WorldWideScience

Sample records for objective visual field

  1. Visual Field Preferences of Object Analysis for Grasping with One Hand

    Directory of Open Access Journals (Sweden)

    Ada eLe

    2014-10-01

    Full Text Available When we grasp an object using one hand, the opposite hemisphere predominantly guides the motor control of grasp movements (Davare et al. 2007; Rice et al. 2007. However, it is unclear whether visual object analysis for grasp control relies more on inputs (a from the contralateral than the ipsilateral visual field, (b from one dominant visual field regardless of the grasping hand, or (c from both visual fields equally. For bimanual grasping of a single object we have recently demonstrated a visual field preference for the left visual field (Le and Niemeier 2013a, 2013b, consistent with a general right-hemisphere dominance for sensorimotor control of bimanual grasps (Le et al., 2013. But visual field differences have never been tested for unimanual grasping. Therefore, here we asked right-handed participants to fixate to the left or right of an object and then grasp the object either with their right or left hand using a precision grip. We found that participants grasping with their right hand performed better with objects in the right visual field: maximum grip apertures (MGAs were more closely matched to the object width and were smaller than for objects in the left visual field. In contrast, when people grasped with their left hand, preferences switched to the left visual field. What is more, MGA scaling showed greater visual field differences compared to right-hand grasping. Our data suggest that, visual object analysis for unimanual grasping shows a preference for visual information from the ipsilateral visual field, and that the left hemisphere is better equipped to control grasps in both visual fields.

  2. Thickness and clearance visualization based on distance field of 3D objects

    Directory of Open Access Journals (Sweden)

    Masatomo Inui

    2015-07-01

    Full Text Available This paper proposes a novel method for visualizing the thickness and clearance of 3D objects in a polyhedral representation. The proposed method uses the distance field of the objects in the visualization. A parallel algorithm is developed for constructing the distance field of polyhedral objects using the GPU. The distance between a voxel and the surface polygons of the model is computed many times in the distance field construction. Similar sets of polygons are usually selected as close polygons for close voxels. By using this spatial coherence, a parallel algorithm is designed to compute the distances between a cluster of close voxels and the polygons selected by the culling operation so that the fast shared memory mechanism of the GPU can be fully utilized. The thickness/clearance of the objects is visualized by distributing points on the visible surfaces of the objects and painting them with a unique color corresponding to the thickness/clearance values at those points. A modified ray casting method is developed for computing the thickness/clearance using the distance field of the objects. A system based on these algorithms can compute the distance field of complex objects within a few minutes for most cases. After the distance field construction, thickness/clearance visualization at a near interactive rate is achieved.

  3. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    Science.gov (United States)

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  4. Visual field

    Science.gov (United States)

    ... your visual field. How the Test is Performed Confrontation visual field exam. This is a quick and ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  5. Two Types of Visual Objects

    Directory of Open Access Journals (Sweden)

    Skrzypulec Błażej

    2015-06-01

    Full Text Available While it is widely accepted that human vision represents objects, it is less clear which of the various philosophical notions of ‘object’ adequately characterizes visual objects. In this paper, I show that within contemporary cognitive psychology visual objects are characterized in two distinct, incompatible ways. On the one hand, models of visual organization describe visual objects in terms of combinations of features, in accordance with the philosophical bundle theories of objects. However, models of visual persistence apply a notion of visual objects that is more similar to that endorsed in philosophical substratum theories. Here I discuss arguments that might show either that only one of the above notions of visual objects is adequate in the context of human vision, or that the category of visual objects is not uniform and contains entities properly characterized by different philosophical conceptions.

  6. The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

    Directory of Open Access Journals (Sweden)

    Mousa MF

    2013-05-01

    Full Text Available Mohammad F Mousa,1 Robert P Cubbidge,2 Fatima Al-Mansouri,1 Abdulbari Bener3,41Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar; 2School of Life and Health Sciences, Aston University, Birmingham, UK; 3Department of Medical Statistics and Epidemiology, Hamad Medical Corporation, Department of Public Health, Weill Cornell Medical College, Doha, Qatar; 4Department Evidence for Population Health Unit, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UKObjective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique.Methods and patients: Three groups were tested in this study; normal controls (38 eyes, glaucoma patients (36 eyes, and glaucoma suspect patients (38 eyes. All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis ­protocol: the hemifield sector analysis protocol.Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group. The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001, statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01, and only 1/11 pair was statistically significant (t-test P < 0.9. The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86

  7. Incremental Visualizer for Visible Objects

    DEFF Research Database (Denmark)

    Bukauskas, Linas; Bøhlen, Michael Hanspeter

    This paper discusses the integration of database back-end and visualizer front-end into a one tightly coupled system. The main aim which we achieve is to reduce the data pipeline from database to visualization by using incremental data extraction of visible objects in a fly-through scenarios. We...... also argue that passing only relevant data from the database will substantially reduce the overall load of the visualization system. We propose the system Incremental Visualizer for Visible Objects (IVVO) which considers visible objects and enables incremental visualization along the observer movement...... path. IVVO is the novel solution which allows data to be visualized and loaded on the fly from the database and which regards visibilities of objects. We run a set of experiments to convince that IVVO is feasible in terms of I/O operations and CPU load. We consider the example of data which uses...

  8. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    Science.gov (United States)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  9. Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment.

    Science.gov (United States)

    Horn, Folkert K; Selle, Franziska; Hohberger, Bettina; Kremers, Jan

    2016-02-01

    To investigate whether a conventional, monitor-based multifocal visual evoked potential (mfVEP) system can be used to record steady-state mfVEP (ssmfVEP) in healthy subjects and to study the effects of temporal frequency, electrode configuration and alpha waves. Multifocal pattern reversal VEP measurements were performed at 58 dartboard fields using VEP recording equipment. The responses were measured using m-sequences with four pattern reversals per m-step. Temporal frequencies were varied between 6 and 15 Hz. Recordings were obtained from nine normal subjects with a cross-shaped, four-electrode device (two additional channels were derived). Spectral analyses were performed on the responses at all locations. The signal to noise ratio (SNR) was computed for each response using the signal amplitude at the reversal frequency and the noise at the neighbouring frequencies. Most responses in the ssmfVEP were significantly above noise. The SNR was largest for an 8.6-Hz reversal frequency. The individual alpha electroencephalogram (EEG) did not strongly influence the results. The percentage of the records in which each of the 6 channels had the largest SNR was between 10.0 and 25.2 %. Our results in normal subjects indicate that reliable mfVEP responses can be achieved by steady-state stimulation using a conventional dartboard stimulator and multi-channel electrode device. The ssmfVEP may be useful for objective visual field assessment as spectrum analysis can be used for automated evaluation of responses. The optimal reversal frequency is 8.6 Hz. Alpha waves have only a minor influence on the analysis. Future studies must include comparisons with conventional mfVEP and psychophysical visual field tests.

  10. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.

    Science.gov (United States)

    Foley, Nicholas C; Grossberg, Stephen; Mingolla, Ennio

    2012-08-01

    How are spatial and object attention coordinated to achieve rapid object learning and recognition during eye movement search? How do prefrontal priming and parietal spatial mechanisms interact to determine the reaction time costs of intra-object attention shifts, inter-object attention shifts, and shifts between visible objects and covertly cued locations? What factors underlie individual differences in the timing and frequency of such attentional shifts? How do transient and sustained spatial attentional mechanisms work and interact? How can volition, mediated via the basal ganglia, influence the span of spatial attention? A neural model is developed of how spatial attention in the where cortical stream coordinates view-invariant object category learning in the what cortical stream under free viewing conditions. The model simulates psychological data about the dynamics of covert attention priming and switching requiring multifocal attention without eye movements. The model predicts how "attentional shrouds" are formed when surface representations in cortical area V4 resonate with spatial attention in posterior parietal cortex (PPC) and prefrontal cortex (PFC), while shrouds compete among themselves for dominance. Winning shrouds support invariant object category learning, and active surface-shroud resonances support conscious surface perception and recognition. Attentive competition between multiple objects and cues simulates reaction-time data from the two-object cueing paradigm. The relative strength of sustained surface-driven and fast-transient motion-driven spatial attention controls individual differences in reaction time for invalid cues. Competition between surface-driven attentional shrouds controls individual differences in detection rate of peripheral targets in useful-field-of-view tasks. The model proposes how the strength of competition can be mediated, though learning or momentary changes in volition, by the basal ganglia. A new explanation of

  11. An interactive visualization tool for mobile objects

    Science.gov (United States)

    Kobayashi, Tetsuo

    Recent advancements in mobile devices---such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID)---have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data

  12. Visual object recognition and tracking

    Science.gov (United States)

    Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)

    2010-01-01

    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.

  13. Refining Visually Detected Object poses

    DEFF Research Database (Denmark)

    Holm, Preben; Petersen, Henrik Gordon

    2010-01-01

    to the particular object and in order to handle the demand for flexibility, there is an increasing demand for avoiding such dedicated mechanical alignment systems. Rather, it would be desirable to automatically locate and grasp randomly placed objects from tables, conveyor belts or even bins with a high accuracy...

  14. Aerial Object Following Using Visual Fuzzy Servoing

    OpenAIRE

    Olivares Méndez, Miguel Ángel; Mondragon Bernal, Ivan Fernando; Campoy Cervera, Pascual; Mejias Alvarez, Luis; Martínez Luna, Carol Viviana

    2011-01-01

    This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintai...

  15. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  16. Field of attention for instantaneous object recognition.

    Directory of Open Access Journals (Sweden)

    Jian-Gao Yao

    Full Text Available BACKGROUND: Instantaneous object discrimination and categorization are fundamental cognitive capacities performed with the guidance of visual attention. Visual attention enables selection of a salient object within a limited area of the visual field; we referred to as "field of attention" (FA. Though there is some evidence concerning the spatial extent of object recognition, the following questions still remain unknown: (a how large is the FA for rapid object categorization, (b how accuracy of attention is distributed over the FA, and (c how fast complex objects can be categorized when presented against backgrounds formed by natural scenes. METHODOLOGY/PRINCIPAL FINDINGS: To answer these questions, we used a visual perceptual task in which subjects were asked to focus their attention on a point while being required to categorize briefly flashed (20 ms photographs of natural scenes by indicating whether or not these contained an animal. By measuring the accuracy of categorization at different eccentricities from the fixation point, we were able to determine the spatial extent and the distribution of accuracy over the FA, as well as the speed of categorizing objects using stimulus onset asynchrony (SOA. Our results revealed that subjects are able to rapidly categorize complex natural images within about 0.1 s without eye movement, and showed that the FA for instantaneous image categorization covers a visual field extending 20° × 24°, and accuracy was highest (>90% at the center of FA and declined with increasing eccentricity. CONCLUSIONS/SIGNIFICANCE: In conclusion, human beings are able to categorize complex natural images at a glance over a large extent of the visual field without eye movement.

  17. Visual Priming of Inverted and Rotated Objects

    Science.gov (United States)

    Knowlton, Barbara J.; McAuliffe, Sean P.; Coelho, Chase J.; Hummel, John E.

    2009-01-01

    Object images are identified more efficiently after prior exposure. Here, the authors investigated shape representations supporting object priming. The dependent measure in all experiments was the minimum exposure duration required to correctly identify an object image in a rapid serial visual presentation stream. Priming was defined as the change…

  18. Visualizing the Computational Intelligence Field

    NARCIS (Netherlands)

    L. Waltman (Ludo); J.H. van den Berg (Jan); U. Kaymak (Uzay); N.J.P. van Eck (Nees Jan)

    2006-01-01

    textabstractIn this paper, we visualize the structure and the evolution of the computational intelligence (CI) field. Based on our visualizations, we analyze the way in which the CI field is divided into several subfields. The visualizations provide insight into the characteristics of each subfield

  19. Category-specificity in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2009-01-01

    binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies...

  20. Visual object recognition and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian

    This thesis is based on seven published papers. The majority of the papers address two topics in visual object recognition: (i) category-effects at pre-semantic stages, and (ii) the integration of visual elements into elaborate shape descriptions corresponding to whole objects or large object parts...... (shape configuration). In the early writings these two topics were examined more or less independently. In later works, findings concerning category-effects and shape configuration merge into an integrated model, termed RACE, advanced to explain category-effects arising at pre-semantic stages in visual...... in visual long-term memory. In the thesis it is described how this simple model can account for a wide range of findings on category-specificity in both patients with brain damage and normal subjects. Finally, two hypotheses regarding the neural substrates of the model's components - and how activation...

  1. Category-specificity in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been...... demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a Pre-semantic Account of Category Effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the...... binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies...

  2. The Timing of Visual Object Categorization

    Science.gov (United States)

    Mack, Michael L.; Palmeri, Thomas J.

    2011-01-01

    An object can be categorized at different levels of abstraction: as natural or man-made, animal or plant, bird or dog, or as a Northern Cardinal or Pyrrhuloxia. There has been growing interest in understanding how quickly categorizations at different levels are made and how the timing of those perceptual decisions changes with experience. We specifically contrast two perspectives on the timing of object categorization at different levels of abstraction. By one account, the relative timing implies a relative timing of stages of visual processing that are tied to particular levels of object categorization: Fast categorizations are fast because they precede other categorizations within the visual processing hierarchy. By another account, the relative timing reflects when perceptual features are available over time and the quality of perceptual evidence used to drive a perceptual decision process: Fast simply means fast, it does not mean first. Understanding the short-term and long-term temporal dynamics of object categorizations is key to developing computational models of visual object recognition. We briefly review a number of models of object categorization and outline how they explain the timing of visual object categorization at different levels of abstraction. PMID:21811480

  3. Infant visual attention and object recognition.

    Science.gov (United States)

    Reynolds, Greg D

    2015-05-15

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Manifold-Based Visual Object Counting.

    Science.gov (United States)

    Wang, Yi; Zou, Yuexian; Wang, Wenwu

    2018-07-01

    Visual object counting (VOC) is an emerging area in computer vision which aims to estimate the number of objects of interest in a given image or video. Recently, object density based estimation method is shown to be promising for object counting as well as rough instance localization. However, the performance of this method tends to degrade when dealing with new objects and scenes. To address this limitation, we propose a manifold-based method for visual object counting (M-VOC), based on the manifold assumption that similar image patches share similar object densities. Firstly, the local geometry of a given image patch is represented linearly by its neighbors using a predefined patch training set, and the object density of this given image patch is reconstructed by preserving the local geometry using locally linear embedding. To improve the characterization of local geometry, additional constraints such as sparsity and non-negativity are also considered via regularization, nonlinear mapping, and kernel trick. Compared with the state-of-the-art VOC methods, our proposed M-VOC methods achieve competitive performance on seven benchmark datasets. Experiments verify that the proposed M-VOC methods have several favorable properties, such as robustness to the variation in the size of training dataset and image resolution, as often encountered in real-world VOC applications.

  5. Visual awareness of objects and their colour.

    Science.gov (United States)

    Pilling, Michael; Gellatly, Angus

    2011-10-01

    At any given moment, our awareness of what we 'see' before us seems to be rather limited. If, for instance, a display containing multiple objects is shown (red or green disks), when one object is suddenly covered at random, observers are often little better than chance in reporting about its colour (Wolfe, Reinecke, & Brawn, Visual Cognition, 14, 749-780, 2006). We tested whether, when object attributes (such as colour) are unknown, observers still retain any knowledge of the presence of that object at a display location. Experiments 1-3 involved a task requiring two-alternative (yes/no) responses about the presence or absence of a colour-defined object at a probed location. On this task, if participants knew about the presence of an object at a location, responses indicated that they also knew about its colour. A fourth experiment presented the same displays but required a three-alternative response. This task did result in a data pattern consistent with participants' knowing more about the locations of objects within a display than about their individual colours. However, this location advantage, while highly significant, was rather small in magnitude. Results are compared with those of Huang (Journal of Vision, 10(10, Art. 24), 1-17, 2010), who also reported an advantage for object locations, but under quite different task conditions.

  6. Use of subjective and objective criteria to categorise visual disability.

    Science.gov (United States)

    Kajla, Garima; Rohatgi, Jolly; Dhaliwal, Upreet

    2014-04-01

    Visual disability is categorised using objective criteria. Subjective measures are not considered. To use subjective criteria along with objective ones to categorise visual disability. Ophthalmology out-patient department; teaching hospital; observational study. Consecutive persons aged >25 years, with vision disability; group-zero: normal range of vision, to group-X: no perception of light, bilaterally. Snellen's vision; binocular contrast sensitivity (Pelli-Robson chart); automated binocular visual field (Humphrey; Esterman test); and vision-related quality of life (Indian Visual Function Questionnaire-33; IND-VFQ33) were recorded. SPSS version-17; Kruskal-wallis test was used to compare contrast sensitivity and visual fields across groups, and Mann-Whitney U test for pair-wise comparison (Bonferroni adjustment; P visual fields were comparable for differing disability grades except when disability was severe (P disability grades but comparable for groups III (78.51 ± 6.86) and IV (82.64 ± 5.80), and groups IV and V (77.23 ± 3.22); these were merged to generate group 345; similarly, global scores were comparable for adjacent groups V and VI (72.53 ± 6.77), VI and VII (74.46 ± 4.32), and VII and VIII (69.12 ± 5.97); these were merged to generate group 5678; thereafter, contrast sensitivity and global and individual IND-VFQ33 scores could differentiate between different grades of disability in the five new groups. Subjective criteria made it possible to objectively reclassify visual disability. Visual disability grades could be redefined to accommodate all from zero-100%.

  7. Introduction to Vector Field Visualization

    Science.gov (United States)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  8. An object-based visual attention model for robotic applications.

    Science.gov (United States)

    Yu, Yuanlong; Mann, George K I; Gosine, Raymond G

    2010-10-01

    By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.

  9. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    Science.gov (United States)

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include

  10. An insect-inspired model for visual binding I: learning objects and their characteristics.

    Science.gov (United States)

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  11. Visual Discomfort and Depth-of-Field

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  12. 38 CFR 4.77 - Visual fields.

    Science.gov (United States)

    2010-07-01

    ... DISABILITIES Disability Ratings The Organs of Special Sense § 4.77 Visual fields. (a) Examination of visual... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Visual fields. 4.77... who are well adapted to intraocular lens implant or contact lens correction, visual field examinations...

  13. Storage and binding of object features in visual working memory

    OpenAIRE

    Bays, Paul M; Wu, Emma Y; Husain, Masud

    2010-01-01

    An influential conception of visual working memory is of a small number of discrete memory “slots”, each storing an integrated representation of a single visual object, including all its component features. When a scene contains more objects than there are slots, visual attention controls which objects gain access to memory.

  14. Visual Processing of Object Velocity and Acceleration

    Science.gov (United States)

    1994-02-04

    A failure of motion deblurring in the human visual system. Investigative Opthalmology and Visual Sciences (Suppl),34, 1230 Watamaniuk, S.N.J. and...McKee, S.P. Why is a trajectory more detectable in noise than correlated signal dots? Investigative Opthalmology and Visual Sciences (Suppl),34, 1364

  15. Prism therapy and visual rehabilitation in homonymous visual field loss.

    LENUS (Irish Health Repository)

    O'Neill, Evelyn C

    2011-02-01

    Homonymous visual field defects (HVFD) are common and frequently occur after cerebrovascular accidents. They significantly impair visual function and cause disability particularly with regard to visual exploration. The purpose of this study was to assess a novel interventional treatment of monocular prism therapy on visual functioning in patients with HVFD of varied etiology using vision targeted, health-related quality of life (QOL) questionnaires. Our secondary aim was to confirm monocular and binocular visual field expansion pre- and posttreatment.

  16. Establishing Visual Category Boundaries between Objects: A PET Study

    Science.gov (United States)

    Saumier, Daniel; Chertkow, Howard; Arguin, Martin; Whatmough, Cristine

    2005-01-01

    Individuals with Alzheimer's disease (AD) often have problems in recognizing common objects. This visual agnosia may stem from difficulties in establishing appropriate visual boundaries between visually similar objects. In support of this hypothesis, Saumier, Arguin, Chertkow, and Renfrew (2001) showed that AD subjects have difficulties in…

  17. A computational theory of visual receptive fields.

    Science.gov (United States)

    Lindeberg, Tony

    2013-12-01

    A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative

  18. Orienting attention to objects in visual short-term memory

    NARCIS (Netherlands)

    Dell'Acqua, Roberto; Sessa, Paola; Toffanin, Paolo; Luria, Roy; Joliccoeur, Pierre

    We measured electroencephalographic activity during visual search of a target object among objects available to perception or among objects held in visual short-term memory (VSTM). For perceptual search, a single shape was shown first (pre-cue) followed by a search-array and the task was to decide

  19. Visual field abnormalities in multiple sclerosis.

    OpenAIRE

    Patterson, V H; Heron, J R

    1980-01-01

    Visual fields were examined with a tangent screen in 54 patients with multiple sclerosis (MS) or optic neuritis (ON). Visual fields were abnormal in all patients with definite MS, 94% with probable MS and 81% with possible MS. Three-quarters of the MS patients with no history of visual symptoms had abnormal fields. The commonest defect found was an arcuate scotoma. As a diagnostic test of visual pathway involvement in MS, tangent screen examination compares favourably with more sophisticated ...

  20. Visualization of object-oriented (Java) programs

    NARCIS (Netherlands)

    Huizing, C.; Kuiper, R.; Luijten, C.A.A.M.; Vandalon, V.; Helfert, M.; Martins, M.J.; Cordeiro, J.

    2012-01-01

    We provide an explicit, consistent, execution model for OO programs, specifically Java, together with a tool that visualizes the model This equips the student with a model to think and communicate about OO programs. Especially for an e-learning situation this is significant. Firstly, such a model

  1. The Correlation between Subjective and Objective Visual Function Test in Optic Neuropathy Patients

    Directory of Open Access Journals (Sweden)

    Ungsoo Kim

    2012-10-01

    Full Text Available Purpose: To investigate the correlation between visual acuity and quantitative measurements of visual evoked potentials (VEP, optical coherence tomography (OCT, and visual field test (VF in optic neuropathy patients. Methods: We evaluated 28 patients with optic neuropathy. Patients who had pale disc, visual acuity of less than 0.5 and abnormal visual field defect were included. At the first visit, we performed visual acuity and VF as subjective methods and OCT and VEP as objective methods. In the spectral domain OCT, rim volume, average and temporal quadrant retinal nerve fiber layer (RNFL thickness were measured. And pattern VEP (N75, P100, N135 latency, and P100 amplitude and Humphrey 24-2 visual field test (mean deviation and pattern standard deviation were obtained. Using Spearman's correlation coefficient, the correlation between visual acuity and various techniques were assessed. Results: Visual acuity was most correlated with the mean deviation of Humphrey perimetry.

  2. Object attributes combine additively in visual search

    OpenAIRE

    Pramod, R. T.; Arun, S. P.

    2016-01-01

    We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in in...

  3. Storage of features, conjunctions and objects in visual working memory.

    Science.gov (United States)

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  4. Object attributes combine additively in visual search.

    Science.gov (United States)

    Pramod, R T; Arun, S P

    2016-01-01

    We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.

  5. Reader error, object recognition, and visual search

    Science.gov (United States)

    Kundel, Harold L.

    2004-05-01

    Small abnormalities such as hairline fractures, lung nodules and breast tumors are missed by competent radiologists with sufficient frequency to make them a matter of concern to the medical community; not only because they lead to litigation but also because they delay patient care. It is very easy to attribute misses to incompetence or inattention. To do so may be placing an unjustified stigma on the radiologists involved and may allow other radiologists to continue a false optimism that it can never happen to them. This review presents some of the fundamentals of visual system function that are relevant to understanding the search for and the recognition of small targets embedded in complicated but meaningful backgrounds like chests and mammograms. It presents a model for visual search that postulates a pre-attentive global analysis of the retinal image followed by foveal checking fixations and eventually discovery scanning. The model will be used to differentiate errors of search, recognition and decision making. The implications for computer aided diagnosis and for functional workstation design are discussed.

  6. The visual extent of an object: suppose we know the object locations

    NARCIS (Netherlands)

    Uijlings, J.R.R.; Smeulders, A.W.M.; Scha, R.J.H.

    2012-01-01

    The visual extent of an object reaches beyond the object itself. This is a long standing fact in psychology and is reflected in image retrieval techniques which aggregate statistics from the whole image in order to identify the object within. However, it is unclear to what degree and how the visual

  7. The Functional Architecture of Visual Object Recognition

    Science.gov (United States)

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  8. Assessing the Cartographic Visualization of Moving Objects ...

    African Journals Online (AJOL)

    Four representations are considered in this research: the single static map, multiple static maps, animation, and the space-time cube. The study is conducted by considering four movement characteristics (or aspects of moving objects): speed change, returns, stops, and path of movement. The ability of users to perceive and ...

  9. Exploiting core knowledge for visual object recognition.

    Science.gov (United States)

    Schurgin, Mark W; Flombaum, Jonathan I

    2017-03-01

    Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Visual acuity and visual field impairment in Usher syndrome.

    Science.gov (United States)

    Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J

    1998-02-01

    To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (Ptype 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3

  11. Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory

    Science.gov (United States)

    Hollingworth, Andrew; Rasmussen, Ian P.

    2010-01-01

    The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…

  12. Object formation in visual working memory: Evidence from object-based attention.

    Science.gov (United States)

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Visual Field Asymmetry in Attentional Capture

    Science.gov (United States)

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  14. Visual Object Pattern Separation Varies in Older Adults

    Science.gov (United States)

    Holden, Heather M.; Toner, Chelsea; Pirogovsky, Eva; Kirwan, C. Brock; Gilbert, Paul E.

    2013-01-01

    Young and nondemented older adults completed a visual object continuous recognition memory task in which some stimuli (lures) were similar but not identical to previously presented objects. The lures were hypothesized to result in increased interference and increased pattern separation demand. To examine variability in object pattern separation…

  15. Visual attention is required for multiple object tracking.

    Science.gov (United States)

    Tran, Annie; Hoffman, James E

    2016-12-01

    In the multiple object tracking task, participants attempt to keep track of a moving set of target objects embedded in an identical set of moving distractors. Depending on several display parameters, observers are usually only able to accurately track 3 to 4 objects. Various proposals attribute this limit to a fixed number of discrete indexes (Pylyshyn, 1989), limits in visual attention (Cavanagh & Alvarez, 2005), or "architectural limits" in visual cortical areas (Franconeri, 2013). The present set of experiments examined the specific role of visual attention in tracking using a dual-task methodology in which participants tracked objects while identifying letter probes appearing on the tracked objects and distractors. As predicted by the visual attention model, probe identification was faster and/or more accurate when probes appeared on tracked objects. This was the case even when probes were more than twice as likely to appear on distractors suggesting that some minimum amount of attention is required to maintain accurate tracking performance. When the need to protect tracking accuracy was relaxed, participants were able to allocate more attention to distractors when probes were likely to appear there but only at the expense of large reductions in tracking accuracy. A final experiment showed that people attend to tracked objects even when letters appearing on them are task-irrelevant, suggesting that allocation of attention to tracked objects is an obligatory process. These results support the claim that visual attention is required for tracking objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Development of Object Permanence in Visually Impaired Infants.

    Science.gov (United States)

    Rogers, S. J.; Puchalski, C. B.

    1988-01-01

    Development of object permanence skills was examined longitudinally in 20 visually impaired infants (ages 4-25 months). Order of skill acquisition and span of time required to master skills paralleled that of sighted infants, but the visually impaired subjects were 8-12 months older than sighted counterparts when similar skills were acquired.…

  17. Multimedia Visualizer: An Animated, Object-Based OPAC.

    Science.gov (United States)

    Lee, Newton S.

    1991-01-01

    Describes the Multimedia Visualizer, an online public access catalog (OPAC) that uses animated visualizations to make it more user friendly. Pictures of the system are shown that illustrate the interactive objects that patrons can access, including card catalog drawers, librarian desks, and bookshelves; and access to multimedia items is described.…

  18. Visual Memory for Objects Following Foveal Vision Loss

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hofmüller, Wolfram; Hoffmann, Michael B.; Pollmann, Stefan

    2015-01-01

    Allocation of visual attention is crucial for encoding items into visual long-term memory. In free vision, attention is closely linked to the center of gaze, raising the question whether foveal vision loss entails suboptimal deployment of attention and subsequent impairment of object encoding. To investigate this question, we examined visual…

  19. What are the visual features underlying rapid object recognition?

    Directory of Open Access Journals (Sweden)

    Sébastien M Crouzet

    2011-11-01

    Full Text Available Research progress in machine vision has been very significant in recent years. Robust face detection and identification algorithms are already readily available to consumers, and modern computer vision algorithms for generic object recognition are now coping with the richness and complexity of natural visual scenes. Unlike early vision models of object recognition that emphasized the role of figure-ground segmentation and spatial information between parts, recent successful approaches are based on the computation of loose collections of image features without prior segmentation or any explicit encoding of spatial relations. While these models remain simplistic models of visual processing, they suggest that, in principle, bottom-up activation of a loose collection of image features could support the rapid recognition of natural object categories and provide an initial coarse visual representation before more complex visual routines and attentional mechanisms take place. Focusing on biologically-plausible computational models of (bottom-up pre-attentive visual recognition, we review some of the key visual features that have been described in the literature. We discuss the consistency of these feature-based representations with classical theories from visual psychology and test their ability to account for human performance on a rapid object categorization task.

  20. The effect of visual training for patients with visual field defects due to brain damage : a systematic review

    NARCIS (Netherlands)

    Bouwmeester, Lies; Heutink, Joost; Lucas, Cees

    The objective of this review was to evaluate whether systematic visual training leads to ( 1) a restitution of the visual field ( restoration), ( 2) an increase in the visual search field size or an improvement in scanning strategies (compensation) and ( 3) a transfer of training-related

  1. The effect of visual training for patients with visual field defects due to brain damage: a systematic review

    NARCIS (Netherlands)

    Bouwmeester, Lies; Heutink, Joost; Lucas, Cees

    2007-01-01

    The objective of this review was to evaluate whether systematic visual training leads to (1) a restitution of the visual field (restoration), (2) an increase in the visual search field size or an improvement in scanning strategies (compensation) and (3) a transfer of training-related improvements in

  2. Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

    Science.gov (United States)

    Kanwisher, Nancy

    2012-01-01

    The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434

  3. Prism therapy and visual rehabilitation in homonymous visual field loss.

    LENUS (Irish Health Repository)

    O'Neill, Evelyn C

    2012-02-01

    PURPOSE: Homonymous visual field defects (HVFD) are common and frequently occur after cerebrovascular accidents. They significantly impair visual function and cause disability particularly with regard to visual exploration. The purpose of this study was to assess a novel interventional treatment of monocular prism therapy on visual functioning in patients with HVFD of varied etiology using vision targeted, health-related quality of life (QOL) questionnaires. Our secondary aim was to confirm monocular and binocular visual field expansion pre- and posttreatment. METHODS: Twelve patients with acquired, documented HVFD were eligible to be included. All patients underwent specific vision-targeted, health-related QOL questionnaire and monocular and binocular Goldmann perimetry before commencing prism therapy. Patients were fitted with monocular prisms on the side of the HVFD with the base-in the direction of the field defect creating a peripheral optical exotropia and field expansion. After the treatment period, QOL questionnaires and perimetry were repeated. RESULTS: Twelve patients were included in the treatment group, 10 of whom were included in data analysis. Overall, there was significant improvement within multiple vision-related, QOL functioning parameters, specifically within the domains of general health (p < 0.01), general vision (p < 0.05), distance vision (p < 0.01), peripheral vision (p < 0.05), role difficulties (p < 0.05), dependency (p < 0.05), and social functioning (p < 0.05). Visual field expansion was shown when measured monocularly and binocularly during the study period in comparison with pretreatment baselines. CONCLUSIONS: Patients with HVFD demonstrate decreased QOL. Monocular sector prisms can improve the QOL and expand the visual field in these patients.

  4. Normal and abnormal category-effects in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2017-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not, as some brain injured patients are more impaired in recognizing natural objects than artefacts while others show the opposite impairment. In an attempt to explain category-sp...

  5. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  6. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    Science.gov (United States)

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  7. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream.

    Science.gov (United States)

    Martin, Chris B; Douglas, Danielle; Newsome, Rachel N; Man, Louisa Ly; Barense, Morgan D

    2018-02-02

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. © 2018, Martin et al.

  8. Visualization of induced electric fields

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2005-01-01

    A cylindrical electrolytic tank between a set of Helmholtz coils provides a classroom demonstration of induced, nonconservative electric fields. The field strength is measured by a sensor consisting of a pair of tiny spheres immersed in the liquid. The sensor signal depends on position, frequency,

  9. Visualization of Flow Field: Application of PLIF Technique

    Directory of Open Access Journals (Sweden)

    Jiang Bo Peng

    2018-01-01

    Full Text Available The objective of this paper is to apply planar laser-induced fluorescence (PLIF technology to flow field visualization. This experiment was carried out in a one-meter wind tunnel to study the wake flow field around a circular cylinder. This experiment studied the method of injecting tracer into the flow field; the frequency of the vortex in the wake field and the vortex speed are quantitatively analyzed. This paper gives the correspondence between the speed of the flow field and the frequency of the laser, which could be used as a rough reference standard for future wind tunnel visualization experiments. The result shows that PLIF diagnostic technology has great potential in visualization of flow field.

  10. Robust selectivity to two-object images in human visual cortex

    Science.gov (United States)

    Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105

  11. Task context impacts visual object processing differentially across the cortex

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J.; Baker, Chris I.

    2014-01-01

    Perception reflects an integration of “bottom-up” (sensory-driven) and “top-down” (internally generated) signals. Although models of visual processing often emphasize the central role of feed-forward hierarchical processing, less is known about the impact of top-down signals on complex visual representations. Here, we investigated whether and how the observer’s goals modulate object processing across the cortex. We examined responses elicited by a diverse set of objects under six distinct tasks, focusing on either physical (e.g., color) or conceptual properties (e.g., man-made). Critically, the same stimuli were presented in all tasks, allowing us to investigate how task impacts the neural representations of identical visual input. We found that task has an extensive and differential impact on object processing across the cortex. First, we found task-dependent representations in the ventral temporal and prefrontal cortex. In particular, although object identity could be decoded from the multivoxel response within task, there was a significant reduction in decoding across tasks. In contrast, the early visual cortex evidenced equivalent decoding within and across tasks, indicating task-independent representations. Second, task information was pervasive and present from the earliest stages of object processing. However, although the responses of the ventral temporal, prefrontal, and parietal cortex enabled decoding of both the type of task (physical/conceptual) and the specific task (e.g., color), the early visual cortex was not sensitive to type of task and could only be used to decode individual physical tasks. Thus, object processing is highly influenced by the behavioral goal of the observer, highlighting how top-down signals constrain and inform the formation of visual representations. PMID:24567402

  12. Visualizing Data as Objects by DC (Difference of Convex) Optimization

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    2018-01-01

    In this paper we address the problem of visualizing in a bounded region a set of individuals, which has attached a dissimilarity measure and a statistical value, as convex objects. This problem, which extends the standard Multidimensional Scaling Analysis, is written as a global optimization...... problem whose objective is the difference of two convex functions (DC). Suitable DC decompositions allow us to use the Difference of Convex Algorithm (DCA) in a very efficient way. Our algorithmic approach is used to visualize two real-world datasets....

  13. Object versus spatial visual mental imagery in patients with schizophrenia

    Science.gov (United States)

    Aleman, André; de Haan, Edward H.F.; Kahn, René S.

    2005-01-01

    Objective Recent research has revealed a larger impairment of object perceptual discrimination than of spatial perceptual discrimination in patients with schizophrenia. It has been suggested that mental imagery may share processing systems with perception. We investigated whether patients with schizophrenia would show greater impairment regarding object imagery than spatial imagery. Methods Forty-four patients with schizophrenia and 20 healthy control subjects were tested on a task of object visual mental imagery and on a task of spatial visual mental imagery. Both tasks included a condition in which no imagery was needed for adequate performance, but which was in other respects identical to the imagery condition. This allowed us to adjust for nonspecific differences in individual performance. Results The results revealed a significant difference between patients and controls on the object imagery task (F1,63 = 11.8, p = 0.001) but not on the spatial imagery task (F1,63 = 0.14, p = 0.71). To test for a differential effect, we conducted a 2 (patients v. controls) х 2 (object task v. spatial task) analysis of variance. The interaction term was statistically significant (F1,62 = 5.2, p = 0.026). Conclusions Our findings suggest a differential dysfunction of systems mediating object and spatial visual mental imagery in schizophrenia. PMID:15644999

  14. Field Model: An Object-Oriented Data Model for Fields

    Science.gov (United States)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  15. Visual memory for objects following foveal vision loss.

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hofmüller, Wolfram; Hoffmann, Michael B; Pollmann, Stefan

    2015-09-01

    Allocation of visual attention is crucial for encoding items into visual long-term memory. In free vision, attention is closely linked to the center of gaze, raising the question whether foveal vision loss entails suboptimal deployment of attention and subsequent impairment of object encoding. To investigate this question, we examined visual long-term memory for objects in patients suffering from foveal vision loss due to age-related macular degeneration. We measured patients' change detection sensitivity after a period of free scene exploration monocularly with their worse eye when possible, and under binocular vision, comparing sensitivity and eye movements to matched normal-sighted controls. A highly salient cue was used to capture attention to a nontarget location before a target change occurred in half of the trials, ensuring that change detection relied on memory. Patients' monocular and binocular sensitivity to object change was comparable to controls, even after more than 4 intervening fixations, and not significantly correlated with visual impairment. We conclude that extrafoveal vision suffices for efficient encoding into visual long-term memory. (c) 2015 APA, all rights reserved).

  16. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W

    2002-01-01

    We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform a......) that perceptual and memorial processes can be dissociated on both functional and anatomical grounds. No evidence was obtained for the involvement of the parietal lobes in the integration of single objects....

  17. Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms.

    Science.gov (United States)

    Bizley, Jennifer K; Maddox, Ross K; Lee, Adrian K C

    2016-02-01

    Crossmodal integration is a term applicable to many phenomena in which one sensory modality influences task performance or perception in another sensory modality. We distinguish the term binding as one that should be reserved specifically for the process that underpins perceptual object formation. To unambiguously differentiate binding form other types of integration, behavioral and neural studies must investigate perception of a feature orthogonal to the features that link the auditory and visual stimuli. We argue that supporting true perceptual binding (as opposed to other processes such as decision-making) is one role for cross-sensory influences in early sensory cortex. These early multisensory interactions may therefore form a physiological substrate for the bottom-up grouping of auditory and visual stimuli into auditory-visual (AV) objects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.

    Science.gov (United States)

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi

    2018-03-01

    In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P eye symptom score (adjusted R 2 = 0.752, P devices, such as head-mount display, objectively.

  19. Object-based attention underlies the rehearsal of feature binding in visual working memory.

    Science.gov (United States)

    Shen, Mowei; Huang, Xiang; Gao, Zaifeng

    2015-04-01

    Feature binding is a core concept in many research fields, including the study of working memory (WM). Over the past decade, it has been debated whether keeping the feature binding in visual WM consumes more visual attention than the constituent single features. Previous studies have only explored the contribution of domain-general attention or space-based attention in the binding process; no study so far has explored the role of object-based attention in retaining binding in visual WM. We hypothesized that object-based attention underlay the mechanism of rehearsing feature binding in visual WM. Therefore, during the maintenance phase of a visual WM task, we inserted a secondary mental rotation (Experiments 1-3), transparent motion (Experiment 4), or an object-based feature report task (Experiment 5) to consume the object-based attention available for binding. In line with the prediction of the object-based attention hypothesis, Experiments 1-5 revealed a more significant impairment for binding than for constituent single features. However, this selective binding impairment was not observed when inserting a space-based visual search task (Experiment 6). We conclude that object-based attention underlies the rehearsal of binding representation in visual WM. (c) 2015 APA, all rights reserved.

  20. Visualizing Data as Objects by DC (Difference of Convex) Optimization

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    In this paper we address the problem of visualizing in a bounded region a set of individuals, which has attached a dissimilarity measure and a statistical value. This problem, which extends the standard Multidimensional Scaling Analysis, is written as a global optimization problem whose objective...

  1. Computing with Connections in Visual Recognition of Origami Objects.

    Science.gov (United States)

    Sabbah, Daniel

    1985-01-01

    Summarizes an initial foray in tackling artificial intelligence problems using a connectionist approach. The task chosen is visual recognition of Origami objects, and the questions answered are how to construct a connectionist network to represent and recognize projected Origami line drawings and the advantages such an approach would have. (30…

  2. Sunglasses with thick temples and frame constrict temporal visual field.

    Science.gov (United States)

    Denion, Eric; Dugué, Audrey Emmanuelle; Augy, Sylvain; Coffin-Pichonnet, Sophie; Mouriaux, Frédéric

    2013-12-01

    Our aim was to compare the impact of two types of sunglasses on visual field and glare: one ("thick sunglasses") with a thick plastic frame and wide temples and one ("thin sunglasses") with a thin metal frame and thin temples. Using the Goldmann perimeter, visual field surface areas (cm²) were calculated as projections on a 30-cm virtual cupola. A V4 test object was used, from seen to unseen, in 15 healthy volunteers in the primary position of gaze ("base visual field"), then allowing eye motion ("eye motion visual field") without glasses, then with "thin sunglasses," followed by "thick sunglasses." Visual field surface area differences greater than the 14% reproducibility error of the method and having a p thick sunglasses." This decrease was most severe in the temporal quadrant (-33%; p thick sunglasses" than with the "thin sunglasses" (p thick sunglasses" is offset by the much poorer ability to use lateral space exploration; this results in a loss of most, if not all, of the additional visual field gained through eye motion.

  3. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    Science.gov (United States)

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  5. Functional visual fields: relationship of visual field areas to self-reported function.

    Science.gov (United States)

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p function (R 2 = 0.61, p function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. The Visual Object Tracking VOT2016 Challenge Results

    KAUST Repository

    Kristan, Matej; Leonardis, Aleš; Matas, Jiři; Felsberg, Michael; Pflugfelder, Roman; Čehovin, Luka; Vojí r̃, Tomá š; Hä ger, Gustav; Lukežič, Alan; Ferná ndez, Gustavo; Gupta, Abhinav; Petrosino, Alfredo; Memarmoghadam, Alireza; Garcia-Martin, Alvaro; Solí s Montero, André s; Vedaldi, Andrea; Robinson, Andreas; Ma, Andy J.; Varfolomieiev, Anton; Alatan, Aydin; Erdem, Aykut; Ghanem, Bernard; Liu, Bin; Han, Bohyung; Martinez, Brais; Chang, Chang-Ming; Xu, Changsheng; Sun, Chong; Kim, Daijin; Chen, Dapeng; Du, Dawei; Mishra, Deepak; Yeung, Dit-Yan; Gundogdu, Erhan; Erdem, Erkut; Khan, Fahad; Porikli, Fatih; Zhao, Fei; Bunyak, Filiz; Battistone, Francesco; Zhu, Gao; Roffo, Giorgio; Subrahmanyam, Gorthi R. K. Sai; Bastos, Guilherme; Seetharaman, Guna; Medeiros, Henry; Li, Hongdong; Qi, Honggang; Bischof, Horst; Possegger, Horst; Lu, Huchuan; Lee, Hyemin; Nam, Hyeonseob; Chang, Hyung Jin; Drummond, Isabela; Valmadre, Jack; Jeong, Jae-chan; Cho, Jae-il; Lee, Jae-Yeong; Zhu, Jianke; Feng, Jiayi; Gao, Jin; Choi, Jin Young; Xiao, Jingjing; Kim, Ji-Wan; Jeong, Jiyeoup; Henriques, Joã o F.; Lang, Jochen; Choi, Jongwon; Martinez, Jose M.; Xing, Junliang; Gao, Junyu; Palaniappan, Kannappan; Lebeda, Karel; Gao, Ke; Mikolajczyk, Krystian; Qin, Lei; Wang, Lijun; Wen, Longyin; Bertinetto, Luca; Rapuru, Madan Kumar; Poostchi, Mahdieh; Maresca, Mario; Danelljan, Martin; Mueller, Matthias; Zhang, Mengdan; Arens, Michael; Valstar, Michel; Tang, Ming; Baek, Mooyeol; Khan, Muhammad Haris; Wang, Naiyan; Fan, Nana; Al-Shakarji, Noor; Miksik, Ondrej; Akin, Osman; Moallem, Payman; Senna, Pedro; Torr, Philip H. S.; Yuen, Pong C.; Huang, Qingming; Martin-Nieto, Rafael; Pelapur, Rengarajan; Bowden, Richard; Laganiè re, Robert; Stolkin, Rustam; Walsh, Ryan; Krah, Sebastian B.; Li, Shengkun; Zhang, Shengping; Yao, Shizeng; Hadfield, Simon; Melzi, Simone; Lyu, Siwei; Li, Siyi; Becker, Stefan; Golodetz, Stuart; Kakanuru, Sumithra; Choi, Sunglok; Hu, Tao; Mauthner, Thomas; Zhang, Tianzhu; Pridmore, Tony; Santopietro, Vincenzo; Hu, Weiming; Li, Wenbo; Hü bner, Wolfgang; Lan, Xiangyuan; Wang, Xiaomeng; Li, Xin; Li, Yang; Demiris, Yiannis; Wang, Yifan; Qi, Yuankai; Yuan, Zejian; Cai, Zexiong; Xu, Zhan; He, Zhenyu; Chi, Zhizhen

    2016-01-01

    The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).

  7. The Visual Object Tracking VOT2015 Challenge Results

    KAUST Repository

    Kristan, Matej; Matas, Jiri; Leonardis, Ale; Felsberg, Michael; Cehovin, Luka; Fernandez, Gustavo; Vojir, Toma; Hager, Gustav; Nebehay, Georg; Pflugfelder, Roman; Gupta, Abhinav; Bibi, Adel Aamer; Lukezic, Alan; Garcia-Martin, Alvaro; Saffari, Amir; Petrosino, Alfredo; Montero, Andres Solıs; Varfolomieiev, Anton; Baskurt, Atilla; Zhao, Baojun; Ghanem, Bernard; Martinez, Brais; Lee, ByeongJu; Han, Bohyung; Wang, Chaohui; Garcia, Christophe; Zhang, Chunyuan; Schmid, Cordelia; Tao, Dacheng; Kim, Daijin; Huang, Dafei; Prokhorov, Danil; Du, Dawei; Yeung, Dit-Yan; Ribeiro, Eraldo; Khan, Fahad Shahbaz; Porikli, Fatih; Bunyak, Filiz; Zhu, Gao; Seetharaman, Guna; Kieritz, Hilke; Yau, Hing Tuen; Li, Hongdong; Qi, Honggang; Bischof, Horst; Possegger, Horst; Lee, Hyemin; Nam, Hyeonseob; Bogun, Ivan; Jeong, Jae-chan; Cho, Jae-il; Lee, Jae-Yeong; Zhu, Jianke; Shi, Jianping; Li, Jiatong; Jia, Jiaya; Feng, Jiayi; Gao, Jin; Choi, Jin Young; Kim, Ji-Wan; Lang, Jochen; Martinez, Jose M.; Choi, Jongwon; Xing, Junliang; Xue, Kai; Palaniappan, Kannappan; Lebeda, Karel; Alahari, Karteek; Gao, Ke; Yun, Kimin; Wong, Kin Hong; Luo, Lei; Ma, Liang; Ke, Lipeng; Wen, Longyin; Bertinetto, Luca; Pootschi, Mahdieh; Maresca, Mario; Danelljan, Martin; Wen, Mei; Zhang, Mengdan; Arens, Michael; Valstar, Michel; Tang, Ming; Chang, Ming-Ching; Khan, Muhammad Haris; Fan, Nana; Wang, Naiyan; Miksik, Ondrej; Torr, Philip H S; Wang, Qiang; Martin-Nieto, Rafael; Pelapur, Rengarajan; Bowden, Richard; Laganiere, Robert; Moujtahid, Salma; Hare, Sam; Hadfield, Simon; Lyu, Siwei; Li, Siyi; Zhu, Song-Chun; Becker, Stefan; Duffner, Stefan; Hicks, Stephen L; Golodetz, Stuart; Choi, Sunglok; Wu, Tianfu; Mauthner, Thomas; Pridmore, Tony; Hu, Weiming; Hubner, Wolfgang; Wang, Xiaomeng; Li, Xin; Shi, Xinchu; Zhao, Xu; Mei, Xue; Shizeng, Yao; Hua, Yang; Li, Yang; Lu, Yang; Li, Yuezun; Chen, Zhaoyun; Huang, Zehua; Chen, Zhe; Zhang, Zhe; He, Zhenyu; Hong, Zhibin

    2015-01-01

    The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.

  8. The Visual Object Tracking VOT2016 Challenge Results

    KAUST Repository

    Kristan, Matej

    2016-11-02

    The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).

  9. The Visual Object Tracking VOT2015 Challenge Results

    KAUST Repository

    Kristan, Matej

    2015-12-07

    The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.

  10. Size matters: large objects capture attention in visual search.

    Science.gov (United States)

    Proulx, Michael J

    2010-12-23

    Can objects or events ever capture one's attention in a purely stimulus-driven manner? A recent review of the literature set out the criteria required to find stimulus-driven attentional capture independent of goal-directed influences, and concluded that no published study has satisfied that criteria. Here visual search experiments assessed whether an irrelevantly large object can capture attention. Capture of attention by this static visual feature was found. The results suggest that a large object can indeed capture attention in a stimulus-driven manner and independent of displaywide features of the task that might encourage a goal-directed bias for large items. It is concluded that these results are either consistent with the stimulus-driven criteria published previously or alternatively consistent with a flexible, goal-directed mechanism of saliency detection.

  11. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats

    Directory of Open Access Journals (Sweden)

    Federica Bianca Rosselli

    2015-03-01

    Full Text Available In recent years, a number of studies have explored the possible use of rats as models of high-level visual functions. One central question at the root of such an investigation is to understand whether rat object vision relies on the processing of visual shape features or, rather, on lower-order image properties (e.g., overall brightness. In a recent study, we have shown that rats are capable of extracting multiple features of an object that are diagnostic of its identity, at least when those features are, structure-wise, distinct enough to be parsed by the rat visual system. In the present study, we have assessed the impact of object structure on rat perceptual strategy. We trained rats to discriminate between two structurally similar objects, and compared their recognition strategies with those reported in our previous study. We found that, under conditions of lower stimulus discriminability, rat visual discrimination strategy becomes more view-dependent and subject-dependent. Rats were still able to recognize the target objects, in a way that was largely tolerant (i.e., invariant to object transformation; however, the larger structural and pixel-wise similarity affected the way objects were processed. Compared to the findings of our previous study, the patterns of diagnostic features were: i smaller and more scattered; ii only partially preserved across object views; and iii only partially reproducible across rats. On the other hand, rats were still found to adopt a multi-featural processing strategy and to make use of part of the optimal discriminatory information afforded by the two objects. Our findings suggest that, as in humans, rat invariant recognition can flexibly rely on either view-invariant representations of distinctive object features or view-specific object representations, acquired through learning.

  12. Object-based target templates guide attention during visual search.

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2018-05-03

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (sustained posterior contralateral negativity; SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target features (incorrect conjunction objects, e.g., blue squares). Because feature-based guidance cannot distinguish these objects from targets, any selective bias for targets will reflect object-based attentional control. In Experiment 1, where search displays always contained only one object with target-matching features, targets and incorrect conjunction objects elicited identical N2pc and SPCN components, demonstrating that attentional guidance was entirely feature-based. In Experiment 2, where targets and incorrect conjunction objects could appear in the same display, clear evidence for object-based attentional control was found. The target N2pc became larger than the N2pc to incorrect conjunction objects from 250 ms poststimulus, and only targets elicited SPCN components. This demonstrates that after an initial feature-based guidance phase, object-based templates are activated when they are required to distinguish target and nontarget objects. These templates modulate visual processing and control access to working memory, and their activation may coincide with the start of feature integration processes. Results also suggest that while multiple feature templates can be activated concurrently, only a single object-based target template can guide attention at any given time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    OpenAIRE

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this parad...

  14. Eye movements during object recognition in visual agnosia.

    Science.gov (United States)

    Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe

    2012-07-01

    This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Figure–ground organization and the emergence of proto-objects in the visual cortex

    OpenAIRE

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields, but in addition their responses a...

  16. The visual system supports online translation invariance for object identification.

    Science.gov (United States)

    Bowers, Jeffrey S; Vankov, Ivan I; Ludwig, Casimir J H

    2016-04-01

    The ability to recognize the same image projected to different retinal locations is critical for visual object recognition in natural contexts. According to many theories, the translation invariance for objects extends only to trained retinal locations, so that a familiar object projected to a nontrained location should not be identified. In another approach, invariance is achieved "online," such that learning to identify an object in one location immediately affords generalization to other locations. We trained participants to name novel objects at one retinal location using eyetracking technology and then tested their ability to name the same images presented at novel retinal locations. Across three experiments, we found robust generalization. These findings provide a strong constraint for theories of vision.

  17. Object-graphs for context-aware visual category discovery.

    Science.gov (United States)

    Lee, Yong Jae; Grauman, Kristen

    2012-02-01

    How can knowing about some categories help us to discover new ones in unlabeled images? Unsupervised visual category discovery is useful to mine for recurring objects without human supervision, but existing methods assume no prior information and thus tend to perform poorly for cluttered scenes with multiple objects. We propose to leverage knowledge about previously learned categories to enable more accurate discovery, and address challenges in estimating their familiarity in unsegmented, unlabeled images. We introduce two variants of a novel object-graph descriptor to encode the 2D and 3D spatial layout of object-level co-occurrence patterns relative to an unfamiliar region and show that by using them to model the interaction between an image’s known and unknown objects, we can better detect new visual categories. Rather than mine for all categories from scratch, our method identifies new objects while drawing on useful cues from familiar ones. We evaluate our approach on several benchmark data sets and demonstrate clear improvements in discovery over conventional purely appearance-based baselines.

  18. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    Science.gov (United States)

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  19. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    Science.gov (United States)

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  20. Sequential sampling of visual objects during sustained attention.

    Directory of Open Access Journals (Sweden)

    Jianrong Jia

    2017-06-01

    Full Text Available In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG and a temporal response function (TRF approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest

  1. Visuospatial and visual object cognition in early Parkinson's disease

    OpenAIRE

    Possin, Katherine L.

    2007-01-01

    Recent evidence suggests that Parkinson's disease (PD) may be associated with greater impairment in visuospatial working memory as compared to visual object working memory. The nature of this selective impairment is not well understood, however, in part because successful performance on working memory tasks requires numerous cognitive processes. For example, the impairment may be limited to either the encoding or maintenance aspects of spatial working memory. Further, it is unknown at this po...

  2. Object-based target templates guide attention during visual search

    OpenAIRE

    Berggren, Nick; Eimer, Martin

    2018-01-01

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target f...

  3. Visualization and processing of tensor fields

    CERN Document Server

    Weickert, Joachim

    2007-01-01

    Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.

  4. Visual Neurons in the Superior Colliculus Discriminate Many Objects by Their Historical Values

    Directory of Open Access Journals (Sweden)

    Whitney S. Griggs

    2018-06-01

    Full Text Available The superior colliculus (SC is an important structure in the mammalian brain that orients the animal toward distinct visual events. Visually responsive neurons in SC are modulated by visual object features, including size, motion, and color. However, it remains unclear whether SC activity is modulated by non-visual object features, such as the reward value associated with the object. To address this question, three monkeys were trained (>10 days to saccade to multiple fractal objects, half of which were consistently associated with large rewards while other half were associated with small rewards. This created historically high-valued (‘good’ and low-valued (‘bad’ objects. During the neuronal recordings from the SC, the monkeys maintained fixation at the center while the objects were flashed in the receptive field of the neuron without any reward. We found that approximately half of the visual neurons responded more strongly to the good than bad objects. In some neurons, this value-coding remained intact for a long time (>1 year after the last object-reward association learning. Notably, the neuronal discrimination of reward values started about 100 ms after the appearance of visual objects and lasted for more than 100 ms. These results provide evidence that SC neurons can discriminate objects by their historical (long-term values. This object value information may be provided by the basal ganglia, especially the circuit originating from the tail of the caudate nucleus. The information may be used by the neural circuits inside SC for motor (saccade output or may be sent to the circuits outside SC for future behavior.

  5. Tracking Location and Features of Objects within Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Michael Patterson

    2012-10-01

    Full Text Available Four studies examined how color or shape features can be accessed to retrieve the memory of an object's location. In each trial, 6 colored dots (Experiments 1 and 2 or 6 black shapes (Experiments 3 and 4 were displayed in randomly selected locations for 1.5 s. An auditory cue for either the shape or the color to-be-remembered was presented either simultaneously, immediately, or 2 s later. Non-informative cues appeared in some trials to serve as a control condition. After a 4 s delay, 5/6 objects were re-presented, and participants indicated the location of the missing object either by moving the mouse (Experiments 1 and 3, or by typing coordinates using a grid (Experiments 2 and 4. Compared to the control condition, cues presented simultaneously or immediately after stimuli improved location accuracy in all experiments. However, cues presented after 2 s only improved accuracy in Experiment 1. These results suggest that location information may not be addressable within visual working memory using shape features. In Experiment 1, but not Experiments 2–4, cues significantly improved accuracy when they indicated the missing object could be any of the three identical objects. In Experiments 2–4, location accuracy was highly impaired when the missing object came from a group of identical rather than uniquely identifiable objects. This indicates that when items with similar features are presented, location accuracy may be reduced. In summary, both feature type and response mode can influence the accuracy and accessibility of visual working memory for object location.

  6. Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients

    Directory of Open Access Journals (Sweden)

    Seidensticker F

    2011-11-01

    Full Text Available Florian Seidensticker1, Aljoscha S Neubauer1, Tamer Wasfy1,2, Carmen Stumpf1, Stephan R Thurau1,*, Anselm Kampik1, Marcus Kernt1,*1Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany; 2Department of Ophthalmology, Tanta University, Tanta, Egypt *Both authors contributed equally to this workBackground and objectives: Detection of peripheral fundus autofluorescence (FAF using conventional scanning laser ophthalmoscopes (SLOs is difficult and requires pupil dilation. Here we evaluated the diagnostic properties of wide-field FAF detected by a two-laser wavelength wide-field SLO in uveitis patients.Study design/materials and methods: Observational case series of four patients suffering from different types of posterior uveitis/chorioretinitis. Wide-field FAF images were compared to visual fields. Panretinal FAF was detected by a newly developed SLO, which allows FAF imaging of up to 200° of the retina in one scan without the need for pupil dilation. Visual fields were obtained by Goldmann manual perimetry.Results: Findings from wide-field FAF imaging showed correspondence to visual field defects in all cases.Conclusion: Wide-field FAF allowed the detection of visual field defect-related alterations of the retinal pigment epithelium in all four uveitis cases.Keywords: fundus autofluorescence (FAF, Optomap, wide-field scanning laser ophthalmoscopy, imaging, uveitis, visual field

  7. Interaction of orientable object fields with gauge fields

    International Nuclear Information System (INIS)

    Gitman, D M; Shelepin, A L

    2011-01-01

    We consider a scalar field f(g) on the Poincaré group M(3, 1). This scalar field describes objects that are characterized by a position x and an orientation z, g=(x,z). The field f(x, z) admits two kinds of transformations, corresponding to a change of the space-fixed reference frame, as well as to a change of the body-fixed reference frame, which form the group M(3, 1) ext ×M(3, 1) int , and also phase transformations U(1) ch of orientational variables z. Elementary particles considered as elementary orientable objects are described by the scalar functions transforming according to irreps of the group M(3, 1) ext ×M(3, 1) int ×U(1) ch . Correspondingly, their continuous symmetries can be divided into external, which form the Poincaré group M(3, 1) ext , and internal M(3, 1) int ×U(1) ch . The assumption that the internal symmetries in the theory of orientable objects are gauge ones allows one to obtain important features of the known fundamental interactions—the electroweak and the gravitational. Localization of the group of the right translations T(4) int leads to the teleparallel theory of gravity, which is equivalent to general relativity. Localization of the compact subgroup SU(2) int ×U(1) ch leads to the theory of electroweak interactions. Thus, the suggested approach can be considered as a possible way to gravitational-electroweak unification.

  8. Visual search for arbitrary objects in real scenes

    Science.gov (United States)

    Alvarez, George A.; Rosenholtz, Ruth; Kuzmova, Yoana I.; Sherman, Ashley M.

    2011-01-01

    How efficient is visual search in real scenes? In searches for targets among arrays of randomly placed distractors, efficiency is often indexed by the slope of the reaction time (RT) × Set Size function. However, it may be impossible to define set size for real scenes. As an approximation, we hand-labeled 100 indoor scenes and used the number of labeled regions as a surrogate for set size. In Experiment 1, observers searched for named objects (a chair, bowl, etc.). With set size defined as the number of labeled regions, search was very efficient (~5 ms/item). When we controlled for a possible guessing strategy in Experiment 2, slopes increased somewhat (~15 ms/item), but they were much shallower than search for a random object among other distinctive objects outside of a scene setting (Exp. 3: ~40 ms/item). In Experiments 4–6, observers searched repeatedly through the same scene for different objects. Increased familiarity with scenes had modest effects on RTs, while repetition of target items had large effects (>500 ms). We propose that visual search in scenes is efficient because scene-specific forms of attentional guidance can eliminate most regions from the “functional set size” of items that could possibly be the target. PMID:21671156

  9. Visual search for arbitrary objects in real scenes.

    Science.gov (United States)

    Wolfe, Jeremy M; Alvarez, George A; Rosenholtz, Ruth; Kuzmova, Yoana I; Sherman, Ashley M

    2011-08-01

    How efficient is visual search in real scenes? In searches for targets among arrays of randomly placed distractors, efficiency is often indexed by the slope of the reaction time (RT) × Set Size function. However, it may be impossible to define set size for real scenes. As an approximation, we hand-labeled 100 indoor scenes and used the number of labeled regions as a surrogate for set size. In Experiment 1, observers searched for named objects (a chair, bowl, etc.). With set size defined as the number of labeled regions, search was very efficient (~5 ms/item). When we controlled for a possible guessing strategy in Experiment 2, slopes increased somewhat (~15 ms/item), but they were much shallower than search for a random object among other distinctive objects outside of a scene setting (Exp. 3: ~40 ms/item). In Experiments 4-6, observers searched repeatedly through the same scene for different objects. Increased familiarity with scenes had modest effects on RTs, while repetition of target items had large effects (>500 ms). We propose that visual search in scenes is efficient because scene-specific forms of attentional guidance can eliminate most regions from the "functional set size" of items that could possibly be the target.

  10. Barack Obama Blindness (BOB): Absence of Visual Awareness to a Single Object.

    Science.gov (United States)

    Persuh, Marjan; Melara, Robert D

    2016-01-01

    In two experiments, we evaluated whether a perceiver's prior expectations could alone obliterate his or her awareness of a salient visual stimulus. To establish expectancy, observers first made a demanding visual discrimination on each of three baseline trials. Then, on a fourth, critical trial, a single, salient and highly visible object appeared in full view at the center of the visual field and in the absence of any competing visual input. Surprisingly, fully half of the participants were unaware of the solitary object in front of their eyes. Dramatically, observers were blind even when the only stimulus on display was the face of U.S. President Barack Obama. We term this novel, counterintuitive phenomenon, Barack Obama Blindness (BOB). Employing a method that rules out putative memory effects by probing awareness immediately after presentation of the critical stimulus, we demonstrate that the BOB effect is a true failure of conscious vision.

  11. Barack Obama Blindness (BOB: Absence of visual awareness to a single object

    Directory of Open Access Journals (Sweden)

    Marjan ePersuh

    2016-03-01

    Full Text Available In two experiments we evaluated whether a perceiver’s prior expectations could alone obliterate his or her awareness of a salient visual stimulus. To establish expectancy, observers first made a demanding visual discrimination on each of three baseline trials. Then, on a fourth, critical trial, a single, salient and highly visible object appeared in full view at the center of the visual field and in the absence of any competing visual input. Surprisingly, fully half of the participants were unaware of the solitary object in front of their eyes. Dramatically, observers were blind even when the only stimulus on display was the face of U.S. President Barack Obama. We term this novel, counterintuitive phenomenon, Barack Obama Blindness (BOB. Employing a method that rules out putative memory effects by probing awareness immediately after presentation of the critical stimulus, we demonstrate that the BOB effect is a true failure of conscious vision.

  12. How learning might strengthen existing visual object representations in human object-selective cortex.

    Science.gov (United States)

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Figure-ground organization and the emergence of proto-objects in the visual cortex.

    Science.gov (United States)

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a 'figure' relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations ('proto-objects'). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  14. Studying visual attention using the multiple object tracking paradigm: A tutorial review.

    Science.gov (United States)

    Meyerhoff, Hauke S; Papenmeier, Frank; Huff, Markus

    2017-07-01

    Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179-197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.

  15. Figure-ground organization and the emergence of proto-objects in the visual cortex

    Directory of Open Access Journals (Sweden)

    Rüdiger evon der Heydt

    2015-11-01

    Full Text Available A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields, but in addition their responses are modulated (enhanced or suppressed depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the classical receptive field. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’. The evidence includes experiments showing (1 reversal of border ownership signals with change of perceived object structure, (2 border ownership specific enhancement of responses in object-based selective attention, (3 persistence of border ownership signals in accordance with continuity of object perception, and (4 remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objecthood, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  16. Effects of object shape on the visual guidance of action.

    Science.gov (United States)

    Eloka, Owino; Franz, Volker H

    2011-04-22

    Little is known of how visual coding of the shape of an object affects grasping movements. We addressed this issue by investigating the influence of shape perturbations on grasping. Twenty-six participants grasped a disc or a bar that were chosen such that they could in principle be grasped with identical movements (i.e., relevant sizes were identical such that the final grips consisted of identical separations of the fingers and no parts of the objects constituted obstacles for the movement). Nevertheless, participants took object shape into account and grasped the bar with a larger maximum grip aperture and a different hand angle than the disc. In 20% of the trials, the object changed its shape from bar to disc or vice versa early or late during the movement. If there was enough time (early perturbations), grasps were often adapted in flight to the new shape. These results show that the motor system takes into account even small and seemingly irrelevant changes of object shape and adapts the movement in a fine-grained manner. Although this adaptation might seem computationally expensive, we presume that its benefits (e.g., a more comfortable and more accurate movement) outweigh the costs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Figure–ground organization and the emergence of proto-objects in the visual cortex

    Science.gov (United States)

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex. PMID:26579062

  18. Abnormalities of Object Visual Processing in Body Dysmorphic Disorder

    Science.gov (United States)

    Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.

    2013-01-01

    Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897

  19. Visual perspective in autobiographical memories: reliability, consistency, and relationship to objective memory performance.

    Science.gov (United States)

    Siedlecki, Karen L

    2015-01-01

    Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.

  20. Visual object imagery and autobiographical memory: Object Imagers are better at remembering their personal past.

    Science.gov (United States)

    Vannucci, Manila; Pelagatti, Claudia; Chiorri, Carlo; Mazzoni, Giuliana

    2016-01-01

    In the present study we examined whether higher levels of object imagery, a stable characteristic that reflects the ability and preference in generating pictorial mental images of objects, facilitate involuntary and voluntary retrieval of autobiographical memories (ABMs). Individuals with high (High-OI) and low (Low-OI) levels of object imagery were asked to perform an involuntary and a voluntary ABM task in the laboratory. Results showed that High-OI participants generated more involuntary and voluntary ABMs than Low-OI, with faster retrieval times. High-OI also reported more detailed memories compared to Low-OI and retrieved memories as visual images. Theoretical implications of these findings for research on voluntary and involuntary ABMs are discussed.

  1. Methodology for the Efficient Progressive Distribution and Visualization of 3D Building Objects

    Directory of Open Access Journals (Sweden)

    Bo Mao

    2016-10-01

    Full Text Available Three-dimensional (3D, city models have been applied in a variety of fields. One of the main problems in 3D city model utilization, however, is the large volume of data. In this paper, a method is proposed to generalize the 3D building objects in 3D city models at different levels of detail, and to combine multiple Levels of Detail (LODs for a progressive distribution and visualization of the city models. First, an extended structure for multiple LODs of building objects, BuildingTree, is introduced that supports both single buildings and building groups; second, constructive solid geometry (CSG representations of buildings are created and generalized. Finally, the BuildingTree is stored in the NoSQL database MongoDB for dynamic visualization requests. The experimental results indicate that the proposed progressive method can efficiently visualize 3D city models, especially for large areas.

  2. Visual field measurement with motion sensitivity screening test

    African Journals Online (AJOL)

    has been shown that early ocular lesions which manifest as visual field defects or ... easy-to-understand computer perimetry that could be useful in monitoring visual field changes in onchocer- .... education with the equivalent of ordinary level.

  3. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  4. Scale-adaptive Local Patches for Robust Visual Object Tracking

    Directory of Open Access Journals (Sweden)

    Kang Sun

    2014-04-01

    Full Text Available This paper discusses the problem of robustly tracking objects which undergo rapid and dramatic scale changes. To remove the weakness of global appearance models, we present a novel scheme that combines object’s global and local appearance features. The local feature is a set of local patches that geometrically constrain the changes in the target’s appearance. In order to adapt to the object’s geometric deformation, the local patches could be removed and added online. The addition of these patches is constrained by the global features such as color, texture and motion. The global visual features are updated via the stable local patches during tracking. To deal with scale changes, we adapt the scale of patches in addition to adapting the object bound box. We evaluate our method by comparing it to several state-of-the-art trackers on publicly available datasets. The experimental results on challenging sequences confirm that, by using this scale-adaptive local patches and global properties, our tracker outperforms the related trackers in many cases by having smaller failure rate as well as better accuracy.

  5. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    Directory of Open Access Journals (Sweden)

    Colas N. Authié

    2017-07-01

    Full Text Available In retinitis pigmentosa (RP, loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present, of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures.

  6. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    Science.gov (United States)

    Authié, Colas N.; Berthoz, Alain; Sahel, José-Alain; Safran, Avinoam B.

    2017-01-01

    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures. PMID:28798674

  7. Visualizing electromagnetic fields in metals by MRI

    Directory of Open Access Journals (Sweden)

    Chandrika Sefcikova Chandrashekar

    2017-02-01

    Full Text Available Based upon Maxwell’s equations, it has long been established that oscillating electromagnetic (EM fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI utilizes radiofrequency (r.f. EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels of identical size (=Δx Δy Δz. By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI results that discriminate different faces (surfaces of a metal block according to their distinct nuclear magnetic resonance (NMR chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  8. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    Science.gov (United States)

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d') and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  9. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness.

    Directory of Open Access Journals (Sweden)

    Lewis Forder

    Full Text Available The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry, detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d' and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object's stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.

  10. Anosognosia for obvious visual field defects in stroke patients.

    Science.gov (United States)

    Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto

    2015-01-01

    Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.

  11. Colour Terms Affect Detection of Colour and Colour-Associated Objects Suppressed from Visual Awareness

    Science.gov (United States)

    Forder, Lewis; Taylor, Olivia; Mankin, Helen; Scott, Ryan B.; Franklin, Anna

    2016-01-01

    The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain. PMID:27023274

  12. The impact of visual gaze direction on auditory object tracking

    OpenAIRE

    Pomper, U.; Chait, M.

    2017-01-01

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention wh...

  13. Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex.

    Science.gov (United States)

    Ptak, Radek; Lazeyras, François; Di Pietro, Marie; Schnider, Armin; Simon, Stéphane R

    2014-07-01

    Patients with visual object agnosia fail to recognize the identity of visually presented objects despite preserved semantic knowledge. Object agnosia may result from damage to visual cortex lying close to or overlapping with the lateral occipital complex (LOC), a brain region that exhibits selectivity to the shape of visually presented objects. Despite this anatomical overlap the relationship between shape processing in the LOC and shape representations in object agnosia is unknown. We studied a patient with object agnosia following isolated damage to the left occipito-temporal cortex overlapping with the LOC. The patient showed intact processing of object structure, yet often made identification errors that were mainly based on the global visual similarity between objects. Using functional Magnetic Resonance Imaging (fMRI) we found that the damaged as well as the contralateral, structurally intact right LOC failed to show any object-selective fMRI activity, though the latter retained selectivity for faces. Thus, unilateral damage to the left LOC led to a bilateral breakdown of neural responses to a specific stimulus class (objects and artefacts) while preserving the response to a different stimulus class (faces). These findings indicate that representations of structure necessary for the identification of objects crucially rely on bilateral, distributed coding of shape features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    Science.gov (United States)

    Koeva, M. N.

    2016-06-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study

  15. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    Full Text Available Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria – a country with thousands of years of history and cultural heritage dating back to ancient civilizations. \\this motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1 image-based modelling using a non-metric hand-held camera; (2 3D visualization based on spherical panoramic images; (3 and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This

  16. Objective Analysis of Performance of Activities of Daily Living in People With Central Field Loss.

    Science.gov (United States)

    Pardhan, Shahina; Latham, Keziah; Tabrett, Daryl; Timmis, Matthew A

    2015-11-01

    People with central visual field loss (CFL) adopt various strategies to complete activities of daily living (ADL). Using objective movement analysis, we compared how three ADLs were completed by people with CFL compared with age-matched, visually healthy individuals. Fourteen participants with CFL (age 81 ± 10 years) and 10 age-matched, visually healthy (age 75 ± 5 years) participated. Three ADLs were assessed: pick up food from a plate, pour liquid from a bottle, and insert a key in a lock. Participants with CFL completed each ADL habitually (as they would in their home). Data were compared with visually healthy participants who were asked to complete the tasks as they would normally, but under specified experimental conditions. Movement kinematics were compared using three-dimension motion analysis (Vicon). Visual functions (distance and near acuities, contrast sensitivity, visual fields) were recorded. All CFL participants were able to complete each ADL. However, participants with CFL demonstrated significantly (P approach. Various kinematic indices correlated significantly to visual function parameters including visual acuity and midperipheral visual field loss.

  17. Visual discomfort and depth-of-field

    NARCIS (Netherlands)

    O'Hare, L.; Zhang, T.; Nefs, H.T.; Hibbard, P.B.

    2013-01-01

    Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth.

  18. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  19. The four-meter confrontation visual field test.

    OpenAIRE

    Kodsi, S R; Younge, B R

    1992-01-01

    The 4-m confrontation visual field test has been successfully used at the Mayo Clinic for many years in addition to the standard 0.5-m confrontation visual field test. The 4-m confrontation visual field test is a test of macular function and can identify small central or paracentral scotomas that the examiner may not find when the patient is tested only at 0.5 m. Also, macular sparing in homonymous hemianopias and quadrantanopias may be identified with the 4-m confrontation visual field test....

  20. Human locomotion through a multiple obstacle environment : Strategy changes as a result of visual field limitation

    NARCIS (Netherlands)

    Jansen, S.E.M.; Toet, A.; Werkhoven, P.J.

    2011-01-01

    This study investigated how human locomotion through an obstacle environment is influenced by visual field limitation. Participants were asked to walk at a comfortable pace to a target location while avoiding multiple vertical objects. During this task, they wore goggles restricting their visual

  1. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    Science.gov (United States)

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mass Charge Interactions for Visualizing the Quantum Field

    Science.gov (United States)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  3. How Does Using Object Names Influence Visual Recognition Memory?

    Science.gov (United States)

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  4. On the time required for identification of visual objects

    DEFF Research Database (Denmark)

    Petersen, Anders

    The starting point for this thesis is a review of Bundesen’s theory of visual attention. This theory has been widely accepted as an appropriate model for describing data from an important class of psychological experiments known as whole and partial report. Analysing data from this class of exper......The starting point for this thesis is a review of Bundesen’s theory of visual attention. This theory has been widely accepted as an appropriate model for describing data from an important class of psychological experiments known as whole and partial report. Analysing data from this class...... of experiments with the help of the theory of visual attention – have proven to be an effective approach to examine cognitive parameters that are essential for a broad range of different patient groups. The theory of visual attention relies on a psychometric function that describes the ability to identify......, with the dataset that we collected, to directly analyse how confusability develops as a certain letter is exposed for increasingly longer time. An important scientific question is what shapes the psychometric function. It is conceivable that the function reflects both limitations and structure of the physical...

  5. The Representation of Object Viewpoint in Human Visual Cortex

    OpenAIRE

    Andresen, David R.; Vinberg, Joakim; Grill-Spector, Kalanit

    2008-01-01

    Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0°–180°), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradi...

  6. 21 CFR 886.1360 - Visual field laser instrument.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Visual field laser instrument. 886.1360 Section 886.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument...

  7. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  8. The impact of visual gaze direction on auditory object tracking.

    Science.gov (United States)

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  9. The representation of object viewpoint in human visual cortex.

    Science.gov (United States)

    Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit

    2009-04-01

    Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.

  10. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology.

    Science.gov (United States)

    Koeva, Mila; Luleva, Mila; Maldjanski, Plamen

    2017-04-11

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using 3D models for restoration, preservation, and documentation of valuable historical and architectural objects have been numerously demonstrated by scientists in the field. Moreover, 3D model visualization in virtual reality has been recognized as an efficient, fast, and easy way of representing a variety of objects worldwide for present-day users, who have stringent requirements and high expectations. However, the main focus of recent research is the visual, geometric, and textural characteristics of a single concrete object, while integration of large numbers of models with additional information-such as historical overview, detailed description, and location-are missing. Such integrated information can be beneficial, not only for tourism but also for accurate documentation. For that reason, we demonstrate in this paper an integration of high-resolution spherical panoramas, a variety of maps, GNSS, sound, video, and text information for representation of numerous cultural heritage objects. These are then displayed in a web-based portal with an intuitive interface. The users have the opportunity to choose freely from the provided information, and decide for themselves what is interesting to visit. Based on the created web application, we provide suggestions and guidelines for similar studies. We selected objects, which are located in Bulgaria-a country with thousands of years of history and cultural heritage dating back to ancient civilizations. The methods used in this research are applicable for any type of spherical or cylindrical images and can be easily followed and applied in various domains. After a visual and metric assessment of the panoramas and the evaluation of

  12. Visual Working Memory Capacity for Objects from Different Categories: A Face-Specific Maintenance Effect

    Science.gov (United States)

    Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.

    2008-01-01

    The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…

  13. Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude

    2010-01-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…

  14. Visual object tracking by correlation filters and online learning

    Science.gov (United States)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  15. Visual Servoing for Object Manipulation: A Case Study in Slaughterhouse

    DEFF Research Database (Denmark)

    Wu, Haiyan; Andersen, Thomas Timm; Andersen, Nils Axel

    2016-01-01

    Automation for slaughterhouse challenges the design of the control system due to the variety of the objects. Realtime sensing provides instantaneous information about each piece of work and thus, is useful for robotic system developed for slaughterhouse. In this work, a pick and place task which....... An online and offline combined path planning algorithm is proposed to generate the desired path for the robot control. An industrial robot arm is applied to execute the path. The system is implemented for a lab-scale experiment, and the results show a high success rate of object manipulation in the pick...

  16. Performance of the visual field index in glaucoma patients with moderately advanced visual field loss.

    Science.gov (United States)

    Lee, Jun Mo; Cirineo, Nila; Ramanathan, Meera; Nouri-Mahdavi, Kouros; Morales, Esteban; Coleman, Anne L; Caprioli, Joseph

    2014-01-01

    To explore the relationship between the visual field index (VFI) and the visual field mean deviation (MD) in glaucoma patients with moderately advanced perimetric damage and to identify the magnitude of the boundary effect of VFI that occurred when the VFI estimation strategy changed from pattern deviation probability value to total deviation probability value as the MD crossed -20 dB in longitudinal visual field (VF) series. A retrospective cohort study of longitudinal data analysis. The MD and VFI values obtained from VF tests conducted on 148 eyes of 148 glaucoma patients having an MD around -20 dB were studied. A total of 1286 VFs with MD values within the range of -16 dB to -24 dB were included. The eyes were divided into 2 groups, with the first having serial MDs all better than or all worse than -20 dB and the second with serial MDs crossing the -20 dB value. Change in MD (ΔMD) was defined as the absolute difference between the MD values of 2 consecutive VFs. Based on the 2 VFI values of the same VFs, the absolute value of change in VFI (ΔVFI) was calculated. The means (± standard deviation) for the ΔVFI were 4.17% (± 3.3%) in the group of eyes with MDs on either side of -20 dB, and were 15.8% (± 8.4%) in the group with MDs crossing -20 dB (P values were 6.8%/dB (± 10.5%) when the range of MD falls on either side of -20 dB, and 7.9%/dB (± 6.2%) when the range of MD crosses the -20 dB values (P = .042). The values of the VFI become highly variable in serial VFs of eyes with MDs crossing -20 dB, in comparison to those VFIs associated with MDs on either side of -20 dB. The likelihood for this effect is the change from use of pattern deviation probability value to total deviation probability value in the points included in the calculation of VFI at -20 dB of MD. The development of indices to measure VF rates that are free from this boundary effect in moderately advanced glaucoma is desirable. Copyright © 2014. Published by Elsevier Inc.

  17. Preoperative visual field deficits in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Sanjeet S. Grewal

    2017-01-01

    Full Text Available Surgical resection and laser thermoablation have been used to treat drug resistant epilepsy with good results. However, they are not without risk. One of the most commonly reported complications of temporal lobe surgery is contralateral superior homonymous quadrantanopsia. We describe a patient with asymptomatic preoperative quadrantanopsia fortuitously discovered as part of our recently modified protocol to evaluate patients prior to temporal lobe epilepsy surgery. This visual field deficit was subtle and not detected on routine clinical neurological examination. While we understand that this is a single case, we advocate further study for more detailed preoperative visual field examinations to characterize the true incidence of postoperative visual field lesions.

  18. Large Field Visualization with Demand-Driven Calculation

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  19. Confrontation visual field testing in routine ophthalmic practice ...

    African Journals Online (AJOL)

    Results: Two patients had symptoms of headache and visual blurring, galactorrhea and amenorrhea. A right homonymous hemianopia and bitemporal hemianopia respectively were detected on CVF. The 3rd patient complained of visual blurring and bumping into objects following an assault to the head. CVF detected ...

  20. Visual field impairment captures disease burden in multiple sclerosis.

    Science.gov (United States)

    Ortiz-Perez, Santiago; Andorra, Magí; Sanchez-Dalmau, Bernardo; Torres-Torres, Rubén; Calbet, David; Lampert, Erika J; Alba-Arbalat, Salut; Guerrero-Zamora, Ana M; Zubizarreta, Irati; Sola-Valls, Nuria; Llufriu, Sara; Sepúlveda, María; Saiz, Albert; Villoslada, Pablo; Martinez-Lapiscina, Elena H

    2016-04-01

    Monitoring disease burden is an unmeet need in multiple sclerosis (MS). Identifying patients at high risk of disability progression will be useful for improving clinical-therapeutic decisions in clinical routine. To evaluate the role of visual field testing in non-optic neuritis eyes (non-ON eyes) as a biomarker of disability progression in MS. In 109 patients of the MS-VisualPath cohort, we evaluated the association between visual field abnormalities and global and cognitive disability markers and brain and retinal imaging markers of neuroaxonal injury using linear regression models adjusted for sex, age, disease duration and use of disease-modifying therapies. We evaluated the risk of disability progression associated to have baseline impaired visual field after 3 years of follow-up. Sixty-two percent of patients showed visual field defects in non-ON eyes. Visual field mean deviation was statistically associated with global disability; brain (normalized brain parenchymal, gray matter volume and lesion load) and retinal (peripapillary retinal nerve fiber layer thickness and macular ganglion cell complex thickness) markers of neuroaxonal damage. Patients with impaired visual field had statistically significative greater disability, lower normalized brain parenchymal volume and higher lesion volume than patients with normal visual field testing. MS patients with baseline impaired VF tripled the risk of disability progression during follow-up [OR = 3.35; 95 % CI (1.10-10.19); p = 0.033]. The association of visual field impairment with greater disability and neuroaxonal injury and higher risk of disability progression suggest that VF could be used to monitor MS disease burden.

  1. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco

    2005-09-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.

  2. Development of the Object-Oriented Dynamic Simulation Models Using Visual C++ Freeware

    Directory of Open Access Journals (Sweden)

    Alexander I. Kozynchenko

    2016-01-01

    Full Text Available The paper mostly focuses on the methodological and programming aspects of developing a versatile desktop framework to provide the available basis for the high-performance simulation of dynamical models of different kinds and for diverse applications. So the paper gives some basic structure for creating a dynamical simulation model in C++ which is built on the Win32 platform with an interactive multiwindow interface and uses the lightweight Visual C++ Express as a free integrated development environment. The resultant simulation framework could be a more acceptable alternative to other solutions developed on the basis of commercial tools like Borland C++ or Visual C++ Professional, not to mention the domain specific languages and more specialized ready-made software such as Matlab, Simulink, and Modelica. This approach seems to be justified in the case of complex research object-oriented dynamical models having nonstandard structure, relationships, algorithms, and solvers, as it allows developing solutions of high flexibility. The essence of the model framework is shown using a case study of simulation of moving charged particles in the electrostatic field. The simulation model possesses the necessary visualization and control features such as an interactive input, real time graphical and text output, start, stop, and rate control.

  3. Computational Modelling of the Neural Representation of Object Shape in the Primate Ventral Visual System

    Directory of Open Access Journals (Sweden)

    Akihiro eEguchi

    2015-08-01

    Full Text Available Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognise the whole object.

  4. Visual verification of linac light and radiation fields coincidence

    International Nuclear Information System (INIS)

    Monti, Angelo F.; Frigerio, Milena; Frigerio, Giovanna

    2003-01-01

    X-ray and light field alignment evaluation is carried out during linac quality assurance programs. In this paper, we compare the size of the light field measured by a photodiode and by a more traditional visual observation with the size of the x-ray field. The comparison between actual light field size, measured with the photodiode, and light field size measured by human eye allow us to verify the reliability of human eye in the evaluation of this parameter. The visual field is always larger than real light field; however, it agrees better with the x-ray field. It matches the light field if we take into account the 25% (± 1%) of the decrement line of the maximum central lightening; however, this method simulates better the actual field employed in radiation treatments

  5. High-Performance Neural Networks for Visual Object Classification

    OpenAIRE

    Cireşan, Dan C.; Meier, Ueli; Masci, Jonathan; Gambardella, Luca M.; Schmidhuber, Jürgen

    2011-01-01

    We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better ...

  6. Visual Field Measurement with Motion Sensitivity Screening Test in ...

    African Journals Online (AJOL)

    Eye disease is a frequent complication of onchocerciasis in countrise where the disease is highly endemic. It has been shown that early ocular lesions which manifest as visual field defects or reduction in visual acuity can be reversed following treatment with ivermectin. At the community level, it is important to detect ...

  7. ROBUSTNESS AND PREDICTION ACCURACY OF MACHINE LEARNING FOR OBJECTIVE VISUAL QUALITY ASSESSMENT

    OpenAIRE

    Hines, Andrew; Kendrick, Paul; Barri, Adriaan; Narwaria, Manish; Redi, Judith A.

    2014-01-01

    Machine Learning (ML) is a powerful tool to support the development of objective visual quality assessment metrics, serving as a substitute model for the perceptual mechanisms acting in visual quality appreciation. Nevertheless, the reliability of ML-based techniques within objective quality assessment metrics is often questioned. In this study, the robustness of ML in supporting objective quality assessment is investigated, specifically when the feature set adopted for prediction is suboptim...

  8. Robustness and prediction accuracy of machine learning for objective visual quality assessment

    OpenAIRE

    HINES, ANDREW

    2014-01-01

    PUBLISHED Lisbon, Portugal Machine Learning (ML) is a powerful tool to support the development of objective visual quality assessment metrics, serving as a substitute model for the perceptual mechanisms acting in visual quality appreciation. Nevertheless, the reli- ability of ML-based techniques within objective quality as- sessment metrics is often questioned. In this study, the ro- bustness of ML in supporting objective quality assessment is investigated, specific...

  9. Getting a grip on affordances, attention and visual fields

    OpenAIRE

    Linden, Lotje van der; Theeuwes, Jan; Ellis, Rob

    2013-01-01

    van der Linden, L., Theeuwes, J., & Ellis, R. (2012). Getting a grip on affordances, attention, and visual fields. Poster presented at the 2012 William James Graduate School Symposium, Amsterdam, The Netherlands.

  10. The Role of Fixation and Visual Attention in Object Recognition.

    Science.gov (United States)

    1995-01-01

    computers", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-Memo-915, June 1986. [29] D.P. Huttenlocher and S.Ullman, "Object Recognition Using...attention", Technical Report, Aritificial Intelligence Lab, M.I. T., AI-memo-770, Jan 1984. [35] E.Krotkov, K. Henriksen and R. Kories, "Stereo...MIT Artificial Intelligence Laboratory [ PCTBTBimON STATEMENT X \\ Afipioved tor puciic reieo*«* \\ »?*•;.., jDi*tiibutK» U»lisut»d* 19951004

  11. Visual recognition and tracking of objects for robot sensing

    International Nuclear Information System (INIS)

    Lowe, D.G.

    1994-01-01

    An overview is presented of a number of techniques used for recognition and motion tracking of articulated 3-D objects. With recent advances in robust methods for model-based vision and improved performance of computer systems, it will soon be possible to build low-cost, high-reliability systems for model-based motion tracking. Such systems can be expected to open up a wide range of applications in robotics by providing machines with real-time information about their environment. This paper describes a number of techniques for efficiently matching parameterized 3-D models to image features. The matching methods are robust with respect to missing and ambiguous features as well as measurement errors. Unlike most previous work on model-based motion tracking, this system provides for the integrated treatment of matching and measurement errors during motion tracking. The initial application is in a system for real-time motion tracking of articulated 3-D objects. With the future addition of an indexing component, these same techniques can also be used for general model-based recognition. The current real-time implementation is based on matching straight line segments, but some preliminary experiments on matching arbitrary curves are also described. (author)

  12. Dynamics of levitated objects in acoustic vortex fields.

    Science.gov (United States)

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  13. Interventions for visual field defects in patients with stroke.

    Science.gov (United States)

    Pollock, Alex; Hazelton, Christine; Henderson, Clair A; Angilley, Jayne; Dhillon, Baljean; Langhorne, Peter; Livingstone, Katrina; Munro, Frank A; Orr, Heather; Rowe, Fiona J; Shahani, Uma

    2011-10-05

    Visual field defects are estimated to affect 20% to 57% of people who have had a stroke. Visual field defects can affect functional ability in activities of daily living (commonly affecting mobility, reading and driving), quality of life, ability to participate in rehabilitation, and depression, anxiety and social isolation following stroke. There are many interventions for visual field defects, which are proposed to work by restoring the visual field (restitution); compensating for the visual field defect by changing behaviour or activity (compensation); substituting for the visual field defect by using a device or extraneous modification (substitution); or ensuring appropriate diagnosis, referral and treatment prescription through standardised assessment or screening, or both. To determine the effects of interventions for people with visual field defects after stroke. We searched the Cochrane Stroke Group Trials Register (February 2011), the Cochrane Eyes and Vision Group Trials Register (December 2009) and nine electronic bibliographic databases including CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to December 2009), EMBASE (1980 to December 2009), CINAHL (1982 to December 2009), AMED (1985 to December 2009), and PsycINFO (1967 to December 2009). We also searched reference lists and trials registers, handsearched journals and conference proceedings and contacted experts. Randomised trials in adults after stroke, where the intervention was specifically targeted at improving the visual field defect or improving the ability of the participant to cope with the visual field loss. The primary outcome was functional ability in activities of daily living and secondary outcomes included functional ability in extended activities of daily living, reading ability, visual field measures, balance, falls, depression and anxiety, discharge destination or residence after stroke, quality of life and social isolation, visual scanning, adverse events and death. Two

  14. Visual field shape and foraging ecology in diurnal raptors.

    Science.gov (United States)

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  15. Relevance of useful visual words in object retrieval

    Science.gov (United States)

    Qi, Siyuan; Luo, Yupin

    2013-07-01

    The most popular methods in object retrieval are almost based on bag-of-words(BOW) which is both effective and efficient. In this paper we present a method use the relations between words of the vocabulary to improve the retrieval performance based on the BOW framework. In basic BOW retrieval framework, only a few words of the vocabulary is useful for retrieval, which are spatial consistent in images. We introduce a method to useful select useful words and build a relevance between these words. We combine useful relevance with basic BOW framework and query expansion as well. The useful relevance is able to discover latent related words which is not exist in the query image, so that we can get a more accurate vector model for retrieval. Combined with query expansion method, the retrieval performance are better and fewer time cost.

  16. Polarization singularities of the object field of skin surface

    International Nuclear Information System (INIS)

    Angelsky, O V; Ushenko, A G; Ushenko, Yu A; Ushenko, Ye G

    2006-01-01

    The paper deals with the investigation of formation mechanisms of laser radiation polarization structure scattered by an optically thin surface layer of human skin in two registration zones: a boundary field and a far zone of Fraunhofer diffraction. The conditions of forming polarization singularities by such an object in the scattered radiation field have been defined. Statistical and fractal polarization structure of object fields of physiologically normal and pathologically changed skin has been studied. It has been shown that polarization singularities of radiation scattered by physiologically normal skin samples have a fractal coordinate structure. It is characteristic for fields of pathologically changed skin to have a statistical coordinate structure of polarization singularities in all diffraction zones

  17. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    Science.gov (United States)

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  18. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  19. Joint Conditional Random Field Filter for Multi-Object Tracking

    Directory of Open Access Journals (Sweden)

    Luo Ronghua

    2011-03-01

    Full Text Available Object tracking can improve the performance of mobile robot especially in populated dynamic environments. A novel joint conditional random field Filter (JCRFF based on conditional random field with hierarchical structure is proposed for multi-object tracking by abstracting the data associations between objects and measurements to be a sequence of labels. Since the conditional random field makes no assumptions about the dependency structure between the observations and it allows non-local dependencies between the state and the observations, the proposed method can not only fuse multiple cues including shape information and motion information to improve the stability of tracking, but also integrate moving object detection and object tracking quite well. At the same time, implementation of multi-object tracking based on JCRFF with measurements from the laser range finder on a mobile robot is studied. Experimental results with the mobile robot developed in our lab show that the proposed method has higher precision and better stability than joint probabilities data association filter (JPDAF.

  20. A foreground object features-based stereoscopic image visual comfort assessment model

    Science.gov (United States)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  1. Joint Tensor Feature Analysis For Visual Object Recognition.

    Science.gov (United States)

    Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po

    2015-11-01

    Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.

  2. Blindness to background: an inbuilt bias for visual objects.

    Science.gov (United States)

    O'Hanlon, Catherine G; Read, Jenny C A

    2017-09-01

    Sixty-eight 2- to 12-year-olds and 30 adults were shown colorful displays on a touchscreen monitor and trained to point to the location of a named color. Participants located targets near-perfectly when presented with four abutting colored patches. When presented with three colored patches on a colored background, toddlers failed to locate targets in the background. Eye tracking demonstrated that the effect was partially mediated by a tendency not to fixate the background. However, the effect was abolished when the targets were named as nouns, whilst the change to nouns had little impact on eye movement patterns. Our results imply a powerful, inbuilt tendency to attend to objects, which may slow the development of color concepts and acquisition of color words. A video abstract of this article can be viewed at: https://youtu.be/TKO1BPeAiOI. [Correction added on 27 January 2017, after first online publication: The video abstract link was added.]. © 2016 John Wiley & Sons Ltd.

  3. Visual Short-Term Memory for Complex Objects in 6- and 8-Month-Old Infants

    Science.gov (United States)

    Kwon, Mee-Kyoung; Luck, Steven J.; Oakes, Lisa M.

    2014-01-01

    Infants' visual short-term memory (VSTM) for simple objects undergoes dramatic development: Six-month-old infants can store in VSTM information about only a simple object presented in isolation, whereas 8-month-old infants can store information about simple objects presented in multiple-item arrays. This study extended this work to examine…

  4. Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.

    Science.gov (United States)

    Biederman, Irving; Cooper, Eric E.

    1991-01-01

    Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…

  5. A Visual Short-Term Memory Advantage for Objects of Expertise

    Science.gov (United States)

    Curby, Kim M.; Glazek, Kuba; Gauthier, Isabel

    2009-01-01

    Visual short-term memory (VSTM) is limited, especially for complex objects. Its capacity, however, is greater for faces than for other objects; this advantage may stem from the holistic nature of face processing. If the holistic processing explains this advantage, object expertise--which also relies on holistic processing--should endow experts…

  6. Comparing artistic and geometrical perspective depictions of space in the visual field.

    Science.gov (United States)

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.

  7. Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object.

    Science.gov (United States)

    Smith, Nicholas A; Folland, Nicole A; Martinez, Diana M; Trainor, Laurel J

    2017-07-01

    Infants learn to use auditory and visual information to organize the sensory world into identifiable objects with particular locations. Here we use a behavioural method to examine infants' use of harmonicity cues to auditory object perception in a multisensory context. Sounds emitted by different objects sum in the air and the auditory system must figure out which parts of the complex waveform belong to different sources (auditory objects). One important cue to this source separation is that complex tones with pitch typically contain a fundamental frequency and harmonics at integer multiples of the fundamental. Consequently, adults hear a mistuned harmonic in a complex sound as a distinct auditory object (Alain, Theunissen, Chevalier, Batty, & Taylor, 2003). Previous work by our group demonstrated that 4-month-old infants are also sensitive to this cue. They behaviourally discriminate a complex tone with a mistuned harmonic from the same complex with in-tune harmonics, and show an object-related event-related potential (ERP) electrophysiological (EEG) response to the stimulus with mistuned harmonics. In the present study we use an audiovisual procedure to investigate whether infants perceive a complex tone with an 8% mistuned harmonic as emanating from two objects, rather than merely detecting the mistuned cue. We paired in-tune and mistuned complex tones with visual displays that contained either one or two bouncing balls. Four-month-old infants showed surprise at the incongruous pairings, looking longer at the display of two balls when paired with the in-tune complex and at the display of one ball when paired with the mistuned harmonic complex. We conclude that infants use harmonicity as a cue for source separation when integrating auditory and visual information in object perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. What Is the Unit of Visual Attention? Object for Selection, but Boolean Map for Access

    Science.gov (United States)

    Huang, Liqiang

    2010-01-01

    In the past 20 years, numerous theories and findings have suggested that the unit of visual attention is the object. In this study, I first clarify 2 different meanings of unit of visual attention, namely the unit of access in the sense of measurement and the unit of selection in the sense of division. In accordance with this distinction, I argue…

  9. The Nature of Experience Determines Object Representations in the Visual System

    Science.gov (United States)

    Wong, Yetta K.; Folstein, Jonathan R.; Gauthier, Isabel

    2012-01-01

    Visual perceptual learning (PL) and perceptual expertise (PE) traditionally lead to different training effects and recruit different brain areas, but reasons for these differences are largely unknown. Here, we tested how the learning history influences visual object representations. Two groups were trained with tasks typically used in PL or PE…

  10. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    International Nuclear Information System (INIS)

    Fursaev, Dmitri V

    2006-01-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant

  11. Gravitational Field of Ultrarelativistic Objects with Angular Momentum

    Energy Technology Data Exchange (ETDEWEB)

    Fursaev, Dmitri V [Dubna International University and Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region (Russian Federation)

    2006-03-01

    A brief review of recently found gyraton metrics which describe the gravitational field of objects having an angular momentum and moving with the velocity of light is given. The gyraton metrics belong to a class of exact plane wave solutions of four and higher dimensional Einstein equations in vacuum or in the presence of a negative cosmological constant.

  12. Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    Huangsheng Xie

    2014-01-01

    Full Text Available This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

  13. Activity in human visual and parietal cortex reveals object-based attention in working memory.

    Science.gov (United States)

    Peters, Benjamin; Kaiser, Jochen; Rahm, Benjamin; Bledowski, Christoph

    2015-02-25

    Visual attention enables observers to select behaviorally relevant information based on spatial locations, features, or objects. Attentional selection is not limited to physically present visual information, but can also operate on internal representations maintained in working memory (WM) in service of higher-order cognition. However, only little is known about whether attention to WM contents follows the same principles as attention to sensory stimuli. To address this question, we investigated in humans whether the typically observed effects of object-based attention in perception are also evident for object-based attentional selection of internal object representations in WM. In full accordance with effects in visual perception, the key behavioral and neuronal characteristics of object-based attention were observed in WM. Specifically, we found that reaction times were shorter when shifting attention to memory positions located on the currently attended object compared with equidistant positions on a different object. Furthermore, functional magnetic resonance imaging and multivariate pattern analysis of visuotopic activity in visual (areas V1-V4) and parietal cortex revealed that directing attention to one position of an object held in WM also enhanced brain activation for other positions on the same object, suggesting that attentional selection in WM activates the entire object. This study demonstrated that all characteristic features of object-based attention are present in WM and thus follows the same principles as in perception. Copyright © 2015 the authors 0270-6474/15/353360-10$15.00/0.

  14. The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds

    Science.gov (United States)

    Martin, Graham R.

    2014-01-01

    Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position. PMID:24395967

  15. An investigation of visual selection priority of objects with texture and crossed and uncrossed disparities

    Science.gov (United States)

    Khaustova, Dar'ya; Fournier, Jérôme; Wyckens, Emmanuel; Le Meur, Olivier

    2014-02-01

    The aim of this research is to understand the difference in visual attention to 2D and 3D content depending on texture and amount of depth. Two experiments were conducted using an eye-tracker and a 3DTV display. Collected fixation data were used to build saliency maps and to analyze the differences between 2D and 3D conditions. In the first experiment 51 observers participated in the test. Using scenes that contained objects with crossed disparity, it was discovered that such objects are the most salient, even if observers experience discomfort due to the high level of disparity. The goal of the second experiment is to decide whether depth is a determinative factor for visual attention. During the experiment, 28 observers watched the scenes that contained objects with crossed and uncrossed disparities. We evaluated features influencing the saliency of the objects in stereoscopic conditions by using contents with low-level visual features. With univariate tests of significance (MANOVA), it was detected that texture is more important than depth for selection of objects. Objects with crossed disparity are significantly more important for selection processes when compared to 2D. However, objects with uncrossed disparity have the same influence on visual attention as 2D objects. Analysis of eyemovements indicated that there is no difference in saccade length. Fixation durations were significantly higher in stereoscopic conditions for low-level stimuli than in 2D. We believe that these experiments can help to refine existing models of visual attention for 3D content.

  16. Mass conservative fluid flow visualization for CFD velocity fields

    International Nuclear Information System (INIS)

    Li, Zhenquan; Mallinson, Gordon D.

    2001-01-01

    Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al., 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD data and using the existing method

  17. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yin-Tien Wang

    2010-09-01

    Full Text Available In the paper, a novel moving object detection (MOD algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM. The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.

  18. Visual working memory for global, object, and part-based information.

    Science.gov (United States)

    Patterson, Michael D; Bly, Benjamin Martin; Porcelli, Anthony J; Rypma, Bart

    2007-06-01

    We investigated visual working memory for novel objects and parts of novel objects. After a delay period, participants showed strikingly more accurate performance recognizing a single whole object than the parts of that object. This bias to remember whole objects, rather than parts, persisted even when the division between parts was clearly defined and the parts were disconnected from each other so that, in order to remember the single whole object, the participants needed to mentally combine the parts. In addition, the bias was confirmed when the parts were divided by color. These experiments indicated that holistic perceptual-grouping biases are automatically used to organize storage in visual working memory. In addition, our results suggested that the bias was impervious to top-down consciously directed control, because when task demands were manipulated through instruction and catch trials, the participants still recognized whole objects more quickly and more accurately than their parts. This bias persisted even when the whole objects were novel and the parts were familiar. We propose that visual working memory representations depend primarily on the global configural properties of whole objects, rather than part-based representations, even when the parts themselves can be clearly perceived as individual objects. This global configural bias beneficially reduces memory load on a capacity-limited system operating in a complex visual environment, because fewer distinct items must be remembered.

  19. Fragile visual short-term memory is an object-based and location-specific store.

    Science.gov (United States)

    Pinto, Yaïr; Sligte, Ilja G; Shapiro, Kimron L; Lamme, Victor A F

    2013-08-01

    Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to unveil the functional underpinnings of this memory storage. We found that FM is only completely erased when the new visual scene appears at the same location and consists of the same objects as the to-be-recalled information. This result has two important implications: First, it shows that FM is an object- and location-specific store, and second, it suggests that FM might be used in everyday life when the presentation of visual information is appropriately designed.

  20. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    Science.gov (United States)

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  1. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    Science.gov (United States)

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  2. Blue objects in the field of M31

    Energy Technology Data Exchange (ETDEWEB)

    Romano, G [Padua Univ. (Italy). Istituto di Astronomia

    1976-10-01

    This paper gives the results of a photometric study of star-like blue objects Nos. 14, 15, 16, 17, and 18 discovered by Boerngen et al. (1970) in the field of M31 and of the QSO OA 33. Three of these objects - Nos. 14, 16 and 17 - exhibit variable light. No. 14 is a probable U Geminorum-star; No. 16 is a QSO and very likely also the No. 17. Finally, a candidate is suggested for the optical counterpart of OA 33.

  3. Object representation in the bottlenose dolphin (Tursiops truncatus): integration of visual and echoic information.

    Science.gov (United States)

    Harley, H E; Roitblat, H L; Nachtigall, P E

    1996-04-01

    A dolphin performed a 3-alternative matching-to-sample task in different modality conditions (visual/echoic, both vision and echolocation: visual, vision only; echoic, echolocation only). In Experiment 1, training occurred in the dual-modality (visual/echoic) condition. Choice accuracy in tests of all conditions was above chance without further training. In Experiment 2, unfamiliar objects with complementary similarity relations in vision and echolocation were presented in single-modality conditions until accuracy was about 70%. When tested in the visual/echoic condition, accuracy immediately rose (95%), suggesting integration across modalities. In Experiment 3, conditions varied between presentation of sample and alternatives. The dolphin successfully matched familiar objects in the cross-modal conditions. These data suggest that the dolphin has an object-based representational system.

  4. Visual cortex in aging and Alzheimer’s disease: Changes in visual field maps and population receptive fields

    Directory of Open Access Journals (Sweden)

    Alyssa A. Brewer

    2014-02-01

    Full Text Available Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1 during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer’s disease (AD, the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM organization and population receptive fields (pRFs between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD.

  5. Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes

    Directory of Open Access Journals (Sweden)

    Dariusz Wroblewski

    2014-01-01

    Full Text Available Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1 manual, with patient response registered with a mouse click, and (2 visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1 minimal systematic differences between measurements taken in visual grasp and manual modes, (2 the average standard deviation of the difference distributions of about 5 dB, and (3 a systematic shift (of 4–6 dB to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients’ acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  6. Testing of visual field with virtual reality goggles in manual and visual grasp modes.

    Science.gov (United States)

    Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas

    2014-01-01

    Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  7. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  8. Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage.

    Science.gov (United States)

    Delfour, F; Marten, K

    2006-01-10

    Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.

  9. Planning and setting objectives in field studies: Chapter 2

    Science.gov (United States)

    Fisher, Robert N.; Dodd, C. Kenneth

    2016-01-01

    This chapter enumerates the steps required in designing and planning field studies on the ecology and conservation of reptiles, as these involve a high level of uncertainty and risk. To this end, the chapter differentiates between goals (descriptions of what one intends to accomplish) and objectives (the measurable steps required to achieve the established goals). Thus, meeting a specific goal may require many objectives. It may not be possible to define some of them until certain experiments have been conducted; often evaluations of sampling protocols are needed to increase certainty in the biological results. And if sampling locations are fixed and sampling events are repeated over time, then both study-specific covariates and sampling-specific covariates should exist. Additionally, other critical design considerations for field study include obtaining permits, as well as researching ethics and biosecurity issues.

  10. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  11. Sensitivity to the visual field origin of natural image patches in human low-level visual cortex

    Directory of Open Access Journals (Sweden)

    Damien J. Mannion

    2015-06-01

    Full Text Available Asymmetries in the response to visual patterns in the upper and lower visual fields (above and below the centre of gaze have been associated with ecological factors relating to the structure of typical visual environments. Here, we investigated whether the content of the upper and lower visual field representations in low-level regions of human visual cortex are specialised for visual patterns that arise from the upper and lower visual fields in natural images. We presented image patches, drawn from above or below the centre of gaze of an observer navigating a natural environment, to either the upper or lower visual fields of human participants (n = 7 while we used functional magnetic resonance imaging (fMRI to measure the magnitude of evoked activity in the visual areas V1, V2, and V3. We found a significant interaction between the presentation location (upper or lower visual field and the image patch source location (above or below fixation; the responses to lower visual field presentation were significantly greater for image patches sourced from below than above fixation, while the responses in the upper visual field were not significantly different for image patches sourced from above and below fixation. This finding demonstrates an association between the representation of the lower visual field in human visual cortex and the structure of the visual input that is likely to be encountered below the centre of gaze.

  12. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  13. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  14. Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    Directory of Open Access Journals (Sweden)

    Kamran Sedig

    2016-10-01

    Full Text Available Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces.

  15. BlueJ Visual Debugger for Learning the Execution of Object-Oriented Programs?

    Science.gov (United States)

    Bennedsen, Jens; Schulte, Carsten

    2010-01-01

    This article reports on an experiment undertaken in order to evaluate the effect of a program visualization tool for helping students to better understand the dynamics of object-oriented programs. The concrete tool used was BlueJ's debugger and object inspector. The study was done as a control-group experiment in an introductory programming…

  16. Internal attention to features in visual short-term memory guides object learning.

    Science.gov (United States)

    Fan, Judith E; Turk-Browne, Nicholas B

    2013-11-01

    Attending to objects in the world affects how we perceive and remember them. What are the consequences of attending to an object in mind? In particular, how does reporting the features of a recently seen object guide visual learning? In three experiments, observers were presented with abstract shapes in a particular color, orientation, and location. After viewing each object, observers were cued to report one feature from visual short-term memory (VSTM). In a subsequent test, observers were cued to report features of the same objects from visual long-term memory (VLTM). We tested whether reporting a feature from VSTM: (1) enhances VLTM for just that feature (practice-benefit hypothesis), (2) enhances VLTM for all features (object-based hypothesis), or (3) simultaneously enhances VLTM for that feature and suppresses VLTM for unreported features (feature-competition hypothesis). The results provided support for the feature-competition hypothesis, whereby the representation of an object in VLTM was biased towards features reported from VSTM and away from unreported features (Experiment 1). This bias could not be explained by the amount of sensory exposure or response learning (Experiment 2) and was amplified by the reporting of multiple features (Experiment 3). Taken together, these results suggest that selective internal attention induces competitive dynamics among features during visual learning, flexibly tuning object representations to align with prior mnemonic goals. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Patterns of Visual Attention to Faces and Objects in Autism Spectrum Disorder

    Science.gov (United States)

    McPartland, James C.; Webb, Sara Jane; Keehn, Brandon; Dawson, Geraldine

    2011-01-01

    This study used eye-tracking to examine visual attention to faces and objects in adolescents with autism spectrum disorder (ASD) and typical peers. Point of gaze was recorded during passive viewing of images of human faces, inverted human faces, monkey faces, three-dimensional curvilinear objects, and two-dimensional geometric patterns.…

  18. Cortical Dynamics of Contextually Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Science.gov (United States)

    Huang, Tsung-Ren; Grossberg, Stephen

    2010-01-01

    How do humans use target-predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, humans can learn that a certain combination of objects may define a context for a kitchen and trigger a more efficient…

  19. The role of space and time in object-based visual search

    NARCIS (Netherlands)

    Schreij, D.B.B.; Olivers, C.N.L.

    2013-01-01

    Recently we have provided evidence that observers more readily select a target from a visual search display if the motion trajectory of the display object suggests that the observer has dealt with it before. Here we test the prediction that this object-based memory effect on search breaks down if

  20. Autonomous learning of robust visual object detection and identification on a humanoid

    NARCIS (Netherlands)

    Leitner, J.; Chandrashekhariah, P.; Harding, S.; Frank, M.; Spina, G.; Förster, A.; Triesch, J.; Schmidhuber, J.

    2012-01-01

    In this work we introduce a technique for a humanoid robot to autonomously learn the representations of objects within its visual environment. Our approach involves an attention mechanism in association with feature based segmentation that explores the environment and provides object samples for

  1. Visual field defects after temporal lobe resection for epilepsy.

    Science.gov (United States)

    Steensberg, Alvilda T; Olsen, Ane Sophie; Litman, Minna; Jespersen, Bo; Kolko, Miriam; Pinborg, Lars H

    2018-01-01

    To determine visual field defects (VFDs) using methods of varying complexity and compare results with subjective symptoms in a population of newly operated temporal lobe epilepsy patients. Forty patients were included in the study. Two patients failed to perform VFD testing. Humphrey Field Analyzer (HFA) perimetry was used as the gold standard test to detect VFDs. All patients performed a web-based visual field test called Damato Multifixation Campimetry Online (DMCO). A bedside confrontation visual field examination ad modum Donders was extracted from the medical records in 27/38 patients. All participants had a consultation by an ophthalmologist. A questionnaire described the subjective complaints. A VFD in the upper quadrant was demonstrated with HFA in 29 (76%) of the 38 patients after surgery. In 27 patients tested ad modum Donders, the sensitivity of detecting a VFD was 13%. Eight patients (21%) had a severe VFD similar to a quadrant anopia, thus, questioning their permission to drive a car. In this group of patients, a VFD was demonstrated in one of five (sensitivity=20%) ad modum Donders and in seven of eight (sensitivity=88%) with DMCO. Subjective symptoms were only reported by 28% of the patients with a VFD and in two of eight (sensitivity=25%) with a severe VFD. Most patients (86%) considered VFD information mandatory. VFD continue to be a frequent adverse event after epilepsy surgery in the medial temporal lobe and may affect the permission to drive a car in at least one in five patients. Subjective symptoms and bedside visual field testing ad modum Donders are not sensitive to detect even a severe VFD. Newly developed web-based visual field test methods appear sensitive to detect a severe VFD but perimetry remains the golden standard for determining if visual standards for driving is fulfilled. Patients consider VFD information as mandatory. Copyright © 2017. Published by Elsevier Ltd.

  2. Field on Poincare group and quantum description of orientable objects

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engineering, Electronics and Automation, Moscow (Russian Federation)

    2009-05-15

    We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner's ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincare group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group {pi}=G x G. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points x element of G/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix Z element of Spin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties. (orig.)

  3. MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Mukremin; Gianninas, Alexandros [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Von Hippel, Ted, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: ted.vonhippel@erau.edu [Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32114 (United States)

    2013-09-01

    We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

  4. The relationship between better-eye and integrated visual field mean deviation and visual disability.

    Science.gov (United States)

    Arora, Karun S; Boland, Michael V; Friedman, David S; Jefferys, Joan L; West, Sheila K; Ramulu, Pradeep Y

    2013-12-01

    To determine the extent of difference between better-eye visual field (VF) mean deviation (MD) and integrated VF (IVF) MD among Salisbury Eye Evaluation (SEE) subjects and a larger group of glaucoma clinic subjects and to assess how those measures relate to objective and subjective measures of ability/performance in SEE subjects. Retrospective analysis of population- and clinic-based samples of adults. A total of 490 SEE and 7053 glaucoma clinic subjects with VF loss (MD ≤-3 decibels [dB] in at least 1 eye). Visual field testing was performed in each eye, and IVF MD was calculated. Differences between better-eye and IVF MD were calculated for SEE and clinic-based subjects. In SEE subjects with VF loss, models were constructed to compare the relative impact of better-eye and IVF MD on driving habits, mobility, self-reported vision-related function, and reading speed. Difference between better-eye and IVF MD and relationship of better-eye and IVF MD with performance measures. The median difference between better-eye and IVF MD was 0.41 dB (interquartile range [IQR], -0.21 to 1.04 dB) and 0.72 dB (IQR, 0.04-1.45 dB) for SEE subjects and clinic-based patients with glaucoma, respectively, with differences of ≥ 2 dB between the 2 MDs observed in 9% and 18% of the groups, respectively. Among SEE subjects with VF loss, both MDs demonstrated similar associations with multiple ability and performance metrics as judged by the presence/absence of a statistically significant association between the MD and the metric, the magnitude of observed associations (odds ratios, rate ratios, or regression coefficients associated with 5-dB decrements in MD), and the extent of variability in the metric explained by the model (R(2)). Similar associations of similar magnitude also were noted for the subgroup of subjects with glaucoma and subjects in whom better-eye and IVF MD differed by ≥ 2 dB. The IVF MD rarely differs from better-eye MD, and similar associations between VF loss and

  5. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  6. Perceptual organization of shape, color, shade, and lighting in visual and pictorial objects.

    Science.gov (United States)

    Pinna, Baingio

    2012-01-01

    THE MAIN QUESTIONS WE ASKED IN THIS WORK ARE THE FOLLOWING: Where are representations of shape, color, depth, and lighting mostly located? Does their formation take time to develop? How do they contribute to determining and defining a visual object, and how do they differ? How do visual artists use them to create objects and scenes? Is the way artists use them related to the way we perceive them? To answer these questions, we studied the microgenetic development of the object perception and formation. Our hypothesis is that the main object properties are extracted in sequential order and in the same order that these roles are also used by artists and children of different age to paint objects. The results supported the microgenesis of object formation according to the following sequence: contours, color, shading, and lighting.

  7. Perceptual Organization of Shape, Color, Shade, and Lighting in Visual and Pictorial Objects

    Directory of Open Access Journals (Sweden)

    Baingio Pinna

    2012-06-01

    Full Text Available The main questions we asked in this work are the following: Where are representations of shape, color, depth, and lighting mostly located? Does their formation take time to develop? How do they contribute to determining and defining a visual object, and how do they differ? How do visual artists use them to create objects and scenes? Is the way artists use them related to the way we perceive them? To answer these questions, we studied the microgenetic development of the object perception and formation. Our hypothesis is that the main object properties are extracted in sequential order and in the same order that these roles are also used by artists and children of different age to paint objects. The results supported the microgenesis of object formation according to the following sequence: contours, color, shading, and lighting.

  8. Prevention of visual field defects after macular hole surgery.

    LENUS (Irish Health Repository)

    Cullinane, A B

    2012-02-03

    BACKGROUND\\/AIM: The pathogenesis of visual field loss associated with macular hole surgery is uncertain but a number of explanations have been proposed, the most convincing of which is the effect of peeling of the posterior hyaloid, causing either direct damage to the nerve fibre layer or to its blood supply at the optic nerve head. The purpose of this preliminary prospective study was to determine the incidence of visual field defects following macular hole surgery in cases in which peeling of the posterior hyaloid was confined only to the area of the macula. METHODS: 102 consecutive eyes that had macular hole surgery had preoperative and postoperative visual field examination using a Humphrey\\'s perimeter. A comparison was made between two groups: I, those treated with vitrectomy with complete posterior cortical vitreous peeling; and II, those treated with a vitrectomy with peeling of the posterior hyaloid in the area of the macula but without attempting a complete posterior vitreous detachment. Specifically, no attempt was made to separate the posterior hyaloid from the optic nerve head. Eyes with stage II or III macular holes were operated. Autologous platelet concentrate and non-expansile gas tamponade was used. Patients were postured prone for 1 week. RESULTS: In group I, 22% of patients were found to have visual field defects. In group II, it was possible to separate the posterior hyaloid from the macula without stripping it from the optic nerve head and in these eyes no pattern of postoperative visual field loss emerged. There were no significant vision threatening complications in this group. The difference in the incidence of visual field loss between group I and group II was significant (p=0.02). The anatomical and visual success rates were comparable between both groups. CONCLUSION: The results from this preliminary study suggest that the complication of visual field loss after macular surgery may be reduced if peeling of the posterior hyaloid is

  9. MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD

    Directory of Open Access Journals (Sweden)

    BARITZ Mihaela

    2015-06-01

    Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.

  10. Visual hull method for tomographic PIV measurement of flow around moving objects

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, D.; Longmire, E.K. [University of Minnesota, Department of Aerospace Engineering and Mechanics, Minneapolis, MN (United States)

    2012-10-15

    Tomographic particle image velocimetry (PIV) is a recently developed method to measure three components of velocity within a volumetric space. We present a visual hull technique that automates identification and masking of discrete objects within the measurement volume, and we apply existing tomographic PIV reconstruction software to measure the velocity surrounding the objects. The technique is demonstrated by considering flow around falling bodies of different shape with Reynolds number {proportional_to}1,000. Acquired image sets are processed using separate routines to reconstruct both the volumetric mask around the object and the surrounding tracer particles. After particle reconstruction, the reconstructed object mask is used to remove any ghost particles that otherwise appear within the object volume. Velocity vectors corresponding with fluid motion can then be determined up to the boundary of the visual hull without being contaminated or affected by the neighboring object velocity. Although the visual hull method is not meant for precise tracking of objects, the reconstructed object volumes nevertheless can be used to estimate the object location and orientation at each time step. (orig.)

  11. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    Science.gov (United States)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  12. Mobile device geo-localization and object visualization in sensor networks

    Science.gov (United States)

    Lemaire, Simon; Bodensteiner, Christoph; Arens, Michael

    2014-10-01

    In this paper we present a method to visualize geo-referenced objects on modern smartphones using a multi- functional application design. The application applies different localization and visualization methods including the smartphone camera image. The presented application copes well with different scenarios. A generic application work flow and augmented reality visualization techniques are described. The feasibility of the approach is experimentally validated using an online desktop selection application in a network with a modern of-the-shelf smartphone. Applications are widespread and include for instance crisis and disaster management or military applications.

  13. Visualization of the tire-soil interaction area by means of ObjectARX programming interface

    Science.gov (United States)

    Mueller, W.; Gruszczyński, M.; Raba, B.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.

    2014-04-01

    The process of data visualization, important for their analysis, becomes problematic when large data sets generated via computer simulations are available. This problem concerns, among others, the models that describe the geometry of tire-soil interaction. For the purpose of a graphical representation of this area and implementation of various geometric calculations the authors have developed a plug-in application for AutoCAD, based on the latest technologies, including ObjectARX, LINQ and the use of Visual Studio platform. Selected programming tools offer a wide variety of IT structures that enable data visualization and data analysis and are important e.g. in model verification.

  14. Semantic and functional relationships among objects increase the capacity of visual working memory.

    Science.gov (United States)

    O'Donnell, Ryan E; Clement, Andrew; Brockmole, James R

    2018-04-12

    Visual working memory (VWM) has a limited capacity of approximately 3-4 visual objects. Current theories of VWM propose that a limited pool of resources can be flexibly allocated to objects, allowing them to be represented at varying levels of precision. Factors that influence the allocation of these resources, such as the complexity and perceptual grouping of objects, can thus affect the capacity of VWM. We sought to identify whether semantic and functional relationships between objects could influence the grouping of objects, thereby increasing the functional capacity of VWM. Observers viewed arrays of 8 to-be-remembered objects arranged into 4 pairs. We manipulated both the semantic association and functional interaction between the objects, then probed participants' memory for the arrays. When objects were semantically related, participants' memory for the arrays improved. Participants' memory further improved when semantically related objects were positioned to interact with each other. However, when we increased the spacing between the objects in each pair, the benefits of functional but not semantic relatedness were eliminated. These findings suggest that action-relevant properties of objects can increase the functional capacity of VWM, but only when objects are positioned to directly interact with each other. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. The risk of pedestrian collisions with peripheral visual field loss

    OpenAIRE

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L.; Goldstein, Robert B.

    2016-01-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed...

  16. Visual field examination in children with brain disorders

    NARCIS (Netherlands)

    Koenraads, Y

    2016-01-01

    The aim of this thesis is to gain more insight in the diagnostic and prognostic implications of visual field (VF) examination in children with brain disorders. Several aspects of VF examination in children with brain disorders were evaluated: All VF examinations that were performed with the

  17. Conceptual distinctiveness supports detailed visual long-term memory for real-world objects.

    Science.gov (United States)

    Konkle, Talia; Brady, Timothy F; Alvarez, George A; Oliva, Aude

    2010-08-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers' capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. 2010 APA, all rights reserved

  18. Visual objects and universal meanings: AIDS posters and the politics of globalisation and history.

    Science.gov (United States)

    Stein, Claudia; Cooter, Roger

    2011-01-01

    Drawing on recent visual and spatial turns in history writing, this paper considers AIDS posters from the perspective of their museum 'afterlife' as collected material objects. Museum spaces serve changing political and epistemological projects, and the visual objects they house are not immune from them. A recent globally themed exhibition of AIDS posters at an arts and crafts museum in Hamburg is cited in illustration. The exhibition also serves to draw attention to institutional continuities in collecting agendas. Revealed, contrary to postmodernist expectations, is how today's application of aesthetic display for the purpose of making 'global connections' does not radically break with the virtues and morals attached to the visual at the end of the nineteenth century. The historicisation of such objects needs to take into account this complicated mix of change and continuity in aesthetic concepts and political inscriptions. Otherwise, historians fall prey to seductive aesthetics without being aware of the politics of them. This article submits that aesthetics is politics.

  19. Use of interactive data visualization in multi-objective forest planning.

    Science.gov (United States)

    Haara, Arto; Pykäläinen, Jouni; Tolvanen, Anne; Kurttila, Mikko

    2018-03-15

    Common to multi-objective forest planning situations is that they all require comparisons, searches and evaluation among decision alternatives. Through these actions, the decision maker can learn from the information presented and thus make well-justified decisions. Interactive data visualization is an evolving approach that supports learning and decision making in multidimensional decision problems and planning processes. Data visualization contributes the formation of mental image data and this process is further boosted by allowing interaction with the data. In this study, we introduce a multi-objective forest planning decision problem framework and the corresponding characteristics of data. We utilize the framework with example planning data to illustrate and evaluate the potential of 14 interactive data visualization techniques to support multi-objective forest planning decisions. Furthermore, broader utilization possibilities of these techniques to incorporate the provisioning of ecosystem services into forest management and planning are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Predictive coding of visual object position ahead of moving objects revealed by time-resolved EEG decoding.

    Science.gov (United States)

    Hogendoorn, Hinze; Burkitt, Anthony N

    2018-05-01

    Due to the delays inherent in neuronal transmission, our awareness of sensory events necessarily lags behind the occurrence of those events in the world. If the visual system did not compensate for these delays, we would consistently mislocalize moving objects behind their actual position. Anticipatory mechanisms that might compensate for these delays have been reported in animals, and such mechanisms have also been hypothesized to underlie perceptual effects in humans such as the Flash-Lag Effect. However, to date no direct physiological evidence for anticipatory mechanisms has been found in humans. Here, we apply multivariate pattern classification to time-resolved EEG data to investigate anticipatory coding of object position in humans. By comparing the time-course of neural position representation for objects in both random and predictable apparent motion, we isolated anticipatory mechanisms that could compensate for neural delays when motion trajectories were predictable. As well as revealing an early neural position representation (lag 80-90 ms) that was unaffected by the predictability of the object's trajectory, we demonstrate a second neural position representation at 140-150 ms that was distinct from the first, and that was pre-activated ahead of the moving object when it moved on a predictable trajectory. The latency advantage for predictable motion was approximately 16 ± 2 ms. To our knowledge, this provides the first direct experimental neurophysiological evidence of anticipatory coding in human vision, revealing the time-course of predictive mechanisms without using a spatial proxy for time. The results are numerically consistent with earlier animal work, and suggest that current models of spatial predictive coding in visual cortex can be effectively extended into the temporal domain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. It's all connected: Pathways in visual object recognition and early noun learning.

    Science.gov (United States)

    Smith, Linda B

    2013-11-01

    A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  2. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  3. Ensemble coding remains accurate under object and spatial visual working memory load.

    Science.gov (United States)

    Epstein, Michael L; Emmanouil, Tatiana A

    2017-10-01

    A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.

  4. Decoding visual object categories from temporal correlations of ECoG signals.

    Science.gov (United States)

    Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu

    2014-04-15

    How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Persistent spatial information in the frontal eye field during object-based short-term memory.

    Science.gov (United States)

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  6. Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

    OpenAIRE

    Massouh, Nizar; Babiloni, Francesca; Tommasi, Tatiana; Young, Jay; Hawes, Nick; Caputo, Barbara

    2017-01-01

    Deep networks thrive when trained on large scale data collections. This has given ImageNet a central role in the development of deep architectures for visual object classification. However, ImageNet was created during a specific period in time, and as such it is prone to aging, as well as dataset bias issues. Moving beyond fixed training datasets will lead to more robust visual systems, especially when deployed on robots in new environments which must train on the objects they encounter there...

  7. A Multi-Objective Approach to Visualize Proportions and Similarities Between Individuals by Rectangular Maps

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    In this paper we address the problem of visualizing the proportions and the similarities attached to a set of individuals. We represent this information using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that each portion is associated with one individual...... area and adjacency requirements, this visualization problem is formulated as a three-objective Mixed Integer Nonlinear Problem. The first objective seeks to maximize the number of true adjacencies that the rectangular map is able to reproduce, the second one is to minimize the number of false...

  8. Visual teaching and learning in the fields of engineering

    Directory of Open Access Journals (Sweden)

    Kyvete S. Shatri

    2015-11-01

    Full Text Available Engineering education today is faced with numerous demands that are closely connected with a globalized economy. One of these requirements is to draw the engineers of the future, who are characterized with: strong analytical skills, creativity, ingenuity, professionalism, intercultural communication and leadership. To achieve this effective teaching methods should be used to facilitate and enhance the learning of students and their performance in general, making them able to cope with market demands of a globalized economy. One of these methods is the visualization as a very important method that increases the learning of students. A visual approach in science and in engineering also increases communication, critical thinking and provides analytical approach to various problems. Therefore, this research is aimed to investigate the effect of the use of visualization in the process of teaching and learning in engineering fields and encourage teachers and students to use visual methods for teaching and learning. The results of this research highlight the positive effect that the use of visualization has in the learning process of students and their overall performance. In addition, innovative teaching methods have a good effect in the improvement of the situation. Visualization motivates students to learn, making them more cooperative and developing their communication skills.

  9. Crossmodal Activation of Visual Object Regions for Auditorily Presented Concrete Words

    Directory of Open Access Journals (Sweden)

    Jasper J F van den Bosch

    2011-10-01

    Full Text Available Dual-coding theory (Paivio, 1986 postulates that the human mind represents objects not just with an analogous, or semantic code, but with a perceptual representation as well. Previous studies (eg, Fiebach & Friederici, 2004 indicated that the modality of this representation is not necessarily the one that triggers the representation. The human visual cortex contains several regions, such as the Lateral Occipital Complex (LOC, that respond specifically to object stimuli. To investigate whether these principally visual representations regions are also recruited for auditory stimuli, we presented subjects with spoken words with specific, concrete meanings (‘car’ as well as words with abstract meanings (‘hope’. Their brain activity was measured with functional magnetic resonance imaging. Whole-brain contrasts showed overlap between regions differentially activated by words for concrete objects compared to words for abstract concepts with visual regions activated by a contrast of object versus non-object visual stimuli. We functionally localized LOC for individual subjects and a preliminary analysis showed a trend for a concreteness effect in this region-of-interest on the group level. Appropriate further analysis might include connectivity and classification measures. These results can shed light on the role of crossmodal representations in cognition.

  10. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  11. Wind field and trajectory models for tornado-propelled objects

    International Nuclear Information System (INIS)

    Anon

    1978-01-01

    This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined

  12. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    Science.gov (United States)

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [New visual field testing possibilities (a preliminary report)].

    Science.gov (United States)

    Erichev, V P; Ermolaev, A P; Antonov, A A; Grigoryan, G L; Kosova, D V

    2018-01-01

    There are currently no portable mobile perimeters that allow visual field testing outside ophthalmologist's examination rooms. To develop a mobile perimetry technique based on use of a virtual reality headset (VR). The study involved 26 patients (30 eyes) with II-III stage primary open-angle glaucoma (POAG) with compensated IOP. Perimetry was performed for each patient twice - on Humphrey analyzer (test 30-2, 76 points) and employing similar strategy on a perimeter integrated into VR headset (Total Vision, Russia). Visual field testing was performed with an interval from 1 hour to 3 days. The results were comparatively analyzed. Patients tolerated the examination well. Comparative analysis of preliminary perimetry results obtained with both methods showed high degree of identity, so the results were concluded to be comparable. By visually isolating the wearer, VR headset achieves elimination of distractions and stable light conditions for visual field testing. The headset-perimeter is compact, mobile, easily transportable, can be used in the work of visiting medical teams and for examination at home.

  14. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients

    Science.gov (United States)

    Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu

    2018-04-01

    Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.

  15. Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition.

    Science.gov (United States)

    Schendan, Haline E; Stern, Chantal E

    2008-07-01

    Objects seen from unusual relative to more canonical views require more time to categorize and recognize, and, according to object model verification theories, additionally recruit prefrontal processes for cognitive control that interact with parietal processes for mental rotation. To test this using functional magnetic resonance imaging, people categorized and recognized known objects from unusual and canonical views. Canonical views activated some components of a default network more on categorization than recognition. Activation to unusual views showed that both ventral and dorsal visual pathways, and prefrontal cortex, have key roles in visual object constancy. Unusual views activated object-sensitive and mental rotation (and not saccade) regions in ventrocaudal intraparietal, transverse occipital, and inferotemporal sulci, and ventral premotor cortex for verification processes of model testing on any task. A collateral-lingual sulci "place" area activated for mental rotation, working memory, and unusual views on correct recognition and categorization trials to accomplish detailed spatial matching. Ventrolateral prefrontal cortex and object-sensitive lateral occipital sulcus activated for mental rotation and unusual views on categorization more than recognition, supporting verification processes of model prediction. This visual knowledge framework integrates vision and memory theories to explain how distinct prefrontal-posterior networks enable meaningful interactions with objects in diverse situations.

  16. Deconstructing visual scenes in cortex: gradients of object and spatial layout information.

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J; Baker, Chris I

    2013-04-01

    Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity.

  17. Navon's classical paradigm concerning local and global processing relates systematically to visual object classification performance.

    Science.gov (United States)

    Gerlach, Christian; Poirel, Nicolas

    2018-01-10

    Forty years ago David Navon tried to tackle a central problem in psychology concerning the time course of perceptual processing: Do we first see the details (local level) followed by the overall outlay (global level) or is it rather the other way around? He did this by developing a now classical paradigm involving the presentation of compound stimuli; large letters composed of smaller letters. Despite the usefulness of this paradigm it remains uncertain whether effects found with compound stimuli relate directly to visual object recognition. It does so because compound stimuli are not actual objects but rather formations of elements and because the elements that form the global shape of compound stimuli are not features of the global shape but rather objects in their own right. To examine the relationship between performance on Navon's paradigm and visual object processing we derived two indexes from Navon's paradigm that reflect different aspects of the relationship between global and local processing. We find that individual differences on these indexes can explain a considerable amount of variance in two standard object classification paradigms; object decision and superordinate categorization, suggesting that Navon's paradigm does relate to visual object processing.

  18. Decoding complex flow-field patterns in visual working memory.

    Science.gov (United States)

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  20. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    Science.gov (United States)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  1. Retrospective Cues Based on Object Features Improve Visual Working Memory Performance in Older Adults

    OpenAIRE

    Gilchrist, Amanda L.; Duarte, Audrey; Verhaeghen, Paul

    2015-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were either presented with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an u...

  2. Object integration requires attention: visual search for Kanizsa figures in parietal extinction

    OpenAIRE

    Gögler, N.; Finke, K.; Keller, I.; Muller, Hermann J.; Conci, M.

    2016-01-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective att...

  3. Do object refixations during scene viewing indicate rehearsal in visual working memory?

    Science.gov (United States)

    Zelinsky, Gregory J; Loschky, Lester C; Dickinson, Christopher A

    2011-05-01

    Do refixations serve a rehearsal function in visual working memory (VWM)? We analyzed refixations from observers freely viewing multiobject scenes. An eyetracker was used to limit the viewing of a scene to a specified number of objects fixated after the target (intervening objects), followed by a four-alternative forced choice recognition test. Results showed that the probability of target refixation increased with the number of fixated intervening objects, and these refixations produced a 16% accuracy benefit over the first five intervening-object conditions. Additionally, refixations most frequently occurred after fixations on only one to two other objects, regardless of the intervening-object condition. These behaviors could not be explained by random or minimally constrained computational models; a VWM component was required to completely describe these data. We explain these findings in terms of a monitor-refixate rehearsal system: The activations of object representations in VWM are monitored, with refixations occurring when these activations decrease suddenly.

  4. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    Science.gov (United States)

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  5. Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Jyrki Ahveninen

    Full Text Available Given that both auditory and visual systems have anatomically separate object identification ("what" and spatial ("where" pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what" vs. spatial ("where" aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex, as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what" vs. sound location ("where". The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.

  6. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field.

    Science.gov (United States)

    Carnegie, Kieran; Rhee, Taehyun

    2015-01-01

    Although head-mounted displays (HMDs) are ideal devices for personal viewing of immersive stereoscopic content, exposure to VR applications on them results in significant discomfort for the majority of people, with symptoms including eye fatigue, headaches, nausea, and sweating. A conflict between accommodation and vergence depth cues on stereoscopic displays is a significant cause of visual discomfort. This article describes the results of an evaluation used to judge the effectiveness of dynamic depth-of-field (DoF) blur in an effort to reduce discomfort caused by exposure to stereoscopic content on HMDs. Using a commercial game engine implementation, study participants report a reduction of visual discomfort on a simulator sickness questionnaire when DoF blurring is enabled. The study participants reported a decrease in symptom severity caused by HMD exposure, indicating that dynamic DoF can effectively reduce visual discomfort.

  7. The neural basis of precise visual short-term memory for complex recognisable objects.

    Science.gov (United States)

    Veldsman, Michele; Mitchell, Daniel J; Cusack, Rhodri

    2017-10-01

    Recent evidence suggests that visual short-term memory (VSTM) capacity estimated using simple objects, such as colours and oriented bars, may not generalise well to more naturalistic stimuli. More visual detail can be stored in VSTM when complex, recognisable objects are maintained compared to simple objects. It is not yet known if it is recognisability that enhances memory precision, nor whether maintenance of recognisable objects is achieved with the same network of brain regions supporting maintenance of simple objects. We used a novel stimulus generation method to parametrically warp photographic images along a continuum, allowing separate estimation of the precision of memory representations and the number of items retained. The stimulus generation method was also designed to create unrecognisable, though perceptually matched, stimuli, to investigate the impact of recognisability on VSTM. We adapted the widely-used change detection and continuous report paradigms for use with complex, photographic images. Across three functional magnetic resonance imaging (fMRI) experiments, we demonstrated greater precision for recognisable objects in VSTM compared to unrecognisable objects. This clear behavioural advantage was not the result of recruitment of additional brain regions, or of stronger mean activity within the core network. Representational similarity analysis revealed greater variability across item repetitions in the representations of recognisable, compared to unrecognisable complex objects. We therefore propose that a richer range of neural representations support VSTM for complex recognisable objects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Visual Attention to Competing Social and Object Images by Preschool Children with Autism Spectrum Disorder

    Science.gov (United States)

    Sasson, Noah J.; Touchstone, Emily W.

    2014-01-01

    Eye tracking studies of young children with autism spectrum disorder (ASD) report a reduction in social attention and an increase in visual attention to non-social stimuli, including objects related to circumscribed interests (CI) (e.g., trains). In the current study, fifteen preschoolers with ASD and 15 typically developing controls matched on…

  9. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  10. Humans use visual and remembered information about object location to plan pointing movements

    NARCIS (Netherlands)

    Brouwer, A.-M.; Knill, D.C.

    2009-01-01

    We investigated whether humans use a target's remembered location to plan reaching movements to targets according to the relative reliabilities of visual and remembered information. Using their index finger, subjects moved a virtual object from one side of a table to the other, and then went back to

  11. Visual Short-Term Memory Capacity for Simple and Complex Objects

    Science.gov (United States)

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-01-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…

  12. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    Science.gov (United States)

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  13. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  14. Visualization: A Tool for Enhancing Students' Concept Images of Basic Object-Oriented Concepts

    Science.gov (United States)

    Cetin, Ibrahim

    2013-01-01

    The purpose of this study was twofold: to investigate students' concept images about class, object, and their relationship and to help them enhance their learning of these notions with a visualization tool. Fifty-six second-year university students participated in the study. To investigate his/her concept images, the researcher developed a survey…

  15. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    Directory of Open Access Journals (Sweden)

    Marika eUrbanski

    2014-09-01

    Full Text Available Visual field defects (VFDs are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumours, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. VFD is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first six months, with the best chance of improvement at one month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements, reading training, visual field restitution (the Vision Restoration Therapy, VRT, or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography: PET, Diffusion Tensor Imaging: DTI, functional Magnetic Resonance Imaging: fMRI, MagnetoEncephalography: MEG or neurostimulation techniques (Transcranial Magnetic Stimulation: TMS; transcranial Direct Current Stimulation, tDCS to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  16. Role of early visual cortex in trans-saccadic memory of object features.

    Science.gov (United States)

    Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

    2015-08-01

    Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

  17. Assessment of visual function by optical coherence tomography and visual field for craniopharyngioma patients

    Directory of Open Access Journals (Sweden)

    Yang Tang

    2015-09-01

    Full Text Available AIM:To analyze the differences and correlations between ganglion cell complex(GCC, peripapillary retinal nerve fiber layer(pRNFLand mean defect(MD, mean sensitivity(MSof visual field(VFin craniopharyngioma patients, to evaluate the feasibility of optical coherence tomography(OCTin diagnosis of the visual pathway damage of craniopharyngioma patients.METHODS:Ninety-five craniopharyngioma patients treated in Beijing Tiantan Hospital, from September 2014 to April 2015 received the VF test by Octopus 900 automated perimeter with the central 30 degree program and the mean thickness measurements of GCC and pRNFL by RTVue OCT. Spearman rank correlation coefficient(rswas used to assess the correlation between GCC, pRNFL and MD, MS. The changes of VF and optic disc were analyzed. RESULTS: Abnormal pRNFL findings occurred in 53.1%(93/175, which included optic disk edema 3.4%(6/175, atrophic changes of optic nerve 47.4%(83/175and glaucoma-like optic neuropathy 7.4%(13/175. Various visual field defect was 71.4%(125/175. The average thickness of binocular pRNFL(rsOD=-0.411, rsOS=-0.354and GCC(rsOD=-0.400, rsOS=-0.314had correlation with MD(PrsOD=0.412, rsOS=0.342and GCC(rsOD=0.414, rsOS=0.299had correlation with MS(PCONCLUSION: The average thickness of pRNFL and GCC has correlation with VF damage, can evaluate the optic nerve damage of craniopharyngioma patients quantitatively. The thinner the thickness of pRNFL and GCC is, the serious damage of visual function is. During the clinical work, visual field test combined with OCT are helpful to find and assess the damage of visual pathway and prognosis.

  18. Auditory and visual reaction time and peripheral field of vision in helmet users

    Directory of Open Access Journals (Sweden)

    Abbupillai Adhilakshmi

    2016-12-01

    Full Text Available Background: The incidence of fatal accidents are more in two wheeler drivers compared to four wheeler drivers. Head injury is of serious concern when recovery and prognosis of the patients are warranted, helmets are being used for safety purposes by moped, scooters and motorcycle drivers. Although, helmets are designed with cushioning effect to prevent head injuries but there are evidences of increase risk of neck injuries and reduced peripheral vision and hearing in helmet users. A complete full coverage helmets provide about less than 3 percent restrictions in horizontal peripheral visual field compared to rider without helmet. The standard company patented ergonomically designed helmets which does not affect the peripheral vision neither auditory reaction time. Objective: This pilot study aimed to evaluate the peripheral field of vision and auditory and visual reaction time in a hypertensive, diabetic and healthy male and female in order to have a better insight of protective characteristics of helmet in health and disease. Method: This pilot study carried out on age matched male of one healthy, one hypertensive and one diabetic and female subject of one healthy, one hypertensive and one diabetics. The field of vision was assessed by Lister’s perimeter whereas auditory and visual reaction time was recorded with response analyser. Result : Gender difference was not noted in peripheral field of vision but mild difference was found in auditory reaction time for high frequency and visual reaction time for both red and green colour in healthy control. But lateral and downward peripheral visual field was found reduced whereas auditory and visual reaction time was found increased in both hypertensive and diabetic subject in both sexes. Conclusion: Peripheral vision, auditory reaction time and visual reaction time in hypertensive and diabetics may lead to vulnerable accident. Helmet use has proven to reduce extent of injury in motorcyclist and

  19. Ubiquitous Computing: Using everyday object as ambient visualization tools for persuasive design

    OpenAIRE

    Cahier, Jenny; Gullberg, Eric

    2008-01-01

    In order for companies to survive and advance in today’s competitive society, a massive amount of personal information from citizens is gathered. This thesis investigates how these digital footprints can be obtained and visualized to create awareness about personal actions and encourage change in behavior . In order to decide which data would be interesting and accessible, a map of possible application fields was generated and one single field was chosen for further study. The result is a bus...

  20. Enhancement and suppression in the visual field under perceptual load.

    Science.gov (United States)

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  1. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Directory of Open Access Journals (Sweden)

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  2. New techniques in 3D scalar and vector field visualization

    International Nuclear Information System (INIS)

    Max, N.; Crawfis, R.; Becker, B.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ''splatting'' scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ''flow volume'' of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity

  3. New techniques in 3D scalar and vector field visualization

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  4. Neural attractor network for application in visual field data classification

    International Nuclear Information System (INIS)

    Fink, Wolfgang

    2004-01-01

    The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a ' counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available

  5. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.

    Science.gov (United States)

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-03-09

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.

  6. How high is visual short-term memory capacity for object layout?

    Science.gov (United States)

    Sanocki, Thomas; Sellers, Eric; Mittelstadt, Jeff; Sulman, Noah

    2010-05-01

    Previous research measuring visual short-term memory (VSTM) suggests that the capacity for representing the layout of objects is fairly high. In four experiments, we further explored the capacity of VSTM for layout of objects, using the change detection method. In Experiment 1, participants retained most of the elements in displays of 4 to 8 elements. In Experiments 2 and 3, with up to 20 elements, participants retained many of them, reaching a capacity of 13.4 stimulus elements. In Experiment 4, participants retained much of a complex naturalistic scene. In most cases, increasing display size caused only modest reductions in performance, consistent with the idea of configural, variable-resolution grouping. The results indicate that participants can retain a substantial amount of scene layout information (objects and locations) in short-term memory. We propose that this is a case of remote visual understanding, where observers' ability to integrate information from a scene is paramount.

  7. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Practical landmarks for visual field disability in glaucoma.

    Science.gov (United States)

    Saunders, Luke J; Russell, Richard A; Crabb, David P

    2012-09-01

    To assess whether mean deviation (MD) from automated perimetry is related to the visual field (VF) component for legal fitness to drive (LFTD) in glaucoma patients. Monocular 24-2 VFs of 2604 patients with bilateral VF damage were retrospectively investigated. Integrated visual fields were calculated and used as a surrogate to assess LFTD according to current UK driving licence criteria. The better eye MD (BEMD), worse eye MD (WEMD) and a measure utilising MD of both eyes were compared, to assess respective diagnostic capabilities to predict LFTD (using the integrated visual field surrogate test as the gold standard) and a 'Probability of Failure' (PoF) for various defect levels was calculated. BEMD appears to be a good predictor of the VF component for a patient's LFTD (receiver operating characteristic area under the curve: 96.2%); MDs from both eyes offered no significant extra diagnostic power (area under the curve: 96.4%). PoF for BEMD thresholds of ≤-10 dB and ≤-14 dB were 70 (95% CI 66% to 74%) and 92% (87% to 95%), respectively. There is a strong relationship between BEMD and a patient's LFTD. PoF values for LFTD associated with readily available MD values provide practical landmarks for VF disability in glaucoma.

  9. How hearing aids, background noise, and visual cues influence objective listening effort.

    Science.gov (United States)

    Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y

    2013-09-01

    The purpose of this article was to evaluate factors that influence the listening effort experienced when processing speech for people with hearing loss. Specifically, the change in listening effort resulting from introducing hearing aids, visual cues, and background noise was evaluated. An additional exploratory aim was to investigate the possible relationships between the magnitude of listening effort change and individual listeners' working memory capacity, verbal processing speed, or lipreading skill. Twenty-seven participants with bilateral sensorineural hearing loss were fitted with linear behind-the-ear hearing aids and tested using a dual-task paradigm designed to evaluate listening effort. The primary task was monosyllable word recognition and the secondary task was a visual reaction time task. The test conditions varied by hearing aids (unaided, aided), visual cues (auditory-only, auditory-visual), and background noise (present, absent). For all participants, the signal to noise ratio was set individually so that speech recognition performance in noise was approximately 60% in both the auditory-only and auditory-visual conditions. In addition to measures of listening effort, working memory capacity, verbal processing speed, and lipreading ability were measured using the Automated Operational Span Task, a Lexical Decision Task, and the Revised Shortened Utley Lipreading Test, respectively. In general, the effects measured using the objective measure of listening effort were small (~10 msec). Results indicated that background noise increased listening effort, and hearing aids reduced listening effort, while visual cues did not influence listening effort. With regard to the individual variables, verbal processing speed was negatively correlated with hearing aid benefit for listening effort; faster processors were less likely to derive benefit. Working memory capacity, verbal processing speed, and lipreading ability were related to benefit from visual cues. No

  10. An object-oriented framework for medical image registration, fusion, and visualization.

    Science.gov (United States)

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  11. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Science.gov (United States)

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  12. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Directory of Open Access Journals (Sweden)

    Matthew A Gannon

    Full Text Available Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load and visual angle (1.0° or 2.5°. Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  13. The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery

    Science.gov (United States)

    Wolfson, Racheal; Soni, Neil; Shah, Ashish H.; Hosein, Khadil; Sastry, Ananth; Bregy, Amade; Komotar, Ricardo J.

    2015-01-01

    Objective: Homonymous hemianopia due to damage to the optic radiations or visual cortex is a possible consequence of tumor resection involving the temporal or occipital lobes. The purpose of this review is to present and analyze a series of studies regarding the use of awake craniotomy (AC) to decrease visual field deficits following neurosurgery. Materials and Methods: A literature search was performed using the Medline and PubMed databases from 1970 and 2014 that compared various uses of AC other than intraoperative motor/somatosensory/language mapping with a focus on visual field mapping. Results: For the 17 patients analyzed in this study, 14 surgeries resulted in quadrantanopia, 1 in hemianopia, and 2 without visual deficits. Overall, patient satisfaction with AC was high, and AC was a means to reduce surgery-related complications and cost related with the procedure. Conclusion AC is a safe and tolerable procedure that can be used effectively to map optic radiations and the visual cortices in order to preserve visual function during resection of tumors infiltrating the temporal and occipital lobes. In the majority of cases, a homonymous hemianopia was prevented and patients were left with a quadrantanopia that did not interfere with daily function. PMID:26396597

  14. Finding the Correspondence of Audio-Visual Events by Object Manipulation

    Science.gov (United States)

    Nishibori, Kento; Takeuchi, Yoshinori; Matsumoto, Tetsuya; Kudo, Hiroaki; Ohnishi, Noboru

    A human being understands the objects in the environment by integrating information obtained by the senses of sight, hearing and touch. In this integration, active manipulation of objects plays an important role. We propose a method for finding the correspondence of audio-visual events by manipulating an object. The method uses the general grouping rules in Gestalt psychology, i.e. “simultaneity” and “similarity” among motion command, sound onsets and motion of the object in images. In experiments, we used a microphone, a camera, and a robot which has a hand manipulator. The robot grasps an object like a bell and shakes it or grasps an object like a stick and beat a drum in a periodic, or non-periodic motion. Then the object emits periodical/non-periodical events. To create more realistic scenario, we put other event source (a metronome) in the environment. As a result, we had a success rate of 73.8 percent in finding the correspondence between audio-visual events (afferent signal) which are relating to robot motion (efferent signal).

  15. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Transformation-tolerant object recognition in rats revealed by visual priming.

    Science.gov (United States)

    Tafazoli, Sina; Di Filippo, Alessandro; Zoccolan, Davide

    2012-01-04

    Successful use of rodents as models for studying object vision crucially depends on the ability of their visual system to construct representations of visual objects that tolerate (i.e., remain relatively unchanged with respect to) the tremendous changes in object appearance produced, for instance, by size and viewpoint variation. Whether this is the case is still controversial, despite some recent demonstration of transformation-tolerant object recognition in rats. In fact, it remains unknown to what extent such a tolerant recognition has a spontaneous, perceptual basis, or, alternatively, mainly reflects learning of arbitrary associative relations among trained object appearances. In this study, we addressed this question by training rats to categorize a continuum of morph objects resulting from blending two object prototypes. The resulting psychometric curve (reporting the proportion of responses to one prototype along the morph line) served as a reference when, in a second phase of the experiment, either prototype was briefly presented as a prime, immediately before a test morph object. The resulting shift of the psychometric curve showed that recognition became biased toward the identity of the prime. Critically, this bias was observed also when the primes were transformed along a variety of dimensions (i.e., size, position, viewpoint, and their combination) that the animals had never experienced before. These results indicate that rats spontaneously perceive different views/appearances of an object as similar (i.e., as instances of the same object) and argue for the existence of neuronal substrates underlying formation of transformation-tolerant object representations in rats.

  17. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    Science.gov (United States)

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  18. The T?lz Temporal Topography Study: Mapping the visual field across the life span. Part II: Cognitive factors shaping visual field maps

    OpenAIRE

    Poggel, Dorothe A.; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-01-01

    Part I described the topography of visual performance over the life span. Performance decline was explained only partly by deterioration of the optical apparatus. Part II therefore examines the influence of higher visual and cognitive functions. Visual field maps for 95 healthy observers of static perimetry, double-pulse resolution (DPR), reaction times, and contrast thresholds, were correlated with measures of visual attention (alertness, divided attention, spatial cueing), visual search, an...

  19. Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study.

    Directory of Open Access Journals (Sweden)

    Katrin Sippel

    Full Text Available Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii to identify factors influencing the performance, and (iii to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP, and ten healthy-sighted control subjects (GC were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as "passed" or "failed" with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item. Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p < 0.001. Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD area than patients who failed (t-test, p < 0.05. According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a "time-effective" compensatory mechanism during the present supermarket task.

  20. The risk of pedestrian collisions with peripheral visual field loss.

    Science.gov (United States)

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  1. Cultural differences in visual object recognition in 3-year-old children

    Science.gov (United States)

    Kuwabara, Megumi; Smith, Linda B.

    2016-01-01

    Recent research indicates that culture penetrates fundamental processes of perception and cognition (e.g. Nisbett & Miyamoto, 2005). Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (n=128) examined the degree to which nonface object recognition by 3 year olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects in which only 3 diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children and likelihood of recognition increased for U.S., but not Japanese children when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children’s recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576

  2. Cultural differences in visual object recognition in 3-year-old children.

    Science.gov (United States)

    Kuwabara, Megumi; Smith, Linda B

    2016-07-01

    Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    Science.gov (United States)

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  4. Three-dimensional imaging in degraded visual field

    International Nuclear Information System (INIS)

    Oran, A.; Ozdur, I.; Ozharar, S.

    2016-01-01

    Imaging at degraded visual environments is one of the biggest challenges in today’s imaging technologies. Especially military and commercial rotary wing aviation is suffering from impaired visual field in sandy, dusty, marine and snowy environments. For example during landing the rotor churns up the particles and creates dense clouds of highly scattering medium, which limits the vision of the pilot and may result in an uncontrolled landing. The vision in such environments is limited because of the high ratio of scattered photons over the ballistic photons which have the image information. We propose to use optical spatial filtering (OSF) method in order to eliminate the scattered photons and only collect the ballistic photons at the receiver. OSF is widely used in microscopy, to the best of our knowledge this will be the first application of OSF for macroscopic imaging. Our experimental results show that most of the scattered photons are eliminated using the spatial filtering in a highly scattering impaired visual field. The results are compared with a standard broad area photo detector which shows the effectiveness of spatial filtering. (paper)

  5. The role of object categories in hybrid visual and memory search

    Science.gov (United States)

    Cunningham, Corbin A.; Wolfe, Jeremy M.

    2014-01-01

    In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054

  6. Retrospective cues based on object features improve visual working memory performance in older adults.

    Science.gov (United States)

    Gilchrist, Amanda L; Duarte, Audrey; Verhaeghen, Paul

    2016-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were presented either with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an uninformative, neutral cue. Although older adults were less accurate overall, both age groups benefited from the presentation of an informative, feature-based cue relative to a neutral cue. Surprisingly, we also observed differences in the effectiveness of shape versus color cues and their effects upon post-cue memory load. These results suggest that older adults can use top-down attention to remove irrelevant items from visual working memory, provided that task-relevant features function as cues.

  7. Impairments in part-whole representations of objects in two cases of integrative visual agnosia.

    Science.gov (United States)

    Behrmann, Marlene; Williams, Pepper

    2007-10-01

    How complex multipart visual objects are represented perceptually remains a subject of ongoing investigation. One source of evidence that has been used to shed light on this issue comes from the study of individuals who fail to integrate disparate parts of visual objects. This study reports a series of experiments that examine the ability of two such patients with this form of agnosia (integrative agnosia; IA), S.M. and C.R., to discriminate and categorize exemplars of a rich set of novel objects, "Fribbles", whose visual similarity (number of shared parts) and category membership (shared overall shape) can be manipulated. Both patients performed increasingly poorly as the number of parts required for differentiating one Fribble from another increased. Both patients were also impaired at determining when two Fribbles belonged in the same category, a process that relies on abstracting spatial relations between parts. C.R., the less impaired of the two, but not S.M., eventually learned to categorize the Fribbles but required substantially more training than normal perceivers. S.M.'s failure is not attributable to a problem in learning to use a label for identification nor is it obviously attributable to a visual memory deficit. Rather, the findings indicate that, although the patients may be able to represent a small number of parts independently, in order to represent multipart images, the parts need to be integrated or chunked into a coherent whole. It is this integrative process that is impaired in IA and appears to play a critical role in the normal object recognition of complex images.

  8. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture

    OpenAIRE

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-01-01

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an ?irrelevant-change distracting effect?, where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants? processing manner, lea...

  9. Visual marking and change blindness : moving occluders and transient masks neutralize shape changes to ignored objects

    OpenAIRE

    Watson, Derrick G.; Kunar, Melina A.

    2010-01-01

    Visual search efficiency improves by presenting (previewing) one set of distractors before the target and remaining distractor items (D. G. Watson & G. W. Humphreys, 1997). Previous work has shown that this preview benefit is abolished if the old items change their shape when the new items are added (e.g., D. G. Watson & G. W. Humphreys, 2002). Here we present 5 experiments that examined whether such object changes are still effective in recapturing attention if the changes occur while the pr...

  10. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    Science.gov (United States)

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enhancement and Suppression in the Visual Field under Perceptual Load

    Directory of Open Access Journals (Sweden)

    Nathan A Parks

    2013-05-01

    Full Text Available The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task – greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs in conjunction with time-domain event-related potentials (ERPs to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2°, 6°, or 11° during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3Hz was attenuated under high perceptual load (relative to low load at the most proximal (2° eccentricity but not at more eccentric locations (6˚ or 11˚. Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  12. Visual Objects and Universal Meanings: AIDS Posters and the Politics of Globalisation and History

    Science.gov (United States)

    STEIN, CLAUDIA; COOTER, ROGER

    2011-01-01

    Drawing on recent visual and spatial turns in history writing, this paper considers AIDS posters from the perspective of their museum ‘afterlife’ as collected material objects. Museum spaces serve changing political and epistemological projects, and the visual objects they house are not immune from them. A recent globally themed exhibition of AIDS posters at an arts and crafts museum in Hamburg is cited in illustration. The exhibition also serves to draw attention to institutional continuities in collecting agendas. Revealed, contrary to postmodernist expectations, is how today’s application of aesthetic display for the purpose of making ‘global connections’ does not radically break with the virtues and morals attached to the visual at the end of the nineteenth century. The historicisation of such objects needs to take into account this complicated mix of change and continuity in aesthetic concepts and political inscriptions. Otherwise, historians fall prey to seductive aesthetics without being aware of the politics of them. This article submits that aesthetics is politics. PMID:23752866

  13. Sex differences in visual realism in drawings of animate and inanimate objects.

    Science.gov (United States)

    Lange-Küttner, Chris

    2011-10-01

    Sex differences in a visually realistic drawing style were examined using the model of a curvy cup as an inanimate object, and the Draw-A-Person test (DAP) as a task involving animate objects, with 7- to 12-year-old children (N = 60; 30 boys). Accurately drawing the internal detail of the cup--indicating interest in a depth feature--was not dependent on age in boys, but only in girls, as 7-year-old boys were already engaging with this cup feature. However, the age effect of the correct omission of an occluded handle--indicating a transition from realism in terms of function (intellectual realism) to one of appearance (visual realism)--was the same for both sexes. The correct omission of the occluded handle was correlated with bilingualism and drawing the internal cup detail in girls, but with drawing the silhouette contour of the cup in boys. Because a figure's silhouette enables object identification from a distance, while perception of detail and language occurs in nearer space, it was concluded that boys and girls may differ in the way they conceptualize depth in pictorial space, rather than in visual realism as such.

  14. Studying the added value of visual attention in objective image quality metrics based on eye movement data

    NARCIS (Netherlands)

    Liu, H.; Heynderickx, I.E.J.

    2009-01-01

    Current research on image quality assessment tends to include visual attention in objective metrics to further enhance their performance. A variety of computational models of visual attention are implemented in different metrics, but their accuracy in representing human visual attention is not fully

  15. Object-Based Visual Attention in 8-Month-Old Infants: Evidence from an Eye-Tracking Study

    Science.gov (United States)

    Bulf, Hermann; Valenza, Eloisa

    2013-01-01

    Visual attention is one of the infant's primary tools for gathering relevant information from the environment for further processing and learning. The space-based component of visual attention in infants has been widely investigated; however, the object-based component of visual attention has received scarce interest. This scarcity is…

  16. The Role of Sensory-Motor Information in Object Recognition: Evidence from Category-Specific Visual Agnosia

    Science.gov (United States)

    Wolk, D.A.; Coslett, H.B.; Glosser, G.

    2005-01-01

    The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…

  17. Short-term storage capacity for visual objects depends on expertise

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik; Kyllingsbæk, Søren

    2012-01-01

    Visual short-term memory (VSTM) has traditionally been thought to have a very limited capacity of around 3–4 objects. However, recently several researchers have argued that VSTM may be limited in the amount of information retained rather than by a specific number of objects. Here we present a study...... of the effect of long-term practice on VSTM capacity. We investigated four age groups ranging from pre-school children to adults and measured the change in VSTM capacity for letters and pictures. We found a clear increase in VSTM capacity for letters with age but not for pictures. Our results indicate that VSTM...

  18. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects

    Science.gov (United States)

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2008-01-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object-decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object-decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalize to priming of unfamiliar visual objects. Implications for theoretical models of object-decision priming are discussed. PMID:18821167

  19. A Prospective Profile of Visual Field Loss following Stroke: Prevalence, Type, Rehabilitation, and Outcome

    Directory of Open Access Journals (Sweden)

    Fiona J. Rowe

    2013-01-01

    Full Text Available Aims. To profile site of stroke/cerebrovascular accident, type and extent of field loss, treatment options, and outcome. Methods. Prospective multicentre cohort trial. Standardised referral and investigation protocol of visual parameters. Results. 915 patients were recruited with a mean age of 69 years (SD 14. 479 patients (52% had visual field loss. 51 patients (10% had no visual symptoms. Almost half of symptomatic patients (n=226 complained only of visual field loss: almost half (n=226 also had reading difficulty, blurred vision, diplopia, and perceptual difficulties. 31% (n=151 had visual field loss as their only visual impairment: 69% (n=328 had low vision, eye movement deficits, or visual perceptual difficulties. Occipital and parietal lobe strokes most commonly caused visual field loss. Treatment options included visual search training, visual awareness, typoscopes, substitutive prisms, low vision aids, refraction, and occlusive patches. At followup 15 patients (7.5% had full recovery, 78 (39% had improvement, and 104 (52% had no recovery. Two patients (1% had further decline of visual field. Patients with visual field loss had lower quality of life scores than stroke patients without visual impairment. Conclusions. Stroke survivors with visual field loss require assessment to accurately define type and extent of loss, diagnose coexistent visual impairments, and offer targeted treatment.

  20. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    Science.gov (United States)

    Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104

  1. The magnetic source imaging of pattern reversal stimuli of various visual fields

    International Nuclear Information System (INIS)

    Zhang Shuqian; Ye Yufang; Sun Jilin; Wu Jie; Jia Xiuchuan; Li Sumin; Wu Jing; Zhao Huadong; Liu Lianxiang; Wu Yujin

    2006-01-01

    Objective: To have acknowledgement of characteristics of normal volunteers visual evoked fields about full field, vertical half field and quadrant field and their dipole location by magnetoencephalography. Methods: The visual evoked fields of full field, vertical half field and quadrant field were detected with 13 subjects. The latency, dipole strength and dipoles' location on x, y and z axis were analyzed. The exact locations of the dipoles were detected by overlapping on MR images. Results: The isocontour map of M100 of full field stimulation demonstrated two separate sources. The two M100 dipoles had same peak latency and different strength. And for vertical half field and quadrant field stimulation, evoked magnetic fields of M100 distributed contralateral to the stimulated side. The M100 dipoles on the z-axis to the lower quadrant field stimulation were located significantly higher than those to the upper quadrant field stimulation. The Z value median of left upper quadrant was 49.6 (35.1-72.8) mm. The Z value median of left lower quadrant was 53.5 (44.8-76.3) mm. The different of two left quadrant medians, 3.9 mm, was significant (P<0.05). The Z value median of right upper quadrant was 40.0 (34.8-44.6) mm. The Z value median of right lower quadrant was 53.8 (40.6-61.3) mm. The different of two right quadrant medians, 13.8 mm, was also significant (P<0.05). Although each of the visual evoked fields waveforms and dipole locations demonstrated large intra- and inter-individual variations, the dipole of M100 was mainly located at area Brodmann 17, which includes superior lingual gyrus, posterior cuneus-lingual gyrus and inferior cuneus gyms. Conclusion: The M100 of visual evoked fields of pattern reversal stimulation is mainly generated by the neurons of striate cortex of contralateral to the stimulated side, which is at the lateral bottom of the calcarine fissure. (authors)

  2. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    Science.gov (United States)

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  3. Visual field defects after temporal lobe resection for epilepsy

    DEFF Research Database (Denmark)

    Steensberg, Alvilda T; Olsen, Ane Sophie; Litman, Minna

    2018-01-01

    PURPOSE: To determine visual field defects (VFDs) using methods of varying complexity and compare results with subjective symptoms in a population of newly operated temporal lobe epilepsy patients. METHODS: Forty patients were included in the study. Two patients failed to perform VFD testing...... symptoms were only reported by 28% of the patients with a VFD and in two of eight (sensitivity=25%) with a severe VFD. Most patients (86%) considered VFD information mandatory. CONCLUSION: VFD continue to be a frequent adverse event after epilepsy surgery in the medial temporal lobe and may affect...

  4. How does glaucoma look?: patient perception of visual field loss.

    Science.gov (United States)

    Crabb, David P; Smith, Nicholas D; Glen, Fiona C; Burton, Robyn; Garway-Heath, David F

    2013-06-01

    To explore patient perception of vision loss in glaucoma and, specifically, to test the hypothesis that patients do not recognize their impairment as a black tunnel effect or as black patches in their field of view. Clinic-based cross-sectional study. Fifty patients (age range, 52-82 years) with visual acuity better than 20/30 and with a range of glaucomatous visual field (VF) defects in both eyes, excluding those with very advanced disease (perimetrically blind). Participants underwent monocular VF testing in both eyes using a Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA; 24-2 Swedish interactive threshold algorithm standard tests) and other tests of visual function. Participants took part in a recorded interview during which they were asked if they were aware of their VF loss; if so, there were encouraged to describe it in their own words. Participants were shown 6 images modified in a variety of ways on a computer monitor and were asked to select the image that most closely represented their perception of their VF loss. Forced choice of an image best representing glaucomatous vision impairment. Participants had a range of VF defect severity: average HFA mean deviation was -8.7 dB (standard deviation [SD], 5.8 dB) and -10.5 dB (SD, 7.1 dB) in the right and left eyes, respectively. Thirteen patients (26%; 95% confidence interval [CI], 15%-40%) reported being completely unaware of their vision loss. None of the patients chose the images with a distinct black tunnel effect or black patches. Only 2 patients (4%; 95% CI, 0%-14%) chose the image with a tunnel effect with blurred edges. An image depicting blurred patches and another with missing patches was chosen by 54% (95% CI, 39%-68%) and 16% (95% CI, 7%-29%) of the patients, respectively. Content analysis of the transcripts from the recorded interviews indicated a frequent use of descriptors of visual symptoms associated with reported blur and missing features. Patients with glaucoma do not perceive

  5. Emotional facial expression detection in the peripheral visual field.

    Directory of Open Access Journals (Sweden)

    Dimitri J Bayle

    Full Text Available BACKGROUND: In everyday life, signals of danger, such as aversive facial expressions, usually appear in the peripheral visual field. Although facial expression processing in central vision has been extensively studied, this processing in peripheral vision has been poorly studied. METHODOLOGY/PRINCIPAL FINDINGS: Using behavioral measures, we explored the human ability to detect fear and disgust vs. neutral expressions and compared it to the ability to discriminate between genders at eccentricities up to 40°. Responses were faster for the detection of emotion compared to gender. Emotion was detected from fearful faces up to 40° of eccentricity. CONCLUSIONS: Our results demonstrate the human ability to detect facial expressions presented in the far periphery up to 40° of eccentricity. The increasing advantage of emotion compared to gender processing with increasing eccentricity might reflect a major implication of the magnocellular visual pathway in facial expression processing. This advantage may suggest that emotion detection, relative to gender identification, is less impacted by visual acuity and within-face crowding in the periphery. These results are consistent with specific and automatic processing of danger-related information, which may drive attention to those messages and allow for a fast behavioral reaction.

  6. Effect of word familiarity on visually evoked magnetic fields.

    Science.gov (United States)

    Harada, N; Iwaki, S; Nakagawa, S; Yamaguchi, M; Tonoike, M

    2004-11-30

    This study investigated the effect of word familiarity of visual stimuli on the word recognizing function of the human brain. Word familiarity is an index of the relative ease of word perception, and is characterized by facilitation and accuracy on word recognition. We studied the effect of word familiarity, using "Hiragana" (phonetic characters in Japanese orthography) characters as visual stimuli, on the elicitation of visually evoked magnetic fields with a word-naming task. The words were selected from a database of lexical properties of Japanese. The four "Hiragana" characters used were grouped and presented in 4 classes of degree of familiarity. The three components were observed in averaged waveforms of the root mean square (RMS) value on latencies at about 100 ms, 150 ms and 220 ms. The RMS value of the 220 ms component showed a significant positive correlation (F=(3/36); 5.501; p=0.035) with the value of familiarity. ECDs of the 220 ms component were observed in the intraparietal sulcus (IPS). Increments in the RMS value of the 220 ms component, which might reflect ideographical word recognition, retrieving "as a whole" were enhanced with increments of the value of familiarity. The interaction of characters, which increased with the value of familiarity, might function "as a large symbol"; and enhance a "pop-out" function with an escaping character inhibiting other characters and enhancing the segmentation of the character (as a figure) from the ground.

  7. Spatial constancy of attention across eye movements is mediated by the presence of visual objects.

    Science.gov (United States)

    Lisi, Matteo; Cavanagh, Patrick; Zorzi, Marco

    2015-05-01

    Recent studies have shown that attentional facilitation lingers at the retinotopic coordinates of a previously attended position after an eye movement. These results are intriguing, because the retinotopic location becomes behaviorally irrelevant once the eyes have moved. Critically, in these studies participants were asked to maintain attention on a blank location of the screen. In the present study, we examined whether the continuing presence of a visual object at the cued location could affect the allocation of attention across eye movements. We used a trans-saccadic cueing paradigm in which the relevant positions could be defined or not by visual objects (simple square outlines). We find an attentional benefit at the spatiotopic location of the cue only when the object (the placeholder) has been continuously present at that location. We conclude that the presence of an object at the attended location is a critical factor for the maintenance of spatial constancy of attention across eye movements, a finding that helps to reconcile previous conflicting results.

  8. Efficient Cross-Modal Transfer of Shape Information in Visual and Haptic Object Categorization

    Directory of Open Access Journals (Sweden)

    Nina Gaissert

    2011-10-01

    Full Text Available Categorization has traditionally been studied in the visual domain with only a few studies focusing on the abilities of the haptic system in object categorization. During the first years of development, however, touch and vision are closely coupled in the exploratory procedures used by the infant to gather information about objects. Here, we investigate how well shape information can be transferred between those two modalities in a categorization task. Our stimuli consisted of amoeba-like objects that were parametrically morphed in well-defined steps. Participants explored the objects in a categorization task either visually or haptically. Interestingly, both modalities led to similar categorization behavior suggesting that similar shape processing might occur in vision and haptics. Next, participants received training on specific categories in one of the two modalities. As would be expected, training increased performance in the trained modality; however, we also found significant transfer of training to the other, untrained modality after only relatively few training trials. Taken together, our results demonstrate that complex shape information can be transferred efficiently across the two modalities, which speaks in favor of multisensory, higher-level representations of shape.

  9. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  10. Evidence of gradual loss of precision for simple features and complex objects in visual working memory.

    Science.gov (United States)

    Rademaker, Rosanne L; Park, Young Eun; Sack, Alexander T; Tong, Frank

    2018-03-01

    Previous studies have suggested that people can maintain prioritized items in visual working memory for many seconds, with negligible loss of information over time. Such findings imply that working memory representations are robust to the potential contaminating effects of internal noise. However, once visual information is encoded into working memory, one might expect it to inevitably begin degrading over time, as this actively maintained information is no longer tethered to the original perceptual input. Here, we examined this issue by evaluating working memory for single central presentations of an oriented grating, color patch, or face stimulus, across a range of delay periods (1, 3, 6, or 12 s). We applied a mixture-model analysis to distinguish changes in memory precision over time from changes in the frequency of outlier responses that resemble random guesses. For all 3 types of stimuli, participants exhibited a clear and consistent decline in the precision of working memory as a function of temporal delay, as well as a modest increase in guessing-related responses for colored patches and face stimuli. We observed a similar loss of precision over time while controlling for temporal distinctiveness. Our results demonstrate that visual working memory is far from lossless: while basic visual features and complex objects can be maintained in a quite stable manner over time, these representations are still subject to noise accumulation and complete termination. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Visual search for features and conjunctions following declines in the useful field of view.

    Science.gov (United States)

    Cosman, Joshua D; Lees, Monica N; Lee, John D; Rizzo, Matthew; Vecera, Shaun P

    2012-01-01

    BACKGROUND/STUDY CONTEXT: Typical measures for assessing the useful field (UFOV) of view involve many components of attention. The objective of the current experiment was to examine differences in visual search efficiency for older individuals with and without UFOV impairment. The authors used a computerized screening instrument to assess the useful field of view and to characterize participants as having an impaired or normal UFOV. Participants also performed two visual search tasks, a feature search (e.g., search for a green target among red distractors) or a conjunction search (e.g., a green target with a gap on its left or right side among red distractors with gaps on the left or right and green distractors with gaps on the top or bottom). Visual search performance did not differ between UFOV impaired and unimpaired individuals when searching for a basic feature. However, search efficiency was lower for impaired individuals than unimpaired individuals when searching for a conjunction of features. The results suggest that UFOV decline in normal aging is associated with conjunction search. This finding suggests that the underlying cause of UFOV decline may arise from an overall decline in attentional efficiency. Because the useful field of view is a reliable predictor of driving safety, the results suggest that decline in the everyday visual behavior of older adults might arise from attentional declines.

  12. Coding of visual object features and feature conjunctions in the human brain.

    Science.gov (United States)

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  13. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  14. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects.

    Science.gov (United States)

    Ihssen, Niklas; Linden, David E J; Miller, Claire E; Shapiro, Kimron L

    2015-08-01

    Recent research has shown that visual short-term memory (VSTM) can substantially be improved when the to-be-remembered objects are split in 2 half-arrays (i.e., sequenced) or the entire array is shown twice (i.e., repeated), rather than presented simultaneously. Here we investigate the hypothesis that sequencing and repeating displays overcomes attentional "bottlenecks" during simultaneous encoding. Using functional magnetic resonance imaging, we show that sequencing and repeating displays increased brain activation in extrastriate and primary visual areas, relative to simultaneous displays (Study 1). Passively viewing identical stimuli did not increase visual activation (Study 2), ruling out a physical confound. Importantly, areas of the frontoparietal attention network showed increased activation in repetition but not in sequential trials. This dissociation suggests that repeating a display increases attentional control by allowing attention to be reallocated in a second encoding episode. In contrast, sequencing the array poses fewer demands on control, with competition from nonattended objects being reduced by the half-arrays. This idea was corroborated by a third study in which we found optimal VSTM for sequential displays minimizing attentional demands. Importantly these results provide support within the same experimental paradigm for the role of stimulus-driven and top-down attentional control aspects of biased competition theory in setting constraints on VSTM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Eccentric binaries of compact objects in strong-field gravity

    International Nuclear Information System (INIS)

    Gold, Roman

    2011-01-01

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on to the

  16. Eccentric binaries of compact objects in strong-field gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman

    2011-09-27

    In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on

  17. Visual field changes after cataract extraction: the AGIS experience.

    Science.gov (United States)

    Koucheki, Behrooz; Nouri-Mahdavi, Kouros; Patel, Gitane; Gaasterland, Douglas; Caprioli, Joseph

    2004-12-01

    To test the hypothesis that cataract extraction in glaucomatous eyes improves overall sensitivity of visual function without affecting the size or depth of glaucomatous scotomas. Experimental study with no control group. One hundred fifty-eight eyes (of 140 patients) from the Advanced Glaucoma Intervention Study with at least two reliable visual fields within a year both before and after cataract surgery were included. Average mean deviation (MD), pattern standard deviation (PSD), and corrected pattern standard deviation (CPSD) were compared before and after cataract extraction. To evaluate changes in scotoma size, the number of abnormal points (P < .05) on the pattern deviation plot was compared before and after surgery. We described an index ("scotoma depth index") to investigate changes of scotoma depth after surgery. Mean values for MD, PSD, and CPSD were -13.2, 6.4, and 5.9 dB before and -11.9, 6.8, and 6.2 dB after cataract surgery (P < or = .001 for all comparisons). Mean (+/- SD) number of abnormal points on pattern deviation plot was 26.7 +/- 9.4 and 27.5 +/- 9.0 before and after cataract surgery, respectively (P = .02). Scotoma depth index did not change after cataract extraction (-19.3 vs -19.2 dB, P = .90). Cataract extraction caused generalized improvement of the visual field, which was most marked in eyes with less advanced glaucomatous damage. Although the enlargement of scotomas was statistically significant, it was not clinically meaningful. No improvement of sensitivity was observed in the deepest part of the scotomas.

  18. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    Science.gov (United States)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  19. A novel no-reference objective stereoscopic video quality assessment method based on visual saliency analysis

    Science.gov (United States)

    Yang, Xinyan; Zhao, Wei; Ye, Long; Zhang, Qin

    2017-07-01

    This paper proposes a no-reference objective stereoscopic video quality assessment method with the motivation that making the effect of objective experiments close to that of subjective way. We believe that the image regions with different visual salient degree should not have the same weights when designing an assessment metric. Therefore, we firstly use GBVS algorithm to each frame pairs and separate both the left and right viewing images into the regions with strong, general and week saliency. Besides, local feature information like blockiness, zero-crossing and depth are extracted and combined with a mathematical model to calculate a quality assessment score. Regions with different salient degree are assigned with different weights in the mathematical model. Experiment results demonstrate the superiority of our method compared with the existed state-of-the-art no-reference objective Stereoscopic video quality assessment methods.

  20. The Improved SVM Multi Objects' Identification For the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Min Wang

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  1. The Improved SVM Multi Objects's Identification for the Uncalibrated Visual Servoing

    Directory of Open Access Journals (Sweden)

    Xiangjin Zeng

    2009-03-01

    Full Text Available For the assembly of multi micro objects in micromanipulation, the first task is to identify multi micro parts. We present an improved support vector machine algorithm, which employs invariant moments based edge extraction to obtain feature attribute and then presents a heuristic attribute reduction algorithm based on rough set's discernibility matrix to obtain attribute reduction, with using support vector machine to identify and classify the targets. The visual servoing is the second task. For avoiding the complicated calibration of intrinsic parameter of camera, We apply an improved broyden's method to estimate the image jacobian matrix online, which employs chebyshev polynomial to construct a cost function to approximate the optimization value, obtaining a fast convergence for online estimation. Last, a two DOF visual controller based fuzzy adaptive PD control law for micro-manipulation is presented. The experiments of micro-assembly of micro parts in microscopes confirm that the proposed methods are effective and feasible.

  2. Effect of Colour of Object on Simple Visual Reaction Time in Normal Subjects

    Directory of Open Access Journals (Sweden)

    Sunita B. Kalyanshetti

    2014-01-01

    Full Text Available The measure of simple reaction time has been used to evaluate the processing speed of CNS and the co-ordination between the sensory and motor systems. As the reaction time is influenced by different factors; the impact of colour of objects in modulating the reaction time has been investigated in this study. 200 healthy volunteers (female gender 100 and male gender100 of age group 18-25 yrs were included as subjects. The subjects were presented with two visual stimuli viz; red and green light by using an electronic response analyzer. Paired‘t’ test for comparison of visual reaction time for red and green colour in male gender shows p value<0.05 whereas in female gender shows p<0.001. It was observed that response latency for red colour was lesser than that of green colour which can be explained on the basis of trichromatic theory.

  3. The role of object categories in hybrid visual and memory search.

    Science.gov (United States)

    Cunningham, Corbin A; Wolfe, Jeremy M

    2014-08-01

    In hybrid search, observers search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that response times (RTs) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g., this apple in this pose). Typical real-world tasks involve more broadly defined sets of stimuli (e.g., any "apple" or, perhaps, "fruit"). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, observers searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Structure from the chaos: magnetic fields of cosmic objects

    Energy Technology Data Exchange (ETDEWEB)

    Krause, F

    1987-01-01

    The study deals with phenomenological and theoretical models in order to explain the existence of cosmic magnetic fields. Following aspects are considered: non-linear recursions, the theory of chaotic motions, turbulence, convection, the turbulent dynamo theory and magnetohydrodynamics. In the frame of these model assumptions it is tried to explain the causes of the solar activity cycle and the geomagnetic field.

  5. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  6. Relationship between retinal distance and object field angles for finite schematic eyes.

    Science.gov (United States)

    Suheimat, Marwan; Zhu, Hai-Feng; Lambert, Andrew; Atchison, David A

    2016-07-01

    Retinal anatomical studies have used the Drasdo & Fowler three-refracting surface schematic eye to convert between retinal distances and object field angles. We compared its performance at this task with those of more sophisticated four-refracting surface schematic eyes. Raytracing was performed for Drasdo & Fowler, Lotmar, Navarro, Liou & Brennan, Kooijman and Atchison schematic eyes, and some of their variants. The Drasdo & Fowler eye gives a greater rate of change of object field angle with retinal distance at the retinal centre of about 5% than the other schematic eyes. This rate of change also increases much more quickly into the peripheral retina for the Drasdo & Fowler eye than for the other eyes. The reason for these differences is only that the Drasdo & Fowler eye is shorter than the other eyes. The relationship between retinal distance and visual field angle appears robust to changes in retinal radius of curvature when the retina is spherical. The retinal asphericity of Kooijman and Atchison eyes appears to play a role beyond 14 mm (~50°). Changing the length of the Drasdo & Fowler eye, to match those of the four-refracting surface schematic eyes, gives similar relationships between retinal distance and object field angle up to a retinal distance of approximately 14 mm (~50°). The relationship will change with refractive error as this is related to axial length and to retinal shape, and this should be taken into consideration for accurate conversions. For distances and angles beyond 14 mm and ~50°, retinal shape should be taken into account. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  7. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  8. Holding an object one is looking at : Kinesthetic information on the object's distance does not improve visual judgments of its size

    NARCIS (Netherlands)

    Brenner, Eli; Van Damme, Wim J.M.; Smeets, Jeroen B.J.

    1997-01-01

    Visual judgments of distance are often inaccurate. Nevertheless, information on distance must be procured if retinal image size is to be used to judge an object's dimensions. In the present study, we examined whether kinesthetic information about an object's distance - based on the posture of the

  9. Spike synchrony reveals emergence of proto-objects in visual cortex.

    Science.gov (United States)

    Martin, Anne B; von der Heydt, Rüdiger

    2015-04-29

    Neurons at early stages of the visual cortex signal elemental features, such as pieces of contour, but how these signals are organized into perceptual objects is unclear. Theories have proposed that spiking synchrony between these neurons encodes how features are grouped (binding-by-synchrony), but recent studies did not find the predicted increase in synchrony with binding. Here we propose that features are grouped to "proto-objects" by intrinsic feedback circuits that enhance the responses of the participating feature neurons. This hypothesis predicts synchrony exclusively between feature neurons that receive feedback from the same grouping circuit. We recorded from neurons in macaque visual cortex and used border-ownership selectivity, an intrinsic property of the neurons, to infer whether or not two neurons are part of the same grouping circuit. We found that binding produced synchrony between same-circuit neurons, but not between other pairs of neurons, as predicted by the grouping hypothesis. In a selective attention task, synchrony emerged with ignored as well as attended objects, and higher synchrony was associated with faster behavioral responses, as would be expected from early grouping mechanisms that provide the structure for object-based processing. Thus, synchrony could be produced by automatic activation of intrinsic grouping circuits. However, the binding-related elevation of synchrony was weak compared with its random fluctuations, arguing against synchrony as a code for binding. In contrast, feedback grouping circuits encode binding by modulating the response strength of related feature neurons. Thus, our results suggest a novel coding mechanism that might underlie the proto-objects of perception. Copyright © 2015 the authors 0270-6474/15/356860-11$15.00/0.

  10. Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study.

    Science.gov (United States)

    Sippel, Katrin; Kasneci, Enkelejda; Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as "passed" or "failed" with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a "time-effective" compensatory mechanism during the present supermarket task.

  11. DEEP-SEE: Joint Object Detection, Tracking and Recognition with Application to Visually Impaired Navigational Assistance

    Directory of Open Access Journals (Sweden)

    Ruxandra Tapu

    2017-10-01

    Full Text Available In this paper, we introduce the so-called DEEP-SEE framework that jointly exploits computer vision algorithms and deep convolutional neural networks (CNNs to detect, track and recognize in real time objects encountered during navigation in the outdoor environment. A first feature concerns an object detection technique designed to localize both static and dynamic objects without any a priori knowledge about their position, type or shape. The methodological core of the proposed approach relies on a novel object tracking method based on two convolutional neural networks trained offline. The key principle consists of alternating between tracking using motion information and predicting the object location in time based on visual similarity. The validation of the tracking technique is performed on standard benchmark VOT datasets, and shows that the proposed approach returns state-of-the-art results while minimizing the computational complexity. Then, the DEEP-SEE framework is integrated into a novel assistive device, designed to improve cognition of VI people and to increase their safety when navigating in crowded urban scenes. The validation of our assistive device is performed on a video dataset with 30 elements acquired with the help of VI users. The proposed system shows high accuracy (>90% and robustness (>90% scores regardless on the scene dynamics.

  12. Real-world visual statistics and infants' first-learned object names.

    Science.gov (United States)

    Clerkin, Elizabeth M; Hart, Elizabeth; Rehg, James M; Yu, Chen; Smith, Linda B

    2017-01-05

    We offer a new solution to the unsolved problem of how infants break into word learning based on the visual statistics of everyday infant-perspective scenes. Images from head camera video captured by 8 1/2 to 10 1/2 month-old infants at 147 at-home mealtime events were analysed for the objects in view. The images were found to be highly cluttered with many different objects in view. However, the frequency distribution of object categories was extremely right skewed such that a very small set of objects was pervasively present-a fact that may substantially reduce the problem of referential ambiguity. The statistical structure of objects in these infant egocentric scenes differs markedly from that in the training sets used in computational models and in experiments on statistical word-referent learning. Therefore, the results also indicate a need to re-examine current explanations of how infants break into word learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  13. Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.

    Science.gov (United States)

    Schuster, Stefan; Strauss, Roland; Götz, Karl G

    2002-09-17

    Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.

  14. Situational Awareness Applied to Geology Field Mapping using Integration of Semantic Data and Visualization Techniques

    Science.gov (United States)

    Houser, P. I. Q.

    2017-12-01

    21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct

  15. The Association of Glaucomatous Visual Field Loss and Balance

    Science.gov (United States)

    de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.

    2017-01-01

    Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562

  16. Disinhibition outside receptive fields in the visual cortex.

    Science.gov (United States)

    Walker, Gary A; Ohzawa, Izumi; Freeman, Ralph D

    2002-07-01

    By definition, the region outside the classical receptive field (CRF) of a neuron in the visual cortex does not directly activate the cell. However, the response of a neuron can be influenced by stimulation of the surrounding area. In previous work, we showed that this influence is mainly suppressive and that it is generally limited to a local region outside the CRF. In the experiments reported here, we investigate the mechanisms of the suppressive effect. Our approach is to find the position of a grating patch that is most effective in suppressing the response of a cell. We then use a masking stimulus at different contrasts over the grating patch in an attempt to disinhibit the response. We find that suppressive effects may be partially or completely reversed by use of the masking stimulus. This disinhibition suggests that effects from outside the CRF may be local. Although they do not necessarily underlie the perceptual analysis of a figure-ground visual scene, they may provide a substrate for this process.

  17. Integrating spherical panoramas and maps for visualization of cultural heritage objects using virtual reality technology

    NARCIS (Netherlands)

    Koeva, M.N.; Luleva, M.I.; Maldjanski, P.

    2017-01-01

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using

  18. The difference in subjective and objective complexity in the visual short-term memory

    DEFF Research Database (Denmark)

    Dall, Jonas Olsen; Sørensen, Thomas Alrik

    Several studies discuss the influence of complexity on the visual short term memory; some have demonstrated that short-term memory is surprisingly stable regardless of content (e.g. Luck & Vogel, 1997) where others have shown that memory can be influenced by the complexity of stimulus (e.g. Alvarez...... characters. On the contrary expertise or word frequency may reflect what could be termed subjective complexity, as this relate directly to the individual mental categories established. This study will be able to uncover more details on how we should define complexity of objects to be encoded into short-term....... & Cavanagh, 2004). But the term complexity is often not clearly defined. Sørensen (2008; see also Dall, Katsumi, & Sørensen, 2016) suggested that complexity can be related to two different types; objective and subjective complexity. This distinction is supported by a number of studies on the influence...

  19. Quantifying the Time Course of Visual Object Processing Using ERPs: It's Time to Up the Game

    Science.gov (United States)

    Rousselet, Guillaume A.; Pernet, Cyril R.

    2011-01-01

    Hundreds of studies have investigated the early ERPs to faces and objects using scalp and intracranial recordings. The vast majority of these studies have used uncontrolled stimuli, inappropriate designs, peak measurements, poor figures, and poor inferential and descriptive group statistics. These problems, together with a tendency to discuss any effect p  condition B. Here we describe the main limitations of face and object ERP research and suggest alternative strategies to move forward. The problems plague intracranial and surface ERP studies, but also studies using more advanced techniques – e.g., source space analyses and measurements of network dynamics, as well as many behavioral, fMRI, TMS, and LFP studies. In essence, it is time to stop amassing binary results and start using single-trial analyses to build models of visual perception. PMID:21779262

  20. Foundations of computer vision computational geometry, visual image structures and object shape detection

    CERN Document Server

    Peters, James F

    2017-01-01

    This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of C...

  1. Iterative Object Localization Algorithm Using Visual Images with a Reference Coordinate

    Directory of Open Access Journals (Sweden)

    We-Duke Cho

    2008-09-01

    Full Text Available We present a simplified algorithm for localizing an object using multiple visual images that are obtained from widely used digital imaging devices. We use a parallel projection model which supports both zooming and panning of the imaging devices. Our proposed algorithm is based on a virtual viewable plane for creating a relationship between an object position and a reference coordinate. The reference point is obtained from a rough estimate which may be obtained from the preestimation process. The algorithm minimizes localization error through the iterative process with relatively low-computational complexity. In addition, nonlinearity distortion of the digital image devices is compensated during the iterative process. Finally, the performances of several scenarios are evaluated and analyzed in both indoor and outdoor environments.

  2. 38 CFR 4.76a - Computation of average concentric contraction of visual fields.

    Science.gov (United States)

    2010-07-01

    ... concentric contraction of visual fields. 4.76a Section 4.76a Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Organs of Special Sense § 4.76a Computation of average concentric contraction of visual fields. Table III—Normal Visual...

  3. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  4. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    Science.gov (United States)

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016

  5. Distributed dendritic processing facilitates object detection: a computational analysis on the visual system of the fly.

    Science.gov (United States)

    Hennig, Patrick; Möller, Ralf; Egelhaaf, Martin

    2008-08-28

    Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood. We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation. Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of

  6. The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.

    Science.gov (United States)

    Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc

    2009-05-06

    The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.

  7. A bio-inspired method and system for visual object-based attention and segmentation

    Science.gov (United States)

    Huber, David J.; Khosla, Deepak

    2010-04-01

    This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.

  8. Object-based implicit learning in visual search: perceptual segmentation constrains contextual cueing.

    Science.gov (United States)

    Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian

    2013-07-09

    In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.

  9. Visual field bias in hearing and deaf adults during judgments of facial expression and identity.

    Directory of Open Access Journals (Sweden)

    Susan M Letourneau

    2013-06-01

    Full Text Available The dominance of the right hemisphere during face perception is associated with more accurate judgments of faces presented in the left rather than the right visual field. Previous research suggests that the left visual field bias typically observed during face perception tasks is reduced in deaf adults who use sign language, for whom facial expressions convey important linguistic information. The current study examined whether visual field biases were altered in deaf adults whenever they viewed expressive faces, or only when attention was explicitly directed to expression. Twelve hearing adults and 12 deaf signers were trained to recognize a set of novel faces posing various emotional expressions. They then judged the familiarity or emotion of faces presented in the left or right visual field, or both visual fields simultaneously. The same familiar and unfamiliar faces posing neutral and happy expressions were presented in the two tasks. Both groups were most accurate when faces were presented in both visual fields. Across tasks, the hearing group demonstrated a bias toward the left visual field. In contrast, the deaf group showed a bias toward the left visual field during identity judgments that shifted marginally toward the right visual field during emotion judgments. Two secondary conditions tested whether these effects generalized to angry faces and famous faces and similar effects were observed. These results suggest that attention to facial expression, not merely the presence of emotional expression, reduces a typical left visual field bias for face processing in deaf signers.

  10. Resonance properties of the biological objects in the RF field

    International Nuclear Information System (INIS)

    Cocherova, E; Kupec, P; Stofanik, V

    2011-01-01

    Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called r esonance frequency . The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.

  11. Visual Fields at Presentation and after Trans-sphenoidal Resection of Pituitary Adenomas

    Directory of Open Access Journals (Sweden)

    Renu Dhasmana

    2011-01-01

    Full Text Available Purpose: To evaluate visual field changes in patients with pituitary adenomas following trans-sphenoidal surgery. Methods: Eighteen patients with pituitary adenomas underwent a complete ophthalmic assessment and visual field analysis using the Humphrey Field Analyzer 30-2 program before and after trans-sphenoidal surgical resection at the Himalayan Institute of Medical Sciences over a one year period. Visual acuity, duration of symptoms, optic nerve head changes, pattern of visual field defects, and variables such as mean deviation and visual field index were compared. Results: Thirty-six eyes of 18 patients including 10 male and 8 female subjects with mean age of 35.1±9.9 years and histologically proven pituitary adenoma were included. Mean visual acuity at presentation was 0.29 logMAR which improved to 0.21 logMAR postoperatively (P = 0.305. Of 36 eyes, 24 (66.7% had visual field defects including temporal defects in 12 eyes (33.3%, non-specific defects in 10 eyes (27.8%, and peripheral field constriction in 2 eyes (5.6%. Mean deviation of visual fields at presentation was -14.28 dB which improved to -11.32 dB postoperatively. The visual field index improved from 63.5% to 75% postoperatively. Favorable visual field outcomes were correlated with shorter duration of symptoms and absence of optic nerve head changes at presentation. Conclusion: Visual field defects were present in two thirds of patients at presentation. An overall improvement in vision and visual fields was noted after surgical resection. An inverse correlation was found between the duration of symptoms and postoperative visual field recovery, signifying the importance of early surgical intervention.

  12. Development of field-wide risk based remediation objectives for an aging oil field : Devon Canada Swan Hills Field

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.; North, C.; Leighton-Boyce, G. [WorleyParsons Komex, Calgary, AB (Canada); Moore, D. [Devon Canada Corp., Calgary, AB (Canada)

    2006-07-01

    The development of field-wide risk based remediation objectives for the aging Devon Canada Swan Hills oil field was examined along with the key components of the closure strategy. These included source removal to the extent practical, long term monitoring, and achievable risk-based remedial objectives that were appropriate to the remote boreal forest setting of the Swan Hills field. A two stage approach was presented. The first stage involved a field wide background framework which included defining areas of common physical and ecological setting and developing appropriate exposure scenarios. The second stage involved site-specific risk assessments which included adjusting for site-specific conditions and an early demonstration project to prove the concept. A GIS approach was used to identify areas of common physical and ecological setting including: physiography; surface water; land use; vegetation ecozones; surficial and bedrock geology; and water well use. Species lists were compiled for vegetation, terrestrial wildlife (mammals, birds, amphibians), and aquatic species (fish and invertebrates). Major contaminant sources, problem formulation, vegetation bioassays, invertebrate bioassays, black spruce emergence, and guideline development were other topics covered during the presentation. Last, a summary of progress was presented. A field-wide review and development of risk zones and site-specific risk assessment has been completed. A regulatory review is underway. tabs., figs.

  13. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  14. Gravity influences the visual representation of object tilt in parietal cortex.

    Science.gov (United States)

    Rosenberg, Ari; Angelaki, Dora E

    2014-10-22

    Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction. Copyright © 2014 the authors 0270-6474/14/3414170-11$15.00/0.

  15. Object-centered representations support flexible exogenous visual attention across translation and reflection.

    Science.gov (United States)

    Lin, Zhicheng

    2013-11-01

    Visual attention can be deployed to stimuli based on our willful, top-down goal (endogenous attention) or on their intrinsic saliency against the background (exogenous attention). Flexibility is thought to be a hallmark of endogenous attention, whereas decades of research show that exogenous attention is attracted to the retinotopic locations of the salient stimuli. However, to the extent that salient stimuli in the natural environment usually form specific spatial relations with the surrounding context and are dynamic, exogenous attention, to be adaptive, should embrace these structural regularities. Here we test a non-retinotopic, object-centered mechanism in exogenous attention, in which exogenous attention is dynamically attracted to a relative, object-centered location. Using a moving frame configuration, we presented two frames in succession, forming either apparent translational motion or in mirror reflection, with a completely uninformative, transient cue presented at one of the item locations in the first frame. Despite that the cue is presented in a spatially separate frame, in both translation and mirror reflection, behavioralperformance in visual search is enhanced when the target in the second frame appears at the same relative location as the cue location than at other locations. These results provide unambiguous evidence for non-retinotopic exogenous attention and further reveal an object-centered mechanism supporting flexible exogenous attention. Moreover, attentional generalization across mirror reflection may constitute an attentional correlate of perceptual generalization across lateral mirror images, supporting an adaptive, functional account of mirror images confusion. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Well Field Management Using Multi-Objective Optimization

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Hendricks Franssen, H. J.; Bauer-Gottwein, Peter

    2013-01-01

    with infiltration basins, injection wells and abstraction wells. The two management objectives are to minimize the amount of water needed for infiltration and to minimize the risk of getting contaminated water into the drinking water wells. The management is subject to a daily demand fulfilment constraint. Two...... different optimization methods are tested. Constant scheduling where decision variables are held constant during the time of optimization, and sequential scheduling where the optimization is performed stepwise for daily time steps. The latter is developed to work in a real-time situation. Case study...

  17. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  18. The Representation of Color across the Human Visual Cortex: Distinguishing Chromatic Signals Contributing to Object Form Versus Surface Color.

    Science.gov (United States)

    Seymour, K J; Williams, M A; Rich, A N

    2016-05-01

    Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Metacognition of visual short-term memory: Dissociation between objective and subjective components of VSTM

    Directory of Open Access Journals (Sweden)

    Silvia eBona

    2013-02-01

    Full Text Available The relationship between the objective accuracy of visual-short term memory (VSTM representations and their subjective conscious experience is unknown. We investigated this issue by assessing how the objective and subjective components of VSTM in a delayed cue-target orientation discrimination task are affected by intervening distracters. On each trial, participants were shown a memory cue (a grating, the orientation of which they were asked to hold in memory. On approximately half of the trials, a distractor grating appeared during the maintenance interval; its orientation was either identical to that of the memory cue, or it differed by 10 or 40 degrees. The distractors were masked and presented briefly, so they were only consciously perceived on a subset of trials. At the end of the delay period, a memory test probe was presented, and participants were asked to indicate whether it was tilted to the left or right relative to the memory cue (VSTM accuracy; objective performance. In order to assess subjective metacognition, participants were asked indicate the vividness of their memory for the original memory cue. Finally, participants were asked rate their awareness of the distracter. Results showed that objective VSTM performance was impaired by distractors only when the distractors were very different from the cue, and that this occurred with both subjectively visible and invisible distractors. Subjective metacognition, however, was impaired by distractors of all orientations, but only when these distractors were subjectively invisible. Our results thus indicate that the objective and subjective components of VSTM are to some extent dissociable.

  20. Contralateral delay activity tracks object identity information in visual short term memory.

    Science.gov (United States)

    Gao, Zaifeng; Xu, Xiaotian; Chen, Zhibo; Yin, Jun; Shen, Mowei; Shui, Rende

    2011-08-11

    Previous studies suggested that ERP component contralateral delay activity (CDA) tracks the number of objects containing identity information stored in visual short term memory (VSTM). Later MEG and fMRI studies implied that its neural source lays in superior IPS. However, since the memorized stimuli in previous studies were displayed in distinct spatial locations, hence possibly CDA tracks the object-location information instead. Moreover, a recent study implied the activation in superior IPS reflected the location load. The current research thus explored whether CDA tracks the object-location load or the object-identity load, and its neural sources. Participants were asked to remember one color, four identical colors or four distinct colors. The four-identical-color condition was the critical one because it contains the same amount of identity information as that of one color while the same amount of location information as that of four distinct colors. To ensure the participants indeed selected four colors in the four-identical-color condition, we also split the participants into two groups (low- vs. high-capacity), analyzed late positive component (LPC) in the prefrontal area, and collected participant's subjective-report. Our results revealed that most of the participants selected four identical colors. Moreover, regardless of capacity-group, there was no difference on CDA between one color and four identical colors yet both were lower than 4 distinct colors. Besides, the source of CDA was located in the superior parietal lobule, which is very close to the superior IPS. These results support the statement that CDA tracks the object identity information in VSTM. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. DOCUMENTATION OF HISTORICAL UNDERGROUND OBJECT IN SKORKOV VILLAGE WITH SELECTED MEASURING METHODS, DATA ANALYSIS AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    A. Dlesk

    2016-06-01

    Full Text Available The author analyzes current methods of 3D documentation of historical tunnels in Skorkov village, which lies at the Jizera river, approximately 30 km away from Prague. The area is known as a former military camp from Thirty Years’ War in 17th Century. There is an extensive underground compound with one entrance corridor and two transverse, situated approximately 2 to 5 m under the local development. The object has been partly documented by geodetic polar method, intersection photogrammetry, image-based modelling and laser scanning. Data have been analyzed and methods have been compared. Then the 3D model of object has been created and compound with cadastral data, orthophoto, historical maps and digital surface model which was made by photogrammetric method using remotely piloted aircraft system. Then the measuring has been realized with ground penetrating radar. Data have been analyzed and the result compared with real status. All the data have been combined and visualized into one 3D model. Finally, the discussion about advantages and disadvantages of used measuring methods has been livened up. The tested methodology has been also used for other documentation of historical objects in this area. This project has been created as a part of research at EuroGV. s.r.o. Company lead by Ing. Karel Vach CSc. in cooperation with prof. Dr. Ing. Karel Pavelka from Czech Technical University in Prague and Miloš Gavenda, the renovator.

  2. Documentation of Historical Underground Object in Skorkov Village with Selected Measuring Methods, Data Analysis and Visualization

    Science.gov (United States)

    Dlesk, A.

    2016-06-01

    The author analyzes current methods of 3D documentation of historical tunnels in Skorkov village, which lies at the Jizera river, approximately 30 km away from Prague. The area is known as a former military camp from Thirty Years' War in 17th Century. There is an extensive underground compound with one entrance corridor and two transverse, situated approximately 2 to 5 m under the local development. The object has been partly documented by geodetic polar method, intersection photogrammetry, image-based modelling and laser scanning. Data have been analyzed and methods have been compared. Then the 3D model of object has been created and compound with cadastral data, orthophoto, historical maps and digital surface model which was made by photogrammetric method using remotely piloted aircraft system. Then the measuring has been realized with ground penetrating radar. Data have been analyzed and the result compared with real status. All the data have been combined and visualized into one 3D model. Finally, the discussion about advantages and disadvantages of used measuring methods has been livened up. The tested methodology has been also used for other documentation of historical objects in this area. This project has been created as a part of research at EuroGV. s.r.o. Company lead by Ing. Karel Vach CSc. in cooperation with prof. Dr. Ing. Karel Pavelka from Czech Technical University in Prague and Miloš Gavenda, the renovator.

  3. Many-objective optimization and visual analytics reveal key trade-offs for London's water supply

    Science.gov (United States)

    Matrosov, Evgenii S.; Huskova, Ivana; Kasprzyk, Joseph R.; Harou, Julien J.; Lambert, Chris; Reed, Patrick M.

    2015-12-01

    In this study, we link a water resource management simulator to multi-objective search to reveal the key trade-offs inherent in planning a real-world water resource system. We consider new supplies and demand management (conservation) options while seeking to elucidate the trade-offs between the best portfolios of schemes to satisfy projected water demands. Alternative system designs are evaluated using performance measures that minimize capital and operating costs and energy use while maximizing resilience, engineering and environmental metrics, subject to supply reliability constraints. Our analysis shows many-objective evolutionary optimization coupled with state-of-the art visual analytics can help planners discover more diverse water supply system designs and better understand their inherent trade-offs. The approach is used to explore future water supply options for the Thames water resource system (including London's water supply). New supply options include a new reservoir, water transfers, artificial recharge, wastewater reuse and brackish groundwater desalination. Demand management options include leakage reduction, compulsory metering and seasonal tariffs. The Thames system's Pareto approximate portfolios cluster into distinct groups of water supply options; for example implementing a pipe refurbishment program leads to higher capital costs but greater reliability. This study highlights that traditional least-cost reliability constrained design of water supply systems masks asset combinations whose benefits only become apparent when more planning objectives are considered.

  4. Visual Stability of Objects and Environments Viewed through Head-Mounted Displays

    Science.gov (United States)

    Ellis, Stephen R.; Adelstein, Bernard D.

    2015-01-01

    Virtual Environments (aka Virtual Reality) is again catching the public imagination and a number of startups (e.g. Oculus) and even not-so-startup companies (e.g. Microsoft) are trying to develop display systems to capitalize on this renewed interest. All acknowledge that this time they will get it right by providing the required dynamic fidelity, visual quality, and interesting content for the concept of VR to take off and change the world in ways it failed to do so in past incarnations. Some of the surprisingly long historical background of the technology that the form of direct simulation that underlies virtual environment and augmented reality displays will be briefly reviewed. An example of a mid 1990's augmented reality display system with good dynamic performance from our lab will be used to illustrate some of the underlying phenomena and technology concerning visual stability of virtual environments and objects during movement. In conclusion some idealized performance characteristics for a reference system will be proposed. Interestingly, many systems more or less on the market now may actually meet many of these proposed technical requirements. This observation leads to the conclusion that the current success of the IT firms trying to commercialize the technology will depend on the hidden costs of using the systems as well as the development of interesting and compelling content.

  5. BUILDING A BILLION SPATIO-TEMPORAL OBJECT SEARCH AND VISUALIZATION PLATFORM

    Directory of Open Access Journals (Sweden)

    D. Kakkar

    2017-10-01

    Full Text Available With funding from the Sloan Foundation and Harvard Dataverse, the Harvard Center for Geographic Analysis (CGA has developed a prototype spatio-temporal visualization platform called the Billion Object Platform or BOP. The goal of the project is to lower barriers for scholars who wish to access large, streaming, spatio-temporal datasets. The BOP is now loaded with the latest billion geo-tweets, and is fed a real-time stream of about 1 million tweets per day. The geo-tweets are enriched with sentiment and census/admin boundary codes when they enter the system. The system is open source and is currently hosted on Massachusetts Open Cloud (MOC, an OpenStack environment with all components deployed in Docker orchestrated by Kontena. This paper will provide an overview of the BOP architecture, which is built on an open source stack consisting of Apache Lucene, Solr, Kafka, Zookeeper, Swagger, scikit-learn, OpenLayers, and AngularJS. The paper will further discuss the approach used for harvesting, enriching, streaming, storing, indexing, visualizing and querying a billion streaming geo-tweets.

  6. Building a Billion Spatio-Temporal Object Search and Visualization Platform

    Science.gov (United States)

    Kakkar, D.; Lewis, B.

    2017-10-01

    With funding from the Sloan Foundation and Harvard Dataverse, the Harvard Center for Geographic Analysis (CGA) has developed a prototype spatio-temporal visualization platform called the Billion Object Platform or BOP. The goal of the project is to lower barriers for scholars who wish to access large, streaming, spatio-temporal datasets. The BOP is now loaded with the latest billion geo-tweets, and is fed a real-time stream of about 1 million tweets per day. The geo-tweets are enriched with sentiment and census/admin boundary codes when they enter the system. The system is open source and is currently hosted on Massachusetts Open Cloud (MOC), an OpenStack environment with all components deployed in Docker orchestrated by Kontena. This paper will provide an overview of the BOP architecture, which is built on an open source stack consisting of Apache Lucene, Solr, Kafka, Zookeeper, Swagger, scikit-learn, OpenLayers, and AngularJS. The paper will further discuss the approach used for harvesting, enriching, streaming, storing, indexing, visualizing and querying a billion streaming geo-tweets.

  7. Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images

    Science.gov (United States)

    Jung, Yong Ju; Kim, Dongchan; Sohn, Hosik; Lee, Seong-il; Park, Hyun Wook; Ro, Yong Man

    2013-03-01

    As stereoscopic displays have spread, it is important to know what really causes the visual fatigue and discomfort and what happens in the visual system in the brain behind the retina while viewing stereoscopic 3D images on the displays. In this study, functional magnetic resonance imaging (fMRI) was used for the objective measurement to assess the human brain regions involved in the processing of the stereoscopic stimuli with excessive disparities. Based on the subjective measurement results, we selected two subsets of comfort videos and discomfort videos in our dataset. Then, a fMRI experiment was conducted with the subsets of comfort and discomfort videos in order to identify which brain regions activated while viewing the discomfort videos in a stereoscopic display. We found that, when viewing a stereoscopic display, the right middle frontal gyrus, the right inferior frontal gyrus, the right intraparietal lobule, the right middle temporal gyrus, and the bilateral cuneus were significantly activated during the processing of excessive disparities, compared to those of small disparities (< 1 degree).

  8. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    International Nuclear Information System (INIS)

    Kuiper, J.; Ayers, A.; Johnson, R.; Tolbert-Smith, M.

    1996-01-01

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems

  9. A bilateral advantage for maintaining objects in visual short term memory.

    Science.gov (United States)

    Holt, Jessica L; Delvenne, Jean-François

    2015-01-01

    Research has shown that attentional pre-cues can subsequently influence the transfer of information into visual short term memory (VSTM) (Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763). However, studies also suggest that those effects are constrained by the hemifield alignment of the pre-cues (Holt, J. L., & Delvenne, J.-F. (2014). A bilateral advantage in controlling access to visual short-term memory. Experimental Psychology, 61(2), 127-133), revealing better recall when distributed across hemifields relative to within a single hemifield (otherwise known as a bilateral field advantage). By manipulating the duration of the retention interval in a colour change detection task (1s, 3s), we investigated whether selective pre-cues can also influence how information is later maintained in VSTM. The results revealed that the pre-cues influenced the maintenance of the colours in VSTM, promoting consistent performance across retention intervals (Experiments 1 & 4). However, those effects were only shown when the pre-cues were directed to stimuli displayed across hemifields relative to stimuli within a single hemifield. Importantly, the results were not replicated when participants were required to memorise colours (Experiment 2) or locations (Experiment 3) in the absence of spatial pre-cues. Those findings strongly suggest that attentional pre-cues have a strong influence on both the transfer of information in VSTM and its subsequent maintenance, allowing bilateral items to better survive decay. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  11. The influence of print exposure on the body-object interaction effect in visual word recognition.

    Science.gov (United States)

    Hansen, Dana; Siakaluk, Paul D; Pexman, Penny M

    2012-01-01

    We examined the influence of print exposure on the body-object interaction (BOI) effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations ("Is the word easily imageable?"; Experiment 1) or phonological lexical decisions ("Does the item sound like a real English word?"; Experiment 2). The results from Experiment 1 showed that there was a larger BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that the BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  12. The Influence of Print Exposure on the Body-Object Interaction Effect in Visual Word Recognition

    Directory of Open Access Journals (Sweden)

    Dana eHansen

    2012-05-01

    Full Text Available We examined the influence of print exposure on the body-object interaction (BOI effect in visual word recognition. High print exposure readers and low print exposure readers either made semantic categorizations (Is the word easily imageable?; Experiment 1 or phonological lexical decisions (Does the item sound like a real English word?; Experiment 2. The results from Experiment 1 showed that there was a larger facilitatory BOI effect for the low print exposure readers than for the high print exposure readers in semantic categorization, though an effect was observed for both print exposure groups. However, the results from Experiment 2 showed that a facilitatory BOI effect was observed only for the high print exposure readers in phonological lexical decision. The results of the present study suggest that print exposure does influence the BOI effect, and that this influence varies as a function of task demands.

  13. Visual perception and appraisal of persons with impairments: a randomised controlled field experiment using photo elicitation.

    Science.gov (United States)

    Reinhardt, Jan Dietrich; Ballert, Carolina Saskia; Fellinghauer, Bernd; Lötscher, Alexander; Gradinger, Felix; Hilfiker, Roger; Graf, Sibylle; Stucki, Gerold

    2011-01-01

    Visual cues from persons with impairments may trigger stereotypical generalisations that lead to prejudice and discrimination. The main objective of this pilot study is to examine whether visual stimuli of impairment activate latent prejudice against disability and whether this connection can be counteracted with priming strategies. In a field experiment, participants were asked to rate photographs showing models with mental impairments, wheelchair users with paraplegia, and persons without any visible impairment. Participants should appraise the models with regard to several features (e.g. communicativeness, intelligence). One hundred participants rated 12 photo models yielding a total of 1183 observations. One group of participants was primed with a cover story introducing visual perception of impairment as the study's gist, while controls received neutral information. Photo models with mental impairments were rated lowest and models without visible impairment highest. In participants who did not have prior contacts with persons with impairments, priming led to a levelling of scores of models with and without impairment. Prior contacts with persons with impairments created similar effects as the priming. Unexpectedly, a pattern of converse double discrimination to the disadvantage of men with mental impairments was revealed. Signs of stereotypical processing of visual cues of impairment have been found in participants of the Swiss general population. Personal contact with persons with impairments as well as priming participants seems to reduce stereotyping.

  14. 3D geospatial visualizations: Animation and motion effects on spatial objects

    Science.gov (United States)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  15. Visual object naming in patients with small lesions centered at the left temporopolar region.

    Science.gov (United States)

    Campo, Pablo; Poch, Claudia; Toledano, Rafael; Igoa, José Manuel; Belinchón, Mercedes; García-Morales, Irene; Gil-Nagel, Antonio

    2016-01-01

    Naming is considered a left hemisphere function that operates according to a posterior-anterior specificity gradient, with more fine-grained information processed in most anterior regions of the temporal lobe (ATL), including the temporal pole (TP). Word finding difficulties are typically assessed using visual confrontation naming tasks, and have been associated with selective damage to ATL resulting from different aetiologies. Nonetheless, the role of the ATL and, more specifically, of the TP in the naming network is not completely established. Most of the accumulated evidence is based on studies on patients with extensive lesions, often bilateral. Furthermore, there is a considerable variability in the anatomical definition of ATL. To better understand the specific involvement of the left TP in visual object naming, we assessed a group of patients with an epileptogenic lesion centered at the TP, and compared their performance with that of a strictly matched control group. We also administered a battery of verbal and non-verbal semantic tasks that was used as a semantic memory baseline. Patients showed an impaired naming ability, manifesting in a certain degree of anomia and semantically related naming errors, which was influenced by concept familiarity. This pattern took place in a context of mild semantic dysfunction that was evident in different types and modalities of semantic tasks. Therefore, current findings demonstrate that a restricted lesion to the left TP can cause a significant deficit in object naming. Of importance, the observed semantic impairment was far from the devastating degradation observed in semantic dementia and other bilateral conditions.

  16. Rapid and Objective Assessment of Neural Function in Autism Spectrum Disorder Using Transient Visual Evoked Potentials.

    Directory of Open Access Journals (Sweden)

    Paige M Siper

    Full Text Available There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD. Visual evoked potentials (VEPs offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology.Transient VEPs (tVEPs were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD children, and 23 unaffected siblings (SIBS. A conventional contrast-reversing checkerboard condition was compared to a novel short-duration condition, which was developed to enable objective data collection from severely affected populations who are often excluded from electroencephalographic (EEG studies.Children with ASD showed significantly smaller amplitudes compared to TD children at two of the earliest critical VEP components, P60-N75 and N75-P100. SIBS showed intermediate responses relative to ASD and TD groups. There were no group differences in response latency. Frequency band analyses indicated significantly weaker responses for the ASD group in bands encompassing gamma-wave activity. Ninety-two percent of children with ASD were able to complete the short-duration condition compared to 68% for the standard condition.The current study establishes the utility of a short-duration tVEP test for use in children at varying levels of functioning and describes neural abnormalities in children with idiopathic ASD. Implications for excitatory/inhibitory balance as well as the potential application of VEP for use in clinical trials are discussed.

  17. Effect of Retinal Nerve Fibre Layer Injury on Visual Field After LASIK for Correction of Myopia

    International Nuclear Information System (INIS)

    Saif, S.E.H.; Bahgat, M.; El'emary, A.T.; Naguib, N.I.; Lotfy, A.A.

    2006-01-01

    This work aimed at clinical assessment of the damage to the retinal nerve fibre layer (RNFL) due to the suction time during LASIK on the visual field of the patients. forty-five patients were subjected to LASIk followed by optic coherence tomography (OCT) and visual field (VF) in this study in the research institute of ophthalmology. clinical assessment will be achieved by using visual perimetry. we concluded that LASIK did not cause visual field defects in the study. actually we were expecting a field defect in the upper, and to a lesser extent, in the lower quadrant but this could be detected by more sophisticated technology

  18. Effect of Retinal Nerve Fibre Layer Injury on Visual Field After LASIK for Correction of Myopia

    Energy Technology Data Exchange (ETDEWEB)

    Saif, S E.H.; Bahgat, M [Ophthalmology dept, Cairo University, Cairo (Egypt); El' emary, A T [Research Institute of Ophthalmology (Egypt); Naguib, N I; Lotfy, A A [National Centre for Rdiation Research and Tecnology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2006-05-15

    This work aimed at clinical assessment of the damage to the retinal nerve fibre layer (RNFL) due to the suction time during LASIK on the visual field of the patients. forty-five patients were subjected to LASIk followed by optic coherence tomography (OCT) and visual field (VF) in this study in the research institute of ophthalmology. clinical assessment will be achieved by using visual perimetry. we concluded that LASIK did not cause visual field defects in the study. actually we were expecting a field defect in the upper, and to a lesser extent, in the lower quadrant but this could be detected by more sophisticated technology.

  19. Visualization system for grid environment in the nuclear field

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Matsumoto, Nobuko; Idomura, Yasuhiro; Tani, Masayuki

    2006-01-01

    An innovative scientific visualization system is needed to integratedly visualize large amount of data which are distributedly generated in remote locations as a result of a large-scale numerical simulation using a grid environment. One of the important functions in such a visualization system is a parallel visualization which enables to visualize data using multiple CPUs of a supercomputer. The other is a distributed visualization which enables to execute visualization processes using a local client computer and remote computers. We have developed a toolkit including these functions in cooperation with the commercial visualization software AVS/Express, called Parallel Support Toolkit (PST). PST can execute visualization processes with three kinds of parallelism (data parallelism, task parallelism and pipeline parallelism) using local and remote computers. We have evaluated PST for large amount of data generated by a nuclear fusion simulation. Here, two supercomputers Altix3700Bx2 and Prism installed in JAEA are used. From the evaluation, it can be seen that PST has a potential to efficiently visualize large amount of data in a grid environment. (author)

  20. Early event related fields during visually evoked pain anticipation.

    Science.gov (United States)

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Stimulus Dependency of Object-Evoked Responses in Human Visual Cortex: An Inverse Problem for Category Specificity

    Science.gov (United States)

    Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel

    2012-01-01

    Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components. PMID:22363479

  2. Splitting Attention across the Two Visual Fields in Visual Short-Term Memory

    Science.gov (United States)

    Delvenne, Jean-Francois; Holt, Jessica L.

    2012-01-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…

  3. Homonymous Visual Field Loss and Its Impact on Visual Exploration: A Supermarket Study.

    Science.gov (United States)

    Kasneci, Enkelejda; Sippel, Katrin; Heister, Martin; Aehling, Katrin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-10-01

    Homonymous visual field defects (HVFDs) may critically interfere with quality of life. The aim of this study was to assess the impact of HVFDs on a supermarket search task and to investigate the influence of visual search on task performance. Ten patients with HVFDs (four with a right-sided [HR] and six with a left-sided defect [HL]), and 10 healthy-sighted, sex-, and age-matched control subjects were asked to collect 20 products placed on two supermarket shelves as quickly as possible. Task performance was rated as "passed" or "failed" with regard to the time per correctly collected item ( T C -failed = 4.84 seconds based on the performance of healthy subjects). Eye movements were analyzed regarding the horizontal gaze activity, glance frequency, and glance proportion for different VF areas. Seven of 10 HVFD patients (three HR, four HL) passed the supermarket search task. Patients who passed needed significantly less time per correctly collected item and looked more frequently toward the VFD area than patients who failed. HL patients who passed the test showed a higher percentage of glances beyond the 60° VF ( P < 0.05). A considerable number of HVFD patients performed successfully and could compensate for the HVFD by shifting the gaze toward the peripheral VF and the VFD area. These findings provide new insights on gaze adaptations in patients with HVFDs during activities of daily living and will enhance the design and development of realistic examination tools for use in the clinical setting to improve daily functioning. (http://www.clinicaltrials.gov, NCT01372319, NCT01372332).

  4. Action video game players and deaf observers have larger Goldmann visual fields.

    Science.gov (United States)

    Buckley, David; Codina, Charlotte; Bhardwaj, Palvi; Pascalis, Olivier

    2010-03-05

    We used Goldmann kinetic perimetry to compare how training and congenital auditory deprivation may affect the size of the visual field. We measured the ability of action video game players and deaf observers to detect small moving lights at various locations in the central (around 30 degrees from fixation) and peripheral (around 60 degrees ) visual fields. Experiment 1 found that 10 habitual video game players showed significantly larger central and peripheral field areas than 10 controls. In Experiment 2 we found that 13 congenitally deaf observers had significantly larger visual fields than 13 hearing controls for both the peripheral and central fields. Here the greatest differences were found in the lower parts of the fields. Comparison of the two groups showed that whereas VGP players have a more uniform increase in field size in both central and peripheral fields deaf observers show non-uniform increases with greatest increases in lower parts of the visual field.

  5. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    Science.gov (United States)

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  6. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  7. Auditory Scene Analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Directory of Open Access Journals (Sweden)

    David J Brown

    2015-10-01

    Full Text Available A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36 performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  8. The interplay of bottom-up and top-down mechanisms in visual guidance during object naming.

    Science.gov (United States)

    Coco, Moreno I; Malcolm, George L; Keller, Frank

    2014-01-01

    An ongoing issue in visual cognition concerns the roles played by low- and high-level information in guiding visual attention, with current research remaining inconclusive about the interaction between the two. In this study, we bring fresh evidence into this long-standing debate by investigating visual saliency and contextual congruency during object naming (Experiment 1), a task in which visual processing interacts with language processing. We then compare the results of this experiment to data of a memorization task using the same stimuli (Experiment 2). In Experiment 1, we find that both saliency and congruency influence visual and naming responses and interact with linguistic factors. In particular, incongruent objects are fixated later and less often than congruent ones. However, saliency is a significant predictor of object naming, with salient objects being named earlier in a trial. Furthermore, the saliency and congruency of a named object interact with the lexical frequency of the associated word and mediate the time-course of fixations at naming. In Experiment 2, we find a similar overall pattern in the eye-movement responses, but only the congruency of the target is a significant predictor, with incongruent targets fixated less often than congruent targets. Crucially, this finding contrasts with claims in the literature that incongruent objects are more informative than congruent objects by deviating from scene context and hence need a longer processing. Overall, this study suggests that different sources of information are interactively used to guide visual attention on the targets to be named and raises new questions for existing theories of visual attention.

  9. Mobile visual object identification: from SIFT-BoF-RANSAC to Sketchprint

    Science.gov (United States)

    Voloshynovskiy, Sviatoslav; Diephuis, Maurits; Holotyak, Taras

    2015-03-01

    Mobile object identification based on its visual features find many applications in the interaction with physical objects and security. Discriminative and robust content representation plays a central role in object and content identification. Complex post-processing methods are used to compress descriptors and their geometrical information, aggregate them into more compact and discriminative representations and finally re-rank the results based on the similarity geometries of descriptors. Unfortunately, most of the existing descriptors are not very robust and discriminative once applied to the various contend such as real images, text or noise-like microstructures next to requiring at least 500-1'000 descriptors per image for reliable identification. At the same time, the geometric re-ranking procedures are still too complex to be applied to the numerous candidates obtained from the feature similarity based search only. This restricts that list of candidates to be less than 1'000 which obviously causes a higher probability of miss. In addition, the security and privacy of content representation has become a hot research topic in multimedia and security communities. In this paper, we introduce a new framework for non- local content representation based on SketchPrint descriptors. It extends the properties of local descriptors to a more informative and discriminative, yet geometrically invariant content representation. In particular it allows images to be compactly represented by 100 SketchPrint descriptors without being fully dependent on re-ranking methods. We consider several use cases, applying SketchPrint descriptors to natural images, text documents, packages and micro-structures and compare them with the traditional local descriptors.

  10. The Tölz Temporal Topography Study: mapping the visual field across the life span. Part II: cognitive factors shaping visual field maps.

    Science.gov (United States)

    Poggel, Dorothe A; Treutwein, Bernhard; Calmanti, Claudia; Strasburger, Hans

    2012-08-01

    Part I described the topography of visual performance over the life span. Performance decline was explained only partly by deterioration of the optical apparatus. Part II therefore examines the influence of higher visual and cognitive functions. Visual field maps for 95 healthy observers of static perimetry, double-pulse resolution (DPR), reaction times, and contrast thresholds, were correlated with measures of visual attention (alertness, divided attention, spatial cueing), visual search, and the size of the attention focus. Correlations with the attentional variables were substantial, particularly for variables of temporal processing. DPR thresholds depended on the size of the attention focus. The extraction of cognitive variables from the correlations between topographical variables and participant age substantially reduced those correlations. There is a systematic top-down influence on the aging of visual functions, particularly of temporal variables, that largely explains performance decline and the change of the topography over the life span.

  11. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  12. Visual business ecosystem intelligence: lessons from the field.

    Science.gov (United States)

    Basole, Rahul C

    2014-01-01

    Macroscopic insight into business ecosystems is becoming increasingly important. With the emergence of new digital business data, opportunities exist to develop rich, interactive visual-analytics tools. Georgia Institute of Technology researchers have been developing and implementing visual business ecosystem intelligence tools in corporate settings. This article discusses the challenges they faced, the lessons learned, and opportunities for future research.

  13. Objectivity

    CERN Document Server

    Daston, Lorraine

    2010-01-01

    Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...

  14. Remembering the Specific Visual Details of Presented Objects: Neuroimaging Evidence for Effects of Emotion

    Science.gov (United States)

    Kensinger, Elizabeth A.; Schacter, Daniel L.

    2007-01-01

    Memories can be retrieved with varied amounts of visual detail, and the emotional content of information can influence the likelihood that visual detail is remembered. In the present fMRI experiment (conducted with 19 adults scanned using a 3T magnet), we examined the neural processes that correspond with recognition of the visual details of…

  15. Fragile visual short-term memory is an object-based and location-specific store

    NARCIS (Netherlands)

    Pinto, Y.; Sligte, I.G.; Shapiro, K.L.; Lamme, V.A.F.

    2013-01-01

    Fragile visual short-term memory (FM) is a recently discovered form of visual short-term memory. Evidence suggests that it provides rich and high-capacity storage, like iconic memory, yet it exists, without interference, almost as long as visual working memory. In the present study, we sought to

  16. Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects

    Science.gov (United States)

    Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.

    2013-04-01

    This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to

  17. Genre Differences on Visual Perception of Color Range and Depth of Field

    Directory of Open Access Journals (Sweden)

    Luisa Ballesteros

    2003-07-01

    Full Text Available Visual perception is the result of the integration of various related factors of the observed object and its environment. In this study we evaluated the impact of tridimensional form on color perception and the angle from the horizontal plane of a set of similar objets on the depth of field perception between young men and women. A panel half magenta and half white placed at the end of a black box, folded either concaved or convexed to alter the chromatic effect perceived were used to determine tridimensional form on color perception. Four sets of identical sticks where the angle from the horizontal plane varied for each, were used to determine the effect of spatial distribution of depth of field perception. The parameters taking into account were age, genre, associated visual defects for each individual evaluated. Our results show that the tridimensional form alters color perception but the range of color perceived was larger for women whereas depending on the angle from the horizontal plane we found genre differences on the depth of field perception.

  18. Behavior of visual field index in advanced glaucoma.

    Science.gov (United States)

    Rao, Harsha L; Senthil, Sirisha; Choudhari, Nikhil S; Mandal, Anil K; Garudadri, Chandra S

    2013-01-14

    To evaluate the magnitude of Visual Field Index (VFI) change attributable to change in the estimation algorithm from the pattern deviation probability plot (PDPP) to the total deviation probability plot (TDPP) when the mean deviation (MD) crosses -20 decibels (dB). In a retrospective study, 37 stable glaucoma eyes in which MD of the VFs crossed -20 dB were identified. For each eye, a pair of VFs was selected so that one VF of the pair had a MD better than but close to -20 dB and the other had a MD worse than but again close to -20 dB. The change in VFI in the VF pairs and its associations with the number of points in probability plots with normal threshold sensitivities were evaluated. Similar pairs of VFs from 28 stable glaucoma eyes where the MD crossed -10 dB were chosen as controls. The change in VFI in VF pairs when the MD crossed 20 dB ranged from 3% to 33% (median: 15%), while the change when MD crossed -10 dB ranged from 1% to 8% (median: 4%). Difference in the number of points with normal threshold sensitivities in PDPP when MD was better than -20 dB compared to those in TDPP when MD crossed -20 dB significantly influenced the VFI change (R(2) = 0.65). Considering the eccentricity of these points further explained the VFI change (R(2) = 0.81). The decrease in VFI when MD crosses -20 dB can be highly variable. This has to be considered with the use of VFI in clinical and research settings.

  19. Gait Implications of Visual Field Damage from Glaucoma.

    Science.gov (United States)

    Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y

    2017-06-01

    To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.

  20. Perimetric demonstration of spontaneous visual field recovery following occipital lobe haemorrhage.

    Science.gov (United States)

    Lin, Siying; George, Badie Z; Wilson-Holt, Nicholas J

    2013-08-29

    A 45-year-old patient on lifelong warfarin therapy after a metal aortic valve replacement developed a homonymous visual field defect following an occipital lobe haemorrhage. The patient received only conservative management and yet described continued improvement in her visual field defect for up to 20 months following the initial cerebral insult. We present the first conclusive illustrative documentation of visual recovery in a patient with an occipital lobe haemorrhage with sequential automated perimetric assessments over an extended period of time.

  1. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits

    Directory of Open Access Journals (Sweden)

    Rebecca S Millington

    2017-01-01

    Conclusions: Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  2. Effect of Visual Field Presentation on Action Planning (Estimating Reach) in Children

    Science.gov (United States)

    Gabbard, Carl; Cordova, Alberto

    2012-01-01

    In this article, the authors examined the effects of target information presented in different visual fields (lower, upper, central) on estimates of reach via use of motor imagery in children (5-11 years old) and young adults. Results indicated an advantage for estimating reach movements for targets placed in lower visual field (LoVF), with all…

  3. Active Learning in Neuroscience: A Manipulative to Simulate Visual Field Defects

    Science.gov (United States)

    Li, Andrew Yue-Lin; Carvalho, Helena

    2016-01-01

    Prevalent in 20-57% of stroke patients, visual field defects have been shown to impact quality of life. Studies have shown increased risk of falling, ambulatory difficulties, impaired reading ability, and feelings of panic in crowded or unfamiliar places in patients with visual field defects. Rehabilitation, independence, and mental health may…

  4. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    Science.gov (United States)

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  5. Encoding of faces and objects into visual working memory: an event-related brain potential study.

    Science.gov (United States)

    Meinhardt-Injac, Bozana; Persike, Malte; Berti, Stefan

    2013-09-11

    Visual working memory (VWM) is an important prerequisite for cognitive functions, but little is known on whether the general perceptual processing advantage for faces also applies to VWM processes. The aim of the present study was (a) to test whether there is a general advantage for face stimuli in VWM and (b) to unravel whether this advantage is related to early sensory processing stages. To address these questions, we compared encoding of faces and complex nonfacial objects into VWM within a combined behavioral and event-related brain potential (ERP) study. In detail, we tested whether the N170 ERP component - which is associated with face-specific holistic processing - is affected by memory load for faces or whether it might be involved in WM encoding of any complex object. Participants performed a same-different task with either face or watch stimuli and with two different levels of memory load. Behavioral measures show an advantage for faces on the level of VWM, mirrored in higher estimated VWM capacity (i.e. Cowan's K) for faces compared with watches. In the ERP, the N170 amplitude was enhanced for faces compared with watches. However, the N170 was not modulated by working memory load either for faces or for watches. In contrast, the P3b component was affected by memory load irrespective of the stimulus category. Taken together, the results suggest that the VWM advantage for faces is not reflected at the sensory stages of stimulus processing, but rather at later higher-level processes as reflected by the P3b component.

  6. Object-based encoding in visual working memory: a life span study.

    Science.gov (United States)

    Zhang, Qiong; Shen, Mowei; Tang, Ning; Zhao, Guohua; Gao, Zaifeng

    2013-08-20

    Recent studies on development of visual working memory (VWM) predominantly focus on VWM capacity and spatial-based information filtering in VWM. Here we explored another new aspect of VWM development: object-based encoding (OBE), which refers to the fact that even if one feature dimension is required to be selected into VWM, the other irrelevant dimensions are also extracted. We explored the OBE in children, young adults, and old adults, by probing an "irrelevant-change distracting effect" in which a change of stored irrelevant feature dramatically affects the performance of task-relevant features in a change-detection task. Participants were required to remember two or four simple colored shapes, while color was used as the relevant dimension. We found that changes to irrelevant shapes led to a significant distracting effect across the three age groups in both load conditions; however, children showed a greater degree of OBE than did young and old adults. These results suggest that OBE exists in VWM over the life span (6-67 years), yet continues to develop along with VWM.

  7. Object-based attention benefits reveal selective abnormalities of visual integration in autism.

    Science.gov (United States)

    Falter, Christine M; Grant, Kate C Plaisted; Davis, Greg

    2010-06-01

    A pervasive integration deficit could provide a powerful and elegant account of cognitive processing in autism spectrum disorders (ASD). However, in the case of visual Gestalt grouping, typically assessed by tasks that require participants explicitly to introspect on their own grouping perception, clear evidence for such a deficit remains elusive. To resolve this issue, we adopt an index of Gestalt grouping from the object-based attention literature that does not require participants to assess their own grouping perception. Children with ASD and mental- and chronological-age matched typically developing children (TD) performed speeded orientation discriminations of two diagonal lines. The lines were superimposed on circles that were either grouped together or segmented on the basis of color, proximity or these two dimensions in competition. The magnitude of performance benefits evident for grouped circles, relative to ungrouped circles, provided an index of grouping under various conditions. Children with ASD showed comparable grouping by proximity to the TD group, but reduced grouping by similarity. ASD seems characterized by a selective bias away from grouping by similarity combined with typical levels of grouping by proximity, rather than by a pervasive integration deficit.

  8. Airport object extraction based on visual attention mechanism and parallel line detection

    Science.gov (United States)

    Lv, Jing; Lv, Wen; Zhang, Libao

    2017-10-01

    Target extraction is one of the important aspects in remote sensing image analysis and processing, which has wide applications in images compression, target tracking, target recognition and change detection. Among different targets, airport has attracted more and more attention due to its significance in military and civilian. In this paper, we propose a novel and reliable airport object extraction model combining visual attention mechanism and parallel line detection algorithm. First, a novel saliency analysis model for remote sensing images with airport region is proposed to complete statistical saliency feature analysis. The proposed model can precisely extract the most salient region and preferably suppress the background interference. Then, the prior geometric knowledge is analyzed and airport runways contained two parallel lines with similar length are detected efficiently. Finally, we use the improved Otsu threshold segmentation method to segment and extract the airport regions from the salient map of remote sensing images. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and shows good performance in the detection of the airport.

  9. Comparison of Diagnostic Accuracy between Octopus 900 and Goldmann Kinetic Visual Fields

    Directory of Open Access Journals (Sweden)

    Fiona J. Rowe

    2014-01-01

    Full Text Available Purpose. To determine diagnostic accuracy of kinetic visual field assessment by Octopus 900 perimetry compared with Goldmann perimetry. Methods. Prospective cross section evaluation of 40 control subjects with full visual fields and 50 patients with known visual field loss. Comparison of test duration and area measurement of isopters for Octopus 3, 5, and 10°/sec stimulus speeds. Comparison of test duration and type of visual field classification for Octopus versus Goldmann perimetry. Results were independently graded for presence/absence of field defect and for type and location of defect. Statistical evaluation comprised of ANOVA and paired t test for evaluation of parametric data with Bonferroni adjustment. Bland Altman and Kappa tests were used for measurement of agreement between data. Results. Octopus 5°/sec perimetry had comparable test duration to Goldmann perimetry. Octopus perimetry reliably detected type and location of visual field loss with visual fields matched to Goldmann results in 88.8% of results (K=0.775. Conclusions. Kinetic perimetry requires individual tailoring to ensure accuracy. Octopus perimetry was reproducible for presence/absence of visual field defect. Our screening protocol when using Octopus perimetry is 5°/sec for determining boundaries of peripheral isopters and 3°/sec for blind spot mapping with further evaluation of area of field loss for defect depth and size.

  10. Medical review licensing outcomes in drivers with visual field loss in Victoria, Australia

    Science.gov (United States)

    Muir, Carlyn; Charlton, Judith L; Odell, Morris; Keeffe, Jill; Wood, Joanne; Bohensky, Megan; Fildes, Brian; Oxley, Jennifer; Bentley, Sharon; Rizzo, Matthew

    2017-01-01

    Background Good vision is essential for safe driving and studies have associated visual impairment with an increased crash risk. Currently, there is little information about the medical review of drivers with visual field loss. This study examines the prevalence of visual field loss among drivers referred for medical review in one Australian jurisdiction and investigates factors associated with licence outcome in this group. Methods A random sample of 10,000 (31.25 per cent) medical review cases was extracted for analysis from the Victorian licensing authority. Files were screened for the presence of six visual field-related medical conditions. Data were captured on a range of variables, including referral source, age, gender, health status, crash history and licence outcome. Prevalence analyses were univariate and descriptive. Logistic regression was used to assess factors associated with licence outcomes in the visual field loss group. Results Approximately 1.9 per cent of the 10,000 medical review cases screened had a visual field loss condition identified (n=194). Among the visual field loss group, 57.2 per cent were permitted to continue driving (conditional/unconditional licence). Primary referral sources were the police, self-referrals and general medical practitioners. Key factors associated with licence test outcomes were visual field condition, age group, crash involvement and referral to the Driver Licensing Authority’s Medical Advisors. Those who were younger had a crash involvement triggering referral and those who were referred to the Medical Advisors were more likely to have a positive licensing outcome. Conclusion The evidence base for making licensing decisions is complicated by the variable causes, patterns, progressions and measuring technologies for visual field loss. This study highlighted that the involvement of an expert medical advisory service in Victoria resulted in an increased likelihood that drivers with visual field loss will be

  11. The efficacy of a novel mobile phone application for goldmann ptosis visual field interpretation.

    Science.gov (United States)

    Maamari, Robi N; D'Ambrosio, Michael V; Joseph, Jeffrey M; Tao, Jeremiah P

    2014-01-01

    To evaluate the efficacy of a novel mobile phone application that calculates superior visual field defects on Goldmann visual field charts. Experimental study in which the mobile phone application and 14 oculoplastic surgeons interpreted the superior visual field defect in 10 Goldmann charts. Percent error of the mobile phone application and the oculoplastic surgeons' estimates were calculated compared with computer software computation of the actual defects. Precision and time efficiency of the application were evaluated by processing the same Goldmann visual field chart 10 repeated times. The mobile phone application was associated with a mean percent error of 1.98% (95% confidence interval[CI], 0.87%-3.10%) in superior visual field defect calculation. The average mean percent error of the oculoplastic surgeons' visual estimates was 19.75% (95% CI, 14.39%-25.11%). Oculoplastic surgeons, on average, underestimated the defect in all 10 Goldmann charts. There was high interobserver variance among oculoplastic surgeons. The percent error of the 10 repeated measurements on a single chart was 0.93% (95% CI, 0.40%-1.46%). The average time to process 1 chart was 12.9 seconds (95% CI, 10.9-15.0 seconds). The mobile phone application was highly accurate, precise, and time-efficient in calculating the percent superior visual field defect using Goldmann charts. Oculoplastic surgeon visual interpretations were highly inaccurate, highly variable, and usually underestimated the field vision loss.

  12. Learning to Recognize Patterns: Changes in the Visual Field with Familiarity

    Science.gov (United States)

    Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo

    1995-01-01

    Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].

  13. MRI of optic tract lesions: Review and correlation with visual field defects

    International Nuclear Information System (INIS)

    Fadzli, F.; Ramli, N.; Ramli, N.M.

    2013-01-01

    Visual field defects are a conglomerate of patterns of visual impairment derived from diseases affecting the optic nerve as it extends from the globe to the visual cortex. They are complex signs requiring perimetry or visual confrontation for delineation and are associated with diverse aetiologies. This review considers the chiasmatic and post-chiasmatic causes of visual disturbances, with an emphasis on magnetic resonance imaging (MRI) techniques. Newer MRI sequences are considered, such as diffusion-tensor imaging. MRI images are correlated with perimetric findings in order to demonstrate localization of lesions in the visual pathway. This may serve as a valuable reference tool to clinicians and radiologists in the early diagnostic process of differentiating causes of various visual field defects in daily practice

  14. Cortical activation patterns during long-term memory retrieval of visually or haptically encoded objects and locations.

    Science.gov (United States)

    Stock, Oliver; Röder, Brigitte; Burke, Michael; Bien, Siegfried; Rösler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n=10) or haptically (haptic encoding group, n=10) had to be retrieved from long-term memory. Participants learned associations between auditorily presented words and either meaningless objects or locations in a 3-D space. During the retrieval phase one day later, participants had to decide whether two auditorily presented words shared an association with a common object or location. Thus, perceptual stimulation during retrieval was always equivalent, whereas either visually or haptically encoded object or location associations had to be reactivated. Moreover, the number of associations fanning out from each word varied systematically, enabling a parametric increase of the number of reactivated representations. Recall of visual objects predominantly activated the left superior frontal gyrus and the intraparietal cortex, whereas visually learned locations activated the superior parietal cortex of both hemispheres. Retrieval of haptically encoded material activated the left medial frontal gyrus and the intraparietal cortex in the object condition, and the bilateral superior parietal cortex in the location condition. A direct test for modality-specific effects showed that visually encoded material activated more vision-related areas (BA 18/19) and haptically encoded material more motor and somatosensory-related areas. A conjunction analysis identified supramodal and material-unspecific activations within the medial and superior frontal gyrus and the superior parietal lobe including the intraparietal sulcus. These activation patterns strongly support the idea that code-specific representations are consolidated and reactivated within anatomically distributed cell assemblies that comprise sensory and motor processing systems.

  15. Visualization research of 3D radiation field based on Delaunay triangulation

    International Nuclear Information System (INIS)

    Xie Changji; Chen Yuqing; Li Shiting; Zhu Bo

    2011-01-01

    Based on the characteristics of the three dimensional partition, the triangulation of discrete date sets is improved by the method of point-by-point insertion. The discrete data for the radiation field by theoretical calculation or actual measurement is restructured, and the continuous distribution of the radiation field data is obtained. Finally, the 3D virtual scene of the nuclear facilities is built with the VR simulation techniques, and the visualization of the 3D radiation field is also achieved by the visualization mapping techniques. It is shown that the method combined VR and Delaunay triangulation could greatly improve the quality and efficiency of 3D radiation field visualization. (authors)

  16. The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Cahn, B Rael; Andel, David; Carter, Olivia L; Vollenweider, Franz X

    2011-03-01

    Recent findings suggest that the serotonergic system and particularly the 5-HT2A/1A receptors are implicated in visual processing and possibly the pathophysiology of visual disturbances including hallucinations in schizophrenia and Parkinson's disease. To investigate the role of 5-HT2A/1A receptors in visual processing the effect of the hallucinogenic 5-HT2A/1A agonist psilocybin (125 and 250 μg/kg vs. placebo) on the spatiotemporal dynamics of modal object completion was assessed in normal volunteers (n = 17) using visual evoked potential recordings in conjunction with topographic-mapping and source analysis. These effects were then considered in relation to the subjective intensity of psilocybin-induced visual hallucinations quantified by psychometric measurement. Psilocybin dose-dependently decreased the N170 and, in contrast, slightly enhanced the P1 component selectively over occipital electrode sites. The decrease of the N170 was most apparent during the processing of incomplete object figures. Moreover, during the time period of the N170, the overall reduction of the activation in the right extrastriate and posterior parietal areas correlated positively with the intensity of visual hallucinations. These results suggest a central role of the 5-HT2A/1A-receptors in the modulation of visual processing. Specifically, a reduced N170 component was identified as potentially reflecting a key process of 5-HT2A/1A receptor-mediated visual hallucinations and aberrant modal object completion potential. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma.

    Science.gov (United States)

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (Pfield defect progression than in eyes without (Pfield defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.

  18. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    NARCIS (Netherlands)

    Balcells, Marc; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, M.A.W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, Ismael; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, Ignacio; Walton, Nic; Westhall, Kyle B.

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a

  19. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits.

    Science.gov (United States)

    Millington, Rebecca S; James-Galton, Merle; Maia Da Silva, Mari N; Plant, Gordon T; Bridge, Holly

    2017-01-01

    Posterior cortical atrophy (PCA), the visual variant of Alzheimer's disease, leads to high-level visual deficits such as alexia or agnosia. Visual field deficits have also been identified, but often inconsistently reported. Little is known about the pattern of visual field deficits or the underlying cortical changes leading to this visual loss. Multi-modal magnetic resonance imaging was used to investigate differences in gray matter volume, cortical thickness, white matter microstructure and functional activity in patients with PCA compared to age-matched controls. Additional analyses investigated hemispheric asymmetries in these metrics according to the visual field most affected by the disease. Analysis of structural data indicated considerable loss of gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the visual loss. This lateralized pattern of gray matter loss was also evident in the hippocampus and parahippocampal gyrus. Diffusion-weighted imaging showed considerable effects of PCA on white matter microstructure in the occipital cortex, and in the corpus callosum. The change in white matter was only lateralized in the occipital lobe, however, with greatest change in the optic radiation contralateral to the visual field deficit. Indeed, there was a significant correlation between the laterality of the optic radiation microstructure and visual field loss. Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  20. Occipital lobe lesions result in a displacement of magnetoencephalography visual evoked field dipoles.

    Science.gov (United States)

    Pang, Elizabeth W; Chu, Bill H W; Otsubo, Hiroshi

    2014-10-01

    The pattern-reversal visual evoked potential measured electrically from scalp electrodes is known to be decreased, or absent, in patients with occipital lobe lesions. We questioned whether the measurement and source analysis of the neuromagnetic visual evoked field (VEF) might offer additional information regarding visual cortex relative to the occipital lesion. We retrospectively examined 12 children (6-18 years) with occipital lesions on MRI, who underwent magnetoencephalography and ophthalmology as part of their presurgical assessment. Binocular half-field pattern-reversal VEFs were obtained in a 151-channel whole-head magnetoencephalography. Data were averaged and dipole source analyses were performed for each half-field stimulation. A significant lateral shift (P occipital lesions. Magnetoencephalography may be useful as a screening test of visual function in young patients. We discuss potential explanations for this lateral shift and emphasize the utility of adding the magnetoencephalography pattern-reversal visual evoked field protocol to the neurologic work-up.

  1. Visual field tunneling in aviators induced by memory demands.

    Science.gov (United States)

    Williams, L J

    1995-04-01

    Aviators are required rapidly and accurately to process enormous amounts of visual information located foveally and peripherally. The present study, expanding upon an earlier study (Williams, 1988), required young aviators to process within the framework of a single eye fixation a briefly displayed foveally presented memory load while simultaneously trying to identify common peripheral targets presented on the same display at locations up to 4.5 degrees of visual angle from the fixation point. This task, as well as a character classification task (Williams, 1985, 1988), has been shown to be very difficult for nonaviators: It results in a tendency toward tunnel vision. Limited preliminary measurements of peripheral accuracy suggested that aviators might be less susceptible than nonaviators to this visual tunneling. The present study demonstrated moderate susceptibility to cognitively induced tunneling in aviators when the foveal task was sufficiently difficult and reaction time was the principal dependent measure.

  2. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    Science.gov (United States)

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  3. Natural course of visual field loss in patients with Type 2 Usher syndrome.

    Science.gov (United States)

    Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William

    2007-06-01

    To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.

  4. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system.

    Science.gov (United States)

    Mender, Bedeho M W; Stringer, Simon M

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions.

  5. O PHTHALMIC MANIFESTATIONS AND VISUAL FIELD CHANGES WITH SELLAR AND SUPRASELLAR TUMOURS

    Directory of Open Access Journals (Sweden)

    Arvind L.

    2015-08-01

    Full Text Available PURPOSE: To evaluate ocular manifestations and visual field changes in patients with Sellar and Suprasellar Tumours. METHODS: Fifty patients with Sellar and Suprasellar tumours underwent a complete ophthalmic assessment and visual field analysis using the Humphrey Field Analyzer 30 - 2 program. Visual acuity, duration of symptoms, optic nerve head changes, pattern of visual field defects was noted. RESULTS: 50 patients including 15 male and 35 female subjects with mean age of 35.1±9.9 years and CT/MRI proven Suprasellar tumours 70% pituitary adenoma and 30% craniopharyngiomas were included. 70% cases presented with headache 80% with diminution of vision only 10% with hypothyroidism 50% with abnormal pupillary reaction including RAPD and anisocoria. Mean visual acuity at presentation was 0.46 log MAR . Of 100 eyes, 45 patients (90% had visual field defects including temporal defects in 35 patients (70%, non - specific defects in 4 patients (20% and 1patient (10% without any defect. Optic nerve head changes note d and 5 patients (25% presented with partial optic atrophy and 10 presented with established papilloedema. Visual field outcomes are correlated with duration of symptoms, optic nerve head changes at presentation and CT/ MRI findings. CONCLUSION: Visual fi eld defects were present in two thirds of patients at presentation. An overall deterioration in vision and visual fields was noted before surgical resection. A correlation was found between the duration of symptoms, MRI/ CT scan reports and visual field, s ignifying the importance in early diagnosis of neurological lesions on the basis of ophthalmic examination .

  6. Right fusiform response patterns reflect visual object identity rather than semantic similarity.

    Science.gov (United States)

    Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik

    2013-12-01

    We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.

  7. On the horizontal wobbling of an object levitated by near-field acoustic levitation.

    Science.gov (United States)

    Kim, Cheol-Ho; Ih, Jeong-Guon

    2007-11-01

    A circular planar object can be levitated with several hundreds of microns by ultrasonic near-field acoustic levitation (NFAL). However, when both the sound source and the levitated object are circularly shaped and the center of the levitated object does not coincide with the source center, instability problem often occurs. When this happens, it becomes difficult to pick up or transport the object for the next process. In this study, when the center of the levitated object was offset from the source center, the moving direction of the levitated object was predicted by using the time averaged potential around the levitated object. The wobbling frequency of the levitated object was calculated by analyzing the nonlinear wobbling motion of the object. It was shown that the predicted wobbling frequencies agreed with measured ones well. Finally, a safe zone was suggested to avoid the unstable movement of an object.

  8. Recovery of visual-field defects after occipital lobe infarction: a perimetric study.

    Science.gov (United States)

    Çelebisoy, Mehmet; Çelebisoy, Neşe; Bayam, Ece; Köse, Timur

    2011-06-01

    To assess the temporal course of homonymous visual-field defects due to occipital lobe infarction, by using automated perimetry. 32 patients with ischaemic infarction of the occipital lobe were studied prospectively, using a Humphrey Visual Field Analyser II. The visual field of each eye was divided into central, paracentral and peripheral zones. The mean visual sensitivity of each zone was calculated and used for the statistical analysis. The results of the initial examination, performed within 2 weeks of stroke, were compared with the results of the sixth-month control. The lesions were assigned to the localisations, optic radiation, striate cortex, occipital pole and occipital convexity, by MRI. A statistically significant improvement was noted, especially for the lower quadrants. Lesions of the occipital pole and convexity were not significantly associated with visual-field recovery. However, involvement of the striate cortex and extensive lesions involving all the areas studied was significantly associated with poor prognosis. Homonymous visual-field defects in our patients improved within 6 months. Restoration of the lower quadrants and especially the peripheral zones was noted. Incomplete damage to the striate cortex, which has a varying pattern of vascular supply, could explain this finding. Magnification factor theory, which is the increment of the receptive-field size of striate cortex cells with visual-field eccentricity, may explain the more significant improvement in the peripheral zones.

  9. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter

    Directory of Open Access Journals (Sweden)

    Tsapakis S

    2017-08-01

    Full Text Available Stylianos Tsapakis, Dimitrios Papaconstantinou, Andreas Diagourtas, Konstantinos Droutsas, Konstantinos Andreanos, Marilita M Moschos, Dimitrios Brouzas 1st Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece Purpose: To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter.Materials and methods: Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter.Results: High correlation coefficient (r=0.808, P<0.0001 was found between the virtual reality visual field test and the Humphrey perimeter visual field.Conclusion: Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use. Keywords: visual fields, virtual reality glasses, perimetry, visual fields software, smartphone

  10. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  11. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma

    Directory of Open Access Journals (Sweden)

    Viswa Gangeddula

    2017-08-01

    Full Text Available Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma.Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1, dynamic visual field condition (C2, and dynamic visual field condition with active driving (C3 using an interactive, desktop driving simulator. The number of correct responses (accuracy and response times on the visual field task were compared between groups and between conditions using Kruskal–Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions.Results: Adding cognitive demand (C2 and C3 to the static visual field test (C1 adversely affected accuracy and response times, in both groups (p < 0.05. However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1–Q3 3 (2–6.50 vs. controls: 2 (0.50–2.50; p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2–6 vs. controls: 1 (0.50–2; p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls (p = 0.02.Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma.

  12. Visual attention measures predict pedestrian detection in central field loss: a pilot study.

    Science.gov (United States)

    Alberti, Concetta F; Horowitz, Todd; Bronstad, P Matthew; Bowers, Alex R

    2014-01-01

    The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = -0.66 and -0.62, respectively, pattention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks.

  13. The advanced glaucoma intervention study, 6: effect of cataract on visual field and visual acuity. The AGIS Investigators.

    Science.gov (United States)

    2000-12-01

    To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT

  14. Can DMCO Detect Visual Field Loss in Neurological Patients? A Secondary Validation Study

    DEFF Research Database (Denmark)

    Olsen, Ane Sophie; Steensberg, Alvilda Thougaard; la Cour, Morten

    2017-01-01

    Unrecognized visual field loss is caused by a range of blinding eye conditions as well as serious brain diseases. The commonest cause of asymptomatic visual field loss is glaucoma. No screening tools have been proven cost-effective. Damato Multifixation Campimetry Online (DMCO), an inexpensive...... online test, has been evaluated as a future cost-beneficial tool to detect glaucoma. To further validate DMCO, this study aimed to test DMCO in a preselected population with neurological visual field loss. Methods : The study design was an evaluation of a diagnostic test. Patients were included...... if they had undergone surgery for epilepsy during 2011-2014, resulting in visual field loss. They were examined with DMCO and results were compared with those obtained with the Humphrey Field Analyzer (30:2 SITA-Fast). DMCO sensitivity and specificity were estimated with 95% confidence intervals. Results...

  15. Pupillary anomaly masquerading as a glaucomatous visual field defect: a case report

    Directory of Open Access Journals (Sweden)

    Tey Adrian

    2004-06-01

    Full Text Available Abstract Background Patients are often referred to ophthalmologists with focal visual field defects on routine testing, possibly related to a potential diagnosis of glaucoma. However, examination of the individual patient's ocular characteristics as well as facial characteristics may often reveal a cause of the visual field defect. Case presentation We describe a patient who was found to have a superior visual field defect on routine testing by the optician. Repeat perimetry with pharmacological dilatation of the pupil revealed that the cause of the field defect was related to an eccentric inferiorly displaced pupil, secondary to trauma some years previously. Discussion Individual patient characteristics, including both ocular, as well as facial, need to be considered, when interpreting any visual field defect.

  16. A configural effect in visual short-term memory for features from different parts of an object.

    Science.gov (United States)

    Delvenne, Jean-François; Bruyer, Raymond

    2006-09-01

    Previous studies have shown that change detection performance is improved when the visual display holds features (e.g., a colour and an orientation) that are grouped into different parts of the same object compared to when they are all spatially separated (Xu, 2002a, 2002b). These findings indicate that visual short-term memory (VSTM) encoding can be "object based". Recently, however, it has been demonstrated that changing the orientation of an item could affect the spatial configuration of the display (Jiang, Chun, & Olson, 2004), which may have an important influence on change detection. The perceptual grouping of features into an object obviously reduces the amount of distinct spatial relations in a display and hence the complexity of the spatial configuration. In the present study, we ask whether the object-based encoding benefit observed in previous studies may reflect the use of configural coding rather than the outcome of a true object-based effect. The results show that when configural cues are removed, the object-based encoding benefit remains for features (i.e., colour and orientation) from different parts of an object, but is significantly reduced. These findings support the view that memory for features from different parts of an object can benefit from object-based encoding, but the use of configural coding significantly helps enlarge this effect.

  17. A new 2-dimensional method for constructing visualized treatment objectives for distraction osteogenesis of the short mandible

    NARCIS (Netherlands)

    van Beek, H.

    2010-01-01

    Open bite development during distraction of the mandible is common and partly due to inaccurate planning of the treatment. Conflicting guidelines exist in the literature. A method for Visualized Treatment Objective (VTO) construction is presented as an aid for determining the correct orientation of

  18. Object-Spatial Visualization and Verbal Cognitive Styles, and Their Relation to Cognitive Abilities and Mathematical Performance

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk

    2016-01-01

    The present study investigated the object-spatial visualization and verbal cognitive styles among high school students and related differences in spatial ability, verbal-logical reasoning ability, and mathematical performance of those students. Data were collected from 348 students enrolled in Advanced Placement calculus courses at six high…

  19. A computerised screening for visual field defects in brain injury patients

    DEFF Research Database (Denmark)

    Nordfang, Maria; Uhre, Valdemar H.B.; Robotham, Ro Julia

    The c-VFT is a computer program written in open source Python using Psychopy and can be installed without a license. The program tests 48 points in the visual field, covering the visual field from 1 degree to 10 degrees in each hemifield. A colour change detection task controls fixation. Several...... parameters like the number of stimulus repetitions, the colour of stimuli and background, and the orientation of the layout can be individually set. The c-VFT probes all four quadrants and probes along the horizontal midline, making it particularly sensitive for visual field deficits that affect reading...

  20. Long Term Results of Visual Field Progression Analysis in Open Angle Glaucoma Patients Under Treatment.

    Science.gov (United States)

    Kocatürk, Tolga; Bekmez, Sinan; Katrancı, Merve; Çakmak, Harun; Dayanır, Volkan

    2015-01-01

    To evaluate visual field progression with trend and event analysis in open angle glaucoma patients under treatment. Fifteen year follow-up results of 408 eyes of 217 glaucoma patients who were followed at Adnan Menderes University, Department of Ophthalmology between 1998 and 2013 were analyzed retrospectively. Visual field data were collected for Mean Deviation (MD), Visual Field Index (VFI), and event occurrence. There were 146 primary open-angle glaucoma (POAG), 123 pseudoexfoliative glaucoma (XFG) and 139 normal tension glaucoma (NTG) eyes. MD showed significant change in all diagnostic groups (pfield indices. We herein report our fifteen year follow-up results in open angle glaucoma.

  1. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.

    Science.gov (United States)

    Kraft, Antje; Dyrholm, Mads; Kehrer, Stefanie; Kaufmann, Christian; Bruening, Jovita; Kathmann, Norbert; Bundesen, Claus; Irlbacher, Kerstin; Brandt, Stephan A

    2015-01-01

    Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Multiscale aspects of the visual system and their use for scale invariant object recognition

    NARCIS (Netherlands)

    Petkov, N; vanDeemter, J; Karsch, F; Monien, B; Satz, H

    1997-01-01

    Psychophysical, neuroanatomical and neurophysiological evidence for multiscale aspects of the visual system is considered. The stack model and its relation to the image pyramid are discussed. The results of a straightforward implementation on a parallel supercomputer are presented. The high

  3. A bilateral advantage for maintaining objects in visual short term memory

    OpenAIRE

    Holt, JL; Delvenne, JFCM

    2015-01-01

    Research has shown that attentional pre-cues can subsequently influence the transfer of information into visual short term memory (VSTM) (Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754–763). However, studies also suggest that those effects are constrained by the hemifield alignment of the pre-cues (Holt, J. L., & Delvenne, J.-F. (2014). A bilateral advantage in controlling acc...

  4. Accessibility of shared space for visually impaired persons : A comparative field study

    NARCIS (Netherlands)

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  5. The Role of Visual Working Memory in Attentive Tracking of Unique Objects

    Science.gov (United States)

    Makovski, Tal; Jiang, Yuhong V.

    2009-01-01

    When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…

  6. The Impact of Change in Visual Field on Health-Related Quality of Life: The Los Angeles Latino Eye Study

    Science.gov (United States)

    Patino, Cecilia M.; Varma, Rohit; Azen, Stanley P.; Conti, David V.; Nichol, Michael B.; McKean-Cowdin, Roberta

    2010-01-01

    Purpose To assess the impact of change in visual field (VF) on change in health related quality of life (HRQoL) at the population level. Design Prospective cohort study Participants 3,175 Los Angles Latino Eye Study (LALES) participants Methods Objective measures of VF and visual acuity and self-reported HRQoL were collected at baseline and 4-year follow-up. Analysis of covariance was used to evaluate mean differences in change of HRQoL across severity levels of change in VF and to test for effect modification by covariates. Main outcome measures General and vision-specific HRQoL. Results Of 3,175 participants, 1430 (46%) showed a change in VF (≥1 decibel [dB]) and 1651, 1715 (54%) reported a clinically important change (≥5 points) in vision-specific HRQoL. Progressive worsening and improvement in the VF were associated with increasing losses and gains in vision-specific HRQoL for the composite score and 10 of its 11 subscales (all Ptrends 5 dB and gains > 3 dB were associated with clinically meaningful losses and gains in vision-specific HRQoL, respectively. Areas of vision-specific HRQoL most affected by greater losses in VF were driving, dependency, role-functioning, and mental health. The effect of change in VF (loss or gain) on mean change in vision-specific HRQoL varied by level of baseline vision loss (in visual field and/or visual acuity) and by change in visual acuity (all P-interactions 5 dB loss in visual field during the study period had a mean loss of vision-specific HRQoL of 11.3 points, while those with no VF loss at baseline had a mean loss of 0.97 points Similarly, with a > 5 dB loss in VF and baseline visual acuity impairment (mild/severe) there was a loss in vision-specific HRQoL of 10.5 points, whereas with no visual acuity impairment at baseline there was a loss of vision-specific HRQoL of 3.7 points. Conclusion Both losses and gains in VF produce clinically meaningful changes in vision-specific HRQoL. In the presence of pre-existing vision

  7. Detecting changes in real-world objects: The relationship between visual long-term memory and change blindness.

    Science.gov (United States)

    Brady, Timothy F; Konkle, Talia; Oliva, Aude; Alvarez, George A

    2009-01-01

    A large body of literature has shown that observers often fail to notice significant changes in visual scenes, even when these changes happen right in front of their eyes. For instance, people often fail to notice if their conversation partner is switched to another person, or if large background objects suddenly disappear.1,2 These 'change blindness' studies have led to the inference that the amount of information we remember about each item in a visual scene may be quite low.1 However, in recent work we have demonstrated that long-term memory is capable of storing a massive number of visual objects with significant detail about each item.3 In the present paper we attempt to reconcile these findings by demonstrating that observers do not experience 'change blindness' with the real world objects used in our previous experiment if they are given sufficient time to encode each item. The results reported here suggest that one of the major causes of change blindness for real-world objects is a lack of encoding time or attention to each object (see also refs. 4 and 5).

  8. Visual agnosia for line drawings and silhouettes without apparent impairment of real-object recognition: a case report.

    Science.gov (United States)

    Hiraoka, Kotaro; Suzuki, Kyoko; Hirayama, Kazumi; Mori, Etsuro

    2009-01-01

    We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  9. Visual Agnosia for Line Drawings and Silhouettes without Apparent Impairment of Real-Object Recognition: A Case Report

    Directory of Open Access Journals (Sweden)

    Kotaro Hiraoka

    2009-01-01

    Full Text Available We report on a patient with visual agnosia for line drawings and silhouette pictures following cerebral infarction in the region of the right posterior cerebral artery. The patient retained the ability to recognize real objects and their photographs, and could precisely copy line drawings of objects that she could not name. This case report highlights the importance of clinicians and researchers paying special attention to avoid overlooking agnosia in such cases. The factors that lead to problems in the identification of stimuli other than real objects in agnosic cases are discussed.

  10. Magnetic Field of Conductive Objects as Superposition of Elementary Eddy Currents and Eddy Current Tomography

    Science.gov (United States)

    Sukhanov, D. Ya.; Zav'yalova, K. V.

    2018-03-01

    The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.

  11. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects

    Science.gov (United States)

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  12. Enhanced flow field visualization using a flexible animation procedure

    International Nuclear Information System (INIS)

    Marconi, F.; Moretti, G.; Englund, D.C.

    1989-01-01

    A flexible and powerful procedure for transposing computer-generated images onto video tape is used in flowfield visualization. The result is animated sequences which can be used very effectively in the study of both steady and unsteady flows. The key to the procedure is the fact that the images (i.e., frames) of the animated sequence are recorded on the video tapes one at a time after they are created. Thus, the need for a mass storage system is eliminated because after a frame is recorded it is discarded. 7 references

  13. VRP09 Objective Methods to Test Visual Dysfunction in the Presence of Cognitive Impairment

    Science.gov (United States)

    2014-10-01

    cortex  in response  to  visual  stimuli  in  the  central  and  peripheral...defined  damage  to  the  retina,  optic  nerve,  visual   radiations  or  visual   cortex  will  be  used  to  study...tooth  to  the  portable   processor  or  also  to  a  nearby  computer.   The  optical  head  can  be

  14. Preschool teaching staff 's opinions on the importance of preschool curricular fields of activities, art genres and visual arts fields

    OpenAIRE

    Zupančič, Tomaž; Mulej, Matjaž; Čagran, Branka

    2017-01-01

    This article presents preschool teachers’ and assistant teachers’ opinions on the importance of selected fields of educational work in kindergartens. The article first highlights the importance of activities expressing artistic creativity within modern curriculums. Then, it presents an empirical study that examines the preschool teachers’ and assistant teachers’ opinions on the importance of the educational fields, art genres, and visual arts fields. In research hypotheses, we presumed that p...

  15. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  16. Specvis: Free and open-source software for visual field examination.

    Science.gov (United States)

    Dzwiniel, Piotr; Gola, Mateusz; Wójcik-Gryciuk, Anna; Waleszczyk, Wioletta J

    2017-01-01

    Visual field impairment affects more than 100 million people globally. However, due to the lack of the access to appropriate ophthalmic healthcare in undeveloped regions as a result of associated costs and expertise this number may be an underestimate. Improved access to affordable diagnostic software designed for visual field examination could slow the progression of diseases, such as glaucoma, allowing for early diagnosis and intervention. We have developed Specvis, a free and open-source application written in Java programming language that can run on any personal computer to meet this requirement (http://www.specvis.pl/). Specvis was tested on glaucomatous, retinitis pigmentosa and stroke patients and the results were compared to results using the Medmont M700 Automated Static Perimeter. The application was also tested for inter-test intrapersonal variability. The results from both validation studies indicated low inter-test intrapersonal variability, and suitable reliability for a fast and simple assessment of visual field impairment. Specvis easily identifies visual field areas of zero sensitivity and allows for evaluation of its levels throughout the visual field. Thus, Specvis is a new, reliable application that can be successfully used for visual field examination and can fill the gap between confrontation and perimetry tests. The main advantages of Specvis over existing methods are its availability (free), affordability (runs on any personal computer), and reliability (comparable to high-cost solutions).

  17. Normal Threshold Size of Stimuli in Children Using a Game-Based Visual Field Test.

    Science.gov (United States)

    Wang, Yanfang; Ali, Zaria; Subramani, Siddharth; Biswas, Susmito; Fenerty, Cecilia; Henson, David B; Aslam, Tariq

    2017-06-01

    The aim of this study was to demonstrate and explore the ability of novel game-based perimetry to establish normal visual field thresholds in children. One hundred and eighteen children (aged 8.0 ± 2.8 years old) with no history of visual field loss or significant medical history were recruited. Each child had one eye tested using a game-based visual field test 'Caspar's Castle' at four retinal locations 12.7° (N = 118) from fixation. Thresholds were established repeatedly using up/down staircase algorithms with stimuli of varying diameter (luminance 20 cd/m 2 , duration 200 ms, background luminance 10 cd/m 2 ). Relationships between threshold and age were determined along with measures of intra- and intersubject variability. The Game-based visual field test was able to establish threshold estimates in the full range of children tested. Threshold size reduced with increasing age in children. Intrasubject variability and intersubject variability were inversely related to age in children. Normal visual field thresholds were established for specific locations in children using a novel game-based visual field test. These could be used as a foundation for developing a game-based perimetry screening test for children.

  18. Volume of visual field assessed with kinetic perimetry and its application to static perimetry

    Directory of Open Access Journals (Sweden)

    Christoforidis JB

    2011-04-01

    Full Text Available John B ChristoforidisCollege of Medicine, The Ohio State University, Columbus, OH, USABackground: The purpose of this study was to quantify the volume of the kinetic visual field with a single unit that accounts for visual field area and differential luminance sensitivity.Methods: Kinetic visual field perimetry was performed with a Goldmann perimeter using I4e, I3e, I2e, and I1e targets. The visual fields of 25 normal volunteers (17 women, eight men of mean age 33.9 ± 10.1 (range 17–64 years were obtained and digitized. Isopter areas were measured with a method devised to correct cartographic distortion due to polar projection inherent in perimetry and are expressed in steradians. The third dimension of each isopter represents sensitivity to target luminance and was calculated as log (target luminance-1. If luminance is expressed in cd/m2, the values for the third dimension are 0.5 for I4e, 1.0 for I3e, 1.5 for I2e, and 2.0 for I1e. The resulting unit is a steradian (log 103 (cd/m2-1 which is referred to as a Goldmann. In addition, the visual fields of four patients with representative visual defect patterns were examined and compared with normal subjects.Results: Mean isopter areas for normal subjects were 3.092 ± 0.242 steradians for I4e, 2.349 ± 0.280 steradians for I3e, 1.242 ± 0.263 steradians for I2e, and 0.251 ± 0.114 steradians for the I1e target. Isopter volumes were 1.546 ± 0.121 Goldmanns for the I4e target, 1.174 ± 0.140 Goldmanns for I3e, 0.621 ± 0.131 Goldmanns for I2e, and 0.126 ± 0.057 Goldmanns for I1e. The total mean visual field volume in our study for the I target was 3.467 ± 0.371 Goldmanns.Conclusion: The volume of the island of vision may be used to quantify a visual field with a single value which contains information about both visual field extension and differential luminance sensitivity. This technique may be used to assess the progression or stability of visual field defects over time. A similar method may

  19. Visual attention measures predict pedestrian detection in central field loss: a pilot study.

    Directory of Open Access Journals (Sweden)

    Concetta F Alberti

    Full Text Available The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT and static attention (Useful Field of View; UFOV were predictive of the ability of people with central field loss (CFL to detect pedestrian hazards in simulated driving.11 people with bilateral CFL (visual acuity 20/30-20/200 and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests. Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision.UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse (84% and 97%, respectively; p = 0.001. For CFL participants, higher proportions of timely reactions correlated significantly with higher (better MOT speed thresholds (r = 0.73, p = 0.01, with better performance on the UFOV divided and selective attention subtests (r = -0.66 and -0.62, respectively, p<0.04, with better contrast sensitivity scores (r = 0.54, p = 0.08 and smaller scotomas (r = -0.60, p = 0.05.Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks.

  20. Slow changing postural cues cancel visual field dependence on self-tilt detection.

    Science.gov (United States)

    Scotto Di Cesare, C; Macaluso, T; Mestre, D R; Bringoux, L

    2015-01-01

    Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants had to indicate whether they felt being tilted forward at successive angles. Results show that thresholds for self-tilt detection substantially differed between visual field dependent/independent subjects, when only the visual scene was rotated. This difference was no longer present when the body was actually rotated, whatever the visual scene condition (i.e., absent, static or rotated relative to the observer). These results suggest that the cancellation of visual field dependence by dynamic postural cues may rely on a multisensory reweighting process, where slow changing vestibular/somatosensory inputs may prevail over visual inputs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    Science.gov (United States)

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    Science.gov (United States)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  3. Indoor objects and outdoor urban scenes recognition by 3D visual primitives

    DEFF Research Database (Denmark)

    Fu, Junsheng; Kämäräinen, Joni-Kristian; Buch, Anders Glent

    2014-01-01

    , we propose an alternative appearance-driven approach which rst extracts 2D primitives justi ed by Marr's primal sketch, which are \\accumulated" over multiple views and the most stable ones are \\promoted" to 3D visual primitives. The 3D promoted primitives represent both structure and appearance...

  4. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    Science.gov (United States)

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  5. Real-world spatial regularities affect visual working memory for objects

    NARCIS (Netherlands)

    Kaiser, D.; Stein, T.; Peelen, M.V.

    2015-01-01

    Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic

  6. Temporal visual field defects are associated with monocular inattention in chiasmal pathology.

    Science.gov (United States)

    Fledelius, Hans C

    2009-11-01

    Chiasmal lesions have been shown to give rise occasionally to uni-ocular temporal inattention, which cannot be compensated for by volitional eye movement. This article describes the assessments of 46 such patients with chiasmal pathology. It aims to determine the clinical spectrum of this disorder, including interference with reading. Retrospective consecutive observational clinical case study over a 7-year period comprising 46 patients with chiasmal field loss of varying degrees. Observation of reading behaviour during monocular visual acuity testing ascertained from consecutive patients who appeared unable to read optotypes on the temporal side of the chart. Visual fields were evaluated by kinetic (Goldmann) and static (Octopus) techniques. Five patients who clearly manifested this condition are presented in more detail. The results of visual field testing were related to absence or presence of uni-ocular visual inattentive behaviour for distance visual acuity testing and/or reading printed text. Despite normal eye movements, the 46 patients making up the clinical series perceived only optotypes in the nasal part of the chart, in one eye or in both, when tested for each eye in turn. The temporal optotypes were ignored, and this behaviour persisted despite instruction to search for any additional letters temporal to those, which had been seen. This phenomenon of unilateral visual inattention held for both eyes in 18 and was unilateral in the remaining 28 patients. Partial or full reversibility after treatment was recorded in 21 of the 39 for whom reliable follow-up data were available. Reading a text was affected in 24 individuals, and permanently so in six. A neglect-like spatial unawareness and a lack of cognitive compensation for varying degrees of temporal visual field loss were present in all the patients observed. Not only is visual field loss a feature of chiasmal pathology, but the higher visual function of affording attention within the temporal visual

  7. Near-field imaging of interacting nano objects with metal and metamaterial superlenses

    International Nuclear Information System (INIS)

    Hakkarainen, T; Setälä, T; Friberg, A T

    2012-01-01

    Employing rigorous electromagnetic theory we investigate optical the near-field imaging of two interacting dipole-like objects with metal and slightly lossy metamaterial nanoslab superlenses. Our analysis indicates that the dipole emission is suppressed by near-field interactions when the objects are close to the lens or each other. This strongly influences the image quality, in particular with objects of small size and high polarizability. The interference from two nearby objects also affects the resolution and subwavelength definition can only be obtained for objects with dipole moments predominantly orthogonal to the slab. Such an optimal imaging condition is achieved with excitation by total internal reflection. With simulations we show that in these circumstances, subwavelength resolutions of about λ/5 for silver superlens and λ/10 for metamaterial slab are reached. (paper)

  8. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  9. Visualizing thesauri in the field of information retrieval

    International Nuclear Information System (INIS)

    Riemer, J.

    2007-01-01

    This thesis was written in the course of an International Atomic Energy Agency (IAEA) project aimed at visualizing the thesaurus used in the International Nuclear Information System (INIS) online database. The first part of the paper comprises a brief historical review of the development of thesauri, providing an overview of tools for categorizing knowledge and covering a spectrum from wordnets to folksonomies. The second part discusses existing strategies for displaying thesauri and explores basic considerations concerning the technical realization of visualizing a thesaurus as a Web application. A problem experienced by users when navigating through hierarchical thesauri is the quasi-standard to display word blocks in tabular form. Starting from a top term all word block terms (e.g. narrower, broader, related, forbidden terms, etc.) are listed vertically. Human perception however is much better suited to grasp relationships by spatial clustering of items within a context. The shortcoming of the tabular approach is further amplified by the widespread practise of putting the top term in alphabetical context to other top terms in order to assist navigation. However, using an alphabetical index for this purpose contradicts the paradigm of hierarchical thesauri in most cases. It is only in the domain of linguistic thesauri where the visualisation deviates from the classical tabular data view in favour of more intuitive visualisation paradigms. Yet in those cases applications always fall back on additional software that needs to be installed into the Web browser. The approach chosen in the present project tries to solve both problem areas and provides an intuitively usable visualisation technique for hierarchical thesauri which runs on any current web browser natively i.e. without any additional software needed. A considerable portion of the publication is devoted to the concrete implementation of the INIS project. Special attention is given to the methodologies and

  10. Research on Visualization Design Method in the Field of New Media Software Engineering

    Science.gov (United States)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  11. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  12. Clinical study of the visual field defects caused by occipital lobe lesions.

    Science.gov (United States)

    Ogawa, Katsuhiko; Ishikawa, Hiroshi; Suzuki, Yutaka; Oishi, Minoru; Kamei, Satoshi

    2014-01-01

    The central visual field is projected to the region from the occipital tip to the posterior portion of the medial area in the striate cortex. However, central visual field disturbances have not been compared with the location of the lesions in the striate cortex. Thirteen patients with visual field defects caused by partial involvement of the striate cortex were enrolled. The lesions were classified according to their location into the anterior portion, the posterior portion of the medial area, and the occipital tip. Visual field defects were examined by the Goldmann perimetry, the Humphrey perimetry and the auto-plot tangent screen. We defined a defect within the central 10° of vision as a central visual field disturbance. The visual field defects in 13 patients were compared with the location of their lesions in the striate cortex. The medial area was involved in 7 patients with no involvement of the occipital tip. In 2 of them, peripheral homonymous hemianopia without central visual field disturbance was shown, and their lesions were located only in the anterior portion. One patient with a lesion in the posterior portion alone showed incomplete central homonymous hemianopia. Three of 4 patients with lesions located in both the anterior and posterior portions of the medial area showed incomplete central homonymous hemianopia and peripheral homonymous hemianopia. The occipital tip was involved in 6 patients. Five of them had small lesions in the occipital tip alone and showed complete central homonymous hemianopia or quadrantanopia. The other patient with a lesion in the lateral posterior portion and bilateral occipital tip lesions showed bilateral slight peripheral visual field disturbance in addition to complete central homonymous hemianopia on both sides. Lesions in the posterior portion of the medial area as well as the occipital tip caused central visual field disturbance in our study, as indicated in previous reports. Central homonymous hemianopia tended to

  13. Neural basis for dynamic updating of object representation in visual working memory.

    Science.gov (United States)

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely c