONCLUSION:The horizontal deviation in primary position, either exotropia or esotropia, will decrease after the Inferior oblique muscle recession. This change can be compensated by the gradually improving and establishing the fusion function.

  5. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register.

    Science.gov (United States)

    Matre, Kjell; Havelin, Leif Ivar; Gjertsen, Jan-Erik; Vinje, Tarjei; Espehaug, Birgitte; Fevang, Jonas Meling

    2013-06-01

    Intramedullary nailing is commonly recommended as the treatment of choice for transverse/reverse oblique trochanteric (AO/OTA type A3=intertrochanteric) and subtrochanteric fractures. However, only to a limited extent is this approach supported by superior results in well designed clinical trials, and the sliding hip screw (SHS) is still a frequently used implant for these fractures. The aim of the present study was to compare IM nails and SHS in the treatment of transverse/reverse oblique trochanteric and subtrochanteric fractures using data from the Norwegian Hip Fracture Register (NHFR). Data on 2716 operations for acute transverse/reverse oblique trochanteric or subtrochanteric fractures were collected from the NHFR from 2005 to 2010. Surgeons reported patient characteristics and details from initial surgery and reoperations, and patients answered questionnaires about pain, satisfaction, and quality of life (EQ-5D) 4, 12, and 36 months postoperatively. Reoperation rates were calculated using Kaplan-Meier analyses. Primary outcome measures were pain (Visual Analogue Scale (VAS)), satisfaction (VAS), quality of life (EQ-5D), and reoperation rates at one year. The treatment groups were similar regarding age, gender, ASA-class, cognitive impairment, and preoperative EQ-5Dindex score. At one year reoperation rates were 6.4% and 3.8% for SHS and IM nails, respectively (p=0.011). Patients treated with SHS also had slightly more pain (VAS 30 vs. 27, p=0.037) and were less satisfied (VAS 31 vs. 36, p=0.003) compared to patients treated with IM nail. There was no statistically significant difference in the EQ-5Dindex score, but the mobility was significantly better for the IM nail group. 12 months postoperatively patients with transverse/reverse oblique trochanteric and subtrochanteric fractures operated with a SHS had a higher reoperation rate compared to those operated with an IM nail. Small differences regarding pain, satisfaction, quality of life, and mobility were

  6. VASTUS LATERALIS OBLIQUE ACTIVITY DURING GAIT OF SUBJECTS WITH PATELLOFEMORAL PAIN

    Directory of Open Access Journals (Sweden)

    Gilmar Moraes Santos

    Full Text Available ABSTRACT Introduction: So far, little is known about the behavior of electromyographic activity of vastus lateralis oblique muscle during treadmill gait in subjects with and without patellofemoral pain syndrome. Objective: The purpose of this study was to investigate the electromyographic activity of the patellar stabilizers muscles and the angle of the knee joint flexion in subjects with and without patellofemoral pain syndrome. Method: Fifteen subjects without (21 ± 3 years and 12 with patellofemoral pain syndrome (20 ± 2 years were evaluated. The electromyographic activity and flexion angle of the knee joint were obtained during gait on the treadmill with a 5 degree inclination. Results: The knee flexion angle was significantly lower in the subjects with patellofemoral pain syndrome when compared with the healthy controls. The electromyographic activity of vastus lateralis longus was significantly greater during gait on the treadmill with inclination in subjects with patellofemoral pain syndrome. The results also showed that the electromyographic activity of vastus lateralis oblique and vastus medialis oblique were similar in both groups, regardless of the condition (with/without inclination. Conclusion: We have shown that knee kinematics during gait differs among patients with and without patellofemoral pain syndrome and healthy controls and that a different motor strategy persists even when the pain is no longer present. In addition, the findings suggested that the vastus lateralis oblique has a minor role in patellar stability during gait.

  7. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    International Nuclear Information System (INIS)

    Krivoruchenko, Mikhail I

    2009-01-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  8. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  9. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  10. Do oblique views add value in the diagnosis of spondylolysis in adolescents?

    Science.gov (United States)

    Beck, Nicholas A; Miller, Robert; Baldwin, Keith; Zhu, X; Spiegel, David; Drummond, Denis; Sankar, Wudbhav N; Flynn, John M

    2013-05-15

    Anteroposterior, lateral, and right and left oblique lumbar spine radiographs are often a standard part of the evaluation of children who are clinically suspected of having spondylolysis. Recent concerns regarding radiation exposure and costs have brought the value of oblique radiographs into question. The purpose of the present study was to determine the diagnostic value of oblique views in the diagnosis of spondylolysis. Radiographs of fifty adolescents with L5 spondylolysis without spondylolisthesis and fifty controls were retrospectively reviewed. All controls were confirmed not to have spondylolysis on the basis of computed tomographic scanning, magnetic resonance imaging, or bone scanning. Anteroposterior, lateral, and right and left oblique radiographs of the lumbar spine were arranged into two sets of slides: one showing four views (anteroposterior, lateral, right oblique, and left oblique) and one showing two views (anteroposterior and lateral only). The slides were randomly presented to four pediatric spine surgeons for diagnosis, with four-view slides being presented first, followed by two-view slides. The slides for twenty random patients were later reanalyzed in order to calculate of intra-rater agreement. A power analysis demonstrated that this study was adequately powered. Inter-rater and intra-rater agreement were assessed on the basis of the percentage of overall agreement and intraclass correlation coefficients (ICCs). PCXMC software was used to generate effective radiation doses. Study charges were determined from radiology billing data. There was no significant difference in sensitivity and specificity between four-view and two-view radiographs in the diagnosis of spondylolysis. The sensitivity was 0.59 for two-view studies and 0.53 for four-view studies (p = 0.33). The specificity was 0.96 for two-view studies and 0.94 for four-view studies (p = 0.60). Inter-rater agreement, intra-rater agreement, and agreement with gold-standard ICC values

  11. The Resilience of Kepler Systems to Stellar Obliquity

    Science.gov (United States)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has led to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number (the so-called “Kepler Dichotomy”). In a recent paper, Spalding & Batygin demonstrated that the quadrupole moment arising from a young, oblate star is capable of misaligning the constituent orbits of a close-in planetary system enough to reduce their transit number, provided that the stellar spin axis is sufficiently misaligned with respect to the planetary orbital plane. Moreover, tightly packed planetary systems were shown to be susceptible to becoming destabilized during this process. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analyzed, including those possessing only two planets, underwent instability for stellar spin periods below ∼3 days and stellar tilts of order 30°. Moreover, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity ≲20°), where other methods of measuring the spin–orbit misalignment are not currently available. Given the known parameters of T-Tauri stars, we predict that up to one-half of super-Earth-mass systems may encounter the instability, in general agreement with the fraction typically proposed to explain the observed abundance of single-transiting systems.

  12. Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination

    International Nuclear Information System (INIS)

    Avilov, A.; Kuligin, K.; Nicolopoulos, S.; Nickolskiy, M.; Boulahya, K.; Portillo, J.; Lepeshov, G.; Sobolev, B.; Collette, J.P.; Martin, N.; Robins, A.C.; Fischione, P.

    2007-01-01

    We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession 'Spinning Star' system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF 2 as revealed for the first time by precise electron diffractometry

  13. Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan; Bonetti, S; Zha, C L; Akerman, Johan [Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden)], E-mail: zhouyan@kth.se

    2009-10-15

    Using nonlinear system theory and numerical simulations, we map out the static and dynamic phase diagrams in the zero applied field of a spin torque nano device with a tilted polarizer (TP). We find that for sufficiently large currents, even very small tilt angles ({beta}>1 deg.) will lead to steady free layer precession in zero field. Within a rather large range of tilt angles, 1 deg. <{beta}<19 deg., we find coexisting static states and hysteretic switching between these using only current. In a more narrow window (1 deg. <{beta}<5 deg.) one of the static states turns into a limit cycle (precession). The coexistence of current-driven static and dynamic states in the zero magnetic field is unique to the TP device and leads to large hysteresis in the upper and lower threshold currents for its operation. The nano device with TP can facilitate the generation of large amplitude mode of spin torque signals without the need for cumbersome magnetic field sources and thus should be very important for future telecommunication applications based on spin transfer torque effects.

  14. Oblique patterned etching of vertical silicon sidewalls

    Science.gov (United States)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  15. Benefits of sagittal-oblique MRI reconstruction of anterior cruciate ligament of the knee

    International Nuclear Information System (INIS)

    Nenezić, D.

    2015-01-01

    Full text: MRI examination of the anterior cruciate ligament (ACL) of the knee gives valuable information for conventional, physiatrist and/or arthroscopic microinvasiv treatment. three planar MRI examination and 3D reconstructions are highly precise in the analysis of the intra and periarticular structures, with exceptions of anterior cruciate ligament. Direct contact with the roof of the intercondilar fossa (in the full extension during the examination) and its specific orientation makes visualization of ACL diagnostically problematic. In a one year period precise protocol for MRI visualization of ACL was tested and applied as “Sagittal Oblique MRI Reconstruction”. In short, it has been Angled biplanar reconstruction in the parasagital and paratransversal planes (patientrelated and arbitrary selected in full extension), on T2, 2mm slice and 0,2 mm gap. 153 MRI examinations of the patients with lesions of the ACL were included in the study in the Clinical Center of Montenegro during 2005 year. Beside standard Knee MRI protocol all patients had the Sagittal Oblique MRI reconstruction of ACL and the Flexion MRI examination, to compare with. The Sagittal Oblique MRI reconstruction of ACL it is adapted to the concrete morphology of the patients ACL and it does not depend of the volume of the examined knee. In comparison with the Standard Knee MRI protocol and with the Flexion MRI examination, the Sagittal Oblique MRI reconstruction of ACL takes less time to perform, and the ligament is shown in fool length at three to five slices, which is more than with the both compared protocols. Sagittal Oblique MRI Reconstruction of ACL is therefore patient dependable, orientated in shape of concrete ligament of the patient’s knee. In combination with age, occupation, physical activity and level of patients while to contribute in healing process, the Sagittal Oblique MRI reconstruction of ACL contribute to scholastic approach, as highest benefit to patients with

  16. Comparison of Findings from Oblique Radiographs of the Raised Limb with Those of the Weight-bearing Limb for Selected Diseases of the Equine Digit

    Directory of Open Access Journals (Sweden)

    J. Šterc

    2007-01-01

    Full Text Available In the present study, the radiographic examination of the distal and proximal interphalangeal joints was performed in 43 randomly selected horses. A total of 86 forelimbs were examined. On the forelimbs, dorsolateral-palmaromedial, and dorsomedial-palmarolateral oblique views were performed. The oblique views were performed on raised limbs placed in a navicular block and on weight-bearing limbs placed on a pedestal made at the equine clinic. In total, 688 dorsolateral-palmaromedial and dorsomedial-palmarolateral views were taken. During the evaluation of the radiographs we focused on the detection of signs of degenerative joint disease of the distal and proximal iterphalangeal joints, and the detection of new bone formation in the phalanx regions, not associated with a disease of the distal or proximal interphalangeal joints. Based on the radiographic signs visible on these views, we diagnosed 9 cases of degenerative joint disease of the distal intraphalangeal joint, 13 cases of the degenerative joint disease of the proximal intraphalangeal joint and 21 cases of new bone formation in the phalanx regions. These signs were observed in 253 of 688 oblique views. Positive radiographic findings of the above-mentioned disorders were shown on 127 oblique views of the raised limb placed in the navicular block and 126 oblique views of the weight-bearing limb placed on the pedestal we made. When 128 oblique views of the weight-bearing limb (placed on the pedestal were compared with those of the raised limb (in the navicular block, there were different radiographic findings in three cases only. The differences in detection rates of radiographic signs between different type views showed no statistical significance (p ≥ 0.05. Therefore we assume that the pedestal we made can be routinely used for the radiographic examination of the distal and proximal interphalangeal joints on DL-PM and DM-PL oblique views, as part of pre-purchase examination or diagnosis

  17. Orbitally-forced Azolla blooms and middle Eocene Arctic hydrology; clues from palynology

    Science.gov (United States)

    Barke, Judith; Abels, Hemmo A.; Sangiorgi, Francesca; Greenwood, David R.; Sweet, Arthur R.; Donders, Timme; Lotter, Andre F.; Reichart, Gert-Jan; Brinkhuis, Henk

    2010-05-01

    The presence of high abundances of the freshwater fern Azolla in the early Middle Eocene central Arctic Ocean sediments recovered from the Lomonosov Ridge during IODP Expedition 302, have been related to the presence of a substantial freshwater cap. Azolla massulae, belonging to the newly described Eocene species Azolla arctica Collinson et al., have been found over at least a ~4 m-thick interval. There are strong indications that Azolla has bloomed and reproduced in situ in the Arctic Ocean for several hundreds of thousands of years. Possible causes for the sudden demise of Azolla at ~48.1 Ma include salinity changes due to evolving oceanic connections or sea-level change. Distinct cyclic fluctuation in the Azolla massulae abundances have previously been related to orbitally forced climate changes. In this study, we evaluate the possible underlying forcing mechanisms for these freshwater cycles and for the eventual demise of Azolla in an integrated palynological and cyclostratigraphical approach. Our results show two clear periodicities of ~1.3 and ~0.7 m in all major aquatic and terrestrial palynomorph associations, which we can relate to obliquity (41 ka) and precession (~21 ka), respectively. Cycles in the abundances of Azolla, freshwater-tolerant dinoflagellate cysts, and swamp vegetation pollen show co-variability in the obliquity domain. Their strong correlation suggests periods of enhanced rainfall and runoff during Azolla blooms, possibly associated with increased summer season length and insolation during obliquity maxima. Cycles in the angiosperm pollen record are in anti-phase with the Azolla cycles. We interpret this pattern as edaphically drier conditions on land and reduced associated runoff during Azolla lows, possibly corresponding to obliquity minima. The precession signal is distinctly weaker than that for obliquity, and is mainly detectable in the cold-temperate Larix and bisaccate conifer pollen abundances, which is interpreted as a response to

  18. Document segmentation via oblique cuts

    Science.gov (United States)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  19. Oblique radiograph for the detection of bone spurs in anterior ankle impingement

    International Nuclear Information System (INIS)

    Dijk, Niek C. van; Wessel, Ronald N.; Tol, Johannes L.; Maas, M.

    2002-01-01

    Objective: The aim of this study was to develop a radiographic view to detect anteromedial talotibial osteophytes that remain undetected on standard radiographs. Design and patients: In 10 cadaver specimens the maximal size was measured of anteromedial tibial osteophytes that remain undetected on a standard lateral radiograph projection, due to the presence of the anteromedial tibial rim. The average projection of the most prominent anterolateral tibial rim over the anteromedial rim was found to be 7.3 mm. A 7 mm barium-clay osteophyte was attached to this anteromedial rim of the distal tibia. Anteromedial osteophytes become most prominent on an oblique view, in which the radiographic beam is tilted into a 45 craniocaudal direction with the leg in 30 external rotation. This oblique view was compared with the findings of arthroscopic surgery in 25 consecutive patients with anterior ankle impingement syndrome. Results: Medially located tibial and talar osteophytes remained undetected on a standard lateral projection and became visible on the oblique anteromedial impingement (AMI) radiograph. Anterolateral tibial and talar osteophytes were well detected on a standard lateral radiograph projection but were invisible on the AMI view. There was a high correlation between the location of the osteophyte and the location of symptoms and the findings at arthroscopy. Conclusion: A combination of lateral and oblique radiographs can be used to differentiate between anteromedial and anterolateral bony ankle impingement. (orig.)

  20. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  1. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Correa, Cinthia Antunes; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, Mariana; Gemmi, M.; Kopeček, Jaromír; Domeneghetti, C.; Cámara, F.; Petříček, Václav

    2015-01-01

    Roč. 71, č. 6 (2015), 740-751 ISSN 2052-5206 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-25747S; GA MŠk LO1409 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Keywords : XRD * structure refinement * precession electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.892, year: 2015

  2. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2011-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system's ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking - in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. © 2011 IEEE

  3. A two-fluid study of oblique tearing modes in a force-free current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  4. Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113

    Science.gov (United States)

    Caproni, Anderson; Abraham, Zulema; Motter, Juliana Cristina; Monteiro, Hektor

    2017-12-01

    The recent discovery of a roughly simultaneous periodic variability in the light curves of the BL Lac object PG 1553+113 at several electromagnetic bands represents the first case of such odd behavior reported in the literature. Motivated by this, we analyzed 15 GHz interferometric maps of the parsec-scale radio jet of PG 1553+113 to verify the presence of a possible counterpart of this periodic variability. We used the Cross-entropy statistical technique to obtain the structural parameters of the Gaussian components present in the radio maps of this source. We kinematically identified seven jet components formed coincidentally with flare-like features seen in the γ-ray light curve. From the derived jet component positions in the sky plane and their kinematics (ejection epochs, proper motions, and sky position angles), we modeled their temporal changes in terms of a relativistic jet that is steadily precessing in time. Our results indicate a precession period in the observer’s reference frame of 2.24 ± 0.03 years, compatible with the periodicity detected in the light curves of PG 1553+113. However, the maxima of the jet Doppler boosting factor are systematically delayed relative to the peaks of the main γ-ray flares. We propose two scenarios that could explain this delay, both based on the existence of a supermassive black hole binary system in PG 1553+113. We estimated the characteristics of this putative binary system that also would be responsible for driving the inferred jet precession.

  5. Space and time reconstruction of the precessing vortex core in Francis turbine draft tube by 2D-PIV

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    Francis turbines operating at part load conditions experience the development of a high swirling flow at the runner outlet, giving rise to the development of a cavitation precessing vortex rope in the draft tube. The latter acts as an excitation source for the hydro-mechanical system and may jeopardize the system stability if resonance conditions are met. Although many aspects of the part load issue have been widely studied in the past, the accurate stability analysis of hydro-power plants remains challenging. A better understanding of the vortex rope dynamics in a wide range of operating conditions is an important step towards the prediction and the transposition of the pressure fluctuations from reduced to prototype scale. For this purpose, an investigation of the flow velocity fields at the outlet of a Francis turbine reduced scale physical model operating at part load conditions is performed by means of 2D-PIV in three different horizontal cross-sections of the draft tube cone. The measurements are performed in cavitation-free conditions for three values of discharge factor, comprised between 60% and 81% of the value at the Best Efficiency Point. The present article describes a detailed methodology to properly recover the evolution of the velocity fields during one precession cycle by means of phase averaging. The vortex circulation is computed and the vortex trajectory over one typical precession period is finally recovered for each operating point. It is notably shown that below a given value of the discharge factor, the vortex dynamics abruptly change and loose its periodicity and coherence.

  6. [Sacroiliac joint injury treated with oblique insertion at anatomical points: a randomized controlled trial].

    Science.gov (United States)

    Kuang, Jiayi; Li, Yuxuan; He, Yufeng; Gan, Lin; Wang, Aiming; Chen, Yanhua; Li, Xiaoting; Guo, Lin; Tang, Rongjun

    2016-04-01

    To compare the effects of oblique insertion at anatomical points and conventional acupuncture for sacroiliac joint injury. Eighty patients were randomly divided into an observation group and a control group, 40 cases in each one. In the observation group, oblique insertion therapy at anatomical points was used, and the 9 points of equal division (anatomical points) marked by palpating the anatomical symbol were treated as the insertion acupoints. In the control group, conventional acupuncture was applied, and perpendicular insertion was adopted at Huantiao (GB 30), Zhibian (BL 54) and Weizhong (BL 40), etc. In the two groups, the! treatment was given once a day and 5 times per week. Ten treatments were made into one course and two courses were required. The clinical effects, the changes of visual analogue scale (VAS) and Oswestry dysfunctional index. (ODI) before and after treatment were observed in the two groups. The total effective rate of the observation group was 90.0% (36/40), which was better than 72.5% (29/40) of the control group (P sacroiliac joint injury is superior to that of conventional acupuncture, which can effectively relieve pain and improve the disfunction.

  7. Ion stochastic heating by obliquely propagating magnetosonic waves

    International Nuclear Information System (INIS)

    Gao Xinliang; Lu Quanming; Wu Mingyu; Wang Shui

    2012-01-01

    The ion motions in obliquely propagating Alfven waves with sufficiently large amplitudes have already been studied by Chen et al.[Phys. Plasmas 8, 4713 (2001)], and it was found that the ion motions are stochastic when the wave frequency is at a fraction of the ion gyro-frequency. In this paper, with test particle simulations, we investigate the ion motions in obliquely propagating magnetosonic waves and find that the ion motions also become stochastic when the amplitude of the magnetosonic waves is sufficiently large due to the resonance at sub-cyclotron frequencies. Similar to the Alfven wave, the increase of the propagating angle, wave frequency, and the number of the wave modes can lower the stochastic threshold of the ion motions. However, because the magnetosonic waves become more and more compressive with the increase of the propagating angle, the decrease of the stochastic threshold with the increase of the propagating angle is more obvious in the magnetosonic waves than that in the Alfven waves.

  8. Oblique ion texturing of yttria-stabilized zirconia: The {211} structure

    International Nuclear Information System (INIS)

    Berdahl, Paul; Reade, Ronald P.; Liu, Jinping; Russo, Richard E.; Fritzemeier, Les; Buczek, David; Schoop, Urs

    2002-01-01

    Amorphous (Zr,Y)O x films were synthesized by reactive magnetron sputtering and subsequently crystallized by oblique ion bombardment. Crystalline texture nucleated by the ion beam was replicated by solid-phase epitaxial growth throughout the formerly amorphous yttria-stabilized zirconia (YSZ) film. The resulting YSZ films have (211) orientation normal to the substrate with in-plane directions (111), parallel, and (110), transverse, to the azimuth of the ion beam. We hypothesize that the texture mechanism involves ion-induced film compression and shear. The results, taken together with prior work, show that oblique ion texturing of amorphous films is a general phenomenon that can be used to fabricate substrates with more than one type of crystallographic orientation

  9. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    Science.gov (United States)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  10. Early detection of breast cancer using only oblique medium lateral view

    International Nuclear Information System (INIS)

    Aguillar, Vera L.N.

    1996-01-01

    To compare the advantages of one- versus two-views mammography, screening films were reviewed from 1,500 asymptomatic women undergoing mammography. Two separate interpretations were made of each case, one using only the oblique projection images, the other using both oblique and cranio caudal views. In women with dense breasts, one view readings resulted in much more frequent abnormal interpretations, false positives, than two-views readings. In contrast, in woman with primary fatty breast, in whom superimposition of dense tissue on image is not a problem, it may be reasonable to obtain a single mediolateral projection to follow-up screening mammography. (author)

  11. Graded versus ungraded inferior oblique anterior transposition in patients with asymmetric dissociated vertical deviation.

    Science.gov (United States)

    Rajavi, Zhale; Feizi, Mohadeseh; Naderi, Ali; Sabbaghi, Hamideh; Behradfar, Narges; Yaseri, Mehdi; Faghihi, Mohammad

    2017-12-01

    To report the surgical outcomes of graded versus ungraded inferior oblique anterior transposition (IOAT) in treatment of patients with asymmetric dissociated vertical deviation (DVD) and bilateral inferior oblique overaction (IOOA). A total of 74 eyes of 37 patients with asymmetric DVD (interocular difference of ≥5 Δ ) and bilateral IOOA of > +1 were included in this randomized clinical trial. In the ungraded group (n = 18), both inferior oblique muscles were sutured at the inferior rectus level; in the graded group (n = 19), the inferior oblique muscles of eyes with more DVD were sutured at the level of the inferior rectus and inferior oblique muscles of eyes with less DVD were sutured 2 mm posterior to the level of the inferior rectus muscle. DVD was significantly reduced in each group (P < 0.001 for both). Although the postoperative mean difference of asymmetry of DVD was less in the ungraded group compared to the graded group (1.2 ± 1.9 vs 3.2 ± 1.2 [P = 0.001]), the absolute amounts of reduction of DVD asymmetry were similar (4.3 ± 2.3 vs 4.4 ± 3.1 [P = 0.78]). IOOA and V patterns were also reduced postoperatively. Each method of IOAT was effective in reducing DVD, asymmetry, IOOA, and V patterns. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  12. DMSA SPECT imaging using oblique reconstruction in a paediatric population - benefits and technical considerations

    International Nuclear Information System (INIS)

    Parsons, G.; Ford, M.; Crisp, J.; Bernard, E.; Howman-Giles, R.

    1997-01-01

    Full text: DMSA renal scans are frequently requested for the diagnosis and follow-up of acute pyelonephritis and cortical scarring. This study was designed to:- 1. evaluate oblique reconstruction of DMSA SPECT over standard plane reconstruction and planar imaging; and 2. report on the technical aspects important in obtaining high quality DMSA SPECT, particularly in neonates. Over seven months, 210/231 (91 %) of DMSA scans were performed with SPECT on children from age nine days to 16 years, the median age being 2.5 years. 65 patients (31 %) were under one year and 39 (18%) were under six months. Planar and SPECT imaging with standard plane reconstruction and oblique reorientation was performed on the Siemens triple-headed gamma camera. High quality SPECT images were obtained on the smallest babies using a paediatric palette, and were of comparable quality to those of older children. At the time of reporting, the nuclear medicine physician assessed the diagnostic value of the three types of date presented: (1) planar images; (2) standard plane SPECT reconstruction; and (3) oblique SPECT reconstruction. Cortical defects were identified separately for upper, middle and lower poles. Three physicians concluded that high quality SPECT is superior to planar images when assessing the renal cortex. In addition, oblique reorientation is superior to standard reconstruction, particularly at the upper and lower poles. SPECT is now performed routinely on patients of all ages, and the oblique sagittal and coronal reorientation is now used in place of the standard reconstruction

  13. The effects of dynamic friction in oblique motorcycle helmet impacts

    Science.gov (United States)

    Bonugli, Enrique

    The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and 'typical' roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface. Roofing shingle was determined to be a more suitable material to simulate 'typical' roadway surfaces however, this may not be ideal for use in a controlled laboratory setting. In a laboratory setting, the author recommends cement as a best-fit material to simulate roadway surface for use in oblique motorcycle helmet impacts since this material displayed characteristics that closely resemble asphalt and is currently used as a roadway construction material.

  14. Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios

    Science.gov (United States)

    Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.

    2017-05-01

    Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).

  15. Infra Patellar Branch of Saphenous Nerve Injury during Hamstring Graft Harvest: Vertical versus Oblique Incisions.

    Science.gov (United States)

    Joshi, A; Kayasth, N; Shrestha, S; Kc, B R

    2016-09-01

    Autologous hamstring grafts are commonly used for anterior cruciate ligament reconstruction. The injury of infrapatellar branch of saphenous nerve is one of the concerns leading to various pattern of sensory loss in the operated leg. An oblique incision to harvest the graft has been reported to be better than the vertical one.The aim of this study was to compare the incidence, recovery of nerve injury and final outcome in patients with hamstring harvest of vertical or oblique incision. A total of 146 patients who underwent hamstring graft harvest for anterior cruciate ligament reconstruction, were included in the study. They were randomized into two (Vertical and Oblique) groups as per the incisions used. The sensory loss along the Infra Patellar Branch of Saphenous Nerve was documented on 3rd day. Recovery of the nerve injury was monitoredat three, six and 12 months follow-ups. At final follow up Tegner Lysholm score and scale was recorded to compare between two groups. The incidence of infrapatellar branch of saphenous nerve injury was 25% in vertical group and 16.36% in oblique group. Recovery of nerve injury started earlier in oblique group compared to vertical group. The mean TegnerLyshom score was not significantly different in both the groups. Oblique incision to harvest hamstring graft has lesser incidence of infrapatellar branch of saphenous nerve injury, recovers earlier and does not have any adverse effect on final outcome compared to the vertical incision.

  16. Oblique hilar tomography, computed tomography, and mediastinoscopy for prethoracotomy staging of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Khan, A.; Gersten, K.C.; Garvey, J.; Khan, F.A.; Steinberg, H.

    1985-01-01

    Preoperative oblique hilar tomography was used to evaluate hilar lymph nodes in 150 patients with clinically resectable bronchogenic carcinoma. CT was also used in the evaluation of mediastinal lymph nodes in 50 of these patients. Subsequently, all patients underwent mediastinoscopy and/or thoracotomy. Hilar and mediastinal nodes were evaluated for the presence of metastasis, and these findings were then correlated with the radiographic findings of oblique hilar tomography and CT. CT was found to be a reliable method for prethoracotomy staging of bronchogenic carcinoma and for selecting patients for mediastinoscopy. Thus patients with negative mediastinal CT need not undergo mediastinoscopy prior to thoracotomy, while mediastinoscopy and biopsy should be done in patients with enlarged mediastinal nodes on CT. Oblique hilar tomography is an accurate method for evaluation of hilar adenopathy and for predicting mediastinal involvement by extrapolation

  17. Continental breakup by oblique extension: the Gulf of California

    Science.gov (United States)

    van Wijk, J.; Axen, G. J.

    2017-12-01

    We address two aspects of oblique extension: 1) the evolution of pull-apart basins, and how/when they may evolve into seafloor spreading segments; and 2) the formation of microcontinents. The Gulf of California formed by oblique extension. Breakup resulted in oceanic crust generation in the southern and central parts, while in the northern Gulf/Salton Trough a thick layer of (meta-)sediments overlies thinned continental crust. We propose a simple mechanism to explain this N-S variation. We assume that oblique rifting of the proto-Gulf province resulted in pull-apart basins, and use numerical models to show that such pull-apart basins do not develop into seafloor spreading segments when their length-to-width ratios are small, as is the case in the northern Gulf. In the central and southern Gulf the length-to-width ratios were larger, promoting continent rupture. The mechanisms behind this fate of pull-apart basins will be discussed in the presentation. In the southern Gulf, potential field models show that the Tamayo Bank in the southern Gulf is likely a microcontinent, separated from the main continent by the Tamayo trough. The thickness of the ocean crust in the Tamayo trough is anomalously small, suggesting that initial seafloor spreading was magma-starved and unsuccessful, causing the location of rifting and seafloor spreading to jump. As a consequence a sliver of continent broke off, forming the microcontinent. We suggest that worldwide this may be a common process for microcontinent formation.

  18. Splitting Terraced Houses Into Single Units Using Oblique Aerial Imagery

    Science.gov (United States)

    Dahlke, D.

    2017-05-01

    This paper introduces a method to subdivide complex building structures like terraced houses into single house units comparable to units available in a cadastral map. 3D line segments are detected with sub-pixel accuracy in traditional vertical true orthomosaics as well as in innovative oblique true orthomosaics and their respective surface models. Hereby high gradient strengths on roofs as well as façades are taken into account. By investigating the coplanarity and frequencies within a set of 3D line segments, individual cut lines for a building complex are found. The resulting regions ideally describe single houses and thus the object complexity is reduced for subsequent topological, semantical or geometrical considerations. For the chosen study area with 70 buidling outlines a hit rate of 80% for cut lines is achieved.

  19. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    International Nuclear Information System (INIS)

    Kilic, C.; Raible, C. C.; Stocker, T. F.

    2017-01-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  20. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, C.; Raible, C. C.; Stocker, T. F., E-mail: stocker@climate.unibe.ch [Climate and Environmental Physics, Physics Institute, University of Bern (Switzerland)

    2017-08-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  1. Screech Tones from Rectangular Jets with Spanwise Oblique Shock-Cell Structures

    Science.gov (United States)

    Raman, Ganesh

    1996-01-01

    Understanding screech is especially important for the design of advanced aircraft because screech can cause sonic fatigue failure of aircraft structures. Although the connection between shock-cell spacing and screech frequency is well understood, the relation between non-uniformities in the shock-cell structures and the resulting amplitude, mode, and steadiness of screech have remained unexplored. This paper addresses the above issues by intentionally producing spanwise (larger nozzle dimension) variations in the shock-cell structures and studying the resulting spanwise screech mode. The spanwise oblique shock-cell structures were produced using imperfectly expanded convergent-divergent rectangular nozzles (aspect ratio = 5) with nonuniform exit geometries. Three geometries were studied: (a) a nozzle with a spanwise uniform edge, (b) a nozzle with a spanwise oblique (single bevelled) edge, and (c) a nozzle that had two spanwise oblique (double bevelled) cuts to form an arrowhead-shaped nozzle. For all nozzles considered, the screech mode was antisymmetric in the transverse (smaller nozzle dimension) direction allowing focus on changes in the spanwise direction. Three types of spanwise modes were observed: symmetric (1), antisymmetric (2), and oblique (3). The following significant results emerged: (1) for all cases the screech mode corresponds with the spanwise shock-cell structure, (2) when multiple screech modes are present, the technique presented here makes it possible to distinguish between coexisting and mutually exclusive modes, (3) the strength of shocks 3 and 4 influences the screech source amplitude and determines whether screech is unsteady. The results presented here offer hope for a better understanding of screech and for tailoring shock-containing jets to minimize fatigue failure of aircraft components.

  2. Designing safer composite helmets to reduce rotational accelerations during oblique impacts.

    Science.gov (United States)

    Mosleh, Yasmine; Cajka, Martin; Depreitere, Bart; Vander Sloten, Jos; Ivens, Jan

    2018-05-01

    Oblique impact is the most common accident situation that occupants in traffic accidents or athletes in professional sports experience. During oblique impact, the human head is subjected to a combination of linear and rotational accelerations. Rotational movement is known to be responsible for traumatic brain injuries. In this article, composite foam with a column/matrix composite configuration is proposed for head protection applications to replace single-layer uniform foam, to better attenuate rotational movement of the head during oblique impacts. The ability of composite foam in the mitigation of rotational head movement is studied by performing finite element (FE) simulations of oblique impact on flat and helmet shape specimens. The performance of composite foam with respect to parameters such as compliance of the matrix foam and the number, size and cross-sectional shape of the foam columns is explored in detail, and subsequently an optimized structure is proposed. The simulation results show that using composite foam instead of single-layer foam, the rotational acceleration and velocity of the headform can be significantly reduced. The parametric study indicates that using a more compliant matrix foam and by increasing the number of columns in the composite foam configuration, the rotation can be further mitigated. This was confirmed by experimental results. The simulation results were also analyzed based on global head injury criteria such as head injury criterion, rotational injury criterion, brain injury criterion and generalized acceleration model for brain injury threshold which further confirmed the superior performance of composite foam versus single-layer homogeneous expanded polystyrene foam. The findings of simulations give invaluable information for design of protective helmets or, for instance, headliners for the automotive industry.

  3. Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers

    International Nuclear Information System (INIS)

    Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.; Healy, James; London, Lionel; Shoemaker, Deirdre

    2011-01-01

    Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M T (set-membership sign)[80,350]M · , using numerical relativity waveforms and templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m=±1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.

  4. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Science.gov (United States)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  5. Design of Human – Machine Interface and Altering of Pelvic Obliquity with RGR Trainer

    Science.gov (United States)

    Pietrusinski, Maciej; Unluhisarcikli, Ozer; Mavroidis, Constantinos; Cajigas, Iahn; Bonato, Paolo

    2012-01-01

    The Robotic Gait Rehabilitation (RGR) Trainer targets secondary gait deviations in stroke survivors undergoing rehabilitation. Using an impedance control strategy and a linear electromagnetic actuator, the device generates a force field to control pelvic obliquity through a Human-Machine Interface (i.e. a lower body exoskeleton). Herein we describe the design of the RGR Trainer Human-Machine Interface (HMI) and we demonstrate the system’s ability to alter the pattern of movement of the pelvis during gait in a healthy subject. Results are shown for experiments during which we induced hip-hiking – in healthy subjects. Our findings indicate that the RGR Trainer has the ability of affecting pelvic obliquity during gait. Furthermore, we provide preliminary evidence of short-term retention of the modified pelvic obliquity pattern induced by the RGR Trainer. PMID:22275693

  6. CALIBRATION PROCEDURES ON OBLIQUE CAMERA SETUPS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available Beside the creation of virtual animated 3D City models, analysis for homeland security and city planning, the accurately determination of geometric features out of oblique imagery is an important task today. Due to the huge number of single images the reduction of control points force to make use of direct referencing devices. This causes a precise camera-calibration and additional adjustment procedures. This paper aims to show the workflow of the various calibration steps and will present examples of the calibration flight with the final 3D City model. In difference to most other software, the oblique cameras are used not as co-registered sensors in relation to the nadir one, all camera images enter the AT process as single pre-oriented data. This enables a better post calibration in order to detect variations in the single camera calibration and other mechanical effects. The shown sensor (Oblique Imager is based o 5 Phase One cameras were the nadir one has 80 MPIX equipped with a 50 mm lens while the oblique ones capture images with 50 MPix using 80 mm lenses. The cameras are mounted robust inside a housing to protect this against physical and thermal deformations. The sensor head hosts also an IMU which is connected to a POS AV GNSS Receiver. The sensor is stabilized by a gyro-mount which creates floating Antenna –IMU lever arms. They had to be registered together with the Raw GNSS-IMU Data. The camera calibration procedure was performed based on a special calibration flight with 351 shoots of all 5 cameras and registered the GPS/IMU data. This specific mission was designed in two different altitudes with additional cross lines on each flying heights. The five images from each exposure positions have no overlaps but in the block there are many overlaps resulting in up to 200 measurements per points. On each photo there were in average 110 well distributed measured points which is a satisfying number for the camera calibration. In a first

  7. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    Science.gov (United States)

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  8. AUTOMATIC BUILDING OUTLINING FROM MULTI-VIEW OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Xiao

    2012-07-01

    Full Text Available Automatic building detection plays an important role in many applications. Multiple overlapped airborne images as well as lidar point clouds are among the most popular data sources used for this purpose. Multi-view overlapped oblique images bear both height and colour information, and additionally we explicitly have access to the vertical extent of objects, therefore we explore the usability of this data source solely to detect and outline buildings in this paper. The outline can then be used for further 3D modelling. In the previous work, building hypotheses are generated using a box model based on detected façades from four directions. In each viewing direction, façade edges extracted from images and height information by stereo matching from an image pair is used for the façade detection. Given that many façades were missing due to occlusion or lack of texture whilst building roofs can be viewed in most images, this work mainly focuses on improve the building box outline by adding roof information. Stereo matched point cloud generated from oblique images are combined with the features from images. Initial roof patches are located in the point cloud. Then AdaBoost is used to integrate geometric and radiometric attributes extracted from oblique image on grid pixel level with the aim to refine the roof area. Generalized contours of the roof pixels are taken as building outlines. The preliminary test has been done by training with five buildings and testing around sixty building clusters. The proposed method performs well concerning covering the irregular roofs as well as improve the sides location of slope roof buildings. Outline result comparing with cadastral map shows almost all above 70% completeness and correctness in an area-based assessment, as well as 20% to 40% improvement in correctness with respect to our previous work.

  9. METHODOLOGICAL NOTES: Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Science.gov (United States)

    Krivoruchenko, Mikhail I.

    2009-08-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).

  10. Flow control for oblique shock wave reflections

    OpenAIRE

    Giepman, R.H.M.

    2016-01-01

    Shock wave-boundary layer interactions are prevalent in many aerospace applications that involve transonic or supersonic flows. Such interactions may lead to boundary layer separation, flow unsteadiness and substantial losses in the total pressure. Flow control techniques can help to mitigate these adverse effects and stabilize the interaction. This thesis focuses on passive flow control techniques for oblique shock wave reflections on flat plates and presents experimental results for both la...

  11. Sound absorption of a new oblique-section acoustic metamaterial with nested resonator

    Science.gov (United States)

    Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui

    2018-02-01

    This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.

  12. Thyroid-Associated Orbitopathy with Superior Oblique Muscle Involvement: A Case Report

    Directory of Open Access Journals (Sweden)

    Horng-Jiun Wu

    2004-02-01

    Full Text Available A 29-year-old male with a 5-year-history of hyperthyroidism complained of diplopia and proptosis. After subtotal thyroidectomy, he still had diplopia in a certain gaze. Computerized tomography showed inferior rectus muscle enlargement in the right eye and inferior rectus, medial rectus, and superior oblique muscle enlargement in the left eye. Ocular examination with the cover and uncover test revealed hyperphoria and exophoria in the left eye. The upward gaze of the right eye was more limited than that of the left eye. Since superior oblique muscle involvement in patients with thyroid orbitopathy is quite rare, we discuss its effect on ocular motility in patients with thyroid-associated orbitopathy.

  13. Treatment for incarcerated indirect hernia with "Cross-Internal Ring" inguinal oblique incision in children.

    Science.gov (United States)

    Yan, Xue-Qiang; Yang, Jun; Zheng, Nan-Nan; Kuang, Hou-Fang; Duan, Xu-Fei; Bian, Hong-Qiang

    2017-01-01

    This study aims to evaluate the utility of the "Cross-Internal Ring" inguinal oblique incision for the surgical treatment of incarcerated indirect hernia (IIH) complicated with severe abdominal distension. Patients of IIH complicated with severe abdominal distension were reviewed retrospectively. All patients received operation through the "Cross-Internal Ring" inguinal oblique incision. There were totally 13 patients were included, male to female ratio was 9-4. The time for patients to resume oral feeding varying from 2 to 5 days after operation, no complications include delayed intestinal perforation, intra-abdominal abscess, and incision infection happened. Average postoperative hospital stay was 5.2 days. All cases were followed up for 6-18 months. No recurrence or iatrogenic cryptorchidism happened. "Cross-Internal Ring" inguinal oblique incision is a simple, safe, and reliable surgical method to treat pediatric IIH complicated with severe abdominal distension.

  14. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  15. Vortex precession in thin elliptical ferromagnetic nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  16. Analysis of Torque Measurements on Films with Oblique Anistropy

    NARCIS (Netherlands)

    Abelmann, Leon; Kambersky, Vladimir; Lodder, J.C.; Popma, T.J.A.

    1993-01-01

    A measurement method is discussed to determine the magnetic anisotropy energy in a sample without assuming an a priori model for the origins of the anisotropy. The measurement procedure involves torque measurements in five different planes. Since it is especially useful for films with an oblique

  17. Design of a gait training device for control of pelvic obliquity.

    Science.gov (United States)

    Pietrusinski, Maciej; Severini, Giacomo; Cajigas, Iahn; Mavroidis, Constantinos; Bonato, Paolo

    2012-01-01

    This paper presents the design and testing of a novel device for the control of pelvic obliquity during gait. The device, called the Robotic Gait Rehabilitation (RGR) Trainer, consists of a single actuator system designed to target secondary gait deviations, such as hip-hiking, affecting the movement of the pelvis. Secondary gait deviations affecting the pelvis are generated in response to primary gait deviations (e.g. limited knee flexion during the swing phase) in stroke survivors and contribute to the overall asymmetrical gait pattern often observed in these patients. The proposed device generates a force field able to affect the obliquity of the pelvis (i.e. the rotation of the pelvis around the anteroposterior axis) by using an impedance controlled single linear actuator acting on a hip orthosis. Tests showed that the RGR Trainer is able to induce changes in pelvic obliquity trajectories (hip-hiking) in healthy subjects. These results suggest that the RGR Trainer is suitable to test the hypothesis that has motivated our efforts toward developing the system, namely that addressing both primary and secondary gait deviations during robotic-assisted gait training may help promote a physiologically-sound gait behavior more effectively than when only primary deviations are addressed.

  18. The equations of motion of a secularly precessing elliptical orbit

    Science.gov (United States)

    Casotto, S.; Bardella, M.

    2013-01-01

    The equations of motion of a secularly precessing ellipse are developed using time as the independent variable. The equations are useful when integrating numerically the perturbations about a reference trajectory which is subject to secular perturbations in the node, the argument of pericentre and the mean motion. Usually this is done in connection with Encke's method to ensure minimal rectification frequency. Similar equations are already available in the literature, but they are either given based on the true anomaly as the independent variable or in mixed mode with respect to time through the use of a supporting equation to track the anomaly. The equations developed here form a complete and independent set of six equations in time. Reformulations both of Escobal's and Kyner and Bennett's equations are also provided which lead to a more concise form.

  19. Morphological development of coasts at very oblique wave incidence

    DEFF Research Database (Denmark)

    Petersen, Dorthe Pia; Deigaard, Rolf; Fredsøe, Jørgen

    2003-01-01

    This study focuses on one distinct feature to be found on coasts exposed to a very oblique wave incidence, namely an accumulating spit. That is a spit where no retreat of the shoreline is going on along the spit. This requires a monotonically decreasing sediment transport capacity from the updrift...... that such a spit grows without changing its shape i.e. an equilibrium form emerge if the coast is exposed to a constant wave climate. During experiments conducted in a wave tank where a uniform stretch of coast was exposed to waves approaching at a very oblique angle an accumulating spit was formed at the down......-drift end of the coast. The spits approached equilibrium forms when constant wave climates were applied. The sediment transport around the spit has been investigated by two-dimensional models. The characteristic length scale for the equilibrium form depends linearly on the width of the surf zone...

  20. Preliminary Analysis of the Knipovich Ridge Segmentation - Influence of Focused Magmatism and Ridge Obliquity on an Ultraslow Spreading System

    Science.gov (United States)

    Okino, K.; Curewitz, D.; Asada, M.; Tamaki, K.

    2002-12-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge (SWIR). These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  1. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system

    Science.gov (United States)

    Okino, Kyoko; Curewitz, Daniel; Asada, Miho; Tamaki, Kensaku; Vogt, Peter; Crane, Kathleen

    2002-09-01

    Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.

  2. A note on oblique water entry

    KAUST Repository

    Moore, M. R.

    2012-10-02

    A minor error in Howison et al. (J. Eng. Math. 48:321-337, 2004) obscured the fact that the points at which the free surface turns over in the solution of the Wagner model for the oblique impact of a two-dimensional body are directly related to the turnover points in the equivalent normal impact problem. This note corrects some of the earlier results given in Howison et al. (J. Eng. Math. 48:321-337, 2004) and discusses the implications for the applicability of the Wagner model. © 2012 Springer Science+Business Media B.V.

  3. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)

    2009-08-31

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  4. Evaluation of pediatric ATD biofidelity as compared to child volunteers in low-speed far-side oblique and lateral impacts.

    Science.gov (United States)

    Seacrist, Thomas; Locey, Caitlin M; Mathews, Emily A; Jones, Dakota L; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B

    2014-01-01

    Motor vehicle crashes are a leading cause of injury and mortality for children. Mitigation of these injuries requires biofidelic anthropomorphic test devices (ATDs) to design and evaluate automotive safety systems. Effective countermeasures exist for frontal and near-side impacts but are limited for far-side impacts. Consequently, far-side impacts represent increased injury and mortality rates compared to frontal impacts. Thus, the objective of this study was to evaluate the biofidelity of the Hybrid III and Q-series pediatric ATDs in low-speed far-side impacts, with and without shoulder belt pretightening. Low-speed (2 g) far-side oblique (60°) and lateral (90°) sled tests were conducted using the Hybrid III and Q-series 6- and 10-year-old ATDs. ATDs were restrained by a lap and shoulder belt equipped with a precrash belt pretightener. Photoreflective targets were attached to the head, spine, shoulders, and sternum. ATDs were exposed to 8 low-speed sled tests: 2 oblique nontightened, 2 oblique pretightened, 2 lateral nontightened, 2 lateral pretightened. ATDs were compared with previously collected 9- to 11-year-old (n=10) volunteer data and newly collected 6- to 8-year-old volunteer data (n=7) tested with similar methods. Kinematic data were collected from a 3D target tracking system. Metrics of comparison included excursion, seat belt and seat pan reaction loads, belt-to-torso angle, and shoulder belt slip-out. The ATDs exhibited increased lateral excursion of the head top, C4, and T1 as well as increased downward excursion of the head top compared to the volunteers. Volunteers exhibited greater forward excursion than the ATDs in oblique nontightened impacts. These kinematics correspond to increased shoulder belt slip-out for the ATDs in oblique tests (ATDs=90%; volunteers=36%). Contrarily, similar shoulder belt slip-out was observed between ATDs and volunteers in lateral impacts (ATDs=80%; volunteers=78%). In pretightened impacts, the ATDs exhibited reduced

  5. Minimizing the translation error in the application of an oblique single-cut rotation osteotomy: Where to cut?

    NARCIS (Netherlands)

    Dobbe, Johannes G. G.; Strackee, Simon D.; Streekstra, Geert J.

    2017-01-01

    An oblique single cut rotation osteotomy enables correcting angular bone alignment in the coronal, sagittal and transverse planes, with just a single oblique osteotomy, and by rotating one bone segment in the osteotomy plane. However, translational malalignment is likely to exist if the bone is

  6. Oblique water entry of a three dimensional body

    Directory of Open Access Journals (Sweden)

    Scolan Yves-Marie

    2014-12-01

    Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.

  7. Anxiety Sensitivity and Pre-Cessation Smoking Processes: Testing the Independent and Combined Mediating Effects of Negative Affect–Reduction Expectancies and Motives

    Science.gov (United States)

    Farris, Samantha G.; Leventhal, Adam M.; Schmidt, Norman B.; Zvolensky, Michael J.

    2015-01-01

    Objective: Anxiety sensitivity appears to be relevant in understanding the nature of emotional symptoms and disorders associated with smoking. Negative-reinforcement smoking expectancies and motives are implicated as core regulatory processes that may explain, in part, the anxiety sensitivity–smoking interrelations; however, these pathways have received little empirical attention. Method: Participants (N = 471) were adult treatment-seeking daily smokers assessed for a smoking-cessation trial who provided baseline data; 157 participants provided within-treatment (pre-cessation) data. Anxiety sensitivity was examined as a cross-sectional predictor of several baseline smoking processes (nicotine dependence, perceived barriers to cessation, severity of prior withdrawal-related quit problems) and pre-cessation processes including nicotine withdrawal and smoking urges (assessed during 3 weeks before the quit day). Baseline negative-reinforcement smoking expectancies and motives were tested as simultaneous mediators via parallel multiple mediator models. Results: Higher levels of anxiety sensitivity were related to higher levels of nicotine dependence, greater perceived barriers to smoking cessation, more severe withdrawal-related problems during prior quit attempts, and greater average withdrawal before the quit day; effects were indirectly explained by the combination of both mediators. Higher levels of anxiety sensitivity were not directly related to pre-cessation smoking urges but were indirectly related through the independent and combined effects of the mediators. Conclusions: These empirical findings bolster theoretical models of anxiety sensitivity and smoking and identify targets for nicotine dependence etiology research and cessation interventions. PMID:25785807

  8. The Role of Rift Obliquity in Formation of the Gulf of California

    Science.gov (United States)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  9. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    International Nuclear Information System (INIS)

    He Zhigang; Wang Xiaohui; Jia Qika

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam, a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun. The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively. A simple way to solve the problems through wavefront shaping was introduced and the beam quality was improved. (authors)

  10. Oblique electron cyclotron emission for electron distribution studies (invited)

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1997-01-01

    Electron cyclotron emission (ECE) at an oblique angle to the magnetic field provides a means of probing the electron distribution function both in energy and physical space through changes in and constraints on the relativistic electron cyclotron resonance condition. Diagnostics based on this Doppler shifted resonance are able to study a variety of electron distributions through changes in the location of the resonance in physical or energy space accomplished by changes in the viewing angle and frequency, and the magnetic field. For the case of observation across a changing magnetic field, such as across the tokamak midplane, the constraint on the resonance condition for real solutions to the dispersion relation can constrain the physical location of optically thin emission. A new Oblique ECE diagnostic was installed and operated on the PBX-M tokamak for the study of energetic electrons during lower hybrid current drive. It has a view 33 degree with respect to perpendicular in the tokamak midplane, receives second harmonic X-mode emission, and is constrained to receive single pass emission by SiC viewing dumps on the tokamak walls. Spatial localization of optically thin emission from superthermal electrons (50 endash 100 keV) was obtained by observation of emission upshifted from a thermal cyclotron harmonic. The localized measurements of the electron energy distribution and the superthermal density profile made by this diagnostic demonstrate its potential to study the spatial transport of energetic electrons on fast magnetohydrodynamic time scales or anomalous diffusion time scales. Oblique ECE can also be used to study electron distributions that may have a slight deviation from a Maxwellian by localizing the emission in energy space. (Abstract Truncated)

  11. Surgical treatment of superior oblique palsy: Predictors of outcome

    Directory of Open Access Journals (Sweden)

    Pilar Merino Sanz

    2017-01-01

    Full Text Available Purpose: The purpose of this study was to evaluate the incidence and outcome of surgically treated superior oblique palsy (SOP and the factors involved in its resolution. Methods: We performed a retrospective study of 76 patients who underwent surgery for SOP. We recorded data from the physical examination and the number and type of procedures performed. Favorable outcome was defined as resolution of or improvement in torticollis (≤5° and diplopia in primary position (PP and downgaze or as vertical deviation (VD <5 prism diopters (pd in PP and 10 pd in the oblique diagnostic position. Results: Mean age was 33.12 years. Congenital SOP was the most frequent type (65.8%. Mean preoperative VD was 15.89 ± 9.94 pd, decreasing to 3.07 ± 4.36 pd after surgery. Associated horizontal deviation was recorded in 51.32% of cases. The mean number of procedures was 1.37 ± 0.62 (range 1–4, with 69.7% of patients requiring only one procedure. The mean number of muscles operated on was 1.96 ± 1.01 (inferior oblique being the most frequent. A greater reduction in VD after surgery was observed in patients with congenital SOP (P = 0.04. Although none of the factors evaluated influenced surgical outcome, amblyopic patients had a greater risk of reoperation (P = 0.04. A favorable outcome was achieved in 75% of cases. Mean follow-up was 37.08 months. Conclusion: Congenital SOP was twice as frequent as acquired SOP and although surgery was successful in most cases, a greater reduction in VD was obtained in congenital cases. Amblyopia was identified as a risk factor for reoperation.

  12. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    Science.gov (United States)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  13. A computational study on oblique shock wave-turbulent boundary layer interaction

    Science.gov (United States)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  14. Relationship between peri-incisional dysesthesia and the vertical and oblique incisions on the hamstrings harvest in anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Marcos Laube Leite

    Full Text Available ABSTRACT OBJECTIVE: To compare the incidence of peri-incisional dysesthesia according to the skin incision technique for hamstring tendon graft harvest in anterior cruciate ligament reconstruction. METHODS: Thirty-three patients with ACL rupture were separated in two groups: group 1, with 19 patients submitted to the oblique skin incision to access the hamstrings and group 2-14 patients operated by vertical skin incision technique. The selected patients were assessed after surgery. Demographic data and prevalence of dysesthesia was measured by digital pressure around the skin incision and classified according to the Highet scale. RESULTS: The total rate of dysesthesia was 42% (14 patients. Five patients (26% on the oblique incision group reported dysesthesia symptoms. On the group submitted to the vertical incision technique, the involvement was 64% (nine patients. On the 33 knees evaluated, the superior lateral area was the most affected skin region, while the superior medial and inferior medial regions were affected in only one patient (7.1%. No statistical differences between both groups were observed regarding patients' weight, age, and height¸ as well as skin incision length. CONCLUSION: Patients who underwent reconstruction of the anterior cruciate ligament using the oblique access technique had five times lower incidence of peri-incisional dysesthesia when compared with those in whom the vertical access technique was used.

  15. Reliability of internal oblique elbow radiographs for measuring displacement of medial epicondyle humerus fractures: a cadaveric study.

    Science.gov (United States)

    Gottschalk, Hilton P; Bastrom, Tracey P; Edmonds, Eric W

    2013-01-01

    Standard elbow radiographs (AP and lateral views) are not accurate enough to measure true displacement of medial epicondyle fractures of the humerus. The amount of perceived displacement has been used to determine treatment options. This study assesses the utility of internal oblique radiographs for measurement of true displacement in these fractures. A medial epicondyle fracture was created in a cadaveric specimen. Displacement of the fragment (mm) was set at 5, 10, and 15 in line with the vector of the flexor pronator mass. The fragment was sutured temporarily in place. Radiographs were obtained at 0 (AP), 15, 30, 45, 60, 75, and 90 degrees (lateral) of internal rotation, with the elbow in set positions of flexion. This was done with and without radio-opaque markers placed on the fragment and fracture bed. The 45 and 60 degrees internal oblique radiographs were then presented to 5 separate reviewers (of different levels of training) to evaluate intraobserver and interobserver agreement. Change in elbow position did not affect the perceived displacement (P=0.82) with excellent intraobserver reliability (intraclass correlation coefficient range, 0.979 to 0.988) and interobserver agreement of 0.953. The intraclass correlation coefficient for intraobserver reliability on 45 degrees internal oblique films for all groups ranged from 0.985 to 0.998, with interobserver agreement of 0.953. For predicting displacement, the observers were 60% accurate in predicting the true displacement on the 45 degrees internal oblique films and only 35% accurate using the 60 degrees internal oblique view. Standardizing to a 45 degrees internal oblique radiograph of the elbow (regardless of elbow flexion) can augment the treating surgeon's ability to determine true displacement. At this degree of rotation, the measured number can be multiplied by 1.4 to better estimate displacement. The addition of a 45 degrees internal oblique radiograph in medial humeral epicondyle fractures has good

  16. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  17. Scanning Precession Electron Diffraction Study of 2xxx Series Aluminium Alloys Exhibiting Several Coexisting Strengthening Phases

    OpenAIRE

    Sunde, Jonas Kristoffer

    2016-01-01

    Throughout this thesis, scanning precession electron diffraction is applied to heat-treated Al-Cu-Li and Al-Mg-Cu-Ag alloys, shedding light on the distribution of phases present and the complex interplay between these microstructural features. The employed technique yielded high quality data sets, which through subsequent data processing enabled a detailed phase mapping of these multi-component Al alloys. Among the main results presented, are virtual dark field images highlighting all separat...

  18. Spinning gas clouds with precession: a new formulation

    International Nuclear Information System (INIS)

    Gaffet, B

    2010-01-01

    We consider Dyson's model (Dyson F J 1968 J. Math. Mech. 18 91) of an ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum, in the Liouville integrable case where the gas is monatomic (γ = 5/3) and there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I). In the cases of rotation about a fixed axis the separation of variables can be achieved, and the separable variables are linearly related to a set of three variables denoted by ρ, R, W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195; Paper II). We show in the present work that these variables admit a natural generalization to cases of rotation about a movable axis (precessing motion). The present study is restricted to the consideration of the so-called degenerate cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we hope to generalize our results in the future to the non-degenerate ones as well. We also present a new, compact and generally valid formulation of one of the integrals of motion, of the sixth degree in the momenta, denoted by I 6 .

  19. Spin precession experiments for light axionic dark matter

    Science.gov (United States)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas

    2018-03-01

    Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.

  20. Oblique-Length Contraction Factor in the Special Theory of Relativity

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2013-01-01

    Full Text Available In this paper one generalizes the Lorentz Contraction Factor for the case when the lengths are moving at an oblique angle with respect to the motion direction. One shows that the angles of the moving relativistic objects are distorted.

  1. Oblique abdominal muscle activity in response to external perturbations when pushing a cart.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2010-05-07

    Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. RESEARCHING ON REAL 3D MODELING CONSTRUCTED WITH THE OBLIQUE PHOTOGRAMMETRY AND TERRESTRIAL PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    Y. Han

    2018-04-01

    Full Text Available With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  3. Numerical simulation of hydrodynamic performance of ship under oblique conditions

    Directory of Open Access Journals (Sweden)

    CHEN Zhiming

    2018-02-01

    Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.

  4. Prostate Brachytherapy With Oblique Needles to Treat Large Glands and Overcome Pubic Arch Interference

    International Nuclear Information System (INIS)

    Ryu, Bon; Bax, Jeff; Edirisinge, Chandima; Lewis, Craig; Chen, Jeff; D’Souza, David; Fenster, Aaron; Wong, Eugene

    2012-01-01

    Purpose: First, to show that low-dose-rate prostate brachytherapy plans using oblique needle trajectories are more successful than parallel trajectories for large prostates with pubic arch interference (PAI); second, to test the accuracy of delivering an oblique plan by using a three-dimensional (3D) transrectal ultrasonography (TRUS)-guided mechatronic system. Methods and Materials: Prostates were contoured for 5 subjects’ 3D TRUS images showing a maximum PAI of ≤1 cm and a prostate volume of <50 cc. Two planning studies were done. First, prostate contours were artificially enlarged to 45 to 80 cc in 5- to 10-cc increments for a single subject. Second, all subject prostate contours were enlarged to 60 cc. For each study, three types of plans were manually created for comparison: a parallel needle template (PT) plan, a parallel needle no-template (PNT) plan, and an oblique needle no-template (OBL) plan. Needle positions and angles were not discretized for nontemplate plans. European Society for Therapeutic Radiology and Oncology dose-volume histogram guidelines, iodine-125 (145-Gy prescription, 0.43 U), and needle angles of <15° were used. An OBL plan was delivered to a pubic arch containing a 60-cc prostate phantom that mimicked the anatomy of the subject with the greatest PAI (23% by volume). Results: In the increasing-prostate volume study, OBL plans were successful for prostates of ≤80 cc, and PT plans were successful for prostates of <65 cc. In paired, one-sided t tests for the 60-cc volume study, OBL plans showed dosimetric improvements for all organs compared to both of the parallel type plans (p < 0.05); PNT plans showed a benefit only in planning target volumes receiving more than 100 Gy compared to PT plans. A computed tomography scan of the phantom showed submillimeter seed placement accuracy in all directions. Conclusion: OBL plans were significantly better than parallel plans, and an OBL plan was accurately delivered to a 60-cc prostate phantom

  5. The Martian polar caps: Stability and water transport at low obliquities

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1992-01-01

    The seasonal cycle of water on Mars is regulated by the two polar caps. In the winter hemisphere, the seasonal CO2 deposits at a temperature near 150 K acts as a cold trap to remove water vapor from the atmosphere. When summer returns, water is pumped back into the atmosphere by a number of mechanisms, including release from the receding CO2 frost, diffusion from the polar regolith, and sublimation from a water-ice residual cap. These processes drive an exchange of water vapor between the polar caps that helps shape the Martian climate. Thus, understanding the behavior of the polar caps is important for interpreting the Martian climate both now and at other epochs. Mars' obliquity undergoes large variations over large time scales. As the obliquity decreases, the poles receive less solar energy so that more CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 condenses from the atmosphere onto the poles. It has been suggested that permanent CO2 caps might form at the poles in response to a feedback mechanism existing between the polar cap albedo, the CO2 pressure, and the dust storm frequency. The year-round presence of the CO2 deposits would effectively dry out the atmosphere, while diffusion of water from the regolith would be the only source of water vapor to the atmosphere. We have reviewed the CO2 balance at low obliquity taking into account the asymmetries which make the north and south hemispheres different. Our analysis linked with a numerical model of the polar caps leads us to believe that one summertime cap will always lose its CO2 cover during a Martian year, although we cannot predict which cap this will be. We conclude that significant amounts of water vapor will sublime from the exposed cap during summer, and the Martian atmosphere will support an active water cycle even at low obliquity.

  6. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons.

    Science.gov (United States)

    Thaning, Anna; Jaroszewicz, Zbigniew; Friberg, Ari T

    2003-01-01

    Axicons in oblique illumination produce broadened focal lines, a problem, e.g., in scanning applications. A compact mathematical description of the focal segment is presented, for the first time, to our knowledge, and the results are compared with elliptical axicons in normal illumination. In both cases, analytical expressions in the form of asteroid curves are obtained from asymptotic wave theory and caustic surfaces. The results are confirmed by direct diffraction simulations and by experiments. In addition we show that at a fixed angle an elliptical axicon can be used to compensate for the adverse effects of oblique illumination.

  7. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    Science.gov (United States)

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  8. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice

  9. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  10. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tokas, R. B., E-mail: tokasstar@gmail.com; Jena, Shuvendu; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India); Haque, S. Maidul; Rao, K. Divakar [Photonics & Nanotechnology Section, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam-530012 (India)

    2016-05-23

    In present work, HfO{sub 2} thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  11. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

    Directory of Open Access Journals (Sweden)

    M. Martini

    2013-12-01

    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  12. Intrinsic carpal ligaments on MR and multidetector CT arthrography: comparison of axial and axial oblique planes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ryan K.L.; Griffith, James F.; Ng, Alex W.H.; Law, Eric K.C. [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince Of Wales Hospital, Hong Kong (China); Tse, W.L.; Wong, Clara W.Y.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince Of Wales Hospital, Hong Kong (China)

    2017-03-15

    To compare axial and oblique axial planes on MR arthrography (MRA) and multidetector CT arthrography (CTA) to evaluate dorsal and volar parts of scapholunate (SLIL) and lunotriquetral interosseous (LTIL) ligaments. Nine cadaveric wrists of five male subjects were studied. The visibility of dorsal and volar parts of the SLIL and LTIL was graded semi-quantitatively (good, intermediate, poor) on MRA and CTA. The presence of a ligament tear was determined on arthrosocopy and sensitivity, specificity and accuracy of tear detection were calculated. Oblique axial imaging was particularly useful for delineating dorsal and volar parts of the LTIL on MRA with overall 'good' visibility increased from 11 % to 78 %. The accuracy of MRA and CTA in revealing SLIL and LTIL tear was higher using the oblique axial plane. The overall accuracy for detecting SLIL tear on CTA improved from 94 % to 100 % and from 89 % to 94 % on MRA; the overall accuracy of detecting LTIL tear on CTA improved from 89 % to 100 % and from 72 % to 89 % on MRA Oblique axial imaging during CT and MR arthrography improves detection of tears in the dorsal and volar parts of both SLIL and LTIL. (orig.)

  13. Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-06-15

    Highlights: • We prepared NiZn ferrite doped FeSiAl-based thin films using oblique deposition technique. • The magnetic properties of FeSiAl-based thin films were systematically studied. • Two ferromagnetic resonance peaks were observed in the permeability spectra. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The thermal stability of properties we studied was relatively good. - Abstract: In this study, we comprehensively investigate the dynamic magnetic properties of FeSiAl-NiZnFeO thin films prepared by the oblique deposition method via a shorted microstrip perturbation technique. For the films with higher oblique angle and NiZn ferrite doping amount, there are two ferromagnetic resonance peaks observed in the permeability spectra, and both of the two peaks originate from FeSiAl. Furthermore, the magnetic anisotropy field H{sub K} of the ferromagnetic resonance peak at higher frequency is enhanced with increasing doping amount, which is interpreted in terms of the contribution of reinforced stress-induced anisotropy and shape anisotropy brought about by doping elements and oblique sputtering method. In addition, the thermal stability of the ferromagnetic resonance frequency f{sub FMR} of FeSiAl-NiZnFeO films with oblique angles of 35° and 45° with respect to temperature ranging from 300 K to 420 K is deteriorated with increasing ferrite doping amount, which is mainly ascribed to the influence of pair-ordering anisotropy and/or the reduction of the FeSiAl grain size.

  14. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  15. Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

    Directory of Open Access Journals (Sweden)

    Jianxi Yao

    2015-01-01

    Full Text Available This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of com- binations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

  16. Asymmetric growth of collapsed caldera by oblique subsidence during the 2000 eruption of Miyakejima, Japan

    Science.gov (United States)

    Geshi, Nobuo

    2009-04-01

    Oblique development of the ring faults reflecting the structural heterogeneities inside the volcano formed many asymmetric structures of Miyakejima 2000 AD caldera. The asymmetry includes (a) offset location of the ring faults with respect to the associated shallow magma chamber, (b) unequal outward migration of the caldera wall 600 m at the southeastern rim but only 200 m at the northwestern rim, (c) development of tilted terrace only at the southeastern caldera margin, (d) eruption sites and fumaroles being confined to the southern part of the caldera. Geophysical data, including ground deformation and seismic activity, indicates the offset of the location of the magma chamber about 2 km south of the caldera center on the surface. The ring faults propagated from the deflating magma chamber obliquely about 30 degrees toward the summit. The oblique subsidence of the cylindrical block formed a wider instable zone, particularly in the southeastern side of the ring fault that enhanced the larger outward migration of the caldera rim and also caused the formation of the outer half-ring fault bordering the tilting slope at the southern part. Ascending pass of the buoyant magma along the tilted ring faults was concentrated in the southern half of the caldera and consequently the distributions of the eruption sites and fumaroles are localized in the southern-half part of the caldera. The structure of the Miyakejima 2000 caldera with complete development of the ring faults, its high roof aspect ratio and oblique subsidence is clearly distinguishable from trapdoor-type caldera. The oblique development of the ring faults can be controlled by the mechanical contrast between the solidified conduits and surrounding fragile volcanic edifice. Asymmetric development of the Miyakejima caldera shows that the collapsed calderas are potential indicators of the heterogeneous structures inside of the volcano, particularly in the case of small-size caldera.

  17. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    Science.gov (United States)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  18. Use of profile and oblique incidence in scintigraphy in the osteo-articular pathology

    International Nuclear Information System (INIS)

    Saidi, L.; Langlet, D.; Fayolle, S.; Benada, A.; Prigent, A.

    1997-01-01

    The focal lesions observed in the osseous scintigraphy are sometimes difficult to interpret, notably, in sportsmen. Due to its high sensitivity this examination allows the diagnosis of small lesions even when these are not detectable by radiography. In exchange, its specificity is low. Sometimes, it is difficult to localize the osseous piece afflicted with high anatomic precision, making use of only the anterior and posterior incidences. We intended to test the profit of profile and oblique (3/4) incidences to specify the topography of afflicted zone and its anatomic relations with the neighbouring structures. The aim of this work is to illustrate by selected examples the use of this complement of imaging. The utilised camera is the DST-XL of SOPHA MEDICAL VISION (SMV) equipped with a UHR-BE collimator placed as closely as possible to the zone to be explored in a patient installed in dorsal decubitus. The acquisition is achieved by means of a 3-phase classical protocol. The activity injected is 8-13 MBq/Kg of 99m Tc-HMDP. The tardy images are effected at around 3 hours after the injection of tracer, with an 128/128 matrix and an acquisition time dependent of the region to be examined. The standard incidences are done on anterior and posterior faces and the complementary incidences in profile and oblique (3/4 anterior) positions. The profile and oblique incidences allowed to correct the diagnostic hypothesis deduced from anterior and posterior incidences. A table is given with the diagnoses obtained from standard incidences and the final diagnoses based on profile and oblique incidences for six types of clinic lesions. The conclusion is drawn that the selected examples are particularly demonstrative of the profit which the profile and oblique incidences brings about in making finer the topographic and sometimes etiological diagnosis. In numerous cases it allowed adopting a more specific therapeutic attitude towards the pathology identified in this way, notably in

  19. Minimizing the Translation Error in the Application of an Oblique Single-Cut Rotation Osteotomy: Where to Cut?

    Science.gov (United States)

    Dobbe, Johannes G G; Strackee, Simon D; Streekstra, Geert J

    2018-04-01

    An oblique single cut rotation osteotomy enables correcting angular bone alignment in the coronal, sagittal, and transverse planes, with just a single oblique osteotomy, and by rotating one bone segment in the osteotomy plane. However, translational malalignment is likely to exist if the bone is curved or deformed and the location of the oblique osteotomy is not obvious. In this paper, we investigate how translational malalignment depends on the osteotomy location. We further propose and evaluate by simulation in 3-D, a method that minimizes translational malalignment by varying the osteotomy location and by sliding the distal bone segment with respect to the proximal bone segment within the oblique osteotomy plane. The method is finally compared to what three surgeons achieve by manually selecting the osteotomy location in 3-D virtual space without planning in-plane translations. The minimization method optimized for length better than the surgeons did, by 3.2 mm on average, range (0.1, 9.4) mm, in 82% of the cases. A better translation in the axial plane was achieved by 4.1 mm on average, range (0.3, 14.4) mm, in 77% of the cases. The proposed method generally performs better than subjectively choosing an osteotomy position along the bone axis. The proposed method is considered a valuable tool for future alignment planning of an oblique single-cut rotation osteotomy since it helps minimizing translational malalignment.

  20. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jonsson, Sigurjon

    2016-01-01

    -field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit

  1. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    Science.gov (United States)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  2. Oblique convergence and the lobate mountain belts of western Pakistan

    Science.gov (United States)

    Haq, Saad S. B.; Davis, Dan M.

    1997-01-01

    The thin-skinned structures of the Pakistani convergent margin have formed as a consequence of the relative motion between India and Eurasia. Most of the resultant motion is being accommodated along or near the current edge of the Eurasian plate: the southwest-northeast striking Chaman fault zone. It has been observed at oblique margins that the total plate motion is resolved into a component parallel to the margin, accommodated through strike-slip faulting, and a component normal to the margin taken up as contraction. However, the orientations of structures along the Pakistani convergent margin in and around the Sulaiman lobe and Sulaiman Range cannot be explained simply by resolving the plate motion vector into components normal and parallel to the plate boundary. Our modeling suggests that the complex juxtaposition of strike-slip faults with thrust faults of various orientations can be explained by the presence of a block centered upon the Katawaz basin that translates along the southwest-northeast structural barrier of the Chaman fault zone, moving with respect to both Eurasia and India. As this relatively rigid block moves northeastward relative to Asia, it causes deformation of the sedimentary cover and is responsible for much of the structural complexity in the Pakistani foreland. Our simple model explains several first-order features of this oblique margin, such as the eastward-facing Sulaiman Range, the strike-slip Kingri fault (located between the Sulaiman lobe and Sulaiman Range), and the reentrant at Sibi. This leads us to conclude that very complex structural and geometric relationships at oblique convergent plate boundaries can result from the accommodation of strain with simple initial geometric constraints.

  3. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  4. Low-resolution expression recognition based on central oblique average CS-LBP with adaptive threshold

    Science.gov (United States)

    Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong

    2017-11-01

    In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.

  5. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Science.gov (United States)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  6. Precession and recession of the rock'n'roller

    International Nuclear Information System (INIS)

    Lynch, Peter; Bustamante, Miguel D

    2009-01-01

    We study the dynamics of a spherical rigid body that rocks and rolls on a plane under the effect of gravity. The distribution of mass is non-uniform and the centre of mass does not coincide with the geometric centre. The symmetric case, with moments of inertia I 1 = I 2 3 , is integrable and the motion is completely regular. Three known conservation laws are the total energy E, Jellett's quantity Q J and Routh's quantity Q R . When the inertial symmetry I 1 = I 2 is broken, even slightly, the character of the solutions is profoundly changed and new types of motion become possible. We derive the equations governing the general motion and present analytical and numerical evidence of the recession, or reversal of precession, that has been observed in physical experiments. We present an analysis of recession in terms of critical lines dividing the (Q R , Q J ) plane into four dynamically disjoint zones. We prove that recession implies the lack of conservation of Jellett's and Routh's quantities, by identifying individual reversals as crossings of the orbit (Q R (t), Q J (t)) through the critical lines. Consequently, a method is found to produce a large number of initial conditions so that the system will exhibit recession.

  7. Treatment for incarcerated indirect hernia with “Cross-Internal Ring” inguinal oblique incision in children

    Directory of Open Access Journals (Sweden)

    Xue-Qiang Yan

    2017-01-01

    Full Text Available Background: This study aims to evaluate the utility of the “Cross-Internal Ring” inguinal oblique incision for the surgical treatment of incarcerated indirect hernia (IIH complicated with severe abdominal distension. Materials and Methods: Patients of IIH complicated with severe abdominal distension were reviewed retrospectively. All patients received operation through the “Cross-Internal Ring” inguinal oblique incision. Results: There were totally 13 patients were included, male to female ratio was 9-4. The time for patients to resume oral feeding varying from 2 to 5 days after operation, no complications include delayed intestinal perforation, intra-abdominal abscess, and incision infection happened. Average postoperative hospital stay was 5.2 days. All cases were followed up for 6–18 months. No recurrence or iatrogenic cryptorchidism happened. Conclusion: “Cross-Internal Ring” inguinal oblique incision is a simple, safe, and reliable surgical method to treat pediatric IIH complicated with severe abdominal distension.

  8. Evaluation of the internal oblique, external oblique, and transversus abdominalis muscles in patients with ankylosing spondylitis: an ultrasonographic study.

    Science.gov (United States)

    Üşen, Ahmet; Kuran, Banu; Yılmaz, Figen; Aksu, Neşe; Erçalık, Cem

    2017-11-01

    The objectives of the study are to compare abdominal muscle thickness in ankylosing spondylitis (AS) patients with healthy subjects and determine the factors affecting these muscle thickness. Thirty-five male patients with a previous diagnosis of AS according to the Modified New York criteria and a control group consisting of 35 healthy male individuals were included in this cross-sectional and case-control study. Thicknesses of the internal oblique (IO), external oblique (EO), and transversus abdominalis (TrA) muscles were measured with ultrasound (US). AS patients were classified according to the International Physical Activity Questionnaire (IPAQ). There were 35 AS patients with a mean age of 35.17 ± 8.05 years and 35 healthy subjects with a mean age 32.57 ± 7.05 years. No significant difference was observed between the groups in terms of abdominal muscle thicknesses (p > 0.005). When the AS patients were classified according to the IPAQ scores, thicknesses of the IO and TrA muscles were significantly lower in patients who had the low level of IPAQ scores (p < 0.05). In the light of our first and preliminary results, muscle thickness of the IO, EO, and TrA muscles were similar in AS patients to healthy subjects. However, AS patients who had lower level of physical activity have also reduced thickness of IO and TrA muscles.

  9. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems 1

    Science.gov (United States)

    Versteegh, Gerard J. M.; Schefuß, Enno; Dupont, Lydie; Marret, Fabienne; Sinninghe Damsté, Jaap S.; Jansen, J. H. Fred

    2004-02-01

    Angola Basin and Cape Basin (southeast Atlantic) surface sediments and sediment cores show that maxima in the abundance of taraxerol (relative to other land-derived lipids) covary with maxima in the relative abundance of pollen from the mangrove tree genus Rhizophora and that in the surface sediments offshore maxima in the relative abundance of taraxerol occur at latitudes with abundant coastal mangrove forests. Together with the observation that Rhizophora mangle and Rhizophora racemosa leaves are extraordinarily rich in taraxerol, this strongly indicates that taraxerol can be used as a lipid biomarker for mangrove input to the SE Atlantic. The proxy-environment relations for taraxerol and Rhizophora pollen down-core show that increased taraxerol and Rhizophora pollen abundances occur during transgressions and periods with a humid climate. These environmental changes modify the coastal erosion and sedimentation patterns, enhancing the extent of the mangrove ecosystem and/or the transport of mangrove organic matter offshore. Analyses of mid-Pleistocene sediments show that interruption of the pattern of taraxerol maxima during precession minima occurs almost only during periods of low obliquity. This demonstrates the complex environmental response of the interaction between precession-related humidity cycles and obliquity-related sea-level changes on mangrove input.

  10. Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere

    Science.gov (United States)

    Thurairajah, B.; Siskind, D. E.; Bailey, S. M.

    2017-12-01

    Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere

  11. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn; Chen, Zhihua; Wang, Xinghua; Wu, Xuezhong [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2015-04-15

    A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reaches 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.

  12. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-01-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  13. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  14. MRI diagnosis of ACL bundle tears: value of oblique axial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Alex W.H.; Griffith, James F.; Hung, Esther H.Y. [Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China); Law, Kan Yip; Yung, Patrick S.H. [Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR (China)

    2013-02-15

    To investigate the diagnostic accuracy of oblique axial intermediate weighting MR imaging in detecting partial thickness anterior cruciate ligament (ACL) bundle tears. The study protocol was approved by the institutional ethics committee. Sixty-one subjects (43 male, 18 female; mean age 27.4 years; range 9 to 57 years) with clinically suspected ACL tear or meniscal tear between September 2009 and January 2011 were studied with MRI and arthroscopy. Detection of partial tear for the ACL as a whole and for each ACL bundle by protocol A (standard orthogonal sequences) and protocol B (standard orthogonal sequences plus oblique axial intermediate weighted imaging) was compared in a blinded fashion. Performance characteristics for protocol A and protocol B were compared using sensitivity, specificity, accuracy and ROC curves. A two-tailed p value of <0.05 indicated statistical significance. Fifteen (24.6%) normal, 15 (24.6%) partial and 31 complete tears were diagnosed by arthroscopy. Sensitivity, specificity and accuracy of protocol A for the diagnosis of partial tear of the ACL was 33%, 87% and 74%, while for protocol B the values were 87%, 87% and 87% respectively. The area under the curve (AUC) for the diagnosis of partial ACL tear and individual bundle tear was higher for protocol B, although this difference did not reach statistical significance (p > 0.05). The addition of oblique axial imaging to standard MR imaging improves diagnostic accuracy for detecting partial tears of the ACL as well as individual bundle tears of the ACL. (orig.)

  15. Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.

    Science.gov (United States)

    Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G

    2018-06-01

    To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Thermal self-focusing at oblique incidence

    International Nuclear Information System (INIS)

    Craxton, R.S.; McCrory, R.L.

    1984-03-01

    Thermal self-focusing at oblique incidence has been investigated in two-dimensional line-focus geometry using the Eulerian hydrodynamics simulation code SAGE. The laser beam interacts with a long-scale-length preformed plasma with an expontial density profiele. Questions to be addressed include: (1) What happens when a self-focusing channel reaches the turning point of the incident rays, and (2) Does the unabsorbed light return in the specular direction or back along the channel. A comparison is also made between thermal self-focusing at normal incidence in cylindrical and line-focus geometries: in cylindrical geometry the self-focusing mechanism is enhanced by the relative ease with which plasma may be expelled from a small cylindrical channel

  17. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    International Nuclear Information System (INIS)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-01-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field 'F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  18. The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism

    Science.gov (United States)

    Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.

    2017-05-01

    Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.

  19. Spatial evolution of Zagros collision zone in Kurdistan - NW Iran, constraints for Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, S.; Yassaghi, A.

    2015-09-01

    Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj-Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia-Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.

  20. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  1. Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S. [Lobachevsky Nizhny Novgorod State University (Russian Federation)

    2015-07-15

    An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effective magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.

  2. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  3. Oblique Propagation of Fast Surface Waves in a Low-Beta Hall-Magnetohydrodynamics Plasma Slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Mann, G.

    1999-01-01

    The oblique propagation of fast sausage and kink magnetohydrodynamics (MHD) surface waves in an ideal magnetized plasma slab in the low-beta plasma limit is studied considering the Hall term in the generalized Ohm's law. It is found that the combined action of the Hall effect and oblique wave propagation makes possible the existence of multivalued solutions to the wave dispersion relations - some of them corresponding to positive values of the transfer wave number, k y , undergo a 'propagation stop' at specific (numerically found) full wave numbers. It is also shown that with growing wave number the waves change their nature - from bulk modes to pseudosurface or pure surface waves. (author)

  4. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Lakhina, G S

    2005-01-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses

  5. Coronal oblique imaging of the knee: Can it increase radiologists' confidence in diagnosing posterior root meniscal tears?

    International Nuclear Information System (INIS)

    Casagranda, B.U.; Leeman, J.; Costello, J.M.; Rafiee, B.; Harner, C.D.

    2013-01-01

    Aim: To investigate the utility of the coronal oblique sequence in the interrogation of posterior root meniscal lesions. Materials and methods: Following international review board approval, 62 consecutive knee arthroscopy cases were referred to the musculoskeletal (MSK) radiologists from the same orthopaedic surgeon for imaging/surgical correlation of the posterior meniscal roots. Of 62 cases, 45 lateral and 46 medial menisci met the inclusion criteria. Imaging evaluation was performed with standard magnetic resonance imaging (MRI) sequences, including a coronal oblique proton density sequence. Two blinded fellowship-trained MSK radiologists independently evaluated the menisci on standard sequences indicating whether a tear was identified and then specifying a confidence score using a scale of 1–3 on each study interpreted. Immediately thereafter, the coronal oblique sequence was evaluated using the same method. Statistics were performed on meniscal lesions involving the posterior horn/root junction or isolated root tears comparing confidence scores. Results: Reader A identified nine posterior horn/root junction tears and 14 isolated root tears. Following the addition of the coronal oblique sequence, confidence scores increased in three of 14 (21.4%) isolated root tears. All three final reads were concordant with arthroscopy. Reader B identified 10 posterior horn/root junction tears and 19 isolated root tears. The confidence score increased in six cases: five of 19 (26.3%) isolated root tears and one of 10 (10%) posterior horn/root junction tears. All six final reads were concordant with arthroscopy. Kappa coefficients indicated near perfect agreement. Conclusion: The coronal oblique sequence increased reader confidence in nearly 24% of the posterior root cases identified in this series

  6. Sonography of the anterior oblique ligament of the trapeziometacarpal joint: a study of cadavers and asymptomatic volunteers.

    Science.gov (United States)

    Chiavaras, Mary M; Harish, Srinivasan; Oomen, Glen; Popowich, Terry; Wainman, Bruce; Bain, James R

    2010-12-01

    The purpose of this study was to evaluate the ability of ultrasound to identify and characterize the anterior oblique ligament of the thumb in cadavers and asymptomatic volunteers. The anterior oblique ligaments of four cadaveric hands were imaged with a high-resolution transducer. The ligaments were then injected with 0.1% methylene blue using ultrasound guidance. To confirm identification of the ligament, the base of the thumb was immediately dissected, revealing the exact location of the dye. The bilateral ligaments in 40 asymptomatic adult volunteers were imaged. Surgical dissection confirmed injection of methylene blue into all cadaveric ligaments. The proximal attachment of the anterior oblique ligament was well defined in all the hands, and the distal attachment was well defined in 94% of the hands. The mean thickness of the anterior oblique ligament at the metacarpal attachment (0.7 mm), midportion (0.98 mm), and trapezial attachment (0.65 mm) did not differ significantly with respect to sex, right and left side, or hand dominance and was weakly correlated with weight, height, body mass index, and age. The length of the ligament was statistically significantly different between the dominant (10.6 mm) and nondominant (9.6 mm) hands. The volar metacarpal translation with palmar abduction stress did not differ significantly between the dominant (0.7 mm) and nondominant (0.8 mm) hands. There was no association between the degree of translation and the biologic characteristics (weight, height, body mass index, and age). High-resolution ultrasound can be used to identify and measure the thickness of the anterior oblique ligament. Dynamic ultrasound imaging can depict volar translation of the metacarpal, which may facilitate diagnosis of ligamentous injury.

  7. What is the real angle of deviation of metacarpal neck fractures on oblique views? A radiographic study

    Directory of Open Access Journals (Sweden)

    Arthur de Góes Ribeiro

    2016-04-01

    Full Text Available OBJECTIVE: The aim of this study was to establish an indirect, easy-to-use, predictable and safe means of obtaining the true degree of displacement of fractures of the neck of the fifth metacarpal bone, through oblique radiographic views. METHODS: An anatomical specimen from the fifth human metacarpal was dissected and subjected to ostectomy in the neck region. A 1-mm Kirschner wire was fixed to the base of the fifth metacarpal bone, perpendicular to the longitudinal axis of the bone and parallel to the ground. Another six Kirschner wires of the same diameter were bent over and attached to the ostectomized bone to simulate fracture displacement. Axial rotation of the metacarpus was used to create oblique radiographic views. Radiographic images were generated with different angles and at several degrees of rotation of the bone. RESULTS: We deduced a mathematical formula that showed the true displacement of fractures of the neck of the fifth metacarpal bone by means of oblique radiographs. CONCLUSIONS: Oblique radiographs at 30° of supination provided the best view of the bone and least variation from the real value of the displacement of fractures of the fifth metacarpal bone. The mathematical formula deduced was concordant with the experimental model used.

  8. Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia

    Science.gov (United States)

    Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.

    2017-12-01

    Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.

  9. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    Science.gov (United States)

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effective equations for the precession dynamics of electron spins and electron–impurity correlations in diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Cygorek, M; Axt, V M

    2015-01-01

    Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier–dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier–dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation. (paper)

  11. Oblique Chest Views as a Routine Part of Skeletal Surveys Performed for Possible Physical Abuse--Is This Practice Worthwhile?

    Science.gov (United States)

    Hansen, Karen Kirhofer; Prince, Jeffrey S.; Nixon, G. William

    2008-01-01

    Objective: To evaluate the utility of oblique chest views in the diagnosis of rib fractures when used as a routine part of the skeletal survey performed for possible physical abuse. Methods: Oblique chest views have been part of the routine skeletal survey protocol at Primary Children's Medical Center since October 2002. Dictated radiology reports…

  12. Ultrasound evaluation of muscle thickness changes in the external oblique, internal oblique, and transversus abdominis muscles considering the influence of posture and muscle contraction.

    Science.gov (United States)

    Sugaya, Tomoaki; Abe, Yota; Sakamoto, Masaaki

    2014-09-01

    [Purpose] The aim of this study was to investigate muscle thickness changes in the external oblique (EO), internal oblique (IO), and transversus abdominis (TrA) muscles between the neutral position and trunk rotation, under a state of rest without voluntary contractions, and isometric contractions to both sides with resistance of 50% of the maximum trunk rotation strength. [Subjects] The subjects of this study were 21 healthy young men. [Methods] Muscle thickness changes in the EO, IO, and TrA in each position and state were evaluated by ultrasound. The range of motion at maximum trunk rotation and the maximum strength of trunk rotation were measured using a hand-held dynamometer. [Results] In the neutral position and at 50% trunk rotation to the right side, the thicknesses of the IO and TrA significantly increased with resistance. In both states, the thicknesses of the IO and TrA significantly increased at 50% trunk rotation to the right side. [Conclusion] The muscular contractions of the IO and TrA were stronger during ipsilateral rotation than in the neutral position and with resistance than at rest. Moreover, the muscular contraction was strongest in the resistive state during ipsilateral rotation.

  13. SEMANTIC BUILDING FAÇADE SEGMENTATION FROM AIRBORNE OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Lin

    2018-05-01

    Full Text Available With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF, capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  14. Semantic Building FAÇADE Segmentation from Airborne Oblique Images

    Science.gov (United States)

    Lin, Y.; Nex, F.; Yang, M. Y.

    2018-05-01

    With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.

  15. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  16. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  17. Interseismic Deformation due to Oblique India-Sunda Collision: Implications for the Arakan Sleeping Giant

    Science.gov (United States)

    Mallick, R.; Lindsey, E. O.; Feng, L.; Hubbard, J.; Hill, E.

    2017-12-01

    The northern extent of the collision of the Indian and Sunda plates occurs along the Arakan megathrust. This collision is oblique, and at least two large strike-slip faults, the Sagaing Fault and the Churachandpur-Mao Fault (CMF) accommodate part of this obliquity. The megathrust is conspicuous in its lack of notable interplate earthquakes in the instrumental catalogue; it has even been called aseismic by some authors and suggested not to accumulate any elastic strain. Nevertheless, geological evidence from the great 1762 Arakan earthquake suggests that the megathrust is capable of producing M 8 and possibly tsunamigenic events that can adversely affect the lives of many millions of people living in the region. We present for the first time a new dataset of GPS rates from the MIBB (Myanmar-India-Bangladesh-Bhutan) cGPS network (2011-present), which consists of region-wide east-west and north-south profiles. We use a Bayesian framework to explore the fault geometry (locking depth and fault dip) and relative plate motion that can reproduce the pattern of east-west convergence in both previously published and our own GPS data. We explore the individual contributions of the megathrust, CMF, Sagaing Fault, and block rotation to dextral shearing across the Indo-Burman ranges and further east. Our results suggest that the total convergence rate across the foldbelt is 14-18 mm/yr, while the total dextral shearing rate is 40 mm/yr. Rotation of the crustal sliver between the two major plates may explain some of this dextral motion, while reducing the strike-slip rates on the intervening faults. We show that given the current network geometry we are most sensitive to the location of maximum strain, i.e., the depth and distance from the trench below which the megathrust slides freely. Our results show that the megathrust is stably sliding below a depth of 30 km, but the seismogenic potential of the shallow megathrust and splay faults that possibly sole into the same system

  18. Characterization of Oblique Dual Frame Pairs

    Directory of Open Access Journals (Sweden)

    Christensen Ole

    2006-01-01

    Full Text Available Given a frame for a subspace of a Hilbert space , we consider all possible families of oblique dual frame vectors on an appropriately chosen subspace . In place of the standard description, which involves computing the pseudoinverse of the frame operator, we develop an alternative characterization which in some cases can be computationally more efficient. We first treat the case of a general frame on an arbitrary Hilbert space, and then specialize the results to shift-invariant frames with multiple generators. In particular, we present explicit versions of our general conditions for the case of shift-invariant spaces with a single generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same space.

  19. Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes

    Science.gov (United States)

    Fuh, Shi-Chie; Liu, Char-Shine; Lundberg, Neil; Reed, Donald L.

    1997-06-01

    Taiwan is the site of present-day oblique arc-continent collision between the Luzon arc of the Philippine Sea plate and the Chinese continental margin. The major structural pattern revealed from marine geophysical studies in the area offshore southern Taiwan is that of a doubly-vergent orogenic belt, bounded by significant zones of thrusting on the west and east of the submarine accretionary wedge. Due to the oblique collision process, strike-slip faults could play an important role in this convergent domain. Topographic lineaments revealed from new digital bathymetry data and seismic reflection profiles confirm the existence of three sets of strike-slip faults in the collision-subduction zone offshore southern Taiwan: the N-S-trending left-lateral strike-slip faults within the Luzon volcanic arc, the NE-SW-trending right-lateral strike-slip faults across the accretionary wedge, and the NNE-SSW-trending left-lateral strike-slip faults lie in the frontal portion of the accretionary wedge. These strike-slip faults overprint pre-existing folds and thrusts and may convert into oblique thrusts or thrusts as the forearc blocks accrete to the mountain belt. A bookshelf rotation model is used to explain the observed geometrical relationships of these strike-slip fault systems. Based on this model, the counter-clockwise rotation of the forearc blocks in the area offshore southern Taiwan could have caused extrusion of the accretionary wedge material into the forearc basin. The originally continuous forearc basin is thus deformed into several closed and separate proto-collisional basins such as the Southern Longitudinal Trough and Taitung Trough. A tectonic evolution model which emphasizes on the development of various structures at different stages of the oblique arc-continent collision for the Taiwan mountain belt is proposed.

  20. Bursts of electron waves modulated by oblique ion waves

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Experimental evidence is presented which shows small packets of electron plasma waves modulated by large amplitude obliquely propagating non-linear ion plasma waves. Very often the whole system is modulated by an oscillation near the ion gyro frequency or its harmonics. The ion waves seem to be similar to those measured in the current carrying auroral plasma. These results suggest that the generation of ion and electron waves in the auroral plasma may be correlated

  1. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  2. Asymmetric diffusion model for oblique-incidence reflectometry

    Institute of Scientific and Technical Information of China (English)

    Yaqin Chen; Liji Cao; Liqun Sun

    2011-01-01

    A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectom-etry. By fitting to this asymmetric diffusion model, the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp') away from the incident point; particularly, μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy. The method is verified by Monte Carlo simulations and experimentally tested on a phantom.%A diffusion theory model induced by a line source distribution is presented for oblique-incidence reflectometry.By fitting to this asymmetric diffusion model,the absorption and reduced scattering coefficients μa and μ's of the turbid medium can both be determined with accuracy of 10% from the absolute profile of the diffuse reflectance in the incident plane at the negative position -1.5 transport mean free path (mfp')away from the incident point;particularly,μ's can be estimated from the data at positive positions within 0-1.0 mfp' with 10% accuracy.The method is verified by Monte Carlo simulations and experimentally tested on a phantom.Knowledge about the optical properties,including the absorption coefficient (μa) and the reduced scattering coefficient (μ's =μs(1-g)),where μs is the scattering coefficient and g is the anisotropy factor of scattering,of biological tissues plays an important role for optical therapeutic and diagnostic techniques in medicine.

  3. The oblique interface in the right cardiophrenic angle: chest radiographic-CT correlation

    International Nuclear Information System (INIS)

    Kim, Jeung Sook; Lee, Kyung Soo; Choo, Sung Wook; Choo, In Wook

    1996-01-01

    An oblique interface in the right cardiophrenic angle, extending superomedially from right retrocardiac or supradiaphragmatic region inferolaterally to peridiaphragmatic region, is occasionally observed on posteroanterior chest radiograph. The aim of this study was to evaluate the frequency of visualization of the interface on chest radiographs and to elucidate its nature on radiographic-CT correlation. Posteroanterior chest radiographs from 300 consecutive subjects were analyzed to evaluate the frequency and demographic data about an oblique interface in the right cardiophrenic angle. Thin-section CT scans(1-mm collimation and 5-mm intervals) were obtained from the subjects with positive interface on chest radiograph for assessment of the nature of the interface. The demographic data in the subjects with and without the interface were tested statistically to note any difference between two groups. Oblique interface in the right cardiophrenic angle was present in 29 subjects(9.7%) on chest radiograph. The age of the subjects with positive interface(13 men and 16 women) ranged from 19 to 70 years(mean±SD, 47±12.7 years) whereas the age of the subjects without the interface from 16 to 82 years (mean±SD, 50±9.1 years)(p>0.1). The body weight of the subjects with the interface ranged from 41 to 72 Kg(mean±SD, 60±8.0Kg) whereas the body weight of the subjects without the interface from 41 to 85Kg(mean±SD, 63±10.1Kg)(p>0.1). On CT scan, it was formed due to contact between the epipericardial fat and the right middle lobe of the lung in 27 subjects(93%) and between the inferior vena cava and the medial basal segment of the right lower lobe of the lung in two(7%). Oblique interface in the right cardiophrenic angle is occasionally visualized on chest radiograph. It is formed due to contact between the right middle lobe of the lung and pericardial fat in most cases. The frequency of visualization of the interface has no relationship to age and body weight of the

  4. Menstrual cycle mediates vastus medialis and vastus medialis oblique muscle activity.

    Science.gov (United States)

    Tenan, Matthew S; Peng, Yi-Ling; Hackney, Anthony C; Griffin, Lisa

    2013-11-01

    Sports medicine professionals commonly describe two functionally different units of the vastus medialis (VM), the VM, and the vastus medialis oblique (VMO), but the anatomical support is equivocal. The functional difference of the VMO is principle to rehabilitation programs designed to alleviate anterior knee pain, a pathology that is known to have a greater occurrence in women. The purpose of this study was to determine whether the motor units of the VM and VMO are differentially recruited and if this recruitment pattern has an effect of sex or menstrual cycle phase. Single motor unit recordings from the VM and VMO were obtained for men and women during an isometric ramp knee extension. Eleven men were tested once. Seven women were tested during five different phases of the menstrual cycle, determined by basal body temperature mapping. The recruitment threshold and the initial firing rate at recruitment were determined from 510 motor unit recordings. The initial firing rate was lower in the VMO than that in the VM in women (P recruitment thresholds for the VM and VMO in either sex or across the menstrual cycle. There was a main effect of menstrual phase on initial firing rate, showing increases from the early follicular to late luteal phase (P = 0.003). The initial firing rate in the VMO was lower than that in the VM during ovulatory (P = 0.009) and midluteal (P = 0.009) phases. The relative control of the VM and VMO changes across the menstrual cycle. This could influence patellar pathologies that have a higher incidence in women.

  5. Finite Element Analysis of Doorframe Structure of Single Oblique Pole Type in Container Crane

    Science.gov (United States)

    Cheng, X. F.; Wu, F. Q.; Tang, G.; Hu, X.

    2017-07-01

    Compared with the composite type, the single oblique pole type has more advantages, such as simple structure, thrift steel and high safe overhead clearance. The finite element model of the single oblique pole type is established in nodes by ANSYS, and more details are considered when the model is simplified, such as the section of Girder and Boom, torque in Girder and Boom occurred by Machinery house and Trolley, density according to the way of simplification etc. The stress and deformation of ten observation points are compared and analyzed, when the trolley is in nine dangerous positions. Based on the result of analysis, six dangerous points are selected to provide reference for the detection and evaluation of container crane.

  6. Normal tendon sheath of the second to fifth fingers as seen on oblique views

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    1984-01-01

    Oblique views of the fingers, using a low kilovolt technique, show a portion of the tendon sheaths which can be regarded as representative of the entire sheath. Because of the varying obliquity of each finger, this proportion differs in the fingers. With increasing age the projected portion of the sheath becomes smaller because it is covered by increasing bone formation in the insertion of the tendon sheat. Normal values have been obtained for adults according to their decades; from these, quite minor degrees of tendon sheat thickening can be determined. In camptodactyly of the fifth finger, which is not uncommon, the tendon sheat may be widened in the absence of a tenosynovitis.

  7. Hip position and sex differences in motor unit firing patterns of the vastus medialis and vastus medialis oblique in healthy individuals.

    Science.gov (United States)

    Peng, Yi-Ling; Tenan, Matthew S; Griffin, Lisa

    2018-06-01

    Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few

  8. Oblique strike-slip motion off the Southeastern Continental Margin of India: Implication for the separation of Sri Lanka from India

    Science.gov (United States)

    Desa, Maria Ana; Ismaiel, Mohammad; Suresh, Yenne; Krishna, Kolluru Sree

    2018-05-01

    The ocean floor in the Bay of Bengal has evolved after the breakup of India from Antarctica since the Early Cretaceous. Recent geophysical investigations including updated satellite derived gravity map postulated two phases for the tectonic evolution of the Bay of Bengal, the first phase of spreading occurred in the NW-SE direction forming its Western Basin, while the second phase occurred in the N-S direction resulting in its Eastern Basin. Lack of magnetic data along the spreading direction in the Western Basin prompted us to acquire new magnetic data along four tracks (totaling ∼3000 km) to validate the previously identified magnetic anomaly picks. Comparison of the synthetic seafloor spreading model with the observed magnetic anomalies confirmed the presence of Mesozoic anomalies M12n to M0 in the Western Basin. Further, the model suggests that this spreading between India and Antarctica took place with half-spreading rates of 2.7-4.5 cm/yr. The trend of the fracture zones in the Western Basin with respect to that of the Southeastern Continental Margin of India (SCMI) suggests that SCMI is an oblique transform margin with 37° obliquity. Further, the SCMI consists of two oblique transform segments separated by a small rift segment. The strike-slip motion along the SCMI is bounded by the rift segments of the Northeastern Continental Margin of India and the southern margin of Sri Lanka. The margin configuration and fracture zones inferred in its conjugate Western Enderby Basin, East Antarctica helped in inferring three spreading corridors off the SCMI in the Western Basin of the Bay of Bengal. Detailed grid reconstruction models traced the oblique strike-slip motion off the SCMI since M12n time. The strike-slip motion along the short northern transform segment ended by M11n time. The longer transform segment, found east of Sri Lanka lost its obliquity and became a pure oceanic transform fault by M0 time. The eastward propagation of the Africa

  9. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

    International Nuclear Information System (INIS)

    Foucart, F; Kasen, D; Desai, D; Brege, W; Duez, M D; Hemberger, D A; Scheel, M A; Kidder, L E; Pfeiffer, H P

    2017-01-01

    Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. (paper)

  10. An automatic scaling method for obtaining the trace and parameters from oblique ionogram based on hybrid genetic algorithm

    Science.gov (United States)

    Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu; Zou, Xianjian

    2016-12-01

    Scaling oblique ionogram plays an important role in obtaining ionospheric structure at the midpoint of oblique sounding path. The paper proposed an automatic scaling method to extract the trace and parameters of oblique ionogram based on hybrid genetic algorithm (HGA). The extracted 10 parameters come from F2 layer and Es layer, such as maximum observation frequency, critical frequency, and virtual height. The method adopts quasi-parabolic (QP) model to describe F2 layer's electron density profile that is used to synthesize trace. And it utilizes secant theorem, Martyn's equivalent path theorem, image processing technology, and echoes' characteristics to determine seven parameters' best fit values, and three parameter's initial values in QP model to set up their searching spaces which are the needed input data of HGA. Then HGA searches the three parameters' best fit values from their searching spaces based on the fitness between the synthesized trace and the real trace. In order to verify the performance of the method, 240 oblique ionograms are scaled and their results are compared with manual scaling results and the inversion results of the corresponding vertical ionograms. The comparison results show that the scaling results are accurate or at least adequate 60-90% of the time.

  11. Why is it so difficult to tilt Uranus?

    Science.gov (United States)

    Rogoszinski, Zeeve; Hamilton, Douglas

    2018-04-01

    The leading hypothesis for the origin of Uranus' large obliquity (98°) is a polar strike from an Earth sized object, but to tilt Saturn similarly would require an impactor roughly 10x as massive. A more likely cause for Saturn's tilt (27°) is a spin-orbit resonance with Neptune (Ward & Hamilton, 2004; Hamilton & Ward, 2004); might the same process work for Uranus? It initially seems unlikely, as at its current location Uranus' axial precession period is too long to resonate with any of the giant planets' orbital precession frequencies. If we place Uranus between Jupiter and Saturn, however, then Uranus' spin axis would precess much more quickly. Thommes et al. (1999, 2002, 2003) first postulated that Uranus and Neptune were formed between Jupiter and Saturn because the conditions there allow the ice giants to be built rapidly. A resonance for our closer Uranus still requires a distant planet, nevertheless, a condition that can be satisfied if Neptune is ejected from Jupiter and Saturn first with Uranus following significantly later. This scenario, while contrived, is consistent with at least some versions of the Nice model and allows us to fully test the resonance hypothesis. We discovered that even with these optimistic assumptions, i) a resonance capture requires a migration timescale on the order of 100 Myr, and ii) it is impossible to tilt Uranus past 90°. Increasing Neptune's migration speed precludes resonant capture, and instead results in a resonance kick. In the most favorable cases, a resonance kick could raise Uranus' obliquity by 40° on a time span of about 50 Myr. We conclude that even in our best scenario, a resonance cannot fully account for Uranus' tilt. We have investigated some scenarios that include both resonances and collisions, and will report on our findings.

  12. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    Oblique rifting in the central and northern Main Ethiopian Rift (MER) has resulted in a complex structural pattern characterized by two differently oriented fault systems: a set of NE-SW-trending boundary faults and a system of roughly NNE-SSW-oriented fault swarms affecting the rift floor (Wonji faults). Boundary faults formed oblique to the regional extension vector, likely as a result of the oblique reactivation of a pre-existing deep-seated rheological anisotropy, whereas internal Wonji faults developed sub-orthogonal to the stretching direction. Previous works have successfully reconciled this rift architecture and fault distribution with the long-term plate kinematics; however, at a more local scale, fault-slip and earthquake data reveal significant variations in the orientation the minimum principal stress and related fault-slip direction across the rift valley. Whereas fault measurements indicate a roughly N95°E extension on the axial Wonji faults, a N105°E to N110°E directed minimum principal stress is observed along boundary faults. Both fault-slip data and analysis of seismicity indicate a roughly pure dip-slip motion on the boundary faults, despite their orientation (oblique to the regional extension vector) should result in an oblique displacement. To shed light on the process driving the variability of data derived from fault-slip (and seismicity) analysis we present crustal-scale analogue models of oblique rifting, deformed in a large-capacity centrifuge by using materials and boundary conditions described in several previous modeling works. As in these previous works, the experiments show the diachronous activation of two fault systems, boundary and internal, whose pattern strikingly resemble that observed in previous lithospheric-scale modeling, as well as that described in the MER. Internal faults arrange in two different, en-echelon segments connected by a transfer zone where strike-slip displacement dominates. Whereas internal faults develop

  13. Horizontal effect of the surgical weakening of the oblique muscles

    Directory of Open Access Journals (Sweden)

    Carlos Souza-Dias

    2011-06-01

    Full Text Available PURPOSE: To evaluate the influence of the oblique muscles surgical weakening on the horizontal alignment in the primary position (PP and its efficacy on the correction of the "A" and "V" anisotropies. METHODS: In order to study the influence of bilateral superior oblique muscles (SO weakening on the horizontal alignment in PP, we analyzed the files of 12 patients who underwent only that operation; no other muscle was operated on. We took the opportunity of those 12 patients to analyze the effect of their operation on the correction of "A" incomitance. For evaluating the effect of the inferior oblique muscles (IO weakening on the correction of the "V" pattern, we analyzed retrospectively the files of 67 anisotropic patients who underwent a bilateral SO weakening. In 10 of them, the only operation was the oblique muscles weakening and, in 57 patients, the horizontal recti were also operated on for the horizontal deviations in primary position. These patients were divided into two groups: 50 were esotropic and 17 exotropic. There was not any mixed anisotropy. RESULTS: The mean value of the preoperative "V" incomitance of the 50 esotropic patients was 24.25∆ ± 10.15∆; the mean postoperative correction was 15.56 ∆ ± 8.74∆. The mean correction between the PP and upgaze was 7.52∆ ± 7.47∆ and from the PP to downgaze was 8.56∆ ± 9.21∆. The same values of the 17 exotropic patients was: preoperative 31.88∆ ± 9.4∆; primary position to upgaze was 13.11∆ ± 4.9∆ and primary position to downgaze 14.11∆ ± 12.48∆. The mean preoperative value of the "A" incomitance among the 12 patients who underwent isolated SO weakening was 30.50∆ ± 19.25∆ and the postoperative was of 9,92∆, therefore a mean correction of 22.58∆ ± 17.54∆. Among these ones, in 5 there was no alteration of the deviation in primary position, in 4 there was an exo-effect and in 3 there was an eso-effect. The mean alteration of the deviation in PP was an

  14. Orbital forcing and role of the latitudinal insolation/temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Basil A.S. [University of Newcastle, School of Geography, Politics and Sociology, Newcastle upon Tyne (United Kingdom); ARVE Group, ISTE, EPFL, Lausanne (Switzerland); Brewer, Simon [CEREGE, Europole de l' Arbois, Aix-en-Provence (France)

    2009-02-15

    Orbital forcing of the climate system is clearly shown in the Earths record of glacial-interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models. (orig.)

  15. A new reference frame for astronomically-tuned Plio-Pleistocene climate variability derived from a benthic oxygen isotope splice of the Mediterranean

    Science.gov (United States)

    Lourens, L. J.; Ziegler, M.; Konijnendijk, T. Y. M.; Hilgen, F. J.; Bos, R.; Beekvelt, B.; van Loevezijn, A.; Collin, S.

    2017-12-01

    The astronomical theory of climate has revolutionized our understanding of past climate change and the development of highly accurate geologic time scales for the entire Cenozoic. Most of this understanding has come from the construction of astronomically tuned global ocean benthic foraminiferal oxygen isotope (δ18O) stacked record, derived by the international drilling operations of DSDP, ODP and IODP. The tuning includes fixed phase relationships between the obliquity and precession cycles and the inferred high-latitude climate, i.e. glacial-interglacial, response, which hark back to SPECMAP, using simple ice sheet models and a limited number of radiometric dates. This approach was largely implemented in the widely applied LR04 stack, though LR04 assumed shorter response times for the smaller ice caps during the Pliocene. In the past decades, an astronomically calibrated time scale for the Pliocene and Pleistocene of the Mediterranean has been developed, which has become the reference for the standard Geologic Time Scale. Typical of the Mediterranean marine sediments are the cyclic lithological alternations, reflecting the interference between obliquity and precession-paced low latitude climate variability, such as the African monsoon. Here we present the first benthic foraminiferal based oxygen isotope record of the Mediterranean reference scale, which strikingly mirrors the LR04. We will use this record to discuss the assumed open ocean glacial-interglacial related phase relations over the past 5.3 million years.

  16. Historical oblique aerial photographs as a powerful tool for communicating landscape changes

    DEFF Research Database (Denmark)

    Svenningsen, Stig Roar; Brandt, Jesper; Christensen, Andreas Aagaard

    2015-01-01

    This paper reports on a potential new form of data generation and data display to be used for communicating landscape change at local scales, utilizing a huge collection of oblique aerial photographs held by the Royal Library in Copenhagen. The collection contains local scale imagery covering all...

  17. A comparison of oblique subcostal transversus abdominis plane block versus thoracic paravertebral block for postoperative analgesia after open cholecystectomy

    Directory of Open Access Journals (Sweden)

    Ghada Kamhawy

    2017-10-01

    Full Text Available Background: A major challenge in the postoperative period is pain management which, if not adequately controlled, may contribute to patient discomfort and decreased patient satisfaction, and possibly increased morbidity and mortality. Both Thoracic paravertebral block and oblique subcostal transversus abdominis plane block can be used as analgesic techniques for abdominal surgeries. Our aim in this research was comparison of cumulative 24-h post-operative morphine consumption between ultrasound-guided oblique subcostal transversus abdominis plane block and ultrasound-guided thoracic paravertebral block in patients who underwent an open cholecystectomy under general anesthesia. Patients and methods: This study was performed on 46 patients who underwent open cholecystectomy under general anesthesia. All patients were randomly allocated alternatively to one of two equal groups to either undergo ultrasound-guided unilateral oblique subcostal transversus abdominis plane block Group (I or to undergo ultrasound-guided unilateral thoracic paravertebral block Group (II. Both groups were subjected to a similar analgesic regimen in the immediate post-operative period that involved intravenous patient-controlled morphine analgesia which was used in both groups. Results: The total morphine consumption in the first postoperative 24 h was lower in thoracic paravertebral block Group (II (9.9 mg in thoracic paravertebral block group vs. 15.4 mg in oblique subcostal transversus abdominis plane block Group (I with p < 0.001. The mean time of first request of analgesia in Group (I was 248.7 min compared to 432.1 for Group (II with p < 0.001. Conclusions: Both ultrasound-guided oblique subcostal transversus abdominis plain block and single injection ultrasound guided thoracic paravertebral block are effective analgesic techniques for upper abdominal surgeries and reduces postoperative opioid requirements. However, thoracic paravertebral block is more

  18. Modulation of ice ages via precession and dust-albedo feedbacks

    Directory of Open Access Journals (Sweden)

    Ralph Ellis

    2016-11-01

    Full Text Available We present here a simple and novel proposal for the modulation and rhythm of ice-ages and interglacials during the late Pleistocene. While the standard Milankovitch-precession theory fails to explain the long intervals between interglacials, these can be accounted for by a novel forcing and feedback system involving CO2, dust and albedo. During the glacial period, the high albedo of the northern ice sheets drives down global temperatures and CO2 concentrations, despite subsequent precessional forcing maxima. Over the following millennia more CO2 is sequestered in the oceans and atmospheric concentrations eventually reach a critical minima of about 200 ppm, which combined with arid conditions, causes a die-back of temperate and boreal forests and grasslands, especially at high altitude. The ensuing soil erosion generates dust storms, resulting in increased dust deposition and lower albedo on the northern ice sheets. As northern hemisphere insolation increases during the next Milankovitch cycle, the dust-laden ice-sheets absorb considerably more insolation and undergo rapid melting, which forces the climate into an interglacial period. The proposed mechanism is simple, robust, and comprehensive in its scope, and its key elements are well supported by empirical evidence.

  19. Local Magnetic Fields in Ferromagnetics Studied by Positive Muon Precession

    CERN Multimedia

    2002-01-01

    Positive muons are used to study local magnetic fields in different materials. A polarized muon beam is employed with energies of 30-50 MeV, and the muons are stopped in the target being studied. During its lifetime the muon will precess in the magnetic fields present, and after the decay of the muon the emitted positron is detected in plastic scintillators. The time and angle of the detected positron is used to calculate the magnetic field at the position of the muon in the sample. \\\\ \\\\ The detector system consists of plastic scintillators. Most of the measurements are made in an applied magnetic field. A dilution cryostat is used to produce temperatures down to well below $ 1 ^0 $ K. \\\\ \\\\ The present line of experiments concern mainly: \\item a)~~~~Local magnetism in the paramagnetic state of the Lave's phase type REAl$_{2} $ and RENi$_{2} $ systems ~~~where RE is a rare-earth ion. \\item b)~~~~Local magnetic fields and critical behaviour of the magnetism in Gd metal. \\item c)~~~~Investigation of flux exclu...

  20. Recognition of human gait in oblique and frontal views using Kinect ...

    African Journals Online (AJOL)

    This study describes the recognition of human gait in the oblique and frontal views using novel gait features derived from the skeleton joints provided by Kinect. In D-joint, the skeleton joints were extracted directly from the Kinect, which generates the gait feature. On the other hand, H-joint distance is a feature of distance ...

  1. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  2. A LOW STELLAR OBLIQUITY FOR WASP-47, A COMPACT MULTIPLANET SYSTEM WITH A HOT JUPITER AND AN ULTRA-SHORT PERIOD PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.; Weiss, Lauren [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Winn, Joshua N.; Dai, Fei [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Howard, Andrew W.; Sinukoff, Evan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Petigura, Erik; Rogers, Leslie [Department of Astronomy and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Albrecht, Simon [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Hirano, Teruyuki, E-mail: sanchisojeda@berkeley.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-10

    We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clear counterexample.

  3. Advection endash diffusion past a strip. II. Oblique incidence

    International Nuclear Information System (INIS)

    Knessl, C.; Keller, J.B.

    1997-01-01

    Advection and diffusion of particles past an impenetrable strip is considered when the strip is oblique to the advection or drift velocity. The particle concentration p(x,y) is determined asymptotically for large values of vL/D, where v is the drift velocity, D is the diffusion coefficient, and 2L is the width of the strip. The results complement those of Part I, which treated a strip normal to the drift velocity. copyright 1997 American Institute of Physics

  4. AUTOMATIC ORIENTATION OF LARGE BLOCKS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2013-05-01

    Full Text Available Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  5. Oblique projections and standard-form transformations for discrete inverse problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian

    2013-01-01

    This tutorial paper considers a specific computational tool for the numerical solution of discrete inverse problems, known as the standard-form transformation, by which we can treat general Tikhonov regularization problems efficiently. In the tradition of B. N. Datta's expositions of numerical li...... linear algebra, we use the close relationship between oblique projections, pseudoinverses, and matrix computations to derive a simple geometric motivation and algebraic formulation of the standard-form transformation....

  6. Contribution of thin slice (1 mm) oblique coronal proton density-weighted MR images for assessment of anteromedial and posterolateral bundle damage in anterior cruciate ligament injuries

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan, E-mail: drgokhangokalp@yahoo.com [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Demirag, Burak, E-mail: bdemirag@uludag.edu.tr [Department of Orthopedy, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Nas, Omer Fatih, E-mail: omerfatihnas@gmail.com [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Aydemir, Mehmet Fatih, E-mail: fatiha@yahoo.com [Department of Orthopedy, Uludag University Medical Faculty, Gorukle, Bursa (Turkey); Yazici, Zeynep, E-mail: zyazici@uludag.edu.tr [Department of Radiology, Uludag University Medical Faculty, Gorukle, Bursa (Turkey)

    2012-09-15

    Purpose: To evaluate the diagnostic efficacy of using additional oblique coronal 1 mm proton density-weighted (PDW) MR imaging of the knee for detection and grading anterior cruciate ligament (ACL), anteromedial bundle (AMB) and posterolateral bundle (PLB) injuries. Materials and methods: We prospectively assessed preoperative MR images of 50 patients (36 men, 14 women; age range, 18–62 years). First, we compared the diagnostic performance of routine sagittal (3 mm) and additional oblique coronal images (1 mm) for ACL tears. Then, we compared the tear types (AMB or PLB) and grade presumed from oblique coronal MR imaging with arthroscopy. Results: Arthroscopy revealed ACL tear in 24 (48%) patients. There was significant difference between sagittal images and arthroscopy results for ACL tear recognition (p < 0.001). No significant difference was detected for oblique coronal images when compared with arthroscopy results (p = 0.180). Sensitivity and specificity values for ACL tear diagnosis were 37.04% and 95.65% for sagittal images; 74.07% and 91.30% for oblique coronal images. There was no significant difference between arthroscopy and oblique coronal MR images in grading AMB and PLB injuries (p > 0.05). Conclusion: Addition of thin slice oblique coronal images to conventional sequences could better contribute to better verifying the presence of ACL tear and in determining its grade.

  7. Drawing ability in typical and atypical development; colour cues and the effect of oblique lines.

    Science.gov (United States)

    Farran, E K; Dodd, G F

    2015-06-01

    Individuals with Williams syndrome (WS) have poor drawing ability. Here, we investigated whether colour could be used as a facilitation cue during a drawing task. Participants with WS and non-verbal ability matched typically developing (TD) children were shown line figures presented on a 3 by 3 dot matrix, and asked to replicate the figures by drawing on an empty dot matrix. The dots of the matrix were either all black (control condition), or nine different coloured dots (colour condition). In a third condition, which also used coloured dots, participants were additionally asked to verbalise the colours of the dots prior to replicating the line drawings (colour-verbal condition). Performance was stronger in both WS and TD groups on the two coloured conditions, compared with the control condition. However, the facilitation effect of colour was significantly weaker in the WS group than in the TD group. Replication of oblique line segments was less successful than replication of non-oblique line segments for both groups; this effect was reduced by colour facilitation in the TD group only. Verbalising the colours had no additional impact on performance in either group. We suggest that colour acted as a cue to individuate the dots, thus enabling participants to better ascertain the spatial relationships between the parts of each figure, to determine the start and end points of component lines, and to determine the correspondence between the model and their replication. The reduced facilitation in the WS group is discussed in relation to the effect of oblique versus non-oblique lines, the use of atypical drawing strategies, and reduced attention to the model when drawing the replication. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  8. Magnetic properties of permalloy films with different thicknesses deposited onto obliquely sputtered Cu underlayers

    International Nuclear Information System (INIS)

    Li, Xiaoyu; Sun, Xiaojun; Wang, Jianbo; Liu, Qingfang

    2015-01-01

    In this work, the influence of obliquely sputtered Cu underlayer of 10 nm on the magnetic properties of normally sputtered Permalloy thin films with different thicknesses from 10 nm to 150 nm has been investigated. It has been found that the samples with the Permalloy layer thickness ranging from 10 nm to 70 nm exhibit a good in-plane uniaxial magnetic anisotropy, and the increase of the film thickness leads to a decrease of the anisotropy field and the natural resonance frequency. The critical Permalloy layer thickness for stripe domain initiation of these films is about 80 nm, which is thinner than that of obliquely sputtered Permalloy thin films without an underlayer. The characteristic shapes of hysteresis loops which can be called ''transcritical'' are observed above the critical thickness. The condition and mechanism of appearing stripe domain structure were discussed and it has been found that the frequency response of permeability of the anisotropic films shows the characteristics of multi-peak resonance. - Highlights: • Py films were fabricated on obliquely sputtered Cu underlayers by RF magnetron sputtering. • Effects of Py layer thickness on anisotropy, ferromagnetic resonance frequency have been studied. • Samples with Py layer (<70 nm) show a good in-plane uniaxial magnetic anisotropy. • Samples with Py layer (>80 nm) show stripe domains and multi-peaks in permeability spectra

  9. Breast compression and radiation dose in two different mammographic oblique projections: 45 and 60 deg

    International Nuclear Information System (INIS)

    Brnic, Zoran; Hebrang, Andrija

    2001-01-01

    Introduction: Standard mammography includes two views, craniocaudal and medio-lateral oblique. Depending on patient's body constitution, central beam angle in mediolateral oblique projection may vary, with 45 deg. being suitable for the majority of patients in routine daily practice. With continuous improvement in X-ray technology and radiographers' training, the risk of radiation induced cancerogenesis is considerably reduced and acceptable when compared to benefit. However, the risk still exists, being cumulative and directly related to absorbed glandular dose. There is no minimal dose of radiation which is absolutely harmless, and every effort to reduce the dose is welcome. In this retrospective study two different angles (45 vs. 60 deg.) of mediolateral oblique view were compared according to radiation dose and efficacy of breast compression. Patients and methods: In 52 women, additional 60 deg. oblique films were done after craniocaudal and mediolateral oblique 45 deg.-films, with the same kVp and positioning technique. Breast thickness, time-current products (mA s) and absorbed doses were compared between 45 deg. - and 60 deg.-films. Subgroups of women with large, small, prominent and pendulous breasts were analyzed separately, following the same methodology as for the whole group. Results: mA s were 11.5% lower and compression 7% better with an angle of 60 deg. than with 45 deg. In the subgroup of women with small breasts, mA s values were 13% lower and compression 9% better with 60 deg. than with 45 deg., while in the subgroup with large breasts, mA s were 9% lower and compression 5% better. In the subgroup of patients with pendulous breasts, mA s values were 12% lower and compression 10% better with 60 deg. than with 45 deg., while in the subgroup with prominent breasts, mA s values were 4% lower and compression 3% better. Absorbed glandular dose was estimated to be approximately 20% lower when an oblique mammogram was done with 60 deg. instead of 45 deg

  10. Short linear shadows connecting pulmonary segmental arteries to oblique fissures in volumetric thin-section CT images: comparing CT, micro-CT and histopathology

    International Nuclear Information System (INIS)

    Guan, Chun-Shuang; Ma, Da-Qing; Chen, Jiang-Hong; Chen, Bu-Dong; Cui, Dun; Zhang, Yan-Song; Liu, Wei-Hua

    2016-01-01

    To retrospectively evaluate short linear shadows connecting pulmonary segmental arteries to oblique fissures in thin-section CT images and determine their anatomical basis. CT scanning was performed on 108 patients and 11 lung specimens with no lung diseases around the oblique fissures or hilar. Two radiologists evaluated the imaging. The parameters included length, thickness of short linear shadows, pulmonary segmental artery variations, and traction interlobar fissures, etc. The short linear shadows were not related to sex, age, or smoking history. The lengths of the short linear shadows were generally within 10 mm. The thicknesses of the short linear shadows ranged from 1 to 2 mm. Of the patients, 26.9 % showed pulmonary segmental artery variations; 66.7 % of short linear shadows pulled oblique fissures. In three-dimensional images, the short linear shadows appeared as arc planes, with one side edge connected to the oblique fissure, one side edge connected to a pulmonary segmental artery. On the tissue slices, the short linear shadow exhibited a band structure composed of connective tissues, small blood vessels, and small lymphatic vessels. Short linear shadows are a type of normal intrapulmonary membranes and can maintain the integrity of the oblique fissures and hilar structure. (orig.)

  11. Comparative study of the characteristics of Ni films deposited on SiO2/Si(100) by oblique-angle sputtering and conventional sputtering

    International Nuclear Information System (INIS)

    Yu Mingpeng; Qiu Hong; Chen Xiaobai; Wu Ping; Tian Yue

    2008-01-01

    Ni films were deposited on SiO 2 /Si(100) substrates at 300 K and 573 K by oblique-angle sputtering and conventional sputtering. The films deposited at 300 K mainly have a [110] crystalline orientation in the growing direction whereas those deposited at 573 K grow with a [111] crystalline orientation in the growing direction. The film prepared only at 300 K by oblique-angle sputtering grows with a weakly preferential orientation along the incidence direction of the sputtered Ni atoms. All the films grow with thin columnar grains perpendicular to the substrate surface. The grain size of the films sputter-deposited obliquely is larger than that of the films sputter-deposited conventionally. The grain size of the Ni film does not change markedly with the deposition temperature. The film deposited at 573 K by oblique-angle sputtering has the highest saturation magnetization. For the conventional sputtering, the coercivity of the Ni film deposited at 573 K is larger than that of the film deposited at 300 K. However, for the oblique-angle sputtering, the coercivity of the Ni film is independent of the deposition temperature. All the Ni films exhibit an isotropic magnetization characteristic in the film plane

  12. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    International Nuclear Information System (INIS)

    Charbonneau, James; Zhitnitsky, Ariel

    2010-01-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation

  13. The normal tendon sheath of the second to fifth fingers as seen on oblique views

    International Nuclear Information System (INIS)

    Fischer, E.

    1984-01-01

    Oblique views of the fingers, using a low kilovolt technique, show a portion of the tendon sheaths which can be regarded as representative of the entire sheath. Because of the varying obliquity of each finger, this proportion differs in the fingers. With increasing age the projected portion of the sheath becomes smaller because it is covered by increasing bone formation in the insertion of the tendon sheat. Normal values have been obtained for adults according to their decades; from these, quite minor degrees of tendon sheat thickening can be determined. In camptodactyly of the fifth finger, which is not uncommon, the tendon sheat may be widened in the absence of a tenosynovitis. (orig.) [de

  14. Sentinel Lymph Node Biopsy in Oral Cancer: Validation of Technique and Clinical Implications of Added Oblique Planar Lymphoscintigraphy and/or Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, J.B.; Soerensen, J.A.; Grupe, P.; Krogdahl, A. [Odense Univ. Hospital (Denmark). Depts. of Plastic and Reconstructive Surgery, Nuclear Medicine, and Pathology

    2005-10-01

    Purpose: To validate lymphatic mapping combined with sentinel lymph node biopsy as a staging procedure, and to evaluate the possible clinical implications of added oblique lymphoscintigraphy and/or tomography and test the intra- and interobserver reproducibility of lymphoscintigraphy. Material and Methods: Forty patients (17 F and 23 M, aged 32-90) with 24 T1 and 16 T2 squamous cell carcinoma of the oral cavity. Planar lymphoscintigraphy, emission and transmission tomography were performed. Detection and excision of the sentinel nodes were guided by a gamma probe. The sentinel nodes were step-sectioning and stained with hematoxylin and eosin and cytokeratin (CK 1). Histology and follow-up were used as 'gold standard'. Tumor location, number of sentinel lymph nodes, metastasis, and recurrences were registered. Two observers evaluated the lymphoscintigraphic images to assess the inter-rater agreement. Results: Eleven (28%) patients were upstaged. The sentinel lymph node identification rate was 97.5%. Sentinel lymph node biopsy significantly differentiated between patients with or without lymph node metastasis ( P = 0.001). Lymphatic mapping revealed 124 hotspots and 144 hot lymph nodes were removed by sentinel lymph node biopsy. Three patients developed a lymph node recurrence close to the primary tumor site during follow-up. Added oblique lymphoscintigraphic images and/or tomography revealed extra hotspots in 15/40 (38%) patients. In 4/40 (10%), extra contralateral hotspots were detected. Conclusion: Sentinel lymph node biopsy upstaged 28% of the patients. Sentinel lymph nodes close to the primary tumor were difficult to find. Added oblique planar images and/or tomographic images revealed extra clinical relevant hotspots in 38% of patients. Reproducibility proved excellent.

  15. Comparison of the reconstruction trochanteric antigrade nail (TAN) with the proximal femoral nail antirotation (PFNA) in the management of reverse oblique intertrochanteric hip fractures.

    Science.gov (United States)

    Makki, Daoud; Matar, Hosam E; Jacob, Nebu; Lipscombe, Stephen; Gudena, Ravindra

    2015-12-01

    Reverse oblique intertrochanteric fractures have unique mechanical characteristics and are often treated with intramedullary implants. We compared the outcomes of the reconstruction trochanteric antegrade nail (TAN) with the proximal femoral nail antirotation (PFNA). Between July 2008 and February 2014, we reviewed all patients with reverse oblique intertrochanteric fractures treated at our hospital. Patients with pathological fractures and those who were treated with other than TAN and PFNA nailing systems were excluded. Preoperative assessment included the Abbreviated mental test score (AMT), the ASA grade, pre-injury mobility and place of residence. Postoperative outcome measures included the type of implant used, time to fracture union, failures of fixation and revision surgeries. Fifty-eight patients were included and divided into two groups based on the treatment: 22 patients treated with TAN and 36 patients treated with PFNA systems. The two groups were well matched with regards to demographics and fracture type. The overall union rate was similar in both groups but the time to union was shorter in the TAN group. There were 8 implant failures in the PFNA (22.2%) group compare to none in the TAN group. Implant failure was associated with the severity of fracture (AO 31.A3.3) but was not related to fracture malreduction or screw position (Tip-apex-distance). Our study suggests that the use of reconstruction system with two screws such as TAN may be more suitable implant for reverse oblique intertrochanteric hip fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    Science.gov (United States)

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

    DEFF Research Database (Denmark)

    Chaplin, W. J.; Sanchis-Ojeda, R.; Campante, T. L.

    2013-01-01

    Results on the obliquity of exoplanet host stars - the angle between the stellar spin axis and the planetary orbital axis - provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obl...

  18. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting

    Science.gov (United States)

    Zhang, Lu; Cheng, Li; Bai, Suo; Su, Chen; Chen, Xiaobo; Qin, Yong

    2015-01-01

    Ultrafine organic nanowire arrays (ONWAs) with a controlled direction were successfully fabricated by a novel one-step Faraday cage assisted plasma etching method. The mechanism of formation of nanowire arrays is proposed; the obliquity and aspect ratio can be accurately controlled from approximately 0° to 90° via adjusting the angle of the sample and the etching time, respectively. In addition, the ONWAs were further utilized to improve the output of the triboelectric nanogenerator (TENG). Compared with the output of TENG composed of vertical ONWAs, the open-circuit voltage, short-circuit current and inductive charges were improved by 73%, 150% and 98%, respectively. This research provides a convenient and practical method to fabricate ONWAs with various obliquities on different materials, which can be used for energy harvesting.

  19. The Use of 3d City Models Form Oblique Images on Land Administration

    Science.gov (United States)

    Bakici, S.; Erkek, B.; Ayyildiz, E.; Özmüş, L.

    2017-11-01

    The article 718 of the civil law saying "The ownership on property includes the air above and terrain layers below to an extent providing benefit. The structures, plants and sources are included in the content of this ownership reserving the legal restrictions" and the cadastre law no. 3402 envisage 3D Cadastre. 3D data is required in order to perform 3D cadastre. To meet this requirement, oblique photogrammetry arises as the main data acquisition method. The data obtained by this method is used as base in 3D Cadastre and Land Administration activities. 3D cadastre required in the context of land administration activities in Turkey demands high resolution aerial oblique images to be used in services such as real estate value assessment & marketing in urban areas, urban planning, unlicensed construction monitoring & city administration and making location data (national address data etc.) intelligent.

  20. THE USE OF 3D CITY MODELS FORM OBLIQUE IMAGES ON LAND ADMINISTRATION

    Directory of Open Access Journals (Sweden)

    S. Bakici

    2017-11-01

    Full Text Available The article 718 of the civil law saying “The ownership on property includes the air above and terrain layers below to an extent providing benefit. The structures, plants and sources are included in the content of this ownership reserving the legal restrictions” and the cadastre law no. 3402 envisage 3D Cadastre. 3D data is required in order to perform 3D cadastre. To meet this requirement, oblique photogrammetry arises as the main data acquisition method. The data obtained by this method is used as base in 3D Cadastre and Land Administration activities. 3D cadastre required in the context of land administration activities in Turkey demands high resolution aerial oblique images to be used in services such as real estate value assessment & marketing in urban areas, urban planning, unlicensed construction monitoring & city administration and making location data (national address data etc. intelligent.

  1. VERIFICATION OF 3D BUILDING MODELS USING MUTUAL INFORMATION IN AIRBORNE OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    A. P. Nyaruhuma

    2012-07-01

    Full Text Available This paper describes a method for automatic verification of 3D building models using airborne oblique images. The problem being tackled is identifying buildings that are demolished or changed since the models were constructed or identifying wrong models using the images. The models verified are of CityGML LOD2 or higher since their edges are expected to coincide with actual building edges. The verification approach is based on information theory. Corresponding variables between building models and oblique images are used for deriving mutual information for individual edges, faces or whole buildings, and combined for all perspective images available for the building. The wireframe model edges are projected to images and verified using low level image features – the image pixel gradient directions. A building part is only checked against images in which it may be visible. The method has been tested with models constructed using laser points against Pictometry images that are available for most cities of Europe and may be publically viewed in the so called Birds Eye view of the Microsoft Bing Maps. Results are that nearly all buildings are correctly categorised as existing or demolished. Because we now concentrate only on roofs we also used the method to test and compare results from nadir images. This comparison made clear that especially height errors in models can be more reliably detected in oblique images because of the tilted view. Besides overall building verification, results per individual edges can be used for improving the 3D building models.

  2. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  3. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer

    2004-04-01

    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  4. Can we predict the duration of an interglacial?

    Directory of Open Access Journals (Sweden)

    P. C. Tzedakis

    2012-09-01

    Full Text Available Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr and longer (~ 28 kyr interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of

  5. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  6. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    International Nuclear Information System (INIS)

    Piegsa, Florian Michael

    2009-01-01

    The doublet neutron-deuteron (nd) scattering length b 2,d , which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b 2,d can be obtained via a linear combination of the spin-independent nd scattering length b c,d and the spin-dependent one, b i,d . The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b 2,d below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b i,d . During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the neutron with ferromagnetic samples and magnetic fields

  7. Oblique impact: a process for providing meteorite samples of other planets

    International Nuclear Information System (INIS)

    Okeefe, J.D.; Ahrens, T.J.

    1986-03-01

    Cratering flow calculations for a series of oblique to normal impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether the gas produced upon shock vaporizing both projectile and planetary material could entrain and accelerate surface rocks and thus provide a mechanism for propelling SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet were accelerated to speeds in excess of the Martian escape velocity. Two dimensional finite difference calculations demonstrate that at highly probable impact velocities, vapor plume jets are produced at oblique impact angles of 25 deg to 60 deg and have speeds as great as 20 km/sec. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 km, the resulting vapor jets have densities of 0.1 to 1 g/cu.cm. These jets can entrain Martian surface rocks and accelerate them to velocities 5 km/sec. It is suggested that this mechanism launches SNC meteorites to Earth

  8. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen

    2017-04-01

    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  9. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Ali, Ahmed Hamza H.; Ahmed, Mahmoud; Youssef, M.S.

    2010-01-01

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle (γ) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l w /l pl ), where (l w /l pl ) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l w /l pl ) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle (γ). In addition, increasing (γ) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l w /l pl ). It was found that for any value of the plate oblique angle (γ), the friction factor decreases with the increase of the values of (l w /l pl ) and Re, respectively.

  10. Assessing the Detectability of Gravitational Waves from Coalescing Binary Black Holes with Precessing Spin

    Science.gov (United States)

    Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration

    2015-01-01

    The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.

  11. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range

    International Nuclear Information System (INIS)

    Hantao Ji; Russell Kulsrud; William Fox; Masaaki Yamada

    2005-01-01

    By employing a local two-fluid theory, we investigate an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field current or relative drifts between electrons and ions. The theory self-consistently takes into account local cross-field current and accompanying pressure gradients. It is found that the instability is caused by reactive coupling between the backward propagating whistler (fast) waves in the moving electron frame, and the forward propagating sound (slow) waves in the ion frame when the relative drifts are large. The unstable waves we consider propagate obliquely to the unperturbed magnetic field and have mixed polarization with significant electromagnetic components. A physical picture of the instability emerges in the limit of large wave number characteristic of the local approximation. The primary positive feedback mechanism is based on reinforcement of initial electron density perturbations by compression of electron fluid via induced Lorentz force. The resultant waves are qualitatively consistent with the measured electromagnetic fluctuations in reconnecting current sheet in a laboratory plasma

  12. Superior Oblique Anterior Transposition with Horizontal Recti Recession-Resection for Total Third-Nerve Palsy

    Directory of Open Access Journals (Sweden)

    Muhsin Eraslan

    2015-01-01

    Full Text Available Aims. To report the results of lateral rectus muscle recession, medial rectus muscle resection, and superior oblique muscle transposition in the restoration and maintenance of ocular alignment in primary position for patients with total third-nerve palsy. Methods. The medical records of patients who underwent surgery between March 2007 and September 2011 for total third-nerve palsy were reviewed. All patients underwent a preoperative assessment, including a detailed ophthalmologic examination. Results. A total of 6 patients (age range, 14–45 years were included. The median preoperative horizontal deviation was 67.5 Prism Diopter (PD (interquartile range [IQR] 57.5–70 and vertical deviation was 13.5 PD (IQR 10–20. The median postoperative horizontal residual exodeviation was 8.0 PD (IQR 1–16, and the vertical deviation was 0 PD (IQR 0–4. The median correction of hypotropia following superior oblique transposition was 13.5 ± 2.9 PD (range, 10–16. All cases were vertically aligned within 5 PD. Four of the six cases were aligned within 10 PD of the horizontal deviation. Adduction and head posture were improved in all patients. All patients gained new area of binocular single vision in the primary position after the operation. Conclusion. Lateral rectus recession, medial rectus resection, and superior oblique transposition may be used to achieve satisfactory cosmetic and functional results in total third-nerve palsy.

  13. Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children

    OpenAIRE

    Krishnamurthy, Rajesh; Pednekar, Amol; Atweh, Lamya A; Vogelius, Esben; Chu, Zili David; Zhang, Wei; Maskatia, Shiraz; Masand, Prakash; Morris, Shaine A; Krishnamurthy, Ramkumar; Muthupillai, Raja

    2015-01-01

    Background Cine balanced steady-state free precession (SSFP), the preferred sequence for ventricular function, demands uninterrupted radio frequency (RF) excitation to maintain the steady-state during suspended respiration. This is difficult to accomplish in sedated children. In this work, we validate a respiratory triggered (RT) SSFP sequence that drives the magnetization to steady-state before commencing retrospectively cardiac gated cine acquisition in a sedated pediatric population. Metho...

  14. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  15. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  16. Deficiency of the cytoskeletal protein SPECC1L leads to oblique facial clefting

    DEFF Research Database (Denmark)

    Saadi, Irfan; Alkuraya, Fowzan S; Gisselbrecht, Stephen S

    2011-01-01

    Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morpho...

  17. Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H. [Department of Energy Resources and Environmental Engineering, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El-Arab City, Alexandria 21934 (Egypt); Ahmed, Mahmoud; Youssef, M.S. [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut 71516 (Egypt)

    2010-09-15

    This study has been carried out to investigate the characteristics of convective heat transfer and fluid flow for a single row of oblique plates array to the flow direction inside a channel. The flow inside the channel is laminar and the plates array have spanwise distance between the plates and heated by radiation. This configuration has been designed to be used for Photovoltaic/Thermal system (PV/T) applications. The theoretical results are validated with measured values, and a good agreement prevailed. The results show that an increase in the plate oblique angle ({gamma}) in the range from 0 to 15 degrees, leads to an increase in the Nusselt number (Nu) up to a maximum value and then decreases. The oblique angle at the maximum value of Nu depends on the flow Reynolds Number (Re), and (l{sub w}/l{sub pl}), where (l{sub w}/l{sub pl}) is defined as the ratio of the plates' spacing at zero oblique angle to the plate length. Furthermore, increasing (l{sub w}/l{sub pl}) results in a significant increase in the heat transfer coefficient depending on the values of Re, and plate oblique angle ({gamma}). In addition, increasing ({gamma}) from 0 to 15 degrees results in a decrease in the friction factor up to a certain value, after which the friction value approaches a constant value depending on Re value and (l{sub w}/l{sub pl}). It was found that for any value of the plate oblique angle ({gamma}), the friction factor decreases with the increase of the values of (l{sub w}/l{sub pl}) and Re, respectively. (author)

  18. Two-year Outcomes from a Single Surgeon's Learning Curve Experience of Oblique Lateral Interbody Fusion without Intraoperative Neuromonitoring.

    Science.gov (United States)

    Woods, Kamal; Fonseca, Ahtziri; Miller, Larry E

    2017-12-22

    Introduction Oblique lumbar interbody fusion (OLIF) is a newer procedure that avoids the psoas and lumbosacral plexus due to its oblique trajectory into the retroperitoneal space. While early experience with OLIF is reassuring, the longer-term clinical efficacy has not been well established. The purpose of this study was to describe two-year clinical outcomes with OLIF performed by a single surgeon during the learning curve without the aid of the neuromonitoring. Materials and methods Chart review was performed for the consecutive patients who underwent OLIF by a single surgeon. Back pain severity on a visual analog scale (VAS) and Oswestry Disability Index (ODI) were collected preoperatively and postoperatively at six weeks, three months, six months, one year and two years. Results A total of 21 patients (38 levels) were included in this study. The indications for surgery were degenerative disc disease (n=10, 47.6%), spondylolisthesis (n=9, 42.9%) and spinal stenosis (n=6, 28.6%). The median operating room time was 351 minutes (interquartile range (IQR): 279-406 minutes), blood loss was 40 ml (IQR: 30-150 ml), and hospital stay was 2.0 days (IQR: 1.0-3.5 days). The complication rate was 9.5%, both venous injuries. There were no other perioperative complications. Back pain severity decreased by 70%, on average, over two years (p safe and clinically efficacious for up to two years. The complication rate in this cohort is similar to other published OLIF series and appears acceptable when compared to the lateral lumbar interbody fusion (LLIF) and the anterior lumbar interbody fusion (ALIF). No motor or sensory deficits were observed in this study, supporting the premise that the neuromonitoring is unnecessary in OLIF.

  19. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    Science.gov (United States)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a

  20. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart.

    Science.gov (United States)

    Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J

    2017-06-01

    Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  1. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  2. Vertical and oblique HF sounding with a network of synchronised ionosondes

    Czech Academy of Sciences Publication Activity Database

    Verhulst, T.; Altadill, D.; Mielich, J.; Reinisch, B.; Galkin, I.; Mouzakis, A.; Belehaki, A.; Burešová, Dalia; Stankov, S.; Blanch, E.; Kouba, Daniel

    2017-01-01

    Roč. 60, č. 8 (2017), s. 1644-1656 ISSN 0273-1177 R&D Project s: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : travelling ionospheric disturbances * digisonde * oblique sounding * ionospheric electromagnetic wave propagation * ionospheric measurement Subject RIV: DG - Athmosphere Science s, Meteorology OBOR OECD: Meteorology and atmospheric science s Impact factor: 1.401, year: 2016 http://www. science direct.com/ science /article/pii/S0273117717304593

  3. [Contralateral Recession of the Inferior Oblique Muscle in Grave's Disease Patients with Mild M. rectus inferior fibrosis].

    Science.gov (United States)

    Eckstein, A; Raczynski, S; Dekowski, D; Esser, J

    2015-10-01

    The aim of this study was to evaluate the dose effect and the resulting binocular single vision for inferior oblique muscle recession in patients with Grave's orbitopathy. The evaluation covered all patients (n = 13) between 2010-2013 treated with recession of the inferior oblique muscle for vertical deviation caused by inferior fibrosis of the contralateral eye. The inclusion criterion was a small vertical squint angle with excyclotorsion. The corrected vertical squint angle was 3.75° [7 pdpt] (median, min 1.5° [3 pdpt], max 8° [16 pdpt]) in primary position and 5.5° in adduction [11pdpt] (median, min 3°[6 pdpt], max 9°[18pdpt]). Excyclotorsion was 4° [8 pdpt] (median, min 1° [2 pdpt], max 9° [18 pdpt]). Elevation was only slightly impaired and the side difference was 5° (median). The recession distance was preoperatively determined: 0.5° squint angle reduction per mm recession distance (calculation from patients who received surgery before 2010). Inferior oblique recession generated a good field of binocular single vision (BSV) for all patients. All patients reached BSV in the central area (20°) and within 30° of downgaze. Sixty nine percent of the patients were completely diplopia free in downgaze. Diplopia persisted in more than half of the patients in up gaze outside 15°. Squint reduction was 0.5° [1 pdpt] [0.45-0.67]/per mm recession distance in primary position and 0.65° [1.3 pdpt] [0.55-0.76]/per mm for the vertical deviation in adduction. Excyclotorsion was reduced to ≤ 2° in 77 % of the patients. Inferior oblique muscle recession can be very successfully performed on the contralateral eye in patients with mild inferior rectus muscle fibrosis. Surgery at the contralateral yoke muscle prevents the risk of overeffect with resulting diplopia in downgaze, which could occur if small distance recession had been performed at the inferior rectus muscle. An overeffect in relation to inferior oblique recession will only

  4. Oblique Axis Body Fracture: An Unstable Subtype of Anderson Type III Odontoid Fractures—Apropos of Two Cases

    Directory of Open Access Journals (Sweden)

    Hirokazu Takai

    2016-01-01

    Full Text Available Purpose. Anderson type III odontoid fractures have traditionally been considered stable and treated conservatively. However, unstable cases with unfavorable results following conservative treatment have been reported. Methods. We present the cases of two patients who sustained minimally displaced Anderson type III fractures with a characteristic fracture pattern that we refer to as “oblique type axis body fracture.” Results. The female patients aged 90 and 72 years, respectively, were both diagnosed with minimally displaced Anderson type III fractures. Both fractures had a characteristic “oblique type” fracture pattern. The first patient was treated conservatively with cervical spine immobilization in a semirigid collar. However, gross displacement was noted at the 6-week follow-up visit. The second patient was therefore treated operatively by C1–C3/4 posterior fusion and the course was uneventful. Conclusions. Oblique type axis body fractures resemble a highly unstable subtype of Anderson type III fractures with the potential of severe secondary deformity following conservative treatment, irrespective of initial grade of displacement. The authors therefore warrant a high index of suspicion for this injury and suggest early operative stabilization.

  5. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    International Nuclear Information System (INIS)

    Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher

    2015-01-01

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case. - Highlights: • The MHD 2-Dimensional flow of Casson fluid is present. • Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. • The prevailing momentum equations are designed by manipulating Casson fluid model. • Obtained coupled ordinary differential equations are investigated numerically. • Graphical results are obtained for each physical parameter

  6. Simultaneous display of MRA and MPR in detecting vascular compression for trigeminal neuralgia or hemifacial spasm: comparison with oblique sagittal views of MRI

    International Nuclear Information System (INIS)

    Arbab, A.S.; Aoki, S.; Yoshikawa, T.; Kumagai, H.; Araki, T.; Nishiyama, Y.; Nagaseki, Y.; Nukui, H.

    2000-01-01

    A new technique, simultaneous display of magnetic resonance angiography (MRA) and multiplanar reconstruction (MPR), was performed by a workstation to identify the involved vessels in patients with trigeminal neuralgia (TN) or hemifacial spasm (HFS), and the results were compared with those of oblique sagittal MRI technique. Twelve patients with either HFS or TN were prospectively assessed by simultaneous display of MRA and MPR, and oblique sagittal techniques, to point out the neurovascular compression and to identify the involved vessels. Three-dimensional (3D) time-of-flight (TOF) spoiled gradient-echo (SPGR) images were acquired to create MRA and MPR. Oblique sagittal views were also created and displayed on films. A total of 15 vessels in 12 patients were identified as compressing vessels during surgery. Simultaneous display of MRA and MPR technique pointed out the presence of vessels at and/or around root entry/exit zone (REZ) in all 12 patients, but proper identification by the name of the individual vessel was correct in 13 of 15 cases. However, oblique sagittal technique indicated the presence of vessels at and/or around REZ in 11 patients, but only 8 of 14 vessels were correctly identified. Our new method, simultaneous display of MRA-MPR, facilitated correct identification of the involved vessels compared with the oblique sagittal view method. (orig.)

  7. Acute Traumatic Swan Neck Deformity: A Case Report of the Oblique Retinacular Ligament Lesion.

    Science.gov (United States)

    Checcucci, Giuseppe; Biondi, Marco; Faccio, Marina; Zampetti, Piergiuseppe; Galeano, Mariarosaria; Ceruso, Massimo

    2017-09-01

    Swan neck deformity (SND) can be the manifestation of an acute trauma. We present a case report of a young basketball player with an acute traumatic SND determined by the single ulnar oblique retinacular ligament rupture. The patient caught a ball directly upon the tip of his right's hand middle finger into extension. He immediately presented a SND with impossibility to actively flex the proximal interphalangeal joint (PIPJ), while preserving active flexion and extension of the distal interphalangeal joint (DIPJ). Hyperextension of PIPJ was reducible with passive mobilization, thus allowing full passive range of motion. The SND was seen to be caused by the lesion of the ulnar oblique retinacular ligament (ORL) on its distal insertion, with consequent dorsomedial migration of the ulnar lateral band. The early surgical distal reinsertion of the ORL allowed the restoration of the original kinematics of the finger flexion-extension.

  8. Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X-J [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhang, G [Department of Biological and Agriculture Engineering, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhao, Y-P [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States)

    2006-09-14

    Ag nanorod electrodes with different nanorod lengths are fabricated by a simple vacuum deposition technique, oblique angle deposition (OAD). The as-grown Ag nanorods are aligned on the substrate and have a diameter of {approx}60-70 nm, a density of {approx}200-300 x 10{sup 7} cm{sup -2}, and a tilting angle of {approx}70 deg. -80 deg. with respect to the surface normal. The electrochemical behaviours of the Ag nanorod electrode are characterized by cyclic voltammetry at various scan rates with comparison to an Ag thin-film electrode. The capacitive current is found to be proportional to the actual surface area, and the faradic redox current also increases monotonically with the surface area of the nanorod electrodes, but the increase is not as significant as that of the capacitive current due to the diffusion layer overlapping for the highly compacted nanorods. This indicates that the Ag nanorod electrode could improve the electrolytic sensor for amperometric response measurements, especially for the bimolecular measurements due to the biocompatibility of Ag. The high capacitance also suggests a promising usage of the developed nanostructures for battery and energy storage applications.

  9. Study of the state of the plasma produced by oblique-incident laser

    International Nuclear Information System (INIS)

    Sheng Jiatian; Zhang Guoping; Liu Wei; Ye Chunfu; Hu Shengyong

    1997-01-01

    The plasma state and the gain region produced by the oblique-incidence laser on Ge target are studied and are compared with that produced by the vertical one. As a result of study, the absorption efficiency of the pumping energy turns far smaller, the plasma state changes remarkable and the gain region becomes much narrower when incident angle is greater than 30 degree

  10. Reconstruction and simplification of urban scene models based on oblique images

    Science.gov (United States)

    Liu, J.; Guo, B.

    2014-08-01

    We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.

  11. Magnetization reversal in an obliquely oriented metal evaporated tape

    International Nuclear Information System (INIS)

    Srinath, S.; Vavassori, P.; Rekveldt, M.Th.; Cook, R.E.; Felcher, G.P.

    2004-01-01

    Magnetization reversal in obliquely oriented metal evaporated videotapes as a function of the tape depth was studied by vector magneto-optic Kerr effect and polarized neutron reflectivity. The magnetization vector was found to rotate coherently out-of-plane by an angle α during the magnetization reversal for a substantial part of the hysteresis cycle. However α differs between the surface-facing and the substrate-facing sides of the film, with the more oxidized surface layer following closely the applied field. Close to M∼0 the film breaks down magnetically into a collage of small domains, reflecting the crystalline microstructure of the material

  12. Two-phase flow measurement based on oblique laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.

  13. Exaggerated supine oblique view of the cervical spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1982-01-01

    The technique of the 60 degree supine oblique view is described together with anatomic skeletal studies of this projection. The view is convenient for emergency room radiography and useful in other clinical radiography. The view separates widely the anterior and posterior portions of the vertebrae in a side to side projection. This makes for an elongated but detailed view of the articular processes, pedicles, and intervertebral foramina. In the cadavar specimen and clinically the view is shown to be useful in delineating fracture deformities of the articular process and visualizing constriction of the intervertebral foramen superiorly. Encroachment of the foramen superiorly is likely to compromise the emerging nerve root in this area

  14. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    Science.gov (United States)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  15. On a non classical oblique derivative problem for parabolic singular integro-differential operators

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Le Quang Trung

    1989-10-01

    In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs

  16. MRI of the popliteofibular ligament: isotropic 3D WE-DESS versus coronal oblique fat-suppressed T2W MRI

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Lee, J.C.; Healy, J.C.

    2007-01-01

    The objective was to compare isotropic 3D water excitation double-echo steady state (WE-DESS) MRI with coronal oblique fat-suppressed T2-weighted (FS T2W) images in the identification of the popliteofibular ligament (PFL). A prospective analysis of 122 consecutive knee MRIs was performed in patients referred for knee pain from the orthopaedic clinic. In addition to the standard knee sequences, isotropic WE-DESS volume acquisition through the whole knee and coronal oblique FS T2W fast spin echo sequences through the posterolateral corner were obtained. The presence of the popliteus and biceps femoris tendons, lateral collateral and PFL was documented. Anterior cruciate ligament injury was present in 33 cases and these were excluded from the study because of the risk of associated PFL injury, leaving a total of 89 cases. Of the 42 patients in whom arthroscopic evaluation was subsequently obtained, none were found to have an injury to the PFL. The lateral collateral ligament, biceps femoris and popliteus tendon were identified in all cases on all sequences. The PFL was seen in 81 (91.0%; 95% CI 85.1-97.0%) patients using the WE-DESS sequence and 63 (70.8%; 95% CI 61.3-80.2%) patients using the coronal oblique FS T2W sequence, a statistically significant difference (p < 0.00005). Isotropic 3D WE-DESS MRI significantly enhances our ability to identify the popliteofibular ligament compared with coronal oblique fat-suppressed T2-weighted images. (orig.)

  17. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    Science.gov (United States)

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  18. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  19. Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions

    Science.gov (United States)

    Ellis, Stephen R.; Adelstein, Bernard D.; Yeom, Kiwon

    2013-01-01

    The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments.

  20. ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65

    International Nuclear Information System (INIS)

    Chaplin, W. J.; Campante, T. L.; Davies, G. R.; Elsworth, Y.; Hekker, S.; Sanchis-Ojeda, R.; Winn, J. N.; Handberg, R.; Christensen-Dalsgaard, J.; Karoff, C.; Stello, D.; Bedding, T. R.; Basu, S.; Fischer, D. A.; Metcalfe, T. S.; Buchhave, L. A.; Cochran, W. D.; Gilliland, R. L.; Huber, D.; Isaacson, H.

    2013-01-01

    Results on the obliquity of exoplanet host stars—the angle between the stellar spin axis and the planetary orbital axis—provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1σ level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.