WorldWideScience

Sample records for object memory encoding

  1. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval.

    Science.gov (United States)

    Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2008-07-01

    Tests of object recognition memory, or the judgment of the prior occurrence of an object, have made substantial contributions to our understanding of the nature and neurobiological underpinnings of mammalian memory. Only in recent years, however, have researchers begun to elucidate the specific brain areas and neural processes involved in object recognition memory. The present review considers some of this recent research, with an emphasis on studies addressing the neural bases of perirhinal cortex-dependent object recognition memory processes. We first briefly discuss operational definitions of object recognition and the common behavioural tests used to measure it in non-human primates and rodents. We then consider research from the non-human primate and rat literature examining the anatomical basis of object recognition memory in the delayed nonmatching-to-sample (DNMS) and spontaneous object recognition (SOR) tasks, respectively. The results of these studies overwhelmingly favor the view that perirhinal cortex (PRh) is a critical region for object recognition memory. We then discuss the involvement of PRh in the different stages--encoding, consolidation, and retrieval--of object recognition memory. Specifically, recent work in rats has indicated that neural activity in PRh contributes to object memory encoding, consolidation, and retrieval processes. Finally, we consider the pharmacological, cellular, and molecular factors that might play a part in PRh-mediated object recognition memory. Recent studies in rodents have begun to indicate the remarkable complexity of the neural substrates underlying this seemingly simple aspect of declarative memory.

  2. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture

    OpenAIRE

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-01-01

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an ?irrelevant-change distracting effect?, where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants? processing manner, lea...

  3. Working memory contributes to the encoding of object location associations: Support for a 3-part model of object location memory.

    Science.gov (United States)

    Gillis, M Meredith; Garcia, Sarah; Hampstead, Benjamin M

    2016-09-15

    A recent model by Postma and colleagues posits that the encoding of object location associations (OLAs) requires the coordination of several cognitive processes mediated by ventral (object perception) and dorsal (spatial perception) visual pathways as well as the hippocampus (feature binding) [1]. Within this model, frontoparietal network recruitment is believed to contribute to both the spatial processing and working memory task demands. The current study used functional magnetic resonance imaging (fMRI) to test each step of this model in 15 participants who encoded OLAs and performed standard n-back tasks. As expected, object processing resulted in activation of the ventral visual stream. Object in location processing resulted in activation of both the ventral and dorsal visual streams as well as a lateral frontoparietal network. This condition was also the only one to result in medial temporal lobe activation, supporting its role in associative learning. A conjunction analysis revealed areas of shared activation between the working memory and object in location phase within the lateral frontoparietal network, anterior insula, and basal ganglia; consistent with prior working memory literature. Overall, findings support Postma and colleague's model and provide clear evidence for the role of working memory during OLA encoding. Published by Elsevier B.V.

  4. Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.

    Science.gov (United States)

    Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei

    2016-03-09

    Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.

  5. Effects of attention during encoding on sex differences in object location memory.

    Science.gov (United States)

    Barel, Efrat

    2018-04-16

    Attention plays a key role in memory processes and has been widely studied in various memory tasks. The role of attention in sex differences in object location memory is not clearly understood. In the present study, two experiments involving 186 participants and using an object array presented on paper were conducted to examine two encoding conditions: incidental and intentional. In each experiment, the participants were randomly assigned to divided versus full attention conditions. In the first experiment, which involved incidental encoding, women outperformed men in memorising location-exchanged objects in both the full and in the divided attention condition. In the second experiment, which involved intentional encoding, women outperformed men in memorising location-exchanged objects in the full attention condition, but not the divided attention condition. These findings deepen our knowledge regarding the role of attention in object location memory, specifically in terms of the conditions under which females have an advantage for detecting changes in an array of objects. © 2018 International Union of Psychological Science.

  6. Encoding of faces and objects into visual working memory: an event-related brain potential study.

    Science.gov (United States)

    Meinhardt-Injac, Bozana; Persike, Malte; Berti, Stefan

    2013-09-11

    Visual working memory (VWM) is an important prerequisite for cognitive functions, but little is known on whether the general perceptual processing advantage for faces also applies to VWM processes. The aim of the present study was (a) to test whether there is a general advantage for face stimuli in VWM and (b) to unravel whether this advantage is related to early sensory processing stages. To address these questions, we compared encoding of faces and complex nonfacial objects into VWM within a combined behavioral and event-related brain potential (ERP) study. In detail, we tested whether the N170 ERP component - which is associated with face-specific holistic processing - is affected by memory load for faces or whether it might be involved in WM encoding of any complex object. Participants performed a same-different task with either face or watch stimuli and with two different levels of memory load. Behavioral measures show an advantage for faces on the level of VWM, mirrored in higher estimated VWM capacity (i.e. Cowan's K) for faces compared with watches. In the ERP, the N170 amplitude was enhanced for faces compared with watches. However, the N170 was not modulated by working memory load either for faces or for watches. In contrast, the P3b component was affected by memory load irrespective of the stimulus category. Taken together, the results suggest that the VWM advantage for faces is not reflected at the sensory stages of stimulus processing, but rather at later higher-level processes as reflected by the P3b component.

  7. Object-based encoding in visual working memory: a life span study.

    Science.gov (United States)

    Zhang, Qiong; Shen, Mowei; Tang, Ning; Zhao, Guohua; Gao, Zaifeng

    2013-08-20

    Recent studies on development of visual working memory (VWM) predominantly focus on VWM capacity and spatial-based information filtering in VWM. Here we explored another new aspect of VWM development: object-based encoding (OBE), which refers to the fact that even if one feature dimension is required to be selected into VWM, the other irrelevant dimensions are also extracted. We explored the OBE in children, young adults, and old adults, by probing an "irrelevant-change distracting effect" in which a change of stored irrelevant feature dramatically affects the performance of task-relevant features in a change-detection task. Participants were required to remember two or four simple colored shapes, while color was used as the relevant dimension. We found that changes to irrelevant shapes led to a significant distracting effect across the three age groups in both load conditions; however, children showed a greater degree of OBE than did young and old adults. These results suggest that OBE exists in VWM over the life span (6-67 years), yet continues to develop along with VWM.

  8. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    Science.gov (United States)

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cortical activation patterns during long-term memory retrieval of visually or haptically encoded objects and locations.

    Science.gov (United States)

    Stock, Oliver; Röder, Brigitte; Burke, Michael; Bien, Siegfried; Rösler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n=10) or haptically (haptic encoding group, n=10) had to be retrieved from long-term memory. Participants learned associations between auditorily presented words and either meaningless objects or locations in a 3-D space. During the retrieval phase one day later, participants had to decide whether two auditorily presented words shared an association with a common object or location. Thus, perceptual stimulation during retrieval was always equivalent, whereas either visually or haptically encoded object or location associations had to be reactivated. Moreover, the number of associations fanning out from each word varied systematically, enabling a parametric increase of the number of reactivated representations. Recall of visual objects predominantly activated the left superior frontal gyrus and the intraparietal cortex, whereas visually learned locations activated the superior parietal cortex of both hemispheres. Retrieval of haptically encoded material activated the left medial frontal gyrus and the intraparietal cortex in the object condition, and the bilateral superior parietal cortex in the location condition. A direct test for modality-specific effects showed that visually encoded material activated more vision-related areas (BA 18/19) and haptically encoded material more motor and somatosensory-related areas. A conjunction analysis identified supramodal and material-unspecific activations within the medial and superior frontal gyrus and the superior parietal lobe including the intraparietal sulcus. These activation patterns strongly support the idea that code-specific representations are consolidated and reactivated within anatomically distributed cell assemblies that comprise sensory and motor processing systems.

  10. Lateralized Spatial and Object Memory Encoding in Entorhinal and Perirhinal Cortices

    Science.gov (United States)

    Bellgowan, Patrick S. F.; Buffalo, Elizabeth A.; Bodurka, Jerzy; Martin, Alex

    2009-01-01

    The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor…

  11. Gender Differences in Memory for Objects and Their Locations: A Study on Automatic versus Controlled Encoding and Retrieval Contexts

    Science.gov (United States)

    De Goede, Maartje; Postma, Albert

    2008-01-01

    Object-location memory is the only spatial task where female subjects have been shown to outperform males. This result is not consistent across all studies, and may be due to the combination of the multi-component structure of object location memory with the conditions under which different studies were done. Possible gender differences in object…

  12. Multisensory memory for object identity and location

    NARCIS (Netherlands)

    Erp, J.B.F. van; Philippi, T.G.; Werkhoven, P.J.

    2014-01-01

    Researchers have reported that audiovisual object presentation improves memory encoding of object identity in comparison to either auditory or visual object presentation. However, multisensory memory effects on retrieval, on object location, and of other multisensory combinations are yet unknown. We

  13. Visual Memory : The Price of Encoding Details

    NARCIS (Netherlands)

    Nieuwenstein, Mark; Kromm, Maria

    2017-01-01

    Studies on visual long-term memory have shown that we have a tremendous capacity for remembering pictures of objects, even at a highly detailed level. What remains unclear, however, is whether encoding objects at such a detailed level comes at any cost. In the current study, we examined how the

  14. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  15. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  16. Does long-term object priming depend on the explicit detection of object identity at encoding?

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Gomes

    2015-03-01

    Full Text Available It is currently unclear whether objects have to be explicitly identified at encoding for reliable behavioural long-term object priming to occur. We conducted two experiments that investigated long-term object and non-object priming using a selective-attention encoding manipulation that reduces explicit object identification. In Experiment 1, participants either counted dots flashed within an object picture (shallow encoding or engaged in an animacy task (deep encoding at study, whereas, at test, they performed an object-decision task. Priming, as measured by reaction times, was observed for both types of encoding, and was of equivalent magnitude. In Experiment 2, non-object priming (faster reaction times for studied relative to unstudied non-objects was also obtained under the same selective-attention encoding manipulation as in Experiment 1, and the magnitude of the priming effect was equivalent between experiments. In contrast, we observed a linear decrement in recognition memory accuracy across conditions (deep encoding of Experiment 1 > shallow encoding Experiment 1 > shallow encoding of Experiment 2, suggesting that priming was not contaminated by explicit memory strategies. We argue that our results are more consistent with the identification/production framework than the perceptual/conceptual distinction, and we conclude that priming of pictures largely ignored at encoding can be subserved by the automatic retrieval of two types of instances: one at the motor-level and another at an object-decision level.

  17. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  18. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  19. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Agency of Memory Objects

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2016-01-01

    and international tourists’ photographs and notes, especially their visual encounters with the exhibition, are understood as participatory interactions in the course of memory work. The article’s aim is twofold: introducing an ANT-inspired methodology to the field of memory studies, and mapping a Sowetan memory......This article analyses the multifarious acts of cultural memory taking place in the small, almost hidden, exhibition space of the famous Regina Mundi Church in Soweto, South Africa, home to the photographic exhibition “The Story of Soweto.” Next to the photographs (1950-2010) by well-known apartheid...... of action, examining the idea that objects, such as images, that leave a trace can act as mediators of memory. Starting from visitors’ appropriations of the exhibition space, the essay sheds light on the different life cycles of memory objects, in particular images, and their diverse mediations. Domestic...

  1. Post-encoding emotional arousal enhances consolidation of item memory, but not reality-monitoring source memory.

    Science.gov (United States)

    Wang, Bo; Sun, Bukuan

    2017-03-01

    The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.

  2. How can survival processing improve memory encoding?

    Science.gov (United States)

    Luo, Meng; Geng, Haiyan

    2013-11-01

    We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.

  3. Feature-specific encoding flexibility in visual working memory.

    Directory of Open Access Journals (Sweden)

    Aki Kondo

    Full Text Available The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location, and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape can be flexibly added to object representations.

  4. Feature-specific encoding flexibility in visual working memory.

    Science.gov (United States)

    Kondo, Aki; Saiki, Jun

    2012-01-01

    The current study examined selective encoding in visual working memory by systematically investigating interference from task-irrelevant features. The stimuli were objects defined by three features (color, shape, and location), and during a delay period, any of the features could switch between two objects. Additionally, single- and whole-probe trials were randomized within experimental blocks to investigate effects of memory retrieval. A series of relevant-feature switch detection tasks, where one feature was task-irrelevant, showed that interference from the task-irrelevant feature was only observed in the color-shape task, suggesting that color and shape information could be successfully filtered out, but location information could not, even when location was a task-irrelevant feature. Therefore, although location information is added to object representations independent of task demands in a relatively automatic manner, other features (e.g., color, shape) can be flexibly added to object representations.

  5. Visual Memory for Objects Following Foveal Vision Loss

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hofmüller, Wolfram; Hoffmann, Michael B.; Pollmann, Stefan

    2015-01-01

    Allocation of visual attention is crucial for encoding items into visual long-term memory. In free vision, attention is closely linked to the center of gaze, raising the question whether foveal vision loss entails suboptimal deployment of attention and subsequent impairment of object encoding. To investigate this question, we examined visual…

  6. Semantic memory in object use.

    Science.gov (United States)

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  7. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    Science.gov (United States)

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  8. False memory and importance: can we prioritize encoding without consequence?

    Science.gov (United States)

    Bui, Dung C; Friedman, Michael C; McDonough, Ian M; Castel, Alan D

    2013-10-01

    Given the large amount of information that we encounter, we often must prioritize what information we attempt to remember. Although critical for everyday functioning, relatively little research has focused on how people prioritize the encoding of information. Recent research has shown that people can and do selectively remember information assigned with higher, relative to lower, importance. However, the mechanisms underlying this prioritization process and the consequences of these processes are still not well understood. In the present study, we sought to better understand these prioritization processes and whether implementing these processes comes at the cost of memory accuracy, by increasing false memories. We used a modified form of the Deese/Roediger-McDermott (DRM) paradigm, in which participants studied DRM lists, with each list paired with low, medium, or high point values. In Experiment 1, encoding higher values led to more false memories than did encoding lower values, possibly because prioritizing information enhanced relational processing among high-value words. In Experiment 2, disrupting relational processing selectively reduced false memories for high-value words. Finally, in Experiment 3, facilitating relational processing selectively increased false memories for low-value words. These findings suggest that while prioritizing information can enhance true memory, this process concomitantly increases false memories. Furthermore, the mechanism underlying these prioritization processes depends on the ability to successfully engage in relational processing. Thus, how we prioritize the encoding of incoming information can come at a cost in terms of accurate memory.

  9. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  10. Task-selective memory effects for successfully implemented encoding strategies.

    Science.gov (United States)

    Leshikar, Eric D; Duarte, Audrey; Hertzog, Christopher

    2012-01-01

    Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences). Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator). It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences) for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness) of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.

  11. Audiovisual semantic congruency during encoding enhances memory performance.

    Science.gov (United States)

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  12. Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity.

    Science.gov (United States)

    Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed

    2014-12-01

    We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Perceptual difficulty in source memory encoding and retrieval: prefrontal versus parietal electrical brain activity.

    Science.gov (United States)

    Kuo, Trudy Y; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval--remembering relationships between a core item and some additional attribute of an event--engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than others, the role of source retrieval difficulty on prefrontal activity has received little attention. We examined memory for conjunctions of object shape and color when color was an integral part of the depicted object, and when monochrome objects were surrounded by colored frames. Source accuracy was reliably worse when shape and color were spatially separated, but prefrontal activity did not vary across the object-color and frame-color conditions. The insensitivity of prefrontal ERPs to this perceptual manipulation of difficulty stands in contrast to their sensitivity to encoding task: deliberate voluntary effort to integrate objects and colors during encoding reduced prefrontal activity during retrieval, but perceptual organization of stimuli did not. The amplitudes of ERPs over parietal cortex were larger for frame-color than object-color stimuli during both study and test phases of the memory task. Individual variability in parietal ERPs was strongly correlated with memory accuracy, which we suggest reflects a contribution of visual working memory to long-term memory. We discuss multiple bottlenecks for source memory performance.

  14. Encoding specificity manipulations do affect retrieval from memory.

    Science.gov (United States)

    Zeelenberg, René

    2005-05-01

    In a recent article, P.A. Higham (2002) [Strong cues are not necessarily weak: Thomson and Tulving (1970) and the encoding specificity principle revisited. Memory &Cognition, 30, 67-80] proposed a new way to analyze cued recall performance in terms of three separable aspects of memory (retrieval, monitoring, and report bias) by comparing performance under both free-report and forced-report instructions. He used this method to derive estimates of these aspects of memory in an encoding specificity experiment similar to that reported by D.M. Thomson and E. Tulving (1970) [Associative encoding and retrieval: weak and strong cues. Journal of Experimental Psychology, 86, 255-262]. Under forced-report instructions, the encoding specificity manipulation did not affect performance. Higham concluded that the manipulation affected monitoring and report bias, but not retrieval. I argue that this interpretation of the results is problematic because the Thomson and Tulving paradigm is confounded, and show in three experiments using a more appropriate design that encoding specificity manipulations do affect performance in forced-report cued recall. Because in Higham's framework forced-report performance provides a measure of retrieval that is uncontaminated by monitoring and report bias it is concluded that encoding specificity manipulations do affect retrieval from memory.

  15. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  16. Divided Attention Can Enhance Memory Encoding: The Attentional Boost Effect in Implicit Memory

    Science.gov (United States)

    Spataro, Pietro; Mulligan, Neil W.; Rossi-Arnaud, Clelia

    2013-01-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute…

  17. Thought probes during prospective memory encoding: Evidence for perfunctory processes

    Science.gov (United States)

    McDaniel, Mark A.; Dasse, Michelle N.; Lee, Ji hae; Kurinec, Courtney A.; Tami, Claudina; Krueger, Madison L.

    2018-01-01

    For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done “in passing.” PMID:29874277

  18. Angular Gyrus Involvement at Encoding and Retrieval Is Associated with Durable But Less Specific Memories.

    Science.gov (United States)

    van der Linden, Marieke; Berkers, Ruud M W J; Morris, Richard G M; Fernández, Guillén

    2017-09-27

    After consolidation, information belonging to a mental schema is better remembered, but such memory can be less specific when it comes to details. A neuronal mechanism consistent with this behavioral pattern could result from a dynamic interaction that entails mediation by a specific cortical network with associated hippocampal disengagement. We now report that, in male and female adult human subjects, encoding and later consolidation of a series of objects embedded in a semantic schema was associated with a buildup of activity in the angular gyrus (AG) that predicted memory 24 h later. In parallel, the posterior hippocampus became less involved as schema objects were encoded successively. Hippocampal disengagement was related to an increase in falsely remembering objects that were not presented at encoding. During both encoding and retrieval, the AG and lateral occipital complex (LOC) became functionally connected and this interaction was beneficial for successful retrieval. Therefore, a network including the AG and LOC enhances the overnight retention of schema-related memories and their simultaneous detachment from the hippocampus reduces the specificity of the memory. SIGNIFICANCE STATEMENT This study provides the first empirical evidence on how the hippocampus and the neocortex interact dynamically when acquiring and then effectively retaining durable knowledge that is associated to preexisting knowledge, but they do so at the cost of memory specificity. This interaction is a fundamental mnemonic operation that has thus far been largely overlooked in memory research. Copyright © 2017 the authors 0270-6474/17/379474-12$15.00/0.

  19. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    Science.gov (United States)

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  20. Odor Memory and Discrimination Covary as a Function of Delay between Encoding and Recall in Rats.

    Science.gov (United States)

    Hackett, Chelsea; Choi, Christina; O'Brien, Brenna; Shin, Philip; Linster, Christiane

    2015-06-01

    Nonassociative odor learning paradigms are often used to assess memory, social recognition and neuromodulation of olfactory pathways. We here use a modified object recognition paradigm to investigate how an important task parameter, delay between encoding and recall trials, affects the properties of this memory. We show that both memory for a previously investigated odorant and discrimination of a novel odorant decay with delay time and that rats can remember an odorant for up to 45min after a single trial encoding event. The number of odorants that can be encoded, as well as the specificity of the encoded memory, decrease with increased delay and also depend on stimulus concentration. Memory for an odorant and discrimination of a novel odorant decay at approximately the same rate, whereas the specificity of the formed memory decays faster than the memory itself. These results have important implications for the interpretation of behavioral data obtained with this paradigm. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Visual memory for objects following foveal vision loss.

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hofmüller, Wolfram; Hoffmann, Michael B; Pollmann, Stefan

    2015-09-01

    Allocation of visual attention is crucial for encoding items into visual long-term memory. In free vision, attention is closely linked to the center of gaze, raising the question whether foveal vision loss entails suboptimal deployment of attention and subsequent impairment of object encoding. To investigate this question, we examined visual long-term memory for objects in patients suffering from foveal vision loss due to age-related macular degeneration. We measured patients' change detection sensitivity after a period of free scene exploration monocularly with their worse eye when possible, and under binocular vision, comparing sensitivity and eye movements to matched normal-sighted controls. A highly salient cue was used to capture attention to a nontarget location before a target change occurred in half of the trials, ensuring that change detection relied on memory. Patients' monocular and binocular sensitivity to object change was comparable to controls, even after more than 4 intervening fixations, and not significantly correlated with visual impairment. We conclude that extrafoveal vision suffices for efficient encoding into visual long-term memory. (c) 2015 APA, all rights reserved).

  2. Exploring the influence of encoding format on subsequent memory.

    Science.gov (United States)

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  3. Task-selective memory effects for successfully implemented encoding strategies.

    Directory of Open Access Journals (Sweden)

    Eric D Leshikar

    Full Text Available Previous behavioral evidence suggests that instructed strategy use benefits associative memory formation in paired associate tasks. Two such effective encoding strategies--visual imagery and sentence generation--facilitate memory through the production of different types of mediators (e.g., mental images and sentences. Neuroimaging evidence suggests that regions of the brain support memory reflecting the mental operations engaged at the time of study. That work, however, has not taken into account self-reported encoding task success (i.e., whether participants successfully generated a mediator. It is unknown, therefore, whether task-selective memory effects specific to each strategy might be found when encoding strategies are successfully implemented. In this experiment, participants studied pairs of abstract nouns under either visual imagery or sentence generation encoding instructions. At the time of study, participants reported their success at generating a mediator. Outside of the scanner, participants further reported the quality of the generated mediator (e.g., images, sentences for each word pair. We observed task-selective memory effects for visual imagery in the left middle occipital gyrus, the left precuneus, and the lingual gyrus. No such task-selective effects were observed for sentence generation. Intriguingly, activity at the time of study in the left precuneus was modulated by the self-reported quality (vividness of the generated mental images with greater activity for trials given higher ratings of quality. These data suggest that regions of the brain support memory in accord with the encoding operations engaged at the time of study.

  4. Dissociation and Memory Fragmentation in Posttraumatic Stress Disorder: An Evaluation of the Dissociative Encoding Hypothesis

    Science.gov (United States)

    Bedard-Gilligan, Michele; Zoellner, Lori A.

    2012-01-01

    Several prominent theories of posttraumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review, we summarize the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus, initial evidence points more toward a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation. PMID:22348400

  5. Encoding, Memory, and Transcoding Deficits in Childhood Apraxia of Speech

    Science.gov (United States)

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Strand, Edythe A.; Jakielski, Kathy J.

    2012-01-01

    A central question in Childhood Apraxia of Speech (CAS) is whether the core phenotype is limited to transcoding (planning/programming) deficits or if speakers with CAS also have deficits in auditory-perceptual "encoding" (representational) and/or "memory" (storage and retrieval of representations) processes. We addressed this and other questions…

  6. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    Science.gov (United States)

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  7. How Does Intentionality of Encoding Affect Memory for Episodic Information?

    Science.gov (United States)

    Craig, Michael; Butterworth, Karla; Nilsson, Jonna; Hamilton, Colin J.; Gallagher, Peter; Smulders, Tom V.

    2016-01-01

    Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a "What-Where-When"…

  8. Collaborative Encoding and Memory Accuracy: Examining the Effects of Interactive Components of Co-Construction Processes

    Science.gov (United States)

    Foley, Mary Ann; Fried, Adina Rachel; Cowan, Emily; Bays, Rebecca Brooke

    2014-01-01

    In 2 experiments, the effect of collaborative encoding on memory was examined by testing 2 interactive components of co-construction processes. One component focused on the nature of the interactive exchange between collaborators: As the partners worked together to create descriptions about ways to interact with familiar objects, constraints were…

  9. Layout Geometry in Encoding and Retrieval of Spatial Memory

    Science.gov (United States)

    Mou, Weimin; Liu, Xianyun; McNamara, Timothy P.

    2009-01-01

    Two experiments investigated whether the spatial reference directions that are used to specify objects' locations in memory can be solely determined by layout geometry. Participants studied a layout of objects from a single viewpoint while their eye movements were recorded. Subsequently, participants used memory to make judgments of relative…

  10. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.

    Science.gov (United States)

    Otten, Leun J

    2007-09-01

    Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.

  11. Enhanced tactile encoding and memory recognition in congenital blindness.

    Science.gov (United States)

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  12. Distinctiveness of Encoding and Memory for Learning Tasks.

    Science.gov (United States)

    Glover, John A.; And Others

    1982-01-01

    A distinctiveness of encoding hypothesis, as applied to the facilitative effects that higher order objectives have on readers' prose recall, was evaluated in three experiments. Results suggest that distinctiveness of encoding may offer a theoretical basis for the effects of adjunct aids as well as a guide to their construction. (Author/GK)

  13. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    Science.gov (United States)

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  14. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  15. Obligatory encoding of task-irrelevant features depletes working memory resources.

    Science.gov (United States)

    Marshall, Louise; Bays, Paul M

    2013-02-18

    Selective attention is often considered the "gateway" to visual working memory (VWM). However, the extent to which we can voluntarily control which of an object's features enter memory remains subject to debate. Recent research has converged on the concept of VWM as a limited commodity distributed between elements of a visual scene. Consequently, as memory load increases, the fidelity with which each visual feature is stored decreases. Here we used changes in recall precision to probe whether task-irrelevant features were encoded into VWM when individuals were asked to store specific feature dimensions. Recall precision for both color and orientation was significantly enhanced when task-irrelevant features were removed, but knowledge of which features would be probed provided no advantage over having to memorize both features of all items. Next, we assessed the effect an interpolated orientation-or color-matching task had on the resolution with which orientations in a memory array were stored. We found that the presence of orientation information in the second array disrupted memory of the first array. The cost to recall precision was identical whether the interfering features had to be remembered, attended to, or could be ignored. Therefore, it appears that storing, or merely attending to, one feature of an object is sufficient to promote automatic encoding of all its features, depleting VWM resources. However, the precision cost was abolished when the match task preceded the memory array. So, while encoding is automatic, maintenance is voluntary, allowing resources to be reallocated to store new visual information.

  16. Object permanence and working memory in cats (Felis catus).

    Science.gov (United States)

    Goulet, S; Doré, F Y; Rousseau, R

    1994-10-01

    Cats (Felis catus) find an object when it is visibly moved behind a succession of screens. However, when the object is moved behind a container and is invisibly transferred from the container to the back of a screen, cats try to find the object at or near the container rather than at the true hiding place. Four experiments were conducted to study search behavior and working memory in visible and invisible displacement tests of object permanence. Experiment 1 compared performance in single and in double visible displacement trials. Experiment 2 analyzed search behavior in invisible displacement tests and in analogs using a transparent container. Experiments 3 and 4 tested predictions made from Experiment 1 and 2 in a new situation of object permanence. Results showed that only the position changes that cats have directly perceived are encoded and activated in working memory, because they are unable to represent or infer invisible movements.

  17. Electroencephalographic brain dynamics of memory encoding in emotionally arousing context

    Directory of Open Access Journals (Sweden)

    Carlos Enrique eUribe

    2011-06-01

    Full Text Available Emotional content/context enhances declarative memory through modulation of encoding and retrieval mechanisms. At encoding, neurophysiological data have consistently demonstrated the subsequent memory effect in theta and gamma oscillations. Yet, the existing studies were focused on the emotional content effect and let the emotional context effect unexplored. We hypothesized that theta and gamma oscillations show higher evoked/induced activity during the encoding of visual stimuli when delivered in an emotionally arousing context. Twenty-five healthy volunteers underwent evoked potentials recordings using a 21 scalp electrodes montage. They attended to an audiovisual test of emotional declarative memory being randomly assigned to either emotionally arousing or neutral context. Visual stimulus presentation was used as the time-locking event. Grand-averages of the evoked potentials and evoked spectral perturbations were calculated for each volunteer. Evoked potentials showed a higher negative deflection from 80 to 140 ms for the emotional condition. Such effect was observed over central, frontal and prefrontal locations bilaterally. Evoked theta power was higher in left parietal, central, frontal and prefrontal electrodes from -50 to 300 ms in the emotional condition. Evoked gamma power was higher in the emotional condition with a spatial distribution that overlapped at some points with the theta topography. The early theta power increase could be related to expectancy induced by auditory information processing that facilitates visual encoding in emotional contexts. Together, our results suggest that declarative memory enhancement for both emotional content and emotional context are supported by similar neural mechanisms at encoding, and offer new evidence about the brain processing of relevant environmental stimuli.

  18. Contribution of stress and sex hormones to memory encoding.

    Science.gov (United States)

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Role of Memory Activation in Creating False Memories of Encoding Context

    Science.gov (United States)

    Arndt, Jason

    2010-01-01

    Using 3 experiments, I examined false memory for encoding context by presenting Deese-Roediger-McDermott themes (Deese, 1959; Roediger & McDermott, 1995) in usual-looking fonts and by testing related, but unstudied, lure items in a font that was shown during encoding. In 2 of the experiments, testing lure items in the font used to study their…

  20. Artificial theta stimulation impairs encoding of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Arto Lipponen

    Full Text Available Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.

  1. Object formation in visual working memory: Evidence from object-based attention.

    Science.gov (United States)

    Zhou, Jifan; Zhang, Haihang; Ding, Xiaowei; Shui, Rende; Shen, Mowei

    2016-09-01

    We report on how visual working memory (VWM) forms intact perceptual representations of visual objects using sub-object elements. Specifically, when objects were divided into fragments and sequentially encoded into VWM, the fragments were involuntarily integrated into objects in VWM, as evidenced by the occurrence of both positive and negative object-based attention effects: In Experiment 1, when subjects' attention was cued to a location occupied by the VWM object, the target presented at the location of that object was perceived as occurring earlier than that presented at the location of a different object. In Experiment 2, responses to a target were significantly slower when a distractor was presented at the same location as the cued object (Experiment 2). These results suggest that object fragments can be integrated into objects within VWM in a manner similar to that of visual perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of dividing attention during encoding on perceptual priming of unfamiliar visual objects

    Science.gov (United States)

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2008-01-01

    According to the distractor-selection hypothesis (Mulligan, 2003), dividing attention during encoding reduces perceptual priming when responses to non-critical (i.e., distractor) stimuli are selected frequently and simultaneously with critical stimulus encoding. Because direct support for this hypothesis comes exclusively from studies using familiar word stimuli, the present study tested whether the predictions of the distractor-selection hypothesis extend to perceptual priming of unfamiliar visual objects using the possible/impossible object-decision test. Consistent with the distractor-selection hypothesis, Experiments 1 and 2 found no reduction in priming when the non-critical stimuli were presented infrequently and non-synchronously with the critical target stimuli, even though explicit recognition memory was reduced. In Experiment 3, non-critical stimuli were presented frequently and simultaneously during encoding of critical stimuli; however, no decrement in priming was detected, even when encoding time was reduced. These results suggest that priming in the possible/impossible object-decision test is relatively immune to reductions in central attention and that not all aspects of the distractor-selection hypothesis generalize to priming of unfamiliar visual objects. Implications for theoretical models of object-decision priming are discussed. PMID:18821167

  3. Retention interval affects visual short-term memory encoding.

    Science.gov (United States)

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  4. Auditory memory can be object based.

    Science.gov (United States)

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  5. Subjective memory complaints are associated with brain activation supporting successful memory encoding.

    Science.gov (United States)

    Hayes, Jessica M; Tang, Lingfei; Viviano, Raymond P; van Rooden, Sanneke; Ofen, Noa; Damoiseaux, Jessica S

    2017-12-01

    Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Parietal cortex integrates contextual and saliency signals during the encoding of natural scenes in working memory.

    Science.gov (United States)

    Santangelo, Valerio; Di Francesco, Simona Arianna; Mastroberardino, Serena; Macaluso, Emiliano

    2015-12-01

    The Brief presentation of a complex scene entails that only a few objects can be selected, processed indepth, and stored in memory. Both low-level sensory salience and high-level context-related factors (e.g., the conceptual match/mismatch between objects and scene context) contribute to this selection process, but how the interplay between these factors affects memory encoding is largely unexplored. Here, during fMRI we presented participants with pictures of everyday scenes. After a short retention interval, participants judged the position of a target object extracted from the initial scene. The target object could be either congruent or incongruent with the context of the scene, and could be located in a region of the image with maximal or minimal salience. Behaviourally, we found a reduced impact of saliency on visuospatial working memory performance when the target was out-of-context. Encoding-related fMRI results showed that context-congruent targets activated dorsoparietal regions, while context-incongruent targets de-activated the ventroparietal cortex. Saliency modulated activity both in dorsal and ventral regions, with larger context-related effects for salient targets. These findings demonstrate the joint contribution of knowledge-based and saliency-driven attention for memory encoding, highlighting a dissociation between dorsal and ventral parietal regions. © 2015 Wiley Periodicals, Inc.

  7. Episodic Memory Encoding Interferes with Reward Learning and Decreases Striatal Prediction Errors

    Science.gov (United States)

    Braun, Erin Kendall; Daw, Nathaniel D.

    2014-01-01

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. PMID:25378157

  8. Episodic memory encoding interferes with reward learning and decreases striatal prediction errors.

    Science.gov (United States)

    Wimmer, G Elliott; Braun, Erin Kendall; Daw, Nathaniel D; Shohamy, Daphna

    2014-11-05

    Learning is essential for adaptive decision making. The striatum and its dopaminergic inputs are known to support incremental reward-based learning, while the hippocampus is known to support encoding of single events (episodic memory). Although traditionally studied separately, in even simple experiences, these two types of learning are likely to co-occur and may interact. Here we sought to understand the nature of this interaction by examining how incremental reward learning is related to concurrent episodic memory encoding. During the experiment, human participants made choices between two options (colored squares), each associated with a drifting probability of reward, with the goal of earning as much money as possible. Incidental, trial-unique object pictures, unrelated to the choice, were overlaid on each option. The next day, participants were given a surprise memory test for these pictures. We found that better episodic memory was related to a decreased influence of recent reward experience on choice, both within and across participants. fMRI analyses further revealed that during learning the canonical striatal reward prediction error signal was significantly weaker when episodic memory was stronger. This decrease in reward prediction error signals in the striatum was associated with enhanced functional connectivity between the hippocampus and striatum at the time of choice. Our results suggest a mechanism by which memory encoding may compete for striatal processing and provide insight into how interactions between different forms of learning guide reward-based decision making. Copyright © 2014 the authors 0270-6474/14/3414901-12$15.00/0.

  9. Adult ADHD and working memory: neural evidence of impaired encoding.

    Science.gov (United States)

    Kim, Soyeon; Liu, Zhongxu; Glizer, Daniel; Tannock, Rosemary; Woltering, Steven

    2014-08-01

    To investigate neural and behavioural correlates of visual encoding during a working memory (WM) task in young adults with and without Attention-Deficit/Hyperactivity Disorder (ADHD). A sample of 30 college students currently meeting a diagnosis of ADHD and 25 typically developing students, matched on age and gender, performed a delayed match-to-sample task with low and high memory load conditions. Dense-array electroencephalography was recorded. Specifically, the P3, an event related potential (ERP) associated with WM, was examined because of its relation with attentional allocation during WM. Task performance (accuracy, reaction time) as well as performance on other neuropsychological tasks of WM was analyzed. Neural differences were found between the groups. Specifically, the P3 amplitude was smaller in the ADHD group compared to the comparison group for both load conditions at parietal-occipital sites. Lower scores on behavioural working memory tasks were suggestive of impaired behavioural WM performance in the ADHD group. Findings from this study provide the first evidence of neural differences in the encoding stage of WM in young adults with ADHD, suggesting ineffective allocation of attentional resources involved in encoding of information in WM. These findings, reflecting alternate neural functioning of WM, may explain some of the difficulties related to WM functioning that college students with ADHD report in their every day cognitive functioning. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Face and object encoding under perceptual load: ERP evidence.

    Science.gov (United States)

    Neumann, Markus F; Mohamed, Tarik N; Schweinberger, Stefan R

    2011-02-14

    According to the perceptual load theory, processing of a task-irrelevant distractor is abolished when attentional resources are fully consumed by task-relevant material. As an exception, however, famous faces have been shown to elicit repetition modulations in event-related potentials - an N250r - despite high load at initial presentation, suggesting preserved face-encoding. Here, we recorded N250r repetition modulations by unfamiliar faces, hands, and houses, and tested face specificity of preserved encoding under high load. In an immediate (S1-S2) repetition priming paradigm, participants performed a letter identification task on S1 by indicating whether an "X" vs. "N" was among 6 different (high load condition) or 6 identical (low load condition) letters. Letter strings were superimposed on distractor faces, hands, or houses. Subsequent S2 probes were either identical repetitions of S1 distractors, non-repeated exemplars from the same category, or infrequent butterflies, to which participants responded. Independent of attentional load at S1, an occipito-temporal N250r was found for unfamiliar faces. In contrast, no repetition-related neural modulation emerged for houses or hands. This strongly suggests that a putative face-selective attention module supports encoding under high load, and that similar mechanisms are unavailable for other natural or artificial objects. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention

    Directory of Open Access Journals (Sweden)

    Judith Schomaker

    2017-06-01

    Full Text Available Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1 and visual contrast (Experiment 2 had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions.

  12. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention

    Science.gov (United States)

    Schomaker, Judith; Wittmann, Bianca C.

    2017-01-01

    Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774

  13. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention.

    Science.gov (United States)

    Schomaker, Judith; Wittmann, Bianca C

    2017-01-01

    Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions.

  14. Are subjective memory problems related to suggestibility, compliance, false memories, and objective memory performance?

    Science.gov (United States)

    Van Bergen, Saskia; Jelicic, Marko; Merckelbach, Harald

    2009-01-01

    The relationship between subjective memory beliefs and suggestibility, compliance, false memories, and objective memory performance was studied in a community sample of young and middle-aged people (N = 142). We hypothesized that people with subjective memory problems would exhibit higher suggestibility and compliance levels and would be more susceptible to false recollections than those who are optimistic about their memory. In addition, we expected a discrepancy between subjective memory judgments and objective memory performance. We found that subjective memory judgments correlated significantly with compliance, with more negative memory judgments accompanying higher levels of compliance. Contrary to our expectation, subjective memory problems did not correlate with suggestibility or false recollections. Furthermore, participants were accurate in estimating their objective memory performance.

  15. Are animacy effects in episodic memory independent of encoding instructions?

    Science.gov (United States)

    Gelin, Margaux; Bugaiska, Aurélia; Méot, Alain; Bonin, Patrick

    2017-01-01

    The adaptive view of human memory [Nairne, J. S. 2010. Adaptive memory: Evolutionary constraints on remembering. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 53 pp. 1-32). Burlington: Academic Press; Nairne, J. S., & Pandeirada, J. N. S. 2010a. Adaptive memory: Ancestral priorities and the mnemonic value of survival processing. Cognitive Psychology, 61, 1-22, 2010b; Memory functions. In The Corsini encyclopedia of psychology and behavioral science, (Vol 3, 4th ed. pp. 977-979). Hokoben, NJ: John Wiley & Sons] assumes that animates (e.g., baby, rabbit presented as words or pictures) are better remembered than inanimates (e.g., bottle, mountain) because animates are more important for fitness than inanimates. In four studies, we investigated whether the animacy effect in episodic memory (i.e., the better remembering of animates over inanimates) is independent of encoding instructions. Using both a factorial (Studies 1 and 3) and a multiple regression approach (Study 2), three studies tested whether certain contexts drive people to attend to inanimate more than to animate things (or the reverse), and therefore lead to differential animacy effects. The findings showed that animacy effects on recall performance were observed in the grassland-survival scenario used by Nairne, Thompson, and Pandeirada (2007. Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 263-273) (Studies 1-3), when words were rated for their pleasantness (Study 2), and in explicit learning (Study 3). In the non-survival scenario of moving to a foreign land (Studies 1-2), animacy effects on recall rates were not reliable in Study 1, but were significant in Study 2, whereas these effects were reliable in the non-survival scenario of planning a trip as a tour guide (Study 3). A final (control) study (Study 4) was conducted to test specifically whether animacy effects are related to the more organised

  16. Use of memory strategies among younger and older adults: Results from objective and subjective measures

    OpenAIRE

    Fabricio, Aline Teixeira; Yassuda, Mônica Sanches

    2011-01-01

    Abstract Memory plays a fundamental role in the identity of people and in human life, as it enables us to interpret our surroundings and make decisions. It is known that the aging process can be accompanied by cognitive decline in some memory sub systems. However, the use of memory strategies can help encoding and retrieval of new information. Objective: The aim of this study was to identify and compare, using objective and subjective measures, which recall strategies are used spontaneously ...

  17. Mnemons: encoding memory by protein super-assembly

    Directory of Open Access Journals (Sweden)

    Fabrice Caudron

    2015-02-01

    Full Text Available Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences

  18. Mnemons: encoding memory by protein super-assembly.

    Science.gov (United States)

    Caudron, Fabrice; Barral, Yves

    2014-02-25

    Memory is mainly understood as the recollection of past events. The human brain and its simplest unit, the synapse, belong to the places in which such memories are physically stored. From an experimental point of view, memory can be tested in humans by recall. However, in other organisms, memory is reflected in its use by individuals to learn about and adapt their behavior to their environment. Under this criterion, even unicellular organisms are able to learn from their environments and show the ability to adapt their responses to repeating stimuli. This indicates that they are able to keep track of their histories and use these traces to elaborate adapted responses, making these traces akin to memory encodings. Understanding these phenomena may even help us to dissect part of the rather complex molecular orchestration happening in our synapses. When exposed unsuccessfully to mating pheromone, i.e. when mating does not happen, budding yeast cells become refractory to the mating signal. This refractory state is restricted to the mother cell and not inherited by the daughter cells, even though it is stable for most if not the entire life span of the mother cell. Interestingly, both stability and asymmetric segregation of the acquired state are explained by the molecular mechanism underlying its establishment, which shows important analogies and distinctions to prions. Here we discuss these similarities and differences.

  19. Controlled encoding strategies in memory tests in lithium patients.

    Science.gov (United States)

    Opgenoorth, E; Karlick-Bolten, E

    1986-03-01

    The "levels of processing" theory (Craik and Lockhart) and "dual coding" theory (Paivio) provide new aspects for clinical memory research work. Therefore, an incidental learning paradigm on the basis of these two theoretical approaches was chosen to test aspects of memory performances with lithium therapy. Results of two experiments, with controlled non-semantic processing (rating experiment "comparison of size") and additive semantic processing (rating "living--non-living") indicate a slight reduction in recall (Fig. 1) and recognition performance (Fig. 2) in lithium patients. Effects on encoding strategies are of equal quality in patients and healthy subjects (Tab. 1, 2) but performance differs between both groups: poorer systematic benefit from within code repetitions ("word-word" items, "picture-picture" items) and dual coding (repeated variable item presentation "picture-word") is obtained. The less efficient encoding strategies in the speeded task are discussed with respect to cognitive rigidity and slowing of performance by emotional states. This investigation of so-called "memory deficits" with lithium is an attempt to explore impairments at an early stage of processing; the characterization of the perceptual cognitive analysis seems useful for further clinical research work on this topic.

  20. Objective-C memory management essentials

    CERN Document Server

    Tang, Gibson

    2015-01-01

    If you are new to Objective-C or a veteran in iOS application development, this is the book for you. This book will ensure that you can actively learn the methods and concepts in relation to memory management in a more engaging way. Basic knowledge of iOS development is required for this book.

  1. Object Recognition Memory and the Rodent Hippocampus

    Science.gov (United States)

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  2. CAM: A Collaborative Object Memory System

    NARCIS (Netherlands)

    Vyas, Dhaval; Nijholt, Antinus; Kröner, Alexander

    2010-01-01

    Physical design objects such as sketches, drawings, collages, storyboards and models play an important role in supporting communication and coordination in design studios. CAM (Cooperative Artefact Memory) is a mobile-tagging based messaging system that allows designers to collaboratively store

  3. Effect of tobacco craving cues on memory encoding and retrieval in smokers.

    Science.gov (United States)

    Heishman, Stephen J; Boas, Zachary P; Hager, Marguerite C; Taylor, Richard C; Singleton, Edward G; Moolchan, Eric T

    2006-07-01

    Previous studies have shown that cue-elicited tobacco craving disrupted performance on cognitive tasks; however, no study has examined directly the effect of cue-elicited craving on memory encoding and retrieval. A distinction between encoding and retireval has been reported such that memory is more impaired when attention is divided at encoding than at retrieval. This study tested the hypothesis that active imagery of smoking situations would impair encoding processes, but have little effect on retrieval. Imagery scripts (cigarette craving and neutral content) were presented either before presentation of a word list (encoding trials) or before word recall (retrieval trials). A working memory task at encoding and free recall of words were assessed. Results indicated that active imagery disrupted working memory on encoding trials, but not on retrieval trials. There was a trend toward impaired working memory following craving scripts compared with neutral scripts. These data support the hypothesis that the cognitive underpinnings of encoding and retrieval processes are distinct.

  4. The Relationship between Visual Attention and Visual Working Memory Encoding: A Dissociation between Covert and Overt Orienting

    Science.gov (United States)

    Tas, A. Caglar; Luck, Steven J.; Hollingworth, Andrew

    2016-01-01

    There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1–3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. PMID:26854532

  5. Beyond initial encoding: Measures of the post-encoding status of memory traces predict long-term recall in infancy

    OpenAIRE

    Pathman, Thanujeni; Bauer, Patricia J.

    2012-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the present research, we contributed to explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old infants’ memory representations at various time points after experience of events. In Experiment 1, infants were tested immediately, 1 week after encoding,...

  6. Memory for curvature of objects: haptic touch vs. vision.

    Science.gov (United States)

    Ittyerah, Miriam; Marks, Lawrence E

    2007-11-01

    The present study examined the role of vision and haptics in memory for stimulus objects that vary along the dimension of curvature. Experiment 1 measured haptic-haptic (T-T) and haptic-visual (T-V) discrimination of curvature in a short-term memory paradigm, using 30-second retention intervals containing five different interpolated tasks. Results showed poorest performance when the interpolated tasks required spatial processing or movement, thereby suggesting that haptic information about shape is encoded in a spatial-motor representation. Experiment 2 compared visual-visual (V-V) and visual-haptic (V-T) short-term memory, again using 30-second delay intervals. The results of the ANOVA failed to show a significant effect of intervening activity. Intra-modal visual performance and cross-modal performance were similar. Comparing the four modality conditions (inter-modal V-T, T-V; intra-modal V-V, T-T, by combining the data of Experiments 1 and 2), in a global analysis, showed a reliable interaction between intervening activity and experiment (modality). Although there appears to be a general tendency for spatial and movement activities to exert the most deleterious effects overall, the patterns are not identical when the initial stimulus is encoded haptically (Experiment 1) and visually (Experiment 2).

  7. Molecular computational elements encode large populations of small objects

    Science.gov (United States)

    Prasanna de Silva, A.; James, Mark R.; McKinney, Bernadine O. F.; Pears, David A.; Weir, Sheenagh M.

    2006-10-01

    Since the introduction of molecular computation, experimental molecular computational elements have grown to encompass small-scale integration, arithmetic and games, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size (about 1nm) and large `on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100μm) used for synthesis of combinatorial libraries. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a `wash and watch' protocol. Our focus on converting molecular science into technology concerning analog sensors, turns to digital logic devices in the present work.

  8. The impact of path crossing on visuo-spatial serial memory: encoding or rehearsal effect?

    Science.gov (United States)

    Parmentier, Fabrice B R; Andrés, Pilar

    2006-11-01

    The determinants of visuo-spatial serial memory have been the object of little research, despite early evidence that not all sequences are equally remembered. Recently, empirical evidence was reported indicating that the complexity of the path formed by the to-be-remembered locations impacted on recall performance, defined for example by the presence of crossings in the path formed by successive locations (Parmentier, Elford, & Maybery, 2005). In this study, we examined whether this effect reflects rehearsal or encoding processes. We examined the effect of a retention interval and spatial interference on the ordered recall of spatial sequences with and without path crossings. Path crossings decreased recall performance, as did a retention interval. In line with the encoding hypothesis, but in contrast with the rehearsal hypothesis, the effect of crossing was not affected by the retention interval nor by tapping. The possible nature of the impact of path crossing on encoding mechanisms is discussed.

  9. The Effect of Ageing on the Relationship between Subjective and Objective Recollection after Differential Encoding Processes

    OpenAIRE

    Macfarlane, Jamie

    2010-01-01

    The provision of environmental support is known to have differential effects on recognition memory in younger and older adults. Age-related differences within recognition memory were explored by investigating recollection and familiarity, and looking at their relationship with associative recognition memory. Additionally, environmental support, manipulated by different encoding conditions, was investigated by looking at its effect on this relationship, by comparing recognition memory for item...

  10. The posterior medial cortex is involved in visual but not in verbal memory encoding processing: an intracerebral recording study.

    Science.gov (United States)

    Stillová, K; Jurák, P; Chládek, J; Halámek, J; Telecká, S; Rektor, I

    2013-03-01

    The objective is to study the involvement of the posterior medial cortex (PMC) in encoding and retrieval by visual and auditory memory processing. Intracerebral recordings were studied in two epilepsy-surgery candidates with depth electrodes implanted in the retrosplenial cingulate, precuneus, cuneus, lingual gyrus and hippocampus. We recorded the event-related potentials (ERP) evoked by visual and auditory memory encoding-retrieval tasks. In the hippocampus, ERP were elicited in the encoding and retrieval phases in the two modalities. In the PMC, ERP were recorded in both the encoding and the retrieval visual tasks; in the auditory modality, they were recorded in the retrieval task, but not in the encoding task. In conclusion, the PMC is modality dependent in memory processing. ERP is elicited by memory retrieval, but it is not elicited by auditory encoding memory processing in the PMC. The PMC appears to be involved not only in higher-order top-down cognitive activities but also in more basic, rather than bottom-up activities.

  11. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  12. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    Science.gov (United States)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  13. Enhancing memory performance after organic brain disease relies on retrieval processes rather than encoding or consolidation

    NARCIS (Netherlands)

    Hildebrandt, H.; Gehrmann, A.; Mödden, C.; Eling, P.A.T.M.

    2011-01-01

    Neuropsychological rehabilitation of memory performance is still a controversial topic, and rehabilitation studies have not analyzed to which stage of memory processing (encoding, consolidation, or retrieval) enhancement may be attributed. We first examined the efficacy of a computer training

  14. The influence of directed attention at encoding on source memory retrieval in the young and old: an ERP study.

    Science.gov (United States)

    Dulas, Michael R; Duarte, Audrey

    2013-03-15

    Neuroimaging evidence suggests that older adults exhibit deficits in frontally-mediated strategic retrieval processes, such as post-retrieval monitoring. Behavioral research suggests that explicitly directing attention toward source features during encoding may improve source memory for both young and older adults and alleviate age-related source memory impairments, in part, by reducing demands on post-retrieval monitoring. We investigated this hypothesis in the present event-related potential (ERP) study. Young and older adults attended to either objects and their presented color (source) or to the object alone during study and made color source memory decisions at test. We attempted to match performance between groups by halving the memory load for older adults. Behavioral results showed that, while direction of attention to object and color improved source memory for both groups, older adults benefited less than the young. ERPs revealed that demands on late right frontal effects, indicative of post-retrieval monitoring, were similarly reduced by directed attention at encoding for both groups. However, older adults showed reduced ERP correlates of recollection (parietal old-new effect), as well as a sustained widespread negativity, potentially indicative of memory searches for perceptual details in the face of impaired recollection. These results suggest that older adults, like the young, can engage in post-retrieval monitoring when source details are difficult to recover. However, impaired recollection may underlie persistent age-related source memory deficits, even when encoding is supported via directed attention. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Encoding the world around us: motor-related processing influences verbal memory.

    Science.gov (United States)

    Madan, Christopher R; Singhal, Anthony

    2012-09-01

    It is known that properties of words such as their imageability can influence our ability to remember those words. However, it is not known if other object-related properties can also influence our memory. In this study we asked whether a word representing a concrete object that can be functionally interacted with (i.e., high-manipulability word) would enhance the memory representations for that item compared to a word representing a less manipulable object (i.e., low-manipulability word). Here participants incidentally encoded high-manipulability (e.g., CAMERA) and low-manipulability words (e.g., TABLE) while making word judgments. Using a between-subjects design, we varied the depth-of-processing involved in the word judgment task: participants judged the words based on personal experience (deep/elaborative processing), word length (shallow), or functionality (intermediate). Participants were able to remember high-manipulability words better than low-manipulability words in both the personal experience and word length groups; thus presenting the first evidence that manipulability can influence memory. However, we observed better memory for low- than high-manipulability words in the functionality group. We explain this surprising interaction between manipulability and memory as being mediated by automatic vs. controlled motor-related cognition. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Verbal episodic memory in 426 multiple sclerosis patients: impairment in encoding, retrieval or both?

    Science.gov (United States)

    Brissart, H; Morele, E; Baumann, C; Debouverie, M

    2012-10-01

    Episodic memory is frequently impaired in multiple sclerosis (MS) patients but the exact nature of the disorder is controversial. It was initially thought to be due to a retrieval deficit but some studies have demonstrated an encoding deficit, which could be linked to a slowing of information processing speed or to a deficit in elaboration of strategies. The main objective of this study is to assess the prevalence and the nature of verbal episodic memory (VEM) impairment in MS patients. We retrieved memory performances of 426 patients [314 F-112 M; mean age: 46.1 years; median Expanded Disability Status Scale (EDSS) score: 3.1] from a neuropsychological data base. VEM was assessed using the 16 words RL-RI 16 test. 66% MS patients present at least one recall impaired in VEM (37.2% from 2 to 5 recall). 14.2% MS patients present an impairment in encoding phase. We observed that 5% of patients presented recognition difficulties. Correlations were observed between VEM performances and EDSS, and disease duration but no group effect (ANOVA) is observed between form of MS and VEM performances. These results confirm the high prevalence of VEM impairment in MS patients. Deficits affect mainly information retrieval in early stage MS patients and are then linked to encoding as disability increases. Storage disorders are infrequent, so cognitive rehabilitation with mental imaging could be effective in MS patients.

  17. The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting.

    Science.gov (United States)

    Tas, A Caglar; Luck, Steven J; Hollingworth, Andrew

    2016-08-01

    There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into VWM. Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1-3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study

    Directory of Open Access Journals (Sweden)

    Rumeysa Gunduz Can

    2017-05-01

    Full Text Available The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target for working memory (WM domains (verbal and visuospatial and processes (encoding and retrieval. Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task was compared with a dual block (concurrent performance of a WM task and a motor task. Event-related potentials (ERPs were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process. This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control.

  19. Blocking of irrelevant memories by posterior alpha activity boosts memory encoding.

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jensen, Ole

    2014-08-01

    In our daily lives, we are confronted with a large amount of information. Because only a small fraction can be encoded in long-term memory, the brain must rely on powerful mechanisms to filter out irrelevant information. To understand the neuronal mechanisms underlying the gating of information into long-term memory, we employed a paradigm where the encoding was directed by a "Remember" or a "No-Remember" cue. We found that posterior alpha activity increased prior to the "No-Remember" stimuli, whereas it decreased prior to the "Remember" stimuli. The sources were localized in the parietal cortex included in the dorsal attention network. Subjects with a larger cue-modulation of the alpha activity had better memory for the to-be-remembered items. Interestingly, alpha activity reflecting successful inhibition following the "No-Remember" cue was observed in the frontal midline structures suggesting preparatory inhibition was mediated by anterior parts of the dorsal attention network. During the presentation of the memory items, there was more gamma activity for the "Remember" compared to the "No-Remember" items in the same regions. Importantly, the anticipatory alpha power during cue predicted the gamma power during item. Our findings suggest that top-down controlled alpha activity reflects attentional inhibition of sensory processing in the dorsal attention network, which then finally gates information to long-term memory. This gating is achieved by inhibiting the processing of visual information reflected by neuronal synchronization in the gamma band. In conclusion, the functional architecture revealed by region-specific changes in the alpha activity reflects attentional modulation which has consequences for long-term memory encoding. Copyright © 2014 Wiley Periodicals, Inc.

  20. Dissociation and memory fragmentation in post-traumatic stress disorder: an evaluation of the dissociative encoding hypothesis.

    Science.gov (United States)

    Bedard-Gilligan, Michele; Zoellner, Lori A

    2012-01-01

    Several prominent theories of post-traumatic stress disorder (PTSD) posit that peritraumatic dissociation results in insufficient encoding of the trauma memory and that persistent dissociation prevents memory elaboration, resulting in memory fragmentation and PTSD. In this review we summarise the empirical literature on peritraumatic and trait dissociation and trauma narrative fragmentation as measured by meta-memory and rater/objective coding. Across 16 studies to date, the association between dissociation and fragmentation was most prominent when examining peritraumatic dissociation and patient's own ratings of memory fragmentation. This relationship did not hold when examining trait dissociation or rater-coded or computer-generated measures of fragmentation. Thus initial evidence points more towards a strong self-reported association between constructs that is not supported on more objective fragmentation coding. Measurement overlap, construct ambiguity, and exclusion of potential confounds may underlie lack of a strong association between dissociation and objective-rated fragmentation.

  1. The neuropsychology of emerging psychosis and the role of working memory in episodic memory encoding

    Directory of Open Access Journals (Sweden)

    Pflueger MO

    2018-05-01

    Full Text Available Marlon O Pflueger,1 Pasquale Calabrese,2 Erich Studerus,3 Ronan Zimmermann,4 Ute Gschwandtner,4 Stefan Borgwardt,5 Jacqueline Aston,3 Rolf-Dieter Stieglitz,6 Anita Riecher-Rössler3 1Department of Forensic Psychiatry, University of Basel Psychiatric Clinics, Basel, Switzerland; 2Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland; 3Center for Gender Research and Early Detection, University of Basel Psychiatric Hospital, Basel, Switzerland; 4Department of Neurology and Neurosurgery, Hospital of the University of Basel, Basel, Switzerland; 5Department of Psychiatry (UPK, University of Basel, Basel, Switzerland; 6Division of Clinical Psychology and Psychiatry, University of Basel, Basel, Switzerland Background: Episodic memory encoding and working memory (WM deficits are among the first cognitive signs and symptoms in the course of schizophrenia spectrum disorders. However, it is not clear whether the deficit pattern is generalized or specific in nature. We hypothesized that encoding deficits at an early stage of the disease might be due to the more fundamental WM deficits. Methods: We examined episodic memory encoding and WM by administering the California Verbal Learning Test, a 2-back task, and the Wisconsin Card Sorting Test in 90 first-episode psychosis (FE patients and 116 individuals with an at-risk mental state for psychosis (ARMS compared to 57 healthy subjects. Results: Learning progress, but not span of apprehension, was diminished to a similar extent in both the ARMS and the FE. We showed that this was due to WM impairment by applying a structural equation approach. Conclusion: Thus, we conclude that verbal memory encoding deficits are secondary to primary WM impairment in emerging psychosis. Keywords: at-risk mental state, first-episode psychosis, cognition, serial position effect, recency, semantic cluster ratio, 2-back task, rate of learning

  2. Age-related effects on perceptual and semantic encoding in memory.

    Science.gov (United States)

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Storage and binding of object features in visual working memory

    OpenAIRE

    Bays, Paul M; Wu, Emma Y; Husain, Masud

    2010-01-01

    An influential conception of visual working memory is of a small number of discrete memory “slots”, each storing an integrated representation of a single visual object, including all its component features. When a scene contains more objects than there are slots, visual attention controls which objects gain access to memory.

  4. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    Science.gov (United States)

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effects of post-encoding stress on performance in the DRM false memory paradigm

    OpenAIRE

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian; Payne, Jessica D.

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false memory task) and memory was tested 24 h later. Stress decreased recognition of studied words, while increasing false recognition of semantically rel...

  6. Aging and Memory as Discrimination: Influences of Encoding Specificity, Cue Overload, and Prior Knowledge

    OpenAIRE

    Badham, S. P.; Poirier, M.; Gandhi, N.; Hadjivassiliou, A.; Maylor, E. A.

    2016-01-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue?s relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue?s capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encod...

  7. The effect of encoding condition on free recall in Parkinson's disease: incidental and intentional memory are equally affected.

    Science.gov (United States)

    Ellfolk, Ulla; Huurinainen, Salla; Joutsa, Juho; Karrasch, Mira

    2012-01-01

    Free recall memory deficits are common at early stages of Parkinson's disease (PD). As most studies have used intentional memory tasks, there is little information on how non-intentional, incidental encoding conditions affect memory performance in PD. We studied possible differences between PD patients and controls on free recall using incidental and intentional visual memory tasks. Free recall was examined in relation to attentive/executive functioning and subjective memory complaints. A total of 29 non-demented, medicated PD patients (age 60, disease duration 19 months) and 29 healthy controls (age 61) participated in the study. Incidental free recall was studied using a memory-modification of the Boston naming test (Memo-BNT) and intentional free recall with the 20 Objects test. There was a significant main effect for group due to worse free recall performances in the PD group. No statistically significant interaction between group and encoding condition was observed. The free recall deficit in the PD group was related to cognitive/psychomotor slowing, but not to attentive/executive task demands, or to subjective memory complaints. The results indicate that PD patients are impaired on free recall irrespective of encoding condition.

  8. The role of chronic physical exercise and selective attention at encoding on implicit and explicit memory.

    Science.gov (United States)

    Padilla, Concepción; Mayas, Julia; Ballesteros, Soledad; Andrés, Pilar

    2017-09-01

    Despite the evidence revealing benefits of chronic cardiovascular exercise on executive functions, little research has been conducted on long-term memory. We aimed to investigate the effect of physical exercise on implicit and explicit memory when attention was modulated at encoding in two groups of active and sedentary participants. With this purpose, attention was manipulated in a similar way in the implicit and explicit memory tasks by presenting picture outlines of two familiar objects, one in blue and the other in green, and participants were asked to pay attention only to one of them. Implicit memory was assessed through conceptual priming and explicit memory through a free recall task followed by recognition. The results did not reveal significant differences between groups in conceptual priming or free recall. However, in recognition, while both groups had similar discrimination for attended stimuli, active participants showed lower discrimination between unattended and new stimuli. These results suggested that exercise may have effects on specific cognitive processes, that is, that active participants may suppress non-relevant information better than sedentary participants, making the discrimination between unattended and new items more difficult.

  9. Effects of Post-Encoding Stress on Performance in the DRM False Memory Paradigm

    Science.gov (United States)

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian; Payne, Jessica D.

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false…

  10. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst

  11. Cholinergic Manipulations Bidirectionally Regulate Object Memory Destabilization

    Science.gov (United States)

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew; Winters, Boyer D.

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established…

  12. Where to start? Bottom-up attention improves working memory by determining encoding order.

    Science.gov (United States)

    Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot

    2016-12-01

    The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    OpenAIRE

    Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as ...

  14. Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory

    Science.gov (United States)

    Hollingworth, Andrew; Rasmussen, Ian P.

    2010-01-01

    The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…

  15. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    Science.gov (United States)

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  16. Similar patterns of neural activity predict memory function during encoding and retrieval.

    Science.gov (United States)

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    Science.gov (United States)

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active

  18. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    Science.gov (United States)

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by

  19. Storage of features, conjunctions and objects in visual working memory.

    Science.gov (United States)

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  20. Orbitofrontal Cortex Encodes Memories within Value-Based Schemas and Represents Contexts That Guide Memory Retrieval

    Science.gov (United States)

    Farovik, Anja; Place, Ryan J.; McKenzie, Sam; Porter, Blake; Munro, Catherine E.

    2015-01-01

    There are a substantial number of studies showing that the orbitofrontal cortex links events to reward values, whereas the hippocampus links events to the context in which they occur. Here we asked how the orbitofrontal cortex contributes to memory where context determines the reward values associated with events. After rats learned object–reward associations that differed depending on the spatial context in which the objects were presented, neuronal ensembles in orbitofrontal cortex represented distinct value-based schemas, each composed of a systematic organization of the representations of objects in the contexts and positions where they were associated with reward or nonreward. Orbitofrontal ensembles also represent the different spatial contexts that define the mappings of stimuli to actions that lead to reward or nonreward. These findings, combined with observations on complementary memory representation within the hippocampus, suggest mechanisms through which prefrontal cortex and the hippocampus interact in support of context-guided memory. PMID:26019346

  1. Object-location memory in adults with autism spectrum disorder.

    Science.gov (United States)

    Ring, Melanie; Gaigg, Sebastian B; Bowler, Dermot M

    2015-10-01

    This study tested implicit and explicit spatial relational memory in Autism Spectrum Disorder (ASD). Participants were asked to study pictures of rooms and pictures of daily objects for which locations were highlighted in the rooms. Participants were later tested for their memory of the object locations either by being asked to place objects back into their original locations or into new locations. Proportions of times when participants choose the previously studied locations for the objects irrespective of the instruction were used to derive indices of explicit and implicit memory [process-dissociation procedure, Jacoby, 1991, 1998]. In addition, participants performed object and location recognition and source memory tasks where they were asked about which locations belonged to the objects and which objects to the locations. The data revealed difficulty for ASD individuals in actively retrieving object locations (explicit memory) but not in subconsciously remembering them (implicit memory). These difficulties cannot be explained by difficulties in memory for objects or locations per se (i.e., the difficulty pertains to object-location relations). Together these observations lend further support to the idea that ASD is characterised by relatively circumscribed difficulties in relational rather than item-specific memory processes and show that these difficulties extend to the domain of spatial information. They also lend further support to the idea that memory difficulties in ASD can be reduced when support is provided at test. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  2. Primacy of memory linkage in choice among valued objects.

    Science.gov (United States)

    Jones, Gregory V; Martin, Maryanne

    2006-12-01

    Three psychological levels at which an object may be processed have been characterized by Norman (2004) in terms of the object's appearance, its usability, and its capacity to elicit memories. A series of experiments was carried out to investigate participants' choices among valued objects recalled in accordance with these three criteria. It was found consistently that objects selected for their capacity to elicit memories--here termed mnemoactive objects--were valued significantly more than the other objects. Even the financial or social importance of an object was outweighed by the importance of its memory link; possible implications for the economic analysis of subjective well-being are briefly discussed. The same pattern of mnemoactive dominance was found across age and gender. Appropriate choice of objects may allow an individual to exert a degree of indirect voluntary control over the activation of involuntary autobiographical memories, providing a new perspective on Proust's approach to memory.

  3. How Does Using Object Names Influence Visual Recognition Memory?

    Science.gov (United States)

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  4. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  5. Affect influences false memories at encoding: evidence from recognition data.

    Science.gov (United States)

    Storbeck, Justin; Clore, Gerald L

    2011-08-01

    Memory is susceptible to illusions in the form of false memories. Prior research found, however, that sad moods reduce false memories. The current experiment had two goals: (1) to determine whether affect influences retrieval processes, and (2) to determine whether affect influences the strength and the persistence of false memories. Happy or sad moods were induced either before or after learning word lists designed to produce false memories. Control groups did not experience a mood induction. We found that sad moods reduced false memories only when induced before learning. Signal detection analyses confirmed that sad moods induced prior to learning reduced activation of nonpresented critical lures suggesting that they came to mind less often. Affective states, however, did not influence retrieval effects. We conclude that negative affective states promote item-specific processing, which reduces false memories in a similar way as using an explicitly guided cognitive control strategy. 2011 APA, all rights reserved

  6. Vantage perspective during encoding: The effects on phenomenological memory characteristics.

    Science.gov (United States)

    Mooren, Nora; Krans, Julie; Näring, Gérard W B; Moulds, Michelle L; van Minnen, Agnes

    2016-05-01

    The vantage perspective from which a memory is retrieved influences the memory's emotional impact, intrusiveness, and phenomenological characteristics. This study tested whether similar effects are observed when participants were instructed to imagine the events from a specific perspective. Fifty student participants listened to a verbal report of car-accidents and visualized the scenery from either a field or observer perspective. There were no between-condition differences in emotionality of memories and the number of intrusions, but imagery experienced from a relative observer perspective was rated as less self-relevant. In contrast to earlier studies on memory retrieval, vantage perspective influenced phenomenological memory characteristics of the memory representation such as sensory details, and ratings of vividness and distancing of the memory. However, vantage perspective is most likely not a stable phenomenological characteristic itself. Implications and suggestions for future research are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Object representations in visual memory: evidence from visual illusions.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  8. The effect of encoding duration on implicit and explicit eyewitness memory.

    Science.gov (United States)

    Carol, Rolando N; Schreiber Compo, Nadja

    2018-05-01

    The present study investigated the effect of encoding duration on implicit and explicit eyewitness memory. Participants (N = 227) viewed a mock crime (brief, 15-s vs. long, 30-s vs. irrelevant/control) and were then tested with both implicit and explicit memory prompts or with explicit memory prompts only. Brief-encoding participants revealed more critical details implicitly than long-encoding or control participants. Further, the number and percentage of accurate details recalled explicitly were higher for long-encoding than for brief-encoding participants. Implicit testing prior to explicit recall-as compared to completing a filler task-was detrimental to free recall performance. Interestingly, brief-encoding participants were significantly more likely to remember critical details implicitly but not explicitly than long-encoding participants. This is the first study to investigate implicit eyewitness memory for a multimodal mock crime. Findings are theoretically consistent with prior research on cognition while expanding upon the extant eyewitness memory and investigative interviewing literature. Published by Elsevier Inc.

  9. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    Science.gov (United States)

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  10. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    Science.gov (United States)

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  11. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    Directory of Open Access Journals (Sweden)

    Laura eFerreri

    2013-11-01

    Full Text Available Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC. 22 healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  12. The effect of encoding strategy on the neural correlates of memory for faces.

    Science.gov (United States)

    Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L

    2002-01-01

    Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.

  13. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with

  14. Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations

    NARCIS (Netherlands)

    Prince, S.E.; Daselaar, S.M.; Cabeza, R.

    2005-01-01

    Using event-related functional magnetic resonance imaging, we identified brain regions involved in successful relational memory (RM) during encoding and retrieval for semantic and perceptual associations or in general, independent of phase and content. Participants were scanned while encoding and

  15. Selective Memories: Infants' Encoding Is Enhanced in Selection via Suppression

    Science.gov (United States)

    Markant, Julie; Amso, Dima

    2013-01-01

    The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism…

  16. Differential binding of colors to objects in memory: red and yellow stick better than blue and green.

    Science.gov (United States)

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object's importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers' confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently from

  17. Self-initiated object-location memory in young and older adults.

    Science.gov (United States)

    Berger-Mandelbaum, Anat; Magen, Hagit

    2017-11-20

    The present study explored self-initiated object-location memory in ecological contexts, as aspect of memory that is largely absent from the research literature. Young and older adults memorized objects-location associations they selected themselves or object-location associations provided to them, and elaborated on the strategy they used when selecting the locations themselves. Retrieval took place 30 min and 1 month after encoding. The results showed an age-related decline in self-initiated and provided object-location memory. Older adults benefited from self-initiation more than young adults when tested after 30 min, while the benefit was equal when tested after 1 month. Furthermore, elaboration enhanced memory only in older adults, and only after 30 min. Both age groups used deep encoding strategies on the majority of the trials, but their percentage was lower in older adults. Overall, the study demonstrated the processes involved in self-initiated object-location memory, which is an essential part of everyday functioning.

  18. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    International Nuclear Information System (INIS)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-01-01

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.

  19. Cingulo-opercular activity affects incidental memory encoding for speech in noise.

    Science.gov (United States)

    Vaden, Kenneth I; Teubner-Rhodes, Susan; Ahlstrom, Jayne B; Dubno, Judy R; Eckert, Mark A

    2017-08-15

    Correctly understood speech in difficult listening conditions is often difficult to remember. A long-standing hypothesis for this observation is that the engagement of cognitive resources to aid speech understanding can limit resources available for memory encoding. This hypothesis is consistent with evidence that speech presented in difficult conditions typically elicits greater activity throughout cingulo-opercular regions of frontal cortex that are proposed to optimize task performance through adaptive control of behavior and tonic attention. However, successful memory encoding of items for delayed recognition memory tasks is consistently associated with increased cingulo-opercular activity when perceptual difficulty is minimized. The current study used a delayed recognition memory task to test competing predictions that memory encoding for words is enhanced or limited by the engagement of cingulo-opercular activity during challenging listening conditions. An fMRI experiment was conducted with twenty healthy adult participants who performed a word identification in noise task that was immediately followed by a delayed recognition memory task. Consistent with previous findings, word identification trials in the poorer signal-to-noise ratio condition were associated with increased cingulo-opercular activity and poorer recognition memory scores on average. However, cingulo-opercular activity decreased for correctly identified words in noise that were not recognized in the delayed memory test. These results suggest that memory encoding in difficult listening conditions is poorer when elevated cingulo-opercular activity is not sustained. Although increased attention to speech when presented in difficult conditions may detract from more active forms of memory maintenance (e.g., sub-vocal rehearsal), we conclude that task performance monitoring and/or elevated tonic attention supports incidental memory encoding in challenging listening conditions. Copyright © 2017

  20. Examining the Causes of Memory Strength Variability: Recollection, Attention Failure, or Encoding Variability?

    Science.gov (United States)

    Koen, Joshua D.; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P.

    2013-01-01

    A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs--the "encoding variability," "attention failure", and "recollection" accounts. Distinguishing among these theories is critical…

  1. Utilizing Computerized Cognitive Training to Improve Working Memory and Encoding: Piloting a School-Based Intervention

    Science.gov (United States)

    Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.

    2014-01-01

    Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…

  2. What-Where-When Memory and Encoding Strategies in Healthy Aging

    Science.gov (United States)

    Cheke, Lucy G.

    2016-01-01

    Older adults exhibit disproportionate impairments in memory for item-associations. These impairments may stem from an inability to self-initiate deep encoding strategies. The present study investigates this using the "treasure-hunt task"; a what-where-when style episodic memory test that requires individuals to "hide" items…

  3. Working Memory Encoding Delays Top-Down Attention to Visual Cortex

    Science.gov (United States)

    Scalf, Paige E.; Dux, Paul E.; Marois, Rene

    2011-01-01

    The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. "Cognitive Psychology, 36", 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to…

  4. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.

    Science.gov (United States)

    Memel, Molly; Ryan, Lee

    2017-06-01

    The ability to remember associations between previously unrelated pieces of information is often impaired in older adults (Naveh-Benjamin, 2000). Unitization, the process of creating a perceptually or semantically integrated representation that includes both items in an associative pair, attenuates age-related associative deficits (Bastin et al., 2013; Ahmad et al., 2015; Zheng et al., 2015). Compared to non-unitized pairs, unitized pairs may rely less on hippocampally-mediated binding associated with recollection, and more on familiarity-based processes mediated by perirhinal cortex (PRC) and parahippocampal cortex (PHC). While unitization of verbal materials improves associative memory in older adults, less is known about the impact of visual integration. The present study determined whether visual integration improves associative memory in older adults by minimizing the need for hippocampal (HC) recruitment and shifting encoding to non-hippocampal medial temporal structures, such as the PRC and PHC. Young and older adults were presented with a series of objects paired with naturalistic scenes while undergoing fMRI scanning, and were later given an associative memory test. Visual integration was varied by presenting the object either next to the scene (Separated condition) or visually integrated within the scene (Combined condition). Visual integration improved associative memory among young and older adults to a similar degree by increasing the hit rate for intact pairs, but without increasing false alarms for recombined pairs, suggesting enhanced recollection rather than increased reliance on familiarity. Also contrary to expectations, visual integration resulted in increased hippocampal activation in both age groups, along with increases in PRC and PHC activation. Activation in all three MTL regions predicted discrimination performance during the Separated condition in young adults, while only a marginal relationship between PRC activation and performance was

  5. Differential Binding of Colors to Objects in Memory: Red and Yellow Stick Better Than Blue and Green

    Directory of Open Access Journals (Sweden)

    Christof eKuhbandner

    2015-03-01

    Full Text Available Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words versus pictures, task complexity (single objects versus multiple objects in visual scenes, and intentionality of encoding (intentional versus incidental learning. Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on type of color and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a purely automatic process by which any attended feature is automatically bound into a unitary memory representation. Rather, binding in memory seems to vary across different subtypes of features, a finding that supports recent research showing that features of objects

  6. Differential binding of colors to objects in memory: red and yellow stick better than blue and green

    Science.gov (United States)

    Kuhbandner, Christof; Spitzer, Bernhard; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2015-01-01

    Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow) and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words vs. pictures), task complexity (single objects vs. multiple objects in visual scenes), and intentionality of encoding (intentional vs. incidental learning). Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on color type and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a uniform process by which any attended feature is automatically bound into unitary memory representations. Rather, memory binding seems to vary across different subtypes of features, a finding that supports recent research showing that object features are stored in memory rather independently

  7. Cholinergic Enhancement of Brain Activation in Mild Cognitive Impairment (MCI during Episodic Memory Encoding

    Directory of Open Access Journals (Sweden)

    Shannon L Risacher

    2013-09-01

    Full Text Available Objective: To determine the physiological impact of treatment with donepezil (Aricept on neural circuitry supporting episodic memory encoding in patients with amnestic mild cognitive impairment (MCI using functional MRI (fMRI. Methods: 18 patients with MCI and 20 age-matched healthy controls (HC were scanned twice while performing an event-related verbal episodic encoding task. MCI participants were scanned before treatment and after approximately 3 months on donepezil; HC were untreated but rescanned at the same interval. Voxel-level analyses assessed treatment effects in activation profile relative to retest changes in non-treated HC. Changes in task-related connectivity in medial temporal circuitry were also evaluated, as were associations between brain activation pattern, task-related functional connectivity, task performance, and clinical measures of cognition.Results: At baseline, the MCI group showed reduced activation during encoding relative to HC in the right medial temporal lobe (MTL; hippocampal/parahippocampal and additional regions, as well as attenuated task-related deactivation, relative to rest, in a medial parietal lobe cluster. After treatment, the MCI group showed normalized MTL activation and improved parietal deactivation. These changes were associated with cognitive performance. After treatment, the MCI group also demonstrated increased task-related functional connectivity from the right MTL cluster seed region to a network of other sites including the basal nucleus/caudate and bilateral frontal lobes. Increased functional connectivity was associated with improved task performance.Conclusions: Pharmacologic enhancement of cholinergic function in amnestic MCI is associated with changes in brain activation pattern and functional connectivity during episodic memory processing which are in turn related to increased cognitive performance. fMRI is a promising biomarker for assessing treatment related changes in brain function.

  8. Encoding Modality Can Affect Memory Accuracy via Retrieval Orientation

    Science.gov (United States)

    Pierce, Benton H.; Gallo, David A.

    2011-01-01

    Research indicates that false memory is lower following visual than auditory study, potentially because visual information is more distinctive. In the present study we tested the extent to which retrieval orientation can cause a modality effect on memory accuracy. Participants studied unrelated words in different modalities, followed by criterial…

  9. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.

    Science.gov (United States)

    Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor

    2014-10-15

    We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.

  10. Memory Self-Efficacy Beliefs Modulate Brain Activity when Encoding Real-World Future Intentions

    OpenAIRE

    Kalpouzos, Gr?goria; Eriksson, Johan

    2013-01-01

    Background: While the use of different cognitive strategies when encoding episodic memory information has been extensively investigated, modulation of brain activity by memory self-efficacy beliefs has not been studied yet. Methodology/Principal Findings: Sixteen young adults completed the prospective and retrospective metamemory questionnaire, providing individual subjective judgments of everyday memory function. The day after, using functional magnetic resonance imaging, the participants ha...

  11. Examining the causes of memory strength variability: recollection, attention failure, or encoding variability?

    Science.gov (United States)

    Koen, Joshua D; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P

    2013-11-01

    A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs-the encoding variability, attention failure, and recollection accounts. Distinguishing among these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all 4 experiments confirm the predictions of the recollection account and are inconsistent with the encoding variability account. The evidence supporting the attention failure account is mixed, with 2 of the 4 experiments confirming the account and 2 disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. The role of nitric oxide in the object recognition memory.

    Science.gov (United States)

    Pitsikas, Nikolaos

    2015-05-15

    The novel object recognition task (NORT) assesses recognition memory in animals. It is a non-rewarded paradigm that it is based on spontaneous exploratory behavior in rodents. This procedure is widely used for testing the effects of compounds on recognition memory. Recognition memory is a type of memory severely compromised in schizophrenic and Alzheimer's disease patients. Nitric oxide (NO) is sought to be an intra- and inter-cellular messenger in the central nervous system and its implication in learning and memory is well documented. Here I intended to critically review the role of NO-related compounds on different aspects of recognition memory. Current analysis shows that both NO donors and NO synthase (NOS) inhibitors are involved in object recognition memory and suggests that NO might be a promising target for cognition impairments. However, the potential neurotoxicity of NO would add a note of caution in this context. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Memory loss versus memory distortion: the role of encoding and retrieval deficits in Korsakoff patients' false memories.

    Science.gov (United States)

    Van Damme, Ilse; d'Ydewalle, Gery

    2009-05-01

    Recent studies with the Deese/Roediger-McDermott (DRM) paradigm have revealed that Korsakoff patients show reduced levels of false recognition and different patterns of false recall compared to controls. The present experiment examined whether this could be attributed to an encoding deficit, or rather to problems with explicitly retrieving thematic information at test. In a variation on the DRM paradigm, both patients and controls were presented with associative as well as categorised word lists, with the order of recall and recognition tests manipulated between-subjects. The results point to an important role for the automatic/controlled retrieval distinction: Korsakoff patients' false memory was only diminished compared to controls' when automatic or short-term memory processes could not be used to fulfil the task at hand. Hence, the patients' explicit retrieval deficit appears to be crucial in explaining past and present data. Results are discussed in terms of fuzzy-trace and activation-monitoring theories.

  14. Use of memory strategies among younger and older adults: Results from objective and subjective measures

    Directory of Open Access Journals (Sweden)

    Aline Teixeira Fabricio

    Full Text Available Abstract Memory plays a fundamental role in the identity of people and in human life, as it enables us to interpret our surroundings and make decisions. It is known that the aging process can be accompanied by cognitive decline in some memory sub systems. However, the use of memory strategies can help encoding and retrieval of new information. Objective: The aim of this study was to identify and compare, using objective and subjective measures, which recall strategies are used spontaneously by young and older adults. Methods: Twenty-six first-year college students, and thirty-three seniors enrolled at the Third Age University of the same campus, completed a visual memory test including 18 black and white pictures, memorized a short story, and completed an open question about memory strategies, a memory check list to indicate strategies used, and a memory self-efficacy scale. The Bousfield categorization measure was also calculated from the recall protocol. Results: Young adults demonstrated better performance than the older adults on the memory tasks, and were also more confident. Both groups reported using similar strategies. Conclusion: Young and older adults seem to tackle memory tasks in similar ways but young adults outperform seniors.

  15. An electrophysiological investigation of memory encoding, depth of processing, and word frequency in humans.

    Science.gov (United States)

    Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A

    2004-02-12

    Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.

  16. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    Science.gov (United States)

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  17. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    Science.gov (United States)

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  18. School-aged children can benefit from audiovisual semantic congruency during memory encoding.

    Science.gov (United States)

    Heikkilä, Jenni; Tiippana, Kaisa

    2016-05-01

    Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.

  19. A device, a system and a method of encoding a position of an object

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a device for encoding a position of an object, comprising a first light source; a first collimating element adapted to form first collimated light from the first light source; a carrier adapted to guide light and comprising a first primary light redirecting...... structure and a second primary light redirecting structure; and a detector device for encoding the position of an object with respect to an active area of an encoding plane; wherein the first primary light redirecting structure is adapted to redirect at least a part of a first light beam through the active...

  20. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia

    Directory of Open Access Journals (Sweden)

    Federica Meconi

    2016-01-01

    Full Text Available Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ. Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  1. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia.

    Science.gov (United States)

    Meconi, Federica; Anderl-Straub, Sarah; Raum, Heidelore; Landgrebe, Michael; Langguth, Berthold; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof) during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  2. Encoding Strategy for Maximum Noise Tolerance Bidirectional Associative Memory

    National Research Council Canada - National Science Library

    Shen, Dan

    2003-01-01

    In this paper, the Basic Bidirectional Associative Memory (BAM) is extended by choosing weights in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set for BAM...

  3. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer’s Disease

    Science.gov (United States)

    Ochoa, John Fredy; Alonso, Joan Francesc; Duque, Jon Edinson; Tobón, Carlos Andrés; Mañanas, Miguel Angel; Lopera, Francisco; Hernández, Alher Mauricio

    2016-01-01

    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD. PMID:27792014

  4. Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults.

    Science.gov (United States)

    Hampstead, B M; Khoshnoodi, M; Yan, W; Deshpande, G; Sathian, K

    2016-01-01

    Previous research has shown that there is considerable overlap in the neural networks mediating successful memory encoding and retrieval. However, little is known about how the relevant human brain regions interact during these distinct phases of memory or how such interactions are affected by memory deficits that characterize mild cognitive impairment (MCI), a condition that often precedes dementia due to Alzheimer's disease. Here we employed multivariate Granger causality analysis using autoregressive modeling of inferred neuronal time series obtained by deconvolving the hemodynamic response function from measured blood oxygenation level-dependent (BOLD) time series data, in order to examine the effective connectivity between brain regions during successful encoding and/or retrieval of object location associations in MCI patients and comparable healthy older adults. During encoding, healthy older adults demonstrated a left hemisphere dominant pattern where the inferior frontal junction, anterior intraparietal sulcus (likely involving the parietal eye fields), and posterior cingulate cortex drove activation in most left hemisphere regions and virtually every right hemisphere region tested. These regions are part of a frontoparietal network that mediates top-down cognitive control and is implicated in successful memory formation. In contrast, in the MCI patients, the right frontal eye field drove activation in every left hemisphere region examined, suggesting reliance on more basic visual search processes. Retrieval in the healthy older adults was primarily driven by the right hippocampus with lesser contributions of the right anterior thalamic nuclei and right inferior frontal sulcus, consistent with theoretical models holding the hippocampus as critical for the successful retrieval of memories. The pattern differed in MCI patients, in whom the right inferior frontal junction and right anterior thalamus drove successful memory retrieval, reflecting the

  5. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    Science.gov (United States)

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    Science.gov (United States)

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-05

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.

  8. Motivated encoding selectively promotes memory for future inconsequential semantically-related events.

    Science.gov (United States)

    Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis

    2016-09-01

    Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding

    Directory of Open Access Journals (Sweden)

    Jasmeet P Hayes

    2010-12-01

    Full Text Available During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes.

  10. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  11. Imbalance of incidental encoding across tasks: an explanation for non-memory-related hippocampal activations?

    Science.gov (United States)

    Reas, Emilie T; Brewer, James B

    2013-11-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions--such as decision making, attention, perception, incidental learning, prediction, and working memory--that have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippocampal activations during confident episodic retrieval are not entirely congruent with evidence that hippocampal lesions reliably impair encoding but inconsistently affect retrieval. Here we explore the conditions under which the hippocampus responds during episodic recall and recognition. Our findings suggest that anterior hippocampal activity may be related to the imbalance of incidental encoding across tasks and conditions rather than due to retrieval per se. Incidental encoding and hippocampal activity may be reduced during conditions where retrieval requires greater attentional engagement. During retrieval, anterior hippocampal activity decreases with increasing search duration and retrieval effort, and this deactivation corresponds with a coincident impaired encoding of the external environment (Israel, Seibert, Black, & Brewer, 2010; Reas & Brewer, 2013; Reas, Gimbel, Hales, & Brewer, 2011). In light of this emerging evidence, we discuss the proposal that some hippocampal activity observed during memory retrieval, or other non-memory conditions, may in fact be attributable to concomitant encoding activity that is regulated by the attentional demands of the principal task. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Source memory that encoding was self-referential: the influence of stimulus characteristics.

    Science.gov (United States)

    Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K

    2017-10-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.

  13. Drawing skill is related to the efficiency of encoding object structure.

    Science.gov (United States)

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.

  14. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding

    Science.gov (United States)

    Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852

  15. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding.

    Directory of Open Access Journals (Sweden)

    Mei-Chun Cheung

    Full Text Available Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group and 30 of whom had never received music training (the NMT group. The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.

  16. Music training is associated with cortical synchronization reflected in EEG coherence during verbal memory encoding.

    Science.gov (United States)

    Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y

    2017-01-01

    Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.

  17. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2013-05-01

    Full Text Available Theta band power (4-8Hz in the scalp electroencephalogram (EEG is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  18. Fast entrainment of human electroencephalogram to a theta-band photic flicker during successful memory encoding.

    Science.gov (United States)

    Sato, Naoyuki

    2013-01-01

    Theta band power (4-8 Hz) in the scalp electroencephalogram (EEG) is thought to be stronger during memory encoding for subsequently remembered items than for forgotten items. According to simultaneous EEG-functional magnetic resonance imaging (fMRI) measurements, the memory-dependent EEG theta is associated with multiple regions of the brain. This suggests that the multiple regions cooperate with EEG theta synchronization during successful memory encoding. However, a question still remains: What kind of neural dynamic organizes such a memory-dependent global network? In this study, the modulation of the EEG theta entrainment property during successful encoding was hypothesized to lead to EEG theta synchronization among a distributed network. Then, a transient response of EEG theta to a theta-band photic flicker with a short duration was evaluated during memory encoding. In the results, flicker-induced EEG power increased and decreased with a time constant of several hundred milliseconds following the onset and the offset of the flicker, respectively. Importantly, the offset response of EEG power was found to be significantly decreased during successful encoding. Moreover, the offset response of the phase locking index was also found to associate with memory performance. According to computational simulations, the results are interpreted as a smaller time constant (i.e., faster response) of a driven harmonic oscillator rather than a change in the spontaneous oscillatory input. This suggests that the fast response of EEG theta forms a global EEG theta network among memory-related regions during successful encoding, and it contributes to a flexible formation of the network along the time course.

  19. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.

    Science.gov (United States)

    Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M

    2005-07-01

    Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.

  20. The Nature of Memory Objects in the Brain

    Science.gov (United States)

    de Gennes, Pierre-Gilles

    2006-03-01

    Our mind keeps a huge number of memories. We discuss here the number M of neurons which must be implied in one primal memory object (the smell of a rose). We find that (in a storage area which is not genetically designed) spatial and connectivity requirements impose that M be very small (of the order of 3). We then extend these considerations to associative memories (where the smell of a rose evokes the color of a rose).

  1. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory.

    Science.gov (United States)

    Staudigl, Tobias; Hanslmayr, Simon

    2013-06-17

    Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency coupling modulate such item-context binding, but direct evidence from humans is scarce. We investigated this issue by manipulating the overlap of contextual features between encoding and retrieval. Participants studied words superimposed on movie clips and were later tested by presenting the word with either the same or a different movie. The results show that memory performance and the oscillatory correlates of memory formation crucially depend on the overlap of the context between encoding and test. When the context matched, high theta power during encoding was related to successful recognition, whereas the opposite pattern emerged in the context-mismatch condition. In addition, cross-frequency coupling analysis revealed a context-dependent theta-to-gamma memory effect specifically in the left hippocampus. These results reveal for the first time that context-dependent episodic memory effects are mediated by theta oscillatory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Neural correlates of encoding processes predicting subsequent cued recall and source memory.

    Science.gov (United States)

    Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine

    2013-03-06

    In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.

  3. Aging and Memory as Discrimination: Influences of Encoding Specificity, Cue Overload, and Prior Knowledge

    Science.gov (United States)

    2016-01-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue’s relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue’s capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue–target distinctiveness. In Experiment 1, associative memory differences for cue–target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults’ associative memory deficits reduced the impact of competing retrieval candidates—hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. PMID:27831714

  4. Aging and memory as discrimination: Influences of encoding specificity, cue overload, and prior knowledge.

    Science.gov (United States)

    Badham, Stephen P; Poirier, Marie; Gandhi, Navina; Hadjivassiliou, Anna; Maylor, Elizabeth A

    2016-11-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue's relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue's capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue-target distinctiveness. In Experiment 1, associative memory differences for cue-target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults' associative memory deficits reduced the impact of competing retrieval candidates-hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Use of memory strategies among younger and older adults: Results from objective and subjective measures.

    Science.gov (United States)

    Fabricio, Aline Teixeira; Yassuda, Mônica Sanches

    2011-01-01

    Memory plays a fundamental role in the identity of people and in human life, as it enables us to interpret our surroundings and make decisions. It is known that the aging process can be accompanied by cognitive decline in some memory sub systems. However, the use of memory strategies can help encoding and retrieval of new information. The aim of this study was to identify and compare, using objective and subjective measures, which recall strategies are used spontaneously by young and older adults. Twenty-six first-year college students, and thirty-three seniors enrolled at the Third Age University of the same campus, completed a visual memory test including 18 black and white pictures, memorized a short story, and completed an open question about memory strategies, a memory check list to indicate strategies used, and a memory self-efficacy scale. The Bousfield categorization measure was also calculated from the recall protocol. Young adults demonstrated better performance than the older adults on the memory tasks, and were also more confident. Both groups reported using similar strategies. Young and older adults seem to tackle memory tasks in similar ways but young adults outperform seniors.

  6. Transfer after process-based object-location memory training in healthy older adults.

    Science.gov (United States)

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity.

    Science.gov (United States)

    Berkers, Ruud M W J; Klumpers, Floris; Fernández, Guillén

    2016-10-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to differences in (the risk for) affective disorders that are characterized by 'overgeneralized' emotional memories. Here, we investigate the neural underpinnings of individual differences in emotional associative memory. A large group of healthy male participants were scanned while encoding associations of face-photographs and written occupational identities that were of either neutral ('driver') or negative ('murderer') valence. Subsequently, memory was tested by prompting participants to retrieve the occupational identities corresponding to each face. Whereas in both valence categories a similar amount of faces was labeled correctly with 'neutral' and 'negative' identities, (gist memory), specific associations were found to be less accurately remembered when the occupational identity was negative compared to neutral (specific memory). This pattern of results suggests reduced memory specificity for associations containing a negatively valenced component. The encoding of these negative associations was paired with a selective increase in medial prefrontal cortex activity and medial prefrontal-hippocampal connectivity. Individual differences in valence-specific neural connectivity were predictive of valence-specific reduction of memory specificity. The relationship between loss of emotional memory specificity and medial prefrontal-hippocampal connectivity is in line with the hypothesized role of a medial prefrontal-hippocampal circuit in regulating memory specificity, and warrants further investigations in individuals displaying 'overgeneralized' emotional memories. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Visual perspective in autobiographical memories: reliability, consistency, and relationship to objective memory performance.

    Science.gov (United States)

    Siedlecki, Karen L

    2015-01-01

    Visual perspective in autobiographical memories was examined in terms of reliability, consistency, and relationship to objective memory performance in a sample of 99 individuals. Autobiographical memories may be recalled from two visual perspectives--a field perspective in which individuals experience the memory through their own eyes, or an observer perspective in which individuals experience the memory from the viewpoint of an observer in which they can see themselves. Participants recalled nine word-cued memories that differed in emotional valence (positive, negative and neutral) and rated their memories on 18 scales. Results indicate that visual perspective was the most reliable memory characteristic overall and is consistently related to emotional intensity at the time of recall and amount of emotion experienced during the memory. Visual perspective is unrelated to memory for words, stories, abstract line drawings or faces.

  9. Vantage perspective during encoding: The effects on phenomenological memory characteristics

    NARCIS (Netherlands)

    Mooren, N.; Krans, J.; Näring, G.W.B.; Moulds, M.L.; Minnen, A. van

    2016-01-01

    The vantage perspective from which a memory is retrieved influences the memory’s emotional impact, intrusiveness, and phenomenological characteristics. This study tested whether similar effects are observed when participants were instructed to imagine the events from a specific perspective. Fifty

  10. Self-Stabilization of Wait-Free Shared Memory Objects

    NARCIS (Netherlands)

    Hoepman, J.H.; Papatriantafilou, Marina; Tsigas, Philippas

    2002-01-01

    This paper proposes a general definition of self-stabilizing wait-free shared memory objects. The definition ensures that, even in the face of processor failures, every execution after a transient memory failure is linearizable except for an a priori bounded number of actions. Shared registers have

  11. Use of incidentally encoded memory from a single experience in cats.

    Science.gov (United States)

    Takagi, Saho; Tsuzuki, Mana; Chijiiwa, Hitomi; Arahori, Minori; Watanabe, Arii; Saito, Atsuko; Fujita, Kazuo

    2017-08-01

    We examined whether cats could retrieve and utilize incidentally encoded information from a single past event in a simple food-exploration task previously used for dogs (Fujita et al., 2012). In Experiment 1, cats were led to four open, baited containers and allowed to eat from two of them (Exposure phase). After a 15-min delay during which the cats were absent and all containers were replaced with empty ones, the cats were unexpectedly returned to the room and allowed to explore the containers (Test phase). Although the cats' first choice of container to visit was random, they explored containers from which they had not previously eaten for longer than those from which they did previously eat. In the Exposure phase of Experiment 2, two containers held food, one held a nonedible object, and the fourth was empty. Cats were allowed to eat from one of them. In the post-delay Test phase, the cats first visited the remaining baited-uneaten container significantly more often than chance and they spent more time exploring this container. Because the cats' behavior in the Test phase cannot be explained by association of the container with a pleasant experience (eating), the results suggest that cats retrieved and utilized "what" and "where" information from an incidentally encoded memory from a single experience. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Digital memory encoding in Chinese dyscalculia: An event-related potential study.

    Science.gov (United States)

    Wang, Enguo; Qin, Shutao; Chang, MengYan; Zhu, Xiangru

    2014-10-22

    This study reports the neurophysiological and behavioral correlates of digital memory encoding features in Chinese individuals with and without dyscalculia. Eighteen children with dyscalculia (ages 11.5-13.5) and 18 matched controls were tested, and their event-related potentials (ERPs) were digitally recorded simultaneously with behavioral measures. The results showed that both groups had a significant Dm effect, and this effect was greater in the control group. In the 300-400-ms, 400-500-ms, and 600-700-ms processing stages, both groups showed significant differences of digital memory encoding in the frontal, central, and parietal regions. In the 500-600-ms period, the Dm effect in the control group was significantly greater than that in the dyscalculia group only in the parietal region. These results suggest that individuals with dyscalculia exhibit impaired digital memory encoding and deficits in psychological resource allocation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    Science.gov (United States)

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  14. An object memory bias induced by communicative reference.

    Science.gov (United States)

    Marno, Hanna; Davelaar, Eddy J; Csibra, Gergely

    2016-01-01

    In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associations that constituted either an extrinsic object property (the colour of the box that contained the object, Experiment 1) or an intrinsic one (the colour of the object, Experiment 2). Compared to a non-communicative context, communicative presentation of the objects impaired participants' performance when they recalled extrinsic object properties, while their incidental memory of the intrinsic shape-colour associations was not affected. Communicative signals had no effect on performance when the task required the memorisation of intrinsic object properties. The negative effect of communicative reference on the memory of extrinsic properties was also confirmed in Experiment 3, where this property was object location. Such a memory bias suggests that referent objects in communication tend to be seen as representatives of their kind rather than as individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    Science.gov (United States)

    Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects—the shift account of relation processing—which states that relations such as ‘above’ or ‘below’ are extracted by shifting visual attention upward or downward in space. If so, then shifts of attention should improve the representation of spatial relations, compared to a control condition of identity memory. Participants viewed a pair of briefly flashed objects and were then tested on either the relative spatial relation or identity of one of those objects. Using eye tracking to reveal participants’ voluntary shifts of attention over time, we found that when initial fixation was on neither object, relational memory showed an absolute advantage for the object following an attention shift, while identity memory showed no advantage for either object. This result is consistent with the shift account of relation processing. When initial fixation began on one of the objects, identity memory strongly benefited this fixated object, while relational memory only showed a relative benefit for objects following an attention shift. This result is also consistent, although not as uniquely, with the shift account of relation processing. Taken together, we suggest that the attention shift account provides a mechanistic explanation for the overall results. This account can potentially serve as the common mechanism underlying both linguistic and perceptual representations of spatial relations. PMID:27695104

  16. Paradoxical false memory for objects after brain damage.

    Science.gov (United States)

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  17. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.

    Science.gov (United States)

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.

  18. Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest

    Science.gov (United States)

    Schlichting, Margaret L.; Preston, Alison R.

    2015-01-01

    Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory. PMID:26608407

  19. Visually encoded working memory is closely associated with mobility in older adults.

    Science.gov (United States)

    Kawagoe, Toshikazu; Sekiyama, Kaoru

    2014-06-01

    Previous research suggests that older adults' motor performance is associated with cognitive function. Although this has been reported especially for executive function, it is not yet clear for various types of working memory (WM). In fact, age-related decline in WM is more severe for faces than other types of visual objects. The present study focused on the relationship between diverse WM and two types of motor performance (mobility and manual dexterity), which are implicated in pathological decline. To measure diverse WM, we adopted N-back tasks using three distinct types of stimuli (numbers, locations, and faces). Mobility was measured with the timed up and go test and manual dexterity was measured with the Pegboard Test. Participants were community-dwelling older adults (age: mean 78.6 years). Comparisons of younger and older adults' N-back performances indicated that WM for faces is more sensitive to aging compared with WM for the other stimuli. Correlation analyses within the older group indicated that WM tasks mainly correlated with mobility, but less so with manual dexterity. Among the three types of WM, spatial WM and face WM had significant partial correlation coefficients with mobility after age and general cognitive decline were controlled. These results indicate that visually encoded WM is associated only with mobility, although general cognitive function is related to both motor abilities. The selective association between the visually encoded WM and mobility is discussed in terms of the interactive processes between executive processing and perceptual encoding, where dynamic visual processing for locomotion plays a role.

  20. Orienting attention to objects in visual short-term memory

    NARCIS (Netherlands)

    Dell'Acqua, Roberto; Sessa, Paola; Toffanin, Paolo; Luria, Roy; Joliccoeur, Pierre

    We measured electroencephalographic activity during visual search of a target object among objects available to perception or among objects held in visual short-term memory (VSTM). For perceptual search, a single shape was shown first (pre-cue) followed by a search-array and the task was to decide

  1. Seeing Iconic Gestures While Encoding Events Facilitates Children's Memory of These Events.

    Science.gov (United States)

    Aussems, Suzanne; Kita, Sotaro

    2017-11-08

    An experiment with 72 three-year-olds investigated whether encoding events while seeing iconic gestures boosts children's memory representation of these events. The events, shown in videos of actors moving in an unusual manner, were presented with either iconic gestures depicting how the actors performed these actions, interactive gestures, or no gesture. In a recognition memory task, children in the iconic gesture condition remembered actors and actions better than children in the control conditions. Iconic gestures were categorized based on how much of the actors was represented by the hands (feet, legs, or body). Only iconic hand-as-body gestures boosted actor memory. Thus, seeing iconic gestures while encoding events facilitates children's memory of those aspects of events that are schematically highlighted by gesture. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  2. Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information.

    Science.gov (United States)

    Sperduti, Marco; Armougum, Allan; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-12-01

    Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.

  3. ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists.

    Science.gov (United States)

    Pan, Yafeng; Li, Xianchun; Chen, Xi; Ku, Yixuan; Dong, Yujie; Dou, Zheng; He, Lin; Hu, Yi; Li, Weidong; Zhou, Xiaolin

    2017-10-01

    Previous studies have consistently demonstrated that superior mnemonists (SMs) outperform normal individuals in domain-specific memory tasks. However, the neural correlates of memory-related processes remain unclear. In the current EEG study, SMs and control participants performed a digit memory task during which their brain activity was recorded. Chinese SMs used a digit-image mnemonic for encoding digits, in which they associated 2-digit groups with images immediately after the presentation of each even-position digit in sequences. Behaviorally, SMs' memory of digit sequences was better than the controls'. During encoding in the study phase, SMs showed an increased right central P2 (150-250ms post onset) and a larger right posterior high-alpha (10-14Hz, 500-1720ms) oscillation on digits at even-positions compared with digits at odd-positions. Both P2 and high-alpha oscillations in the study phase co-varied with performance in the recall phase, but only in SMs, indicating that neural dynamics during encoding could predict successful retrieval of digit memory in SMs. Our findings suggest that representation of a digit sequence in SMs using mnemonics may recruit both the early-stage attention allocation process and the sustained information preservation process. This study provides evidence for the role of dynamic and efficient neural encoding processes in mnemonists. Copyright © 2017. Published by Elsevier Inc.

  4. Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding

    International Nuclear Information System (INIS)

    Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah

    2016-01-01

    Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.

  5. An object memory bias induced by communicative reference

    OpenAIRE

    Marno, Hanna; Davelaar, Eddy J.; Csibra, Gergely

    2015-01-01

    In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associ...

  6. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    OpenAIRE

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-01-01

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects catego...

  7. Seeing iconic gestures while encoding events facilitates children's memory of these events

    OpenAIRE

    Aussems, Suzanne; Kita, Sotaro

    2017-01-01

    An experiment with 72 three-year-olds investigated whether encoding events while seeing iconic gestures boosts children's memory representation of these events. The events, shown in videos of actors moving in an unusual manner, were presented with either iconic gestures depicting how the actors performed these actions, interactive gestures, or no gesture. In a recognition memory task, children in the iconic gesture condition remembered actors and actions better than children in the control co...

  8. Attention and perceptual implicit memory: effects of selective versus divided attention and number of visual objects.

    Science.gov (United States)

    Mulligan, Neil W

    2002-08-01

    Extant research presents conflicting results on whether manipulations of attention during encoding affect perceptual priming. Two suggested mediating factors are type of manipulation (selective vs divided) and whether attention is manipulated across multiple objects or within a single object. Words printed in different colors (Experiment 1) or flanked by colored blocks (Experiment 2) were presented at encoding. In the full-attention condition, participants always read the word, in the unattended condition they always identified the color, and in the divided-attention conditions, participants attended to both word identity and color. Perceptual priming was assessed with perceptual identification and explicit memory with recognition. Relative to the full-attention condition, attending to color always reduced priming. Dividing attention between word identity and color, however, only disrupted priming when these attributes were presented as multiple objects (Experiment 2) but not when they were dimensions of a common object (Experiment 1). On the explicit test, manipulations of attention always affected recognition accuracy.

  9. Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories.

    Directory of Open Access Journals (Sweden)

    Paulo S Boggio

    Full Text Available A recent study found that false memories were reduced by 36% when low frequency repetitive transcranial magnetic stimulation (rTMS was applied to the left anterior temporal lobe after the encoding (study phase. Here we were interested in the consequences on a false memory task of brain stimulation throughout the encoding and retrieval task phases. We used transcranial direct current stimulation (tDCS because it has been shown to be a useful tool to enhance cognition. Specifically, we examined whether tDCS can induce changes in a task assessing false memories. Based on our preliminary results, three conditions of stimulation were chosen: anodal left/cathodal right anterior temporal lobe (ATL stimulation ("bilateral stimulation"; anodal left ATL stimulation (with a large contralateral cathodal electrode--referred as "unilateral stimulation" and sham stimulation. Our results showed that false memories were reduced significantly after the two active conditions (unilateral and bilateral stimulation as compared with sham stimulation. There were no significant changes in veridical memories. Our findings show that false memories are reduced by 73% when anodal tDCS is applied to the anterior temporal lobes throughout the encoding and retrieval stages, suggesting a possible strategy for improving certain aspects of learning.

  10. The difference in subjective and objective complexity in the visual short-term memory

    DEFF Research Database (Denmark)

    Dall, Jonas Olsen; Sørensen, Thomas Alrik

    Several studies discuss the influence of complexity on the visual short term memory; some have demonstrated that short-term memory is surprisingly stable regardless of content (e.g. Luck & Vogel, 1997) where others have shown that memory can be influenced by the complexity of stimulus (e.g. Alvarez...... characters. On the contrary expertise or word frequency may reflect what could be termed subjective complexity, as this relate directly to the individual mental categories established. This study will be able to uncover more details on how we should define complexity of objects to be encoded into short-term....... & Cavanagh, 2004). But the term complexity is often not clearly defined. Sørensen (2008; see also Dall, Katsumi, & Sørensen, 2016) suggested that complexity can be related to two different types; objective and subjective complexity. This distinction is supported by a number of studies on the influence...

  11. Correcting false information in memory: manipulating the strength of misinformation encoding and its retraction.

    Science.gov (United States)

    Ecker, Ullrich K H; Lewandowsky, Stephan; Swire, Briony; Chang, Darren

    2011-06-01

    Information that is presumed to be true at encoding but later on turns out to be false (i.e., misinformation) often continues to influence memory and reasoning. In the present study, we investigated how the strength of encoding and the strength of a later retraction of the misinformation affect this continued influence effect. Participants read an event report containing misinformation and a subsequent correction. Encoding strength of the misinformation and correction were orthogonally manipulated either via repetition (Experiment 1) or by imposing a cognitive load during reading (Experiment 2). Results suggest that stronger retractions are effective in reducing the continued influence effects associated with strong misinformation encoding, but that even strong retractions fail to eliminate continued influence effects associated with relatively weak encoding. We present a simple computational model based on random sampling that captures this effect pattern, and conclude that the continued influence effect seems to defy most attempts to eliminate it.

  12. Neural correlates of the in-group memory advantage on the encoding and recognition of faces.

    Directory of Open Access Journals (Sweden)

    Grit Herzmann

    Full Text Available People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject's own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset, subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms, frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by

  13. Brain activity related to working memory for temporal order and object information.

    Science.gov (United States)

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal

  14. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report.

    Science.gov (United States)

    Poth, Christian H; Schneider, Werner X

    2016-01-01

    Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.

  15. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report

    Directory of Open Access Journals (Sweden)

    Christian H. Poth

    2016-09-01

    Full Text Available Human vision is organized in discrete processing episodes (e.g. eye fixations or task-steps. Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM, which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of ten letters and reported as many as possible after a retention interval (whole report. Next, participants viewed a probe letter and indicated whether it had been one of the ten letters (probe recognition. In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters compared with non-encoded letters (non-reported letters. Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2 participants reported only one of ten letters (partial report and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.

  16. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex

    Science.gov (United States)

    Rizzo, Valerio; Touzani, Khalid; Raveendra, Bindu L.; Swarnkar, Supriya; Lora, Joan; Kadakkuzha, Beena M.; Liu, Xin-An; Zhang, Chao; Betel, Doron; Stackman, Robert W.; Puthanveettil, Sathyanarayanan V.

    2016-01-01

    Background Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. Methods Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. Results We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. Conclusions Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC. PMID:28503670

  17. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis.

    Directory of Open Access Journals (Sweden)

    Shashwath A Meda

    2009-11-01

    Full Text Available Numerous neuroimaging studies report abnormal regional brain activity during working memory performance in schizophrenia, but few have examined brain network integration as determined by "functional connectivity" analyses.We used independent component analysis (ICA to identify and characterize dysfunctional spatiotemporal networks in schizophrenia engaged during the different stages (encoding and recognition of a Sternberg working memory fMRI paradigm. 37 chronic schizophrenia and 54 healthy age/gender-matched participants performed a modified Sternberg Item Recognition fMRI task. Time series images preprocessed with SPM2 were analyzed using ICA. Schizophrenia patients showed relatively less engagement of several distinct "normal" encoding-related working memory networks compared to controls. These encoding networks comprised 1 left posterior parietal-left dorsal/ventrolateral prefrontal cortex, cingulate, basal ganglia, 2 right posterior parietal, right dorsolateral prefrontal cortex and 3 default mode network. In addition, the left fronto-parietal network demonstrated a load-dependent functional response during encoding. Network engagement that differed between groups during recognition comprised the posterior cingulate, cuneus and hippocampus/parahippocampus. As expected, working memory task accuracy differed between groups (p<0.0001 and was associated with degree of network engagement. Functional connectivity within all three encoding-associated functional networks correlated significantly with task accuracy, which further underscores the relevance of abnormal network integration to well-described schizophrenia working memory impairment. No network was significantly associated with task accuracy during the recognition phase.This study extends the results of numerous previous schizophrenia studies that identified isolated dysfunctional brain regions by providing evidence of disrupted schizophrenia functional connectivity using ICA within

  18. Stability Analysis on Sparsely Encoded Associative Memory with Short-Term Synaptic Dynamics

    Science.gov (United States)

    Xu, Muyuan; Katori, Yuichi; Aihara, Kazuyuki

    This study investigates the stability of sparsely encoded associative memory in a network composed of stochastic neurons. The incorporation of short-term synaptic dynamics significantly changes the stability with respect to synaptic properties. Various states including static and oscillatory states are found in the network dynamics. Specifically, the sparseness of memory patterns raises the problem of spurious states. A mean field model is used to analyze the detailed structure in the stability and show that the performance of memory retrieval is recovered by appropriate feedback.

  19. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  20. Memory for emotional words: The role of semantic relatedness, encoding task and affective valence.

    Science.gov (United States)

    Ferré, Pilar; Fraga, Isabel; Comesaña, Montserrat; Sánchez-Casas, Rosa

    2015-01-01

    Emotional stimuli have been repeatedly demonstrated to be better remembered than neutral ones. The aim of the present study was to test whether this advantage in memory is mainly produced by the affective content of the stimuli or it can be rather accounted for by factors such as semantic relatedness or type of encoding task. The valence of the stimuli (positive, negative and neutral words that could be either semantically related or unrelated) as well as the type of encoding task (focused on either familiarity or emotionality) was manipulated. The results revealed an advantage in memory for emotional words (either positive or negative) regardless of semantic relatedness. Importantly, this advantage was modulated by the encoding task, as it was reliable only in the task which focused on emotionality. These findings suggest that congruity with the dimension attended at encoding might contribute to the superiority in memory for emotional words, thus offering us a more complex picture of the underlying mechanisms behind the advantage for emotional information in memory.

  1. Non-interfering effects of active post-encoding tasks on episodic memory consolidation in humans

    NARCIS (Netherlands)

    Varma, S.; Takashima, A.; Krewinkel, S.C.; Kooten, M.E. van; Fu, L.; Medendorp, W.P.; Kessels, R.P.C.; Daselaar, S.M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have only used tasks involving complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant

  2. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    Science.gov (United States)

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  3. The influence of encoding intention on electrophysiological indices of recognition memory.

    Science.gov (United States)

    van Hooff, Johanna Catharina

    2005-04-01

    The main aim of this study was to further specify the encoding and retrieval conditions that determine the success of an ERP-based memory assessment procedure, originally derived from lie detection studies. We examined whether event-related brain potentials (ERPs) recorded during successful and unsuccessful retrieval would vary according to intentional (study) and incidental (repetition) encoding conditions. Participants (N=20) were asked to indicate recognition of previously studied words (learned targets, p=0.2) and words that were used as distractors in a preceding recognition task (repeated targets, p=0.2). Words that were recognised elicited a P3 component, which was largely absent for new words and words that failed to be recognised. Encoding intention was found to increase the P3 amplitude slightly but had no influence on P3 scalp distribution, suggesting that the differently encoded targets were similarly processed during retrieval but to a different extent. The amplitude difference was explained in terms of variance in memory trace strength and decision confidence. With respect to negative findings for repeated items in our earlier study (Van Hooff, J.C., Golden, S. 2002. Validation of an event-related potential memory assessment procedure: Intentional learning as opposed to simple repetition. J. Psychophysiol., 16, 12-22.), it was suggested that the instruction to actively retrieve the repeated words was essential for obtaining reliable indications of the presence or absence of weak memory traces.

  4. Theta and gamma oscillations predict encoding and retrieval of declarative memory

    NARCIS (Netherlands)

    Osipova, D.; Takashima, A.; Oostenveld, R.; Fernandez, G.S.E.; Maris, E.G.G.; Jensen, O.

    2006-01-01

    Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a

  5. Theta and gamma oscillations predict encoding and retrieval of declarative memory.

    NARCIS (Netherlands)

    Osipova, D.; Takashima, A.; Oostenveld, R.; Fernandez, G.S.E.; Maris, E.G.G.; Jensen, O.

    2006-01-01

    Although studies in animals and patients have demonstrated that brain oscillations play a role in declarative memory encoding and retrieval, little has been done to investigate the temporal dynamics and sources of brain activity in healthy human subjects performing such tasks. In a

  6. Modality-specific Alpha Modulations Facilitate Long-term Memory Encoding in the Presence of Distracters

    NARCIS (Netherlands)

    Jiang, H.; Gerven, M.A.J. van; Jensen, O.

    2015-01-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it

  7. Modality-specific Alpha Modulations Facilitate Long-term Memory Encoding in the Presence of Distracters

    NARCIS (Netherlands)

    Jiang, H.; Gerven, M.A.J. van; Jensen, O.

    2014-01-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it

  8. Effects of emotion and reward motivation on neural correlates of episodic memory encoding: a PET study.

    Science.gov (United States)

    Shigemune, Yayoi; Abe, Nobuhito; Suzuki, Maki; Ueno, Aya; Mori, Etsuro; Tashiro, Manabu; Itoh, Masatoshi; Fujii, Toshikatsu

    2010-05-01

    It is known that emotion and reward motivation promote long-term memory formation. It remains unclear, however, how and where emotion and reward are integrated during episodic memory encoding. In the present study, subjects were engaged in intentional encoding of photographs under four different conditions that were made by combining two factors (emotional valence, negative or neutral; and monetary reward value, high or low for subsequent successful recognition) during H2 15O positron emission tomography (PET) scanning. As for recognition performance, we found significant main effects of emotional valence (negative>neutral) and reward value (high value>low value), without an interaction between the two factors. Imaging data showed that the left amygdala was activated during the encoding conditions of negative pictures relative to neutral pictures, and the left orbitofrontal cortex was activated during the encoding conditions of high reward pictures relative to low reward pictures. In addition, conjunction analysis of these two main effects detected right hippocampal activation. Although we could not find correlations between recognition performance and activity of these three regions, we speculate that the right hippocampus may integrate the effects of emotion (processed in the amygdala) and monetary reward (processed in the orbitofrontal cortex) on episodic memory encoding. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. Reconciling change blindness with long-term memory for objects.

    Science.gov (United States)

    Wood, Katherine; Simons, Daniel J

    2017-02-01

    How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.

  10. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Emotion regulation during the encoding of emotional stimuli: Effects on subsequent memory.

    Science.gov (United States)

    Leventon, Jacqueline S; Bauer, Patricia J

    2016-02-01

    In the adult literature, emotional arousal is regarded as a source of the enhancing effect of emotion on subsequent memory. Here, we used behavioral and electrophysiological methods to examine the role of emotional arousal on subsequent memory in school-age children. Furthermore, we implemented a reappraisal instruction to manipulate (down-regulate) emotional arousal at encoding to examine the relation between emotional arousal and subsequent memory. Participants (8-year-old girls) viewed emotional scenes as electrophysiological (EEG) data were recorded and participated in a memory task 1 to 5days later where EEG and behavioral responses were recorded; participants provided subjective ratings of the scenes after the memory task. The reappraisal instruction successfully reduced emotional arousal responses to negative stimuli but not positive stimuli. Similarly, recognition performance in both event-related potentials (ERPs) and behavior was impaired for reappraised negative stimuli but not positive stimuli. The findings indicate that ERPs are sensitive to the reappraisal of negative stimuli in children as young as 8years. Furthermore, the findings suggest an interaction of emotion and memory during the school years, implicating the explanatory role of emotional arousal at encoding on subsequent memory performance in female children as young as 8years. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  13. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    Science.gov (United States)

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  14. Trees or Grids? Indexing Moving Objects in Main Memory

    DEFF Research Database (Denmark)

    Sidlauskas, Darius; Saltenis, Simonas; Christiansen, Christian Winther

    2009-01-01

    New application areas, such as location-based services, rely on the efficient management of large collections of mobile objects. Maintaining accurate, up-to-date positions of these objects results in massive update loads that must be supported by spatial indexing structures and main-memory indexes...... are usually necessary to provide high update performance. Traditionally, the R-tree and its variants were used for indexing spatial data, but most of the recent research assumes that a simple, uniform grid is the best choice for managing moving objects in main memory. We perform an extensive experimental...

  15. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    Science.gov (United States)

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  16. Attention to Attributes and Objects in Working Memory

    Science.gov (United States)

    Cowan, Nelson; Blume, Christopher L.; Saults, J. Scott

    2013-01-01

    It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence…

  17. The spectro-contextual encoding and retrieval theory of episodic memory.

    Science.gov (United States)

    Watrous, Andrew J; Ekstrom, Arne D

    2014-01-01

    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research.

  18. Deeper processing is beneficial during episodic memory encoding for adults with Williams syndrome.

    Science.gov (United States)

    Greer, Joanna; Hamiliton, Colin; Riby, Deborah M; Riby, Leigh M

    2014-07-01

    Previous research exploring declarative memory in Williams syndrome (WS) has revealed impairment in the processing of episodic information accompanied by a relative strength in semantic ability. The aim of the current study was to extend this literature by examining how relatively spared semantic memory may support episodic remembering. Using a level of processing paradigm, older adults with WS (aged 35-61 years) were compared to typical adults of the same chronological age and typically developing children matched for verbal ability. In the study phase, pictures were encoded using either a deep (decide if a picture belongs to a particular category) or shallow (perceptual based processing) memory strategy. Behavioural indices (reaction time and accuracy) at retrieval were suggestive of an overall difficulty in episodic memory for WS adults. Interestingly, however, semantic support was evident with a greater recall of items encoded with deep compared to shallow processing, indicative of an ability to employ semantic encoding strategies to maximise the strength of the memory trace created. Unlike individuals with autism who find semantic elaboration strategies problematic, the pattern of findings reported here suggests in those domains that are relatively impaired in WS, support can be recruited from relatively spared cognitive processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Catechol-O-methyltransferase Val(158)Met association with parahippocampal physiology during memory encoding in schizophrenia.

    Science.gov (United States)

    Di Giorgio, A; Caforio, G; Blasi, G; Taurisano, P; Fazio, L; Romano, R; Ursini, G; Gelao, B; Bianco, L Lo; Papazacharias, A; Sinibaldi, L; Popolizio, T; Bellomo, A; Bertolino, A

    2011-08-01

    Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task. We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients. Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia. © Cambridge University Press 2010

  20. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories.

    Science.gov (United States)

    Straube, Benjamin

    2012-07-24

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies.

  1. Independent effects of colour on object identification and memory.

    Science.gov (United States)

    Lloyd-Jones, Toby J; Nakabayashi, Kazuyo

    2009-02-01

    We examined the effects of colour on object identification and memory using a study-test priming procedure with a coloured-object decision task at test (i.e., deciding whether an object is correctly coloured). Objects were selected to have a single associated colour and were either correctly or incorrectly coloured. In addition, object shape and colour were either spatially integrated (i.e., colour fell on the object surface) or spatially separated (i.e., colour formed the background to the object). Transforming the colour of an object from study to test (e.g., from a yellow banana to a purple banana) reduced priming of response times, as compared to when the object was untransformed. This utilization of colour information in object memory was not contingent upon colour falling on the object surface or whether the resulting configuration was of a correctly or incorrectly coloured object. In addition, we observed independent effects of colour on response times, whereby coloured-object decisions were more efficient for correctly than for incorrectly coloured objects but only when colour fell on the object surface. These findings provide evidence for two distinct mechanisms of shape-colour binding in object processing.

  2. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe.

    Science.gov (United States)

    Bergmann, Heiko C; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2012-11-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10 s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Associative false consumer memory: effects of need for cognition and encoding task.

    Science.gov (United States)

    Parker, Andrew; Dagnall, Neil

    2018-04-01

    Two experiments investigated the effects of product-attribute associations on false consumer memory. In both experiments, subjects were presented with sets of related product attributes under incidental encoding conditions. Later, recognition memory was tested with studied attributes, non-studied but associated attributes (critical lures) and non-studied unrelated attributes. In Experiment 1, the effect of Need for Cognition (NFC) was assessed. It was found that individuals high in NFC recognised more presented attributes and falsely recognised more associative critical lures. The increase in both true and associative false memory was accompanied by a greater number of responses that index the retrieval of detailed episodic-like information. Experiment 2, replicated the main findings through an experimental manipulation of the encoding task that required subjects to consider purchase likelihood. Explanations for these findings are considered from the perspective of activation processes and knowledge structures in the form of gist-based representations.

  4. Narrative organisation at encoding facilitated children's long-term episodic memory.

    Science.gov (United States)

    Wang, Qi; Bui, Van-Kim; Song, Qingfang

    2015-01-01

    This study examined the effect of narrative organisation at encoding on long-term episodic memory in a sample of five- to seven-year-old children (N = 113). At an initial interview, children were asked to narrate a story from a picture book. Six months later, they were interviewed again and asked to recall the story and answer a series of direct questions about the story. Children who initially encoded more information in narrative and produced more complete, complex, cohesive and coherent narratives remembered the story in greater detail and accuracy following the six-month interval, independent of age and verbal skills. The relation between narrative organisation and memory was consistent across culture and gender. These findings provide new insight into the critical role of narrative in episodic memory.

  5. Evidence of gradual loss of precision for simple features and complex objects in visual working memory.

    Science.gov (United States)

    Rademaker, Rosanne L; Park, Young Eun; Sack, Alexander T; Tong, Frank

    2018-03-01

    Previous studies have suggested that people can maintain prioritized items in visual working memory for many seconds, with negligible loss of information over time. Such findings imply that working memory representations are robust to the potential contaminating effects of internal noise. However, once visual information is encoded into working memory, one might expect it to inevitably begin degrading over time, as this actively maintained information is no longer tethered to the original perceptual input. Here, we examined this issue by evaluating working memory for single central presentations of an oriented grating, color patch, or face stimulus, across a range of delay periods (1, 3, 6, or 12 s). We applied a mixture-model analysis to distinguish changes in memory precision over time from changes in the frequency of outlier responses that resemble random guesses. For all 3 types of stimuli, participants exhibited a clear and consistent decline in the precision of working memory as a function of temporal delay, as well as a modest increase in guessing-related responses for colored patches and face stimuli. We observed a similar loss of precision over time while controlling for temporal distinctiveness. Our results demonstrate that visual working memory is far from lossless: while basic visual features and complex objects can be maintained in a quite stable manner over time, these representations are still subject to noise accumulation and complete termination. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Do you remember where sounds, pictures and words came from? The role of the stimulus format in object location memory.

    Science.gov (United States)

    Delogu, Franco; Lilla, Christopher C

    2017-11-01

    Contrasting results in visual and auditory spatial memory stimulate the debate over the role of sensory modality and attention in identity-to-location binding. We investigated the role of sensory modality in the incidental/deliberate encoding of the location of a sequence of items. In 4 separated blocks, 88 participants memorised sequences of environmental sounds, spoken words, pictures and written words, respectively. After memorisation, participants were asked to recognise old from new items in a new sequence of stimuli. They were also asked to indicate from which side of the screen (visual stimuli) or headphone channel (sounds) the old stimuli were presented in encoding. In the first block, participants were not aware of the spatial requirement while, in blocks 2, 3 and 4 they knew that their memory for item location was going to be tested. Results show significantly lower accuracy of object location memory for the auditory stimuli (environmental sounds and spoken words) than for images (pictures and written words). Awareness of spatial requirement did not influence localisation accuracy. We conclude that: (a) object location memory is more effective for visual objects; (b) object location is implicitly associated with item identity during encoding and (c) visual supremacy in spatial memory does not depend on the automaticity of object location binding.

  7. Modeling recall memory for emotional objects in Alzheimer's disease.

    Science.gov (United States)

    Sundstrøm, Martin

    2011-07-01

    To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.

  8. Infants use temporal regularities to chunk objects in memory.

    Science.gov (United States)

    Kibbe, Melissa M; Feigenson, Lisa

    2016-01-01

    Infants, like adults, can maintain only a few items in working memory, but can overcome this limit by creating more efficient representations, or "chunks." Previous research shows that infants can form chunks using shared features or spatial proximity between objects. Here we asked whether infants also can create chunked representations using regularities that unfold over time. Thirteen-month old infants first were familiarized with four objects of different shapes and colors, presented in successive pairs. For some infants, the identities of objects in each pair varied randomly across familiarization (Experiment 1). For others, the objects within a pair always co-occurred, either in consistent relative spatial positions (Experiment 2a) or varying spatial positions (Experiment 2b). Following familiarization, infants saw all four objects hidden behind a screen and then saw the screen lifted to reveal either four objects or only three. Infants in Experiment 1, who had been familiarized with random object pairings, failed to look longer at the unexpected 3-object outcome; they showed the same inability to concurrently represent four objects as in other studies of infant working memory. In contrast, infants in Experiments 2a and 2b, who had been familiarized with regularly co-occurring pairs, looked longer at the unexpected outcome. These infants apparently used the co-occurrence between individual objects during familiarization to form chunked representations that were later deployed to track the objects as they were hidden at test. In Experiment 3, we confirmed that the familiarization affected infants' ability to remember the occluded objects rather than merely establishing longer-term memory for object pairs. Following familiarization to consistent pairs, infants who were not shown a hiding event (but merely saw the same test outcomes as in Experiments 2a and b) showed no preference for arrays of three versus four objects. Finally, in Experiments 4 and 5, we asked

  9. Memory structures for encoding and retrieving a piece of music: an ERP investigation.

    Science.gov (United States)

    Williamon, Aaron; Egner, Tobias

    2004-12-01

    This study examined behavioral and neural correlates of expert musical memory, specifically the hypothesis that particular bars within a complex piece of music would serve as structural markers for encoding to and retrieval from memory. Six pianists were asked to learn and memorize a set prelude by J.S. Bach for performance, and to identify bars that they employed for structuring the prelude into component sections. Following performance from memory, the participants took part in a visual recognition memory task, in which single bars from the prelude had to be distinguished from matched new bars. During the recognition task, the electroencephalogram (EEG) was recorded, and event-related potentials (ERPs) from correctly identified prelude stimulus trials were averaged according to their hypothesized status into "structural" and "nonstructural" bars. The results showed that correct identification of structural bars was significantly faster (and tended to display higher accuracy) than recognition of non-structural ones. In addition, recognition of structural bars was associated with a significantly greater negative ERP peak of 300-400 ms latency and a right centro-parietal scalp distribution. This mid-latency negativity appears to index processing of stimuli that served as cues for encoding and retrieval of a complex semantic structure, and is qualitatively and conceptually different from other previously identified recognition memory ERPs (such as the "old/new" effect), as well as from the classic N400 ERP. The data support existing theories of expert memory and music cognition.

  10. Attention to memory: orienting attention to sound object representations.

    Science.gov (United States)

    Backer, Kristina C; Alain, Claude

    2014-01-01

    Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

  11. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding

    Directory of Open Access Journals (Sweden)

    Rachel K Nauer

    2015-03-01

    Full Text Available Previous neuroimaging studies support a role for the medial temporal lobes (MTL in maintaining novel stimuli over brief working memory (WM delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex (EC, perirhinal cortex (PrC, and hippocampus (CA1, CA3, subiculum. These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period—a putative correlate of persistent spiking—would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC, PrC, and subiculum (extending into DG/CA3 and CA1 was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.

  12. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    Science.gov (United States)

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  13. Brain systems underlying attentional control and emotional distraction during working memory encoding.

    Science.gov (United States)

    Ziaei, Maryam; Peira, Nathalie; Persson, Jonas

    2014-02-15

    Goal-directed behavior requires that cognitive operations can be protected from emotional distraction induced by task-irrelevant emotional stimuli. The brain processes involved in attending to relevant information while filtering out irrelevant information are still largely unknown. To investigate the neural and behavioral underpinnings of attending to task-relevant emotional stimuli while ignoring irrelevant stimuli, we used fMRI to assess brain responses during attentional instructed encoding within an emotional working memory (WM) paradigm. We showed that instructed attention to emotion during WM encoding resulted in enhanced performance, by means of increased memory performance and reduced reaction time, compared to passive viewing. A similar performance benefit was also demonstrated for recognition memory performance, although for positive pictures only. Functional MRI data revealed a network of regions involved in directed attention to emotional information for both positive and negative pictures that included medial and lateral prefrontal cortices, fusiform gyrus, insula, the parahippocampal gyrus, and the amygdala. Moreover, we demonstrate that regions in the striatum, and regions associated with the default-mode network were differentially activated for emotional distraction compared to neutral distraction. Activation in a sub-set of these regions was related to individual differences in WM and recognition memory performance, thus likely contributing to performing the task at an optimal level. The present results provide initial insights into the behavioral and neural consequences of instructed attention and emotional distraction during WM encoding. © 2013.

  14. Pupil size reflects successful encoding and recall of memory in humans.

    Science.gov (United States)

    Kucewicz, Michal T; Dolezal, Jaromir; Kremen, Vaclav; Berry, Brent M; Miller, Laura R; Magee, Abigail L; Fabian, Vratislav; Worrell, Gregory A

    2018-03-21

    Pupil responses are known to indicate brain processes involved in perception, attention and decision-making. They can provide an accessible biomarker of human memory performance and cognitive states in general. Here we investigated changes in the pupil size during encoding and recall of word lists. Consistent patterns in the pupil response were found across and within distinct phases of the free recall task. The pupil was most constricted in the initial fixation phase and was gradually more dilated through the subsequent encoding, distractor and recall phases of the task, as the word items were maintained in memory. Within the final recall phase, retrieving memory for individual words was associated with pupil dilation in absence of visual stimulation. Words that were successfully recalled showed significant differences in pupil response during their encoding compared to those that were forgotten - the pupil was more constricted before and more dilated after the onset of word presentation. Our results suggest pupil size as a potential biomarker for probing and modulation of memory processing.

  15. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety

    Directory of Open Access Journals (Sweden)

    Christopher Lee

    2017-12-01

    Full Text Available We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects using a deep or shallow encoding instruction (between-subjects. Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1, participants re-entered the mode of processing (negative or neutral engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.

  16. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety.

    Science.gov (United States)

    Lee, Christopher; Fernandes, Myra A

    2017-12-27

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto the negative and the neutral contexts. Following this, in Test 2, participants completed a recognition test for the foils from each Test 1 block. We found a significant three-way interaction on Test 2, such that individuals with high anxiety who initially studied target words using a shallow encoding instruction, demonstrated significantly elevated memory for foils that were contained within the negative Test 1 block. Results show that during retrieval (Test 1), participants re-entered the mode of processing (negative or neutral) engaged at encoding, tainting the encoding of foils with that same mode of processing. The findings suggest that individuals with high relative to low anxiety, adopt a particularly salient negative retrieval mode, and this creates a downstream bias in encoding and subsequent retrieval of otherwise neutral information.

  17. Grapheme-color synesthesia can enhance immediate memory without disrupting the encoding of relational cues.

    Science.gov (United States)

    Gibson, Bradley S; Radvansky, Gabriel A; Johnson, Ann C; McNerney, M Windy

    2012-12-01

    Previous evidence has suggested that grapheme-color synesthesia can enhance memory for words, but little is known about how these photisms cue retrieval. Often, the encoding of specific features of individual words can disrupt the encoding of ordered relations between words, resulting in an overall decrease in recall accuracy. Here we show that the photisms arising from grapheme-color synesthesia do not function like these item-specific cues. The influences of high and low word frequency on the encoding of ordered relations and the accuracy of immediate free recall were compared across a group of 10 synesthetes and 48 nonsynesthetes. The main findings of Experiment 1 showed that the experience of synesthesia had no adverse effect on the encoding of ordered relations (as measured by input-output correspondence); furthermore, it enhanced recall accuracy in a strictly additive fashion across the two word frequency conditions. Experiment 2 corroborated these findings by showing that the synesthetes only outperformed the nonsynesthetes when the materials involved words and letters, not when they involved digits and spatial locations. Altogether, the present findings suggest that synesthesia can boost immediate memory performance without disrupting the encoding of ordered relations.

  18. Automatic semantic encoding in verbal short-term memory: evidence from the concreteness effect.

    Science.gov (United States)

    Campoy, Guillermo; Castellà, Judit; Provencio, Violeta; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    The concreteness effect in verbal short-term memory (STM) tasks is assumed to be a consequence of semantic encoding in STM, with immediate recall of concrete words benefiting from richer semantic representations. We used the concreteness effect to test the hypothesis that semantic encoding in standard verbal STM tasks is a consequence of controlled, attention-demanding mechanisms of strategic semantic retrieval and encoding. Experiment 1 analysed the effect of presentation rate, with slow presentations being assumed to benefit strategic, time-dependent semantic encoding. Experiments 2 and 3 provided a more direct test of the strategic hypothesis by introducing three different concurrent attention-demanding tasks. Although Experiment 1 showed a larger concreteness effect with slow presentations, the following two experiments yielded strong evidence against the strategic hypothesis. Limiting available attention resources by concurrent tasks reduced global memory performance, but the concreteness effect was equivalent to that found in control conditions. We conclude that semantic effects in STM result from automatic semantic encoding and provide tentative explanations for the interaction between the concreteness effect and the presentation rate.

  19. The location but not the attributes of visual cues are automatically encoded into working memory.

    Science.gov (United States)

    Chen, Hui; Wyble, Brad

    2015-02-01

    Although it has been well known that visual cues affect the perception of subsequent visual stimuli, relatively little is known about how the cues themselves are processed. The present study attempted to characterize the processing of a visual cue by investigating what information about the cue is stored in terms of both location ("where" is the cue) and attributes ("what" are the attributes of the cue). In 11 experiments subjects performed several trials of reporting a target letter and then answered an unexpected question about the cue (e.g., the location, color, or identity of the cue). This surprise question revealed that participants could report the location of the cue even when the cue never indicated the target location and they were explicitly told to ignore it. Furthermore, the memory trace of this location information endured during encoding of the subsequent target. In contrast to location, attributes of the cue (e.g., color) were poorly reported, even for attributes that were used by subjects to perform the task. These results shed new light on the mechanisms underlying cueing effects and suggest also that the visual system may create empty object files in response to visual cues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enriched environment effects on remote object recognition memory.

    Science.gov (United States)

    Melani, Riccardo; Chelini, Gabriele; Cenni, Maria Cristina; Berardi, Nicoletta

    2017-06-03

    Since Ebbinghaus' classical work on oblivion and saving effects, we know that declarative memories may become at first spontaneously irretrievable and only subsequently completely extinguished. Recently, this time-dependent path toward memory-trace loss has been shown to correlate with different patterns of brain activation. Environmental enrichment (EE) enhances learning and memory and affects system memory consolidation. However, there is no evidence on whether and how EE could affect the time-dependent path toward oblivion. We used Object Recognition Test (ORT) to assess in adult mice put in EE for 40days (EE mice) or left in standard condition (SC mice) memory retrieval of the familiar objects 9 and 21days after learning with or without a brief retraining performed the day before. We found that SC mice show preferential exploration of new object at day 9 only with retraining, while EE mice do it even without. At day 21 SC mice do not show preferential exploration of novel object, irrespective of the retraining, while EE mice are still capable to benefit from retraining, even if they were not able to spontaneously recover the trace. Analysis of c-fos expression 20days after learning shows a different pattern of active brain areas in response to the retraining session in EE and SC mice, with SC mice recruiting the same brain network as naïve SC or EE mice following de novo learning. This suggests that EE promotes formation of longer lasting object recognition memory, allowing a longer time window during which saving is present. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. A configural effect in visual short-term memory for features from different parts of an object.

    Science.gov (United States)

    Delvenne, Jean-François; Bruyer, Raymond

    2006-09-01

    Previous studies have shown that change detection performance is improved when the visual display holds features (e.g., a colour and an orientation) that are grouped into different parts of the same object compared to when they are all spatially separated (Xu, 2002a, 2002b). These findings indicate that visual short-term memory (VSTM) encoding can be "object based". Recently, however, it has been demonstrated that changing the orientation of an item could affect the spatial configuration of the display (Jiang, Chun, & Olson, 2004), which may have an important influence on change detection. The perceptual grouping of features into an object obviously reduces the amount of distinct spatial relations in a display and hence the complexity of the spatial configuration. In the present study, we ask whether the object-based encoding benefit observed in previous studies may reflect the use of configural coding rather than the outcome of a true object-based effect. The results show that when configural cues are removed, the object-based encoding benefit remains for features (i.e., colour and orientation) from different parts of an object, but is significantly reduced. These findings support the view that memory for features from different parts of an object can benefit from object-based encoding, but the use of configural coding significantly helps enlarge this effect.

  2. Persistent spatial information in the frontal eye field during object-based short-term memory.

    Science.gov (United States)

    Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin

    2012-08-08

    Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.

  3. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    Science.gov (United States)

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Obligatory encoding of task-irrelevant features depletes working memory resources

    OpenAIRE

    Marshall, Louise; Bays, Paul M.

    2013-01-01

    Selective attention is often considered the “gateway” to visual working memory (VWM). However, the extent to which we can voluntarily control which of an object's features enter memory remains subject to debate. Recent research has converged on the concept of VWM as a limited commodity distributed between elements of a visual scene. Consequently, as memory load increases, the fidelity with which each visual feature is stored decreases. Here we used changes in recall precision to probe whether...

  5. The path to memory is guided by strategy: distinct networks are engaged in associative encoding under visual and verbal strategy and influence memory performance in healthy and impaired individuals

    Science.gov (United States)

    Hales, J. B.; Brewer, J. B.

    2018-01-01

    Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467

  6. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies.

    Science.gov (United States)

    Johnsen, Grethe E; Asbjørnsen, Arve E

    2009-01-30

    The present study examined mechanisms underlying verbal memory impairments in patients with posttraumatic stress disorder (PTSD). Earlier studies have reported that the verbal learning and memory alterations in PTSD are related to impaired encoding, but the use of encoding and organizational strategies in patients with PTSD has not been fully explored. This study examined organizational strategies in 21 refugees/immigrants exposed to war and political violence who fulfilled DSM-IV criteria for chronic PTSD compared with a control sample of 21 refugees/immigrants with similar exposure, but without PTSD. The California Verbal Learning Test was administered to examine differences in organizational strategies and memory. The semantic clustering score was slightly reduced in both groups, but the serial cluster score was significantly impaired in the PTSD group and they also reported more items from the recency region of the list. In addition, intrusive errors were significantly increased in the PTSD group. The data support an assumption of changed memory strategies in patients with PTSD associated with a specific impairment in executive control. However, memory impairment and the use of ineffective learning strategies may not be related to PTSD symptomatology only, but also to self-reported symptoms of depression and general distress.

  7. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  8. The OKS persistent in-memory object manager

    International Nuclear Information System (INIS)

    Jones, R.; Mapelli, L.; Soloviev, I.

    1998-01-01

    The OKS (Object Kernel Support) is a library to support a simple, active persistent in-memory object manager. It is suitable for applications which need to create persistent structured information with fast access but do not require full database functionality. It can be used as the frame of configuration databases and real-time object managers for Data Acquisition and Detector Control Systems in such fields as setup, diagnostics and general configuration description. OKS is based on an object model that supports objects, classes, associations, methods, inheritance, polymorphism, object identifiers, composite objects, integrity constraints, schema evolution, data migration and active notification. OKS stores the class definitions and their instances in portable ASCII files. It provides query facilities, including indices support. The OKS has a C++ API (Application Program Interface) and includes Motif based GUI applications to design class schema and to manipulate objects. OKS has been developed on top of the Rogue Wave Tools h++ C++ class library

  9. RTDB: A memory resident real-time object database

    International Nuclear Information System (INIS)

    Nogiec, Jerzy M.; Desavouret, Eugene

    2003-01-01

    RTDB is a fast, memory-resident object database with built-in support for distribution. It constitutes an attractive alternative for architecting real-time solutions with multiple, possibly distributed, processes or agents sharing data. RTDB offers both direct and navigational access to stored objects, with local and remote random access by object identifiers, and immediate direct access via object indices. The database supports transparent access to objects stored in multiple collaborating dispersed databases and includes a built-in cache mechanism that allows for keeping local copies of remote objects, with specifiable invalidation deadlines. Additional features of RTDB include a trigger mechanism on objects that allows for issuing events or activating handlers when objects are accessed or modified and a very fast, attribute based search/query mechanism. The overall architecture and application of RTDB in a control and monitoring system is presented

  10. Phase recovering algorithms for extended objects encoded in digitally recorded holograms

    Directory of Open Access Journals (Sweden)

    Peng Z.

    2010-06-01

    Full Text Available The paper presents algorithms to recover the optical phase of digitally encoded holograms. Algorithms are based on the use of a numerical spherical reconstructing wave. Proof of the validity of the concept is performed through an experimental off axis digital holographic set-up. Two-color digital holographic reconstruction is also investigated. Application of the color set-up and algorithms concerns the simultaneous two-dimensional deformation measurement of an object submitted to a mechanical loading.

  11. The proximate memory mechanism underlying the survival-processing effect: richness of encoding or interactive imagery?

    Science.gov (United States)

    Kroneisen, Meike; Erdfelder, Edgar; Buchner, Axel

    2013-01-01

    Nairne and collaborators showed that assessing the relevance of words in the context of an imagined survival scenario boosts memory for these words. Although this survival-processing advantage has attracted a considerable amount of research, little is known about the proximate memory mechanism mediating this effect. Recently, Kroneisen and Erdfelder (2011) argued that it is not survival processing itself that facilitates recall but rather the richness and distinctiveness of encoding that is triggered by the survival-processing task. Alternatively, however, it is also conceivable that survival processing fosters interactive imagery, a process known to improve associative learning. To test these explanations we compared relevance-rating and interactive imagery tasks for survival and control scenarios. Results show that the survival advantage replicates in the relevance-rating condition but vanishes in the interactive imagery condition. This refutes the interactive imagery explanation and corroborates the richness-of-encoding hypothesis of the survival-processing effect.

  12. Individual differences in rate of encoding predict estimates of visual short-term memory capacity (K).

    Science.gov (United States)

    Jannati, Ali; McDonald, John J; Di Lollo, Vincent

    2015-06-01

    The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).

  13. Implementation-intention encoding in a prospective memory task enhances spontaneous retrieval of intentions.

    Science.gov (United States)

    Rummel, Jan; Einstein, Gilles O; Rampey, Hilary

    2012-01-01

    Although forming implementation intentions (Gollwitzer, 1999) has been demonstrated to generally improve prospective memory, the underlying cognitive mechanisms are not completely understood. It has been proposed that implementation-intention encoding encourages spontaneous retrieval (McDaniel & Scullin, 2010). Alternatively one could assume the positive effect of implementation-intention encoding is caused by increased or more efficient monitoring for target cues. To test these alternative explanations and to further investigate the cognitive mechanisms underlying implementation-intention benefits, in two experiments participants formed the intention to respond to specific target cues in a lexical decision task with a special key, but then had to suspend this intention during an intervening word-categorisation task. Response times on trials directly following the occurrence of target cues in the intervening task were significantly slower with implementation-intention encoding than with standard encoding, indicating that spontaneous retrieval was increased (Experiment 1). However, when activation of the target cues was controlled for, similar slowing was found with both standard and implementation-intention encoding (Experiment 2). The results imply that implementation-intention encoding as well as increased target-cue activation foster spontaneous retrieval processes.

  14. Encoding negative events under stress: high subjective arousal is related to accurate emotional memory despite misinformation exposure.

    Science.gov (United States)

    Hoscheidt, Siobhan M; LaBar, Kevin S; Ryan, Lee; Jacobs, W Jake; Nadel, Lynn

    2014-07-01

    Stress at encoding affects memory processes, typically enhancing, or preserving, memory for emotional information. These effects have interesting implications for eyewitness accounts, which in real-world contexts typically involve encoding an aversive event under stressful conditions followed by potential exposure to misinformation. The present study investigated memory for a negative event encoded under stress and subsequent misinformation endorsement. Healthy young adults participated in a between-groups design with three experimental sessions conducted 48 h apart. Session one consisted of a psychosocial stress induction (or control task) followed by incidental encoding of a negative slideshow. During session two, participants were asked questions about the slideshow, during which a random subgroup was exposed to misinformation. Memory for the slideshow was tested during the third session. Assessment of memory accuracy across stress and no-stress groups revealed that stress induced just prior to encoding led to significantly better memory for the slideshow overall. The classic misinformation effect was also observed - participants exposed to misinformation were significantly more likely to endorse false information during memory testing. In the stress group, however, memory accuracy and misinformation effects were moderated by arousal experienced during encoding of the negative event. Misinformed-stress group participants who reported that the negative slideshow elicited high arousal during encoding were less likely to endorse misinformation for the most aversive phase of the story. Furthermore, these individuals showed better memory for components of the aversive slideshow phase that had been directly misinformed. Results from the current study provide evidence that stress and high subjective arousal elicited by a negative event act concomitantly during encoding to enhance emotional memory such that the most aversive aspects of the event are well remembered and

  15. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  16. Emotional Encoding Context Leads to Memory Bias in Individuals with High Anxiety

    OpenAIRE

    Lee, Christopher; Fernandes, Myra A.

    2017-01-01

    We investigated whether anxious individuals, who adopt an inherently negative mindset, demonstrate a particularly salient memory bias for words tainted by negative contexts. To this end, sequentially presented target words, overlayed onto negative or neutral pictures, were studied in separate blocks (within-subjects) using a deep or shallow encoding instruction (between-subjects). Following study, in Test 1, participants completed separate recognition test blocks for the words overlayed onto ...

  17. Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory.

    Science.gov (United States)

    Lee, Hongmi; Chun, Marvin M; Kuhl, Brice A

    2017-04-01

    Mean fMRI activation in ventral posterior parietal cortex (vPPC) during memory encoding often negatively predicts successful remembering. A popular interpretation of this phenomenon is that vPPC reflects "off-task" processing. However, recent fMRI studies considering distributed patterns of activity suggest that vPPC actively represents encoded material. Here, we assessed the relationships between pattern-based content representations in vPPC, mean activation in vPPC, and subsequent remembering. We analyzed data from two fMRI experiments where subjects studied then recalled word-face or word-scene associations. For each encoding trial, we measured 1) mean univariate activation within vPPC and 2) the strength of face/scene information as indexed by pattern analysis. Mean activation in vPPC negatively predicted subsequent remembering, but the strength of pattern-based information in the same vPPC voxels positively predicted later memory. Indeed, univariate amplitude averaged across vPPC voxels negatively correlated with pattern-based information strength. This dissociation reflected a tendency for univariate reductions to maximally occur in voxels that were not strongly tuned for the category of encoded stimuli. These results indicate that vPPC activity patterns reflect the content and quality of memory encoding and constitute a striking example of lower univariate activity corresponding to stronger pattern-based information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Visual object imagery and autobiographical memory: Object Imagers are better at remembering their personal past.

    Science.gov (United States)

    Vannucci, Manila; Pelagatti, Claudia; Chiorri, Carlo; Mazzoni, Giuliana

    2016-01-01

    In the present study we examined whether higher levels of object imagery, a stable characteristic that reflects the ability and preference in generating pictorial mental images of objects, facilitate involuntary and voluntary retrieval of autobiographical memories (ABMs). Individuals with high (High-OI) and low (Low-OI) levels of object imagery were asked to perform an involuntary and a voluntary ABM task in the laboratory. Results showed that High-OI participants generated more involuntary and voluntary ABMs than Low-OI, with faster retrieval times. High-OI also reported more detailed memories compared to Low-OI and retrieved memories as visual images. Theoretical implications of these findings for research on voluntary and involuntary ABMs are discussed.

  19. Remembering with Gains and Losses: Effects of Monetary Reward and Punishment on Successful Encoding Activation of Source Memories

    Science.gov (United States)

    Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta

    2014-01-01

    The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment. PMID:23314939

  20. Remembering with gains and losses: effects of monetary reward and punishment on successful encoding activation of source memories.

    Science.gov (United States)

    Shigemune, Yayoi; Tsukiura, Takashi; Kambara, Toshimune; Kawashima, Ryuta

    2014-05-01

    The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.

  1. Reduced prefrontal activation in pediatric patients with obsessive-compulsive disorder during verbal episodic memory encoding.

    Science.gov (United States)

    Batistuzzo, Marcelo Camargo; Balardin, Joana Bisol; Martin, Maria da Graça Morais; Hoexter, Marcelo Queiroz; Bernardes, Elisa Teixeira; Borcato, Sonia; Souza, Marina de Marco E; Querido, Cicero Nardini; Morais, Rosa Magaly; de Alvarenga, Pedro Gomes; Lopes, Antonio Carlos; Shavitt, Roseli Gedanke; Savage, Cary R; Amaro, Edson; Miguel, Euripedes C; Polanczyk, Guilherme V; Miotto, Eliane C

    2015-10-01

    Patients with obsessive-compulsive disorder (OCD) often present with deficits in episodic memory, and there is evidence that these difficulties may be secondary to executive dysfunction, that is, impaired selection and/or application of memory-encoding strategies (mediation hypothesis). Semantic clustering is an effective strategy to enhance encoding of verbal episodic memory (VEM) when word lists are semantically related. Self-initiated mobilization of this strategy has been associated with increased activity in the prefrontal cortex, particularly the orbitofrontal cortex, a key region in the pathophysiology of OCD. We therefore studied children and adolescents with OCD during uncued semantic clustering strategy application in a VEM functional magnetic resonance imaging (fMRI)-encoding paradigm. A total of 25 pediatric patients with OCD (aged 8.1-17.5 years) and 25 healthy controls (HC, aged 8.1-16.9) matched for age, gender, handedness, and IQ were evaluated using a block design VEM paradigm that manipulated semantically related and unrelated words. The semantic clustering strategy score (SCS) predicted VEM performance in HC (p semantic clustering in OCD. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. When do objects become landmarks? A VR study of the effect of task relevance on spatial memory.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants' attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects' locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral "object processing stream", but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory.

  3. An encoder for the measurement of relative motions between two objects

    International Nuclear Information System (INIS)

    Saro, M.

    1995-01-01

    The motion encoder is composed of a measuring rule, mounted on one of the object, which bears at least two tracks (X, Y) with multiple simple marks distributed following a similar pattern on the two tracks, and at least one specific mark (each mark limit is defining a step variation on the rule), and at least two mark readers, mounted on the second object, each one associated to a track. Data processing means are used to estimate distance and motion direction. Application to robotics and metrology

  4. Preferential recruitment of the basolateral amygdala during memory encoding of negative scenes in posttraumatic stress disorder.

    Science.gov (United States)

    Patel, Ronak; Girard, Todd A; Pukay-Martin, Nicole; Monson, Candice

    2016-04-01

    The vast majority of functional neuroimaging studies in posttraumatic stress disorder (PTSD) have examined the amygdala as a unitary structure. However, an emerging body of studies indicates that separable functions are subserved by discrete amygdala subregions. The basolateral subdivision (BLA), as compared with the centromedial amygdala (CMA), plays a unique role in learning and memory-based processes for threatening events, and alterations to the BLA have been implicated in the pathogenesis of PTSD. We assessed whether PTSD is associated with differential involvement of the BLA versus the CMA during successful encoding of emotionally charged events. Participants with PTSD (n=11) and a trauma-exposed comparison (TEC) group (n=11) viewed a series of photos that varied in valence (negative versus positive) and arousal (high versus low) while undergoing functional magnetic resonance imaging (fMRI). Subsequently, participants completed an old/new recognition memory test. Using analytic methods based on probabilistic cytoarchitectonic mapping, PTSD was associated with greater activation of the BLA, as compared to the CMA, during successful encoding of negative scenes, a finding which was not observed in the TEC group. Moreover, this memory-related activity in the BLA independently predicted PTSD status. Contrary to hypotheses, there was no evidence of altered BLA activity during memory encoding of high arousing relative to low arousing scenes. Task-related brain activation in PTSD does not appear to be consistent across the entire amygdala. Importantly, memory-related processing of negative information in PTSD is associated with preferential recruitment of the BLA. Copyright © 2016. Published by Elsevier Inc.

  5. Cross-cultural variation of memory colors of familiar objects.

    Science.gov (United States)

    Smet, Kevin A G; Lin, Yandan; Nagy, Balázs V; Németh, Zoltan; Duque-Chica, Gloria L; Quintero, Jesús M; Chen, Hung-Shing; Luo, Ronnier M; Safi, Mahdi; Hanselaer, Peter

    2014-12-29

    The effect of cross-regional or cross-cultural differences on color appearance ratings and memory colors of familiar objects was investigated in seven different countries/regions - Belgium, Hungary, Brazil, Colombia, Taiwan, China and Iran. In each region the familiar objects were presented on a calibrated monitor in over 100 different colors to a test panel of observers that were asked to rate the similarity of the presented object color with respect to what they thought the object looks like in reality (memory color). For each object and region the mean observer ratings were modeled by a bivariate Gaussian function. A statistical analysis showed significant (p culture was found to be small. In fact, the differences between the region average observers and the global average observer were found to of the same magnitude or smaller than the typical within region inter-observer variability. Thus, although statistical differences in color appearance ratings and memory between regions were found, regional impact is not likely to be of practical importance.

  6. Visual encoding impairment in patients with schizophrenia: contribution of reduced working memory span, decreased processing speed, and affective symptoms.

    Science.gov (United States)

    Brébion, Gildas; Stephan-Otto, Christian; Huerta-Ramos, Elena; Ochoa, Susana; Usall, Judith; Abellán-Vega, Helena; Roca, Mercedes; Haro, Josep Maria

    2015-01-01

    Previous research has revealed the contribution of decreased processing speed and reduced working memory span in verbal and visual memory impairment in patients with schizophrenia. The role of affective symptoms in verbal memory has also emerged in a few studies. The authors designed a picture recognition task to investigate the impact of these factors on visual encoding. Two types of pictures (black and white vs. colored) were presented under 2 different conditions of context encoding (either displayed at a specific location or in association with another visual stimulus). It was assumed that the process of encoding associated pictures was more effortful than that of encoding pictures that were presented alone. Working memory span and processing speed were assessed. In the patient group, working memory span was significantly associated with the recognition of the associated pictures but not significantly with that of the other pictures. Controlling for processing speed eliminated the patients' deficit in the recognition of the colored pictures and greatly reduced their deficit in the recognition of the black-and-white pictures. The recognition of the black-and-white pictures was inversely related to anxiety in men and to depression in women. Working memory span constrains the effortful visual encoding processes in patients, whereas processing speed decrement accounts for most of their visual encoding deficit. Affective symptoms also have an impact on visual encoding, albeit differently in men and women. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  7. Sensorimotor memory of object weight distribution during multidigit grasp.

    Science.gov (United States)

    Albert, Frederic; Santello, Marco; Gordon, Andrew M

    2009-10-09

    We studied the ability to transfer three-digit force sharing patterns learned through consecutive lifts of an object with an asymmetric center of mass (CM). After several object lifts, we asked subjects to rotate and translate the object to the contralateral hand and perform one additional lift. This task was performed under two weight conditions (550 and 950 g) to determine the extent to which subjects would be able to transfer weight and CM information. Learning transfer was quantified by measuring the extent to which force sharing patterns and peak object roll on the first post-translation trial resembled those measured on the pre-translation trial with the same CM. We found that the overall gain of fingertip forces was transferred following object rotation, but that the scaling of individual digit forces was specific to the learned digit-object configuration, and thus was not transferred following rotation. As a result, on the first post-translation trial there was a significantly larger object roll following object lift-off than on the pre-translation trial. This suggests that sensorimotor memories for weight, requiring scaling of fingertip force gain, may differ from memories for mass distribution.

  8. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    Science.gov (United States)

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-03-15

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex.

  9. An unforgettable apple: memory and attention for forbidden objects.

    Science.gov (United States)

    Truong, Grace; Turk, David J; Handy, Todd C

    2013-12-01

    Are we humans drawn to the forbidden? From jumbo-sized soft drinks to illicit substances, the influence of prohibited ownership on subsequent demand has made this question a pressing one. We know that objects that we ourselves own have a heightened psychological saliency, relative to comparable objects that are owned by others, but do these kinds of effects extend from self-owned to "forbidden" objects? To address this question, we developed a modified version of the Turk shopping paradigm in which "purchased" items were assigned to various recipients. Participants sorted everyday objects labeled as "self-owned", "other-owned," and either "forbidden to oneself" (Experiment 1) or "forbidden to everyone" (Experiment 2). Subsequent surprise recognition memory tests revealed that forbidden objects with high (Experiment 1) but not with low (Experiment 2) self-relevance were recognized as well as were self-owned objects, and better than other-owned objects. In a third and final experiment, we used event-related potentials (ERPs) to determine whether self-owned and self-forbidden objects, which showed a common memory advantage, are in fact treated the same at a neurocognitive-affective level. We found that both object types were associated with enhanced cognitive analysis, relative to other-owned objects, as measured by the P300 ERP component. However, we also found that self-forbidden objects uniquely triggered an enhanced response preceding the P300, in an ERP component (the N2) that is sensitive to more rapid, affect-related processing. Our findings thus suggest that, whereas self-forbidden objects share a common cognitive signature with self-owned objects, they are unique in being identified more quickly at a neurocognitive level.

  10. Parietal and early visual cortices encode working memory content across mental transformations.

    Science.gov (United States)

    Christophel, Thomas B; Cichy, Radoslaw M; Hebart, Martin N; Haynes, John-Dylan

    2015-02-01

    Active and flexible manipulations of memory contents "in the mind's eye" are believed to occur in a dedicated neural workspace, frequently referred to as visual working memory. Such a neural workspace should have two important properties: The ability to store sensory information across delay periods and the ability to flexibly transform sensory information. Here we used a combination of functional MRI and multivariate decoding to indentify such neural representations. Subjects were required to memorize a complex artificial pattern for an extended delay, then rotate the mental image as instructed by a cue and memorize this transformed pattern. We found that patterns of brain activity already in early visual areas and posterior parietal cortex encode not only the initially remembered image, but also the transformed contents after mental rotation. Our results thus suggest that the flexible and general neural workspace supporting visual working memory can be realized within posterior brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The role of attention during encoding in implicit and explicit memory.

    Science.gov (United States)

    Mulligan, N W

    1998-01-01

    In 5 experiments, participants read study words under conditions of divided or full attention. Dividing attention reduced performance on the general knowledge test, a conceptual implicit test of memory. Likewise, dividing attention reduced conceptual priming on the word--association task, as well as on a matched explicit test, associate-cued recall. In contrast, even very strong division of attention did not reduce perceptual priming on word-fragment completion, although it did reduce recall on the matched explicit test of word-fragment-cued recall. Finally, dividing attention reduced recall on the perceptual explicit tests of graphemic-cued recall and graphemic recognition. The results indicate that perceptual implicit tests rely minimally on attention-demanding encoding processes relative to other types of memory tests. The obtained pattern of dissociations is not readily accommodated by the transfer-appropriate-processing (TAP) account of implicit and explicit memory. Potential extensions of the TAP view are discussed.

  12. Tracking Location and Features of Objects within Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Michael Patterson

    2012-10-01

    Full Text Available Four studies examined how color or shape features can be accessed to retrieve the memory of an object's location. In each trial, 6 colored dots (Experiments 1 and 2 or 6 black shapes (Experiments 3 and 4 were displayed in randomly selected locations for 1.5 s. An auditory cue for either the shape or the color to-be-remembered was presented either simultaneously, immediately, or 2 s later. Non-informative cues appeared in some trials to serve as a control condition. After a 4 s delay, 5/6 objects were re-presented, and participants indicated the location of the missing object either by moving the mouse (Experiments 1 and 3, or by typing coordinates using a grid (Experiments 2 and 4. Compared to the control condition, cues presented simultaneously or immediately after stimuli improved location accuracy in all experiments. However, cues presented after 2 s only improved accuracy in Experiment 1. These results suggest that location information may not be addressable within visual working memory using shape features. In Experiment 1, but not Experiments 2–4, cues significantly improved accuracy when they indicated the missing object could be any of the three identical objects. In Experiments 2–4, location accuracy was highly impaired when the missing object came from a group of identical rather than uniquely identifiable objects. This indicates that when items with similar features are presented, location accuracy may be reduced. In summary, both feature type and response mode can influence the accuracy and accessibility of visual working memory for object location.

  13. Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding.

    Science.gov (United States)

    Bauch, Eva M; Bunzeck, Nico

    2015-09-01

    In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of pointing compared with naming and observing during encoding on item and source memory in young and older adults.

    Science.gov (United States)

    Ouwehand, Kim; van Gog, Tamara; Paas, Fred

    2016-10-01

    Research showed that source memory functioning declines with ageing. Evidence suggests that encoding visual stimuli with manual pointing in addition to visual observation can have a positive effect on spatial memory compared with visual observation only. The present study investigated whether pointing at picture locations during encoding would lead to better spatial source memory than naming (Experiment 1) and visual observation only (Experiment 2) in young and older adults. Experiment 3 investigated whether response modality during the test phase would influence spatial source memory performance. Experiments 1 and 2 supported the hypothesis that pointing during encoding led to better source memory for picture locations than naming or observation only. Young adults outperformed older adults on the source memory but not the item memory task in both Experiments 1 and 2. In Experiments 1 and 2, participants manually responded in the test phase. Experiment 3 showed that if participants had to verbally respond in the test phase, the positive effect of pointing compared with naming during encoding disappeared. The results suggest that pointing at picture locations during encoding can enhance spatial source memory in both young and older adults, but only if the response modality is congruent in the test phase.

  15. Inert gas narcosis and the encoding and retrieval of long-term memory.

    Science.gov (United States)

    Kneller, Wendy; Hobbs, Malcolm

    2013-12-01

    Prior research has indicated that inert gas narcosis (IGN) causes decrements in free recall memory performance and that these result from disruption of either encoding or self-guided search in the retrieval process. In a recent study we provided evidence, using a Levels of Processing approach, for the hypothesis that IGN affects the encoding of new information. The current study sought to replicate these results with an improved methodology. The effect of ambient pressure (111.5-212.8 kPa/1-11 msw vs. 456-516.8 kPa/35-41 msw) and level of processing (shallow vs. deep) on free recall memory performance was measured in 34 divers in the context of an underwater field experiment. Free recall was significantly worse at high ambient pressure compared to low ambient pressure in the deep processing condition (low pressure: M = 5.6; SD = 2.7; high pressure: M = 3.3; SD = 1.4), but not in the shallow processing condition (low pressure: M = 3.9; SD = 1.7; high pressure: M = 3.1; SD = 1.8), indicating IGN impaired memory ability in the deep processing condition. In the shallow water, deep processing improved recall over shallow processing but, significantly, this effect was eliminated in the deep water. In contrast to our earlier study this supported the hypothesis that IGN affects the self-guided search of information and not encoding. It is suggested that IGN may affect both encoding and self-guided search and further research is recommended.

  16. Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder.

    Science.gov (United States)

    McKenna, Benjamin S; Sutherland, Ashley N; Legenkaya, Anna P; Eyler, Lisa T

    2014-05-01

    Individuals with bipolar disorder (BD) have trait-like deficits in attention and working memory (WM). A fundamental dissociation for most verbal WM theories involves the separation of sensory-perceptual encoding, reliant upon attention, from the maintenance of this information in WM proper. The present study examined if patients with BD demonstrate differential neural changes in encoding and maintenance WM processes that underlie cognitive impairment. Event-related functional magnetic resonance imaging during a delayed match-to-sample WM paradigm was employed in 23 inter-episode medicated patients with BD and 23 demographically similar healthy comparison participants. We examined brain regions during encoding and maintenance task intervals to identify regions that demonstrated differential effects between groups. Medication effects and functional connectivity between prefrontal cortex and basal ganglia/thalamus were examined during the encoding interval due to the importance of these regions and the connection among them for encoding into WM. Patients with BD exhibited deficits in task accuracy and attenuated brain response during the encoding interval in areas of the prefrontal cortex, caudate, thalamus, and posterior visual regions. In contrast, patients with BD exhibited hyperactivation in posterior sensory regions during the maintenance interval. Among the BD group, those with greater medication load exhibited the greatest brain response within the prefrontal cortex. Reduction in activation during the encoding interval suggests that attentional deficits underlie WM deficits in patients with BD. These deficits appear to be trait-like in so far as they were observed during periods of euthymia in patients with BD. Medication effects remain to be further explored as there was evidence of prefrontal changes dependent on medication load. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Learning and memory performance in breast cancer survivors 2 to 6 years post-treatment: the role of encoding versus forgetting.

    Science.gov (United States)

    Root, James C; Andreotti, Charissa; Tsu, Loretta; Ellmore, Timothy M; Ahles, Tim A

    2016-06-01

    Our previous retrospective analysis of clinically referred breast cancer survivors' performance on learning and memory measures found a primary weakness in initial encoding of information into working memory with intact retention and recall of this same information at a delay. This suggests that survivors may misinterpret cognitive lapses as being due to forgetting when, in actuality, they were not able to properly encode this information at the time of initial exposure. Our objective in this study was to replicate and extend this pattern of performance to a research sample to increase the generalizability of this finding in a sample in which subjects were not clinically referred for cognitive issues. We contrasted learning and memory performance between breast cancer survivors on endocrine therapy 2 to 6 years post-treatment with age- and education-matched healthy controls. We then stratified lower- and higher-performing breast cancer survivors to examine specific patterns of learning and memory performance. Contrasts were generated for four aggregate visual and verbal memory variables from the California Verbal Learning Test-2 (CVLT-2) and the Brown Location Test (BLT): Single-trial Learning: Trial 1 performance, Multiple-trial Learning: Trial 5 performance, Delayed Recall: Long-delay Recall performance, and Memory Errors: False-positive errors. As predicted, breast cancer survivors' performance as a whole was significantly lower on Single-trial Learning than the healthy control group but exhibited no significant difference in Delayed Recall. In the secondary analysis contrasting lower- and higher-performing survivors on cognitive measures, the same pattern of lower Single-trial Learning performance was exhibited in both groups, with the additional finding of significantly weaker Multiple-trial Learning performance in the lower-performing breast cancer group and intact Delayed Recall performance in both groups. As with our earlier finding of weaker initial

  18. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    Science.gov (United States)

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Sensorimotor memory biases weight perception during object lifting

    Directory of Open Access Journals (Sweden)

    Vonne evan Polanen

    2015-12-01

    Full Text Available When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, the weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in

  20. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories

    Science.gov (United States)

    2012-01-01

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies. PMID:22827854

  1. Posterior Parietal Cortex and Episodic Encoding: Insights from fMRI Subsequent Memory Effects and Dual Attention Theory

    Science.gov (United States)

    Uncapher, Melina; Wagner, Anthony D.

    2010-01-01

    The formation of episodic memories –– memories for life events –– is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding. PMID:19028591

  2. Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory.

    Science.gov (United States)

    Uncapher, Melina R; Wagner, Anthony D

    2009-02-01

    The formation of episodic memories--memories for life events--is affected by attention during event processing. A leading neurobiological model of attention posits two separate yet interacting systems that depend on distinct regions in lateral posterior parietal cortex (PPC). From this dual-attention perspective, dorsal PPC is thought to support the goal-directed allocation of attention, whereas ventral PPC is thought to support reflexive orienting to information that automatically captures attention. To advance understanding of how parietal mechanisms may impact event encoding, we review functional MRI studies that document the relationship between lateral PPC activation during encoding and subsequent memory performance (e.g., later remembering or forgetting). This review reveals that (a) encoding-related activity is frequently observed in human lateral PPC, (b) increased activation in dorsal PPC is associated with later memory success, and (c) increased activation in ventral PPC predominantly correlates with later memory failure. From a dual-attention perspective, these findings suggest that allocating goal-directed attention during event processing increases the probability that the event will be remembered later, whereas the capture of reflexive attention during event processing may have negative consequences for event encoding. The prevalence of encoding-related activation in parietal cortex suggests that neurobiological models of episodic memory should consider how parietal-mediated attentional mechanisms regulate encoding.

  3. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    Directory of Open Access Journals (Sweden)

    Thomas A. Christensen

    2012-01-01

    Full Text Available Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  4. Modulating the focus of attention for spoken words at encoding affects frontoparietal activation for incidental verbal memory.

    Science.gov (United States)

    Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  5. Neuronal encoding of object and distance information: A model simulation study on naturalistic optic flow processing

    Directory of Open Access Journals (Sweden)

    Patrick eHennig

    2012-03-01

    Full Text Available We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly’s visual system. The model circuit successfully reproduces the FD1 cell’s most conspicuous property: Its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly’s saccadic flight and gaze strategy: The FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects - irrespective of the features by which the objects are defined - by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.

  6. Why Distinctive Information Reduces False Memories: Evidence for Both Impoverished Relational-Encoding and Distinctiveness Heuristic Accounts

    Science.gov (United States)

    Hege, Amanda C. G.; Dodson, Chad S.

    2004-01-01

    Two accounts explain why studying pictures reduces false memories within the Deese-Roediger-McDermott paradigm (J. Deese, 1959; H. L. Roediger & K. B. McDermott, 1995). The impoverished relational-encoding account suggests that studying pictures interferes with the encoding of relational information, which is the primary basis for false memories…

  7. A Developmental Study of Conceptual, Semantic Differential, and Acoustical Dimensions as Encoding Categories in Short-Term Memory. Final Report.

    Science.gov (United States)

    Pender, Nola J.

    The purpose of this research was to investigate developmental changes in encoding processes. It attempted to determine the extent to which children of varying ages utilize semantic (denotative or connotative) and acoustical encoding categories in a short-term memory task. It appears to be a reasonable assumption that as associational hierarchies…

  8. The role of encoding and attention in facial emotion memory: an EEG investigation.

    Science.gov (United States)

    Brenner, Colleen A; Rumak, Samuel P; Burns, Amy M N; Kieffaber, Paul D

    2014-09-01

    Facial expressions are encoded via sensory mechanisms, but meaning extraction and salience of these expressions involve cognitive functions. We investigated the time course of sensory encoding and subsequent maintenance in memory via EEG. Twenty-nine healthy participants completed a facial emotion delayed match-to-sample task. P100, N170 and N250 ERPs were measured in response to the first stimulus, and evoked theta power (4-7Hz) was measured during the delay interval. Negative facial expressions produced larger N170 amplitudes and greater theta power early in the delay. N170 amplitude correlated with theta power, however larger N170 amplitude coupled with greater theta power only predicted behavioural performance for one emotion condition (very happy) out of six tested (see Supplemental Data). These findings indicate that the N170 ERP may be sensitive to emotional facial expressions when task demands require encoding and retention of this information. Furthermore, sustained theta activity may represent continued attentional processing that supports short-term memory, especially of negative facial stimuli. Further study is needed to investigate the potential influence of these measures, and their interaction, on behavioural performance. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    International Nuclear Information System (INIS)

    De Vogelaere, Frederick; Vingerhoets, Guy; Santens, Patrick; Boon, Paul; Achten, Erik

    2010-01-01

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  10. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    Energy Technology Data Exchange (ETDEWEB)

    De Vogelaere, Frederick; Vingerhoets, Guy [Ghent University, Laboratory for Neuropsychology, Department of Neurology, Ghent (Belgium); Santens, Patrick; Boon, Paul [Ghent University Hospital, Department of Neurology, Ghent (Belgium); Achten, Erik [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2010-01-15

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  11. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Encoding vs. retention: differential effects of cue manipulation on working memory performance in schizophrenia.

    Science.gov (United States)

    Javitt, Daniel C; Rabinowicz, Esther; Silipo, Gail; Dias, Elisa C

    2007-03-01

    Deficits in working memory performance are among the most widely replicated findings in schizophrenia. Roles of encoding vs. memory retention in working memory remain unresolved. The present study evaluated working memory performance in schizophrenia using an AX-type continuous performance test (AX-CPT) paradigm. Participants included 48 subjects with schizophrenia and 27 comparison subjects. Behavior was obtained in 3 versions of the task, which differed based upon ease of cue interoperability. In a simple cue version of the task, cue letters were replaced with red or green circles. In the complex cue version, letter/color conjunctions served as cues. In the base version of the task, patients showed increased rates of false alarms to invalidly cued targets, similar to prior reports. However, when the cue stimuli were replaced with green or red circles to ease interpretation, patients showed similar false alarm rates to controls. When feature conjunction cues were used, patients were also disproportionately affected relative to controls. No significant group by interstimulus interval interaction effects were observed in either the simple or complex cue conditions, suggesting normal retention of information even in the presence of overall performance decrements. These findings suggest first, that cue manipulation disproportionately affects AX-CPT performance in schizophrenia and, second, that substantial behavioral deficits may be observed on working memory tasks even in the absence of disturbances in mnemonic retention.

  13. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons.

    Science.gov (United States)

    Otten, L J; Henson, R N; Rugg, M D

    2001-02-01

    Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.

  14. Neural Plasticity and Memory: Is Memory Encoded in Hydrogen Bonding Patterns?

    Science.gov (United States)

    Amtul, Zareen; Rahman, Atta-Ur

    2016-02-01

    Current models of memory storage recognize posttranslational modification vital for short-term and mRNA translation for long-lasting information storage. However, at the molecular level things are quite vague. A comprehensive review of the molecular basis of short and long-lasting synaptic plasticity literature leads us to propose that the hydrogen bonding pattern at the molecular level may be a permissive, vital step of memory storage. Therefore, we propose that the pattern of hydrogen bonding network of biomolecules (glycoproteins and/or DNA template, for instance) at the synapse is the critical edifying mechanism essential for short- and long-term memories. A novel aspect of this model is that nonrandom impulsive (or unplanned) synaptic activity functions as a synchronized positive-feedback rehearsal mechanism by revising the configurations of the hydrogen bonding network by tweaking the earlier tailored hydrogen bonds. This process may also maintain the elasticity of the related synapses involved in memory storage, a characteristic needed for such networks to alter intricacy and revise endlessly. The primary purpose of this review is to stimulate the efforts to elaborate the mechanism of neuronal connectivity both at molecular and chemical levels. © The Author(s) 2014.

  15. Recall of Others' Actions after Incidental Encoding Reveals Episodic-like Memory in Dogs.

    Science.gov (United States)

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-12-05

    The existence of episodic memory in non-human animals is a debated topic that has been investigated using different methodologies that reflect diverse theoretical approaches to its definition. A fundamental feature of episodic memory is recalling after incidental encoding, which can be assessed if the recall test is unexpected [1]. We used a modified version of the "Do as I Do" method [2], relying on dogs' ability to imitate human actions, to test whether dogs can rely on episodic memory when recalling others' actions from the past. Dogs were first trained to imitate human actions on command. Next, they were trained to perform a simple training exercise (lying down), irrespective of the previously demonstrated action. This way, we substituted their expectation to be required to imitate with the expectation to be required to lie down. We then tested whether dogs recalled the demonstrated actions by unexpectedly giving them the command to imitate, instead of lying down. Dogs were tested with a short (1 min) and a long (1 hr) retention interval. They were able to recall the demonstrated actions after both intervals; however, their performance declined more with time compared to conditions in which imitation was expected. These findings show that dogs recall past events as complex as human actions even if they do not expect the memory test, providing evidence for episodic-like memory. Dogs offer an ideal model to study episodic memory in non-human species, and this methodological approach allows investigating memory of complex, context-rich events. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    Science.gov (United States)

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  17. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  18. No Evidence for a Fixed Object Limit in Working Memory: Spatial Ensemble Representations Inflate Estimates of Working Memory Capacity for Complex Objects

    Science.gov (United States)

    Brady, Timothy F.; Alvarez, George A.

    2015-01-01

    A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…

  19. Divided Attention Can Enhance Early-Phase Memory Encoding: The Attentional Boost Effect and Study Trial Duration

    Science.gov (United States)

    Mulligan, Neil W.; Spataro, Pietro

    2015-01-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better…

  20. Encoding and Retrieval Processes Involved in the Access of Source Information in the Absence of Item Memory

    Science.gov (United States)

    Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.

    2014-01-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…

  1. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    Science.gov (United States)

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  2. Effects of pointing compared with naming and observing during encoding on item and source memory in young and older adults

    NARCIS (Netherlands)

    Ouwehand, Kim; Gog, Tamara van; Paas, Fred

    2016-01-01

    Research showed that source memory functioning declines with ageing. Evidence suggests that encoding visual stimuli with manual pointing in addition to visual observation can have a positive effect on spatial memory compared with visual observation only. The present study investigated whether

  3. Encoding instructions and stimulus presentation in local environmental context-dependent memory studies.

    Science.gov (United States)

    Markopoulos, G; Rutherford, A; Cairns, C; Green, J

    2010-08-01

    Murnane and Phelps (1993) recommend word pair presentations in local environmental context (EC) studies to prevent associations being formed between successively presented items and their ECs and a consequent reduction in the EC effect. Two experiments were conducted to assess the veracity of this assumption. In Experiment 1, participants memorised single words or word pairs, or categorised them as natural or man made. Their free recall protocols were examined to assess any associations established between successively presented items. Fewest associations were observed when the item-specific encoding task (i.e., natural or man made categorisation of word referents) was applied to single words. These findings were examined further in Experiment 2, where the influence of encoding instructions and stimulus presentation on local EC dependent recognition memory was examined. Consistent with recognition dual-process signal detection model predictions and findings (e.g., Macken, 2002; Parks & Yonelinas, 2008), recollection sensitivity, but not familiarity sensitivity, was found to be local EC dependent. However, local EC dependent recognition was observed only after item-specific encoding instructions, irrespective of stimulus presentation. These findings and the existing literature suggest that the use of single word presentations and item-specific encoding enhances local EC dependent recognition.

  4. Prospective memory function in late adulthood: affect at encoding and resource allocation costs.

    Directory of Open Access Journals (Sweden)

    Julie D Henry

    Full Text Available Some studies have found that prospective memory (PM cues which are emotionally valenced influence age effects in prospective remembering, but it remains unclear whether this effect reflects the operation of processes implemented at encoding or retrieval. In addition, none of the prior ageing studies of valence on PM function have examined potential costs of engaging in different valence conditions, or resource allocation trade-offs between the PM and the ongoing task. In the present study, younger, young-old and old-old adults completed a PM task in which the valence of the cues varied systematically (positive, negative or neutral at encoding, but was kept constant (neutral at retrieval. The results indicated that PM accuracy did not vary as a function of affect at encoding, and that this effect did not interact with age group. There was also no main or interaction effect of valence on PM reaction time in PM cue trials, indicating that valence costs across the three encoding conditions were equivalent. Old-old adults' PM accuracy was reduced relative to both young-old and younger adults. Prospective remembering incurred dual-task costs for all three groups. Analyses of reaction time data suggested that for both young-old and old-old, these costs were greater, implying differential resource allocation cost trade-offs. However, when reaction time data were expressed as a proportional change that adjusted for the general slowing of the older adults, costs did not differ as a function of group.

  5. Working memory and individual differences in the encoding of vertical, horizontal and diagonal symmetry.

    Science.gov (United States)

    Rossi-Arnaud, Clelia; Pieroni, Laura; Spataro, Pietro; Baddeley, Alan

    2012-09-01

    Previous studies, using a modified version of the sequential Corsi block task to examine the impact of symmetry on visuospatial memory, showed an advantage of vertical symmetry over non-symmetrical sequences, but no effect of horizontal or diagonal symmetry. The present four experiments investigated the mechanisms underlying the encoding of vertical, horizontal and diagonal configurations using simultaneous presentation and a dual-task paradigm. Results indicated that the recall of vertically symmetric arrays was always better than that of all other patterns and was not influenced by any of the concurrent tasks. Performance with horizontally or diagonally symmetrical patterns differed, with high performing participants showing little effect of concurrent tasks, while low performers were disrupted by concurrent visuospatial and executive tasks. A verbal interference had no effect on either group. Implications for processes involved in the encoding of symmetry are discussed, together with the crucial importance of individual differences. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  7. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  8. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    Science.gov (United States)

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: a magnetoencephalography study.

    NARCIS (Netherlands)

    Takashima, A.; Jensen, O.; Oostenveld, R.; Maris, E.G.G.; Coevering, M. van de; Fernandez, G.S.E.

    2006-01-01

    The aim of the present study was to investigate the spatio-temporal characteristics of the neural correlates of declarative memory formation as assessed by the subsequent memory effect, i.e. the difference in encoding activity between subsequently remembered and subsequently forgotten items.

  10. Successful declarative memory formation is associated with ongoing activity during encoding in a distributed neocortical network related to working memory: A magnetoencephalography study

    NARCIS (Netherlands)

    Takashima, A.; Jensen, O.; Oostenveld, R.; Maris, E.G.G.; Coevering, M. van de; Fernandez, G.S.E.

    2006-01-01

    The aim of the present study was to investigate the spatio-temporal characteristics of the neural correlates of declarative memory formation as assessed by the subsequent memory effect, i.e. the difference in encoding activity between subsequently remembered and subsequently forgotten items.

  11. Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Fernández, Guillén; Norris, David G; Hermans, Erno J

    2010-04-20

    The hippocampus is thought to promote gradual incorporation of novel information into long-term memory by binding, reactivating, and strengthening distributed cortical-cortical connections. Recent studies implicate a key role in this process for hippocampally driven crosstalk with the (ventro)medial prefrontal cortex (vmPFC), which is proposed to become a central node in such representational networks over time. The existence of a relevant prior associative network, or schema, may moreover facilitate this process. Thus, hippocampal-vmPFC crosstalk may support integration of new memories, particularly in the absence of a relevant prior schema. To address this issue, we used functional magnetic resonance imaging (fMRI) and prior schema manipulation to track hippocampal-vmPFC connectivity during encoding and postencoding rest. We manipulated prior schema knowledge by exposing 30 participants to the first part of a movie that was temporally scrambled for 15 participants. The next day, participants underwent fMRI while encoding the movie's final 15 min in original order and, subsequently, while resting. Schema knowledge and item recognition performance show that prior schema was successfully and selectively manipulated. Intersubject synchronization (ISS) and interregional partial correlation analyses furthermore show that stronger prior schema was associated with more vmPFC ISS and less hippocampal-vmPFC interregional connectivity during encoding. Notably, this connectivity pattern persisted during postencoding rest. These findings suggest that additional crosstalk between hippocampus and vmPFC is required to compensate for difficulty integrating novel information during encoding and provide tentative support for the notion that functionally relevant hippocampal-neocortical crosstalk persists during off-line periods after learning.

  12. Male carriers of the FMR1 premutation show altered hippocampal-prefrontal function during memory encoding

    Directory of Open Access Journals (Sweden)

    John M Wang

    2012-10-01

    Full Text Available Previous functional MRI (fMRI studies have shown that fragile X mental retardation 1 (FMR1 premutation allele carriers (FXPCs exhibit decreased hippocampal activation during a recall task and lower inferior frontal activation during a working memory task compared to matched controls. The molecular characteristics of FXPCs includes 55 to 200 CGG trinucleoutide expansions, increased FMR1 mRNA levels, and decreased FMRP levels especially at higher repeat sizes. In the current study, we utilized MRI to examine differences in hippocampal volume and function during an encoding task in young male FXPCs. While no decreases in either hippocampal volume or hippocampal activity were observed during the encoding task in FXPCs, FMRP level (measured in blood correlated with decreases in parahippocampal activation. In addition, activity in the right dorsolateral prefrontal cortex during correctly encoded trials correlated negatively with mRNA levels. These results, as well as the established biological effects associated with elevated mRNA levels and decreased FMRP levels on dendritic maturation and axonal growth, prompted us to explore functional connectivity between the hippocampus, prefrontal cortex, and parahippocampal gyrus using a psychophysiological interaction analysis. In FXPCs, the right hippocampus evinced significantly lower connectivity with right ventrolateral prefrontal cortex (VLPFC and right parahippocampal gyrus. Furthermore, the weaker connectivity between the right hippocampus and VLPFC was associated with reduced FMRP in the FXPC group. These results suggest that while FXPCs show relatively typical brain response during encoding, faulty connectivity between frontal and hippocampal regions may have subsequent effects on recall and working memory.

  13. [The effect of encoding on false memory: examination on levels of processing and list presentation format].

    Science.gov (United States)

    Hamajima, Hideki

    2004-04-01

    Using the Deese/Roediger-McDermott paradigm, the effects of lists presentation format (blocked/random) and levels of processing of critical nonpresented lures were examined. A levels-of-processing effect in a blocked presentation order was not observed for lures. Rates of false recognition and remember judgments for lures in a shallow level of processing were significantly lower than those in a deep level of processing when items from various themes were inter-mixed instead of blocked. Results showed an interaction between levels of processing and list presentation format. It is thus concluded that encoding of each word and whole list should be both considered in understanding false memory.

  14. Effects of Age on Negative Subsequent Memory Effects Associated with the Encoding of Item and Item–Context Information

    Science.gov (United States)

    Mattson, Julia T.; Wang, Tracy H.; de Chastelaine, Marianne; Rugg, Michael D.

    2014-01-01

    It has consistently been reported that “negative” subsequent memory effects—lower study activity for later remembered than later forgotten items—are attenuated in older individuals. The present functional magnetic resonance imaging study investigated whether these findings extend to subsequent memory effects associated with successful encoding of item–context information. Older (n = 25) and young (n = 17) subjects were scanned while making 1 of 2 encoding judgments on a series of pictures. Memory was assessed for the study item and, for items judged old, the item's encoding task. Both memory judgments were made using confidence ratings, permitting item and source memory strength to be unconfounded and source confidence to be equated across age groups. Replicating prior findings, negative item effects in regions of the default mode network in young subjects were reversed in older subjects. Negative source effects, however, were invariant with respect to age and, in both age groups, the magnitude of the effects correlated with source memory performance. It is concluded that negative item effects do not reflect processes necessary for the successful encoding of item–context associations in older subjects. Negative source effects, in contrast, appear to reflect the engagement of processes that are equally important for successful episodic encoding in older and younger individuals. PMID:23904464

  15. Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients

    Science.gov (United States)

    van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert

    2009-01-01

    Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…

  16. Evidence for a differential contribution of early perceptual and late cognitive processes during encoding to episodic memory impairment in schizophrenia.

    Science.gov (United States)

    Green, Amity E; Fitzgerald, Paul B; Johnston, Patrick J; Nathan, Pradeep J; Kulkarni, Jayashri; Croft, Rodney J

    2017-08-01

    Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.

  17. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex.

    Science.gov (United States)

    Pezze, Marie A; Marshall, Hayley J; Fone, Kevin C F; Cassaday, Helen J

    2015-11-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Is prospective memory enhanced by cue-action semantic relatedness and enactment at encoding?

    Science.gov (United States)

    Pereira, Antonina; Ellis, Judi; Freeman, Jayne

    2012-09-01

    Benefits and costs on prospective memory performance, of enactment at encoding and a semantic association between a cue-action word pair, were investigated in two experiments. Findings revealed superior performance for both younger and older adults following enactment, in contrast to verbal encoding, and when cue-action semantic relatedness was high. Although younger adults outperformed older adults, age did not moderate benefits of cue-action relatedness or enactment. Findings from a second experiment revealed that the inclusion of an instruction to perform a prospective memory task led to increments in response latency to items from the ongoing activity in which that task was embedded, relative to latencies when the ongoing task only was performed. However, this task interference 'cost' did not differ as a function of either cue-action relatedness or enactment. We argue that the high number of cue-action pairs employed here influenced meta-cognitive consciousness, hence determining attention allocation, in all experimental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Pupillometry as a glimpse into the neurochemical basis of human memory encoding.

    Science.gov (United States)

    Hoffing, Russell Cohen; Seitz, Aaron R

    2015-04-01

    Neurochemical systems are well studied in animal learning; however, ethical issues limit methodologies to explore these systems in humans. Pupillometry provides a glimpse into the brain's neurochemical systems, where pupil dynamics in monkeys have been linked with locus coeruleus (LC) activity, which releases norepinephrine (NE) throughout the brain. Here, we use pupil dynamics as a surrogate measure of neurochemical activity to explore the hypothesis that NE is involved in modulating memory encoding. We examine this using a task-irrelevant learning paradigm in which learning is boosted for stimuli temporally paired with task targets. We show that participants better recognize images that are paired with task targets than distractors and, in correspondence, that pupil size changes more for target-paired than distractor-paired images. To further investigate the hypothesis that NE nonspecifically guides learning for stimuli that are present with its release, a second procedure was used that employed an unexpected sound to activate the LC-NE system and induce pupil-size changes; results indicated a corresponding increase in memorization of images paired with the unexpected sounds. Together, these results suggest a relationship between the LC-NE system, pupil-size changes, and human memory encoding.

  20. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    Science.gov (United States)

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Beyond Initial Encoding: Measures of the Post-Encoding Status of Memory Traces Predict Long-Term Recall during Infancy

    Science.gov (United States)

    Pathman, Thanujeni; Bauer, Patricia J.

    2013-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the current research we contributed to an explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old…

  2. Memory, priority encoding, and overcoming high-value proactive interference in younger and older adults.

    Science.gov (United States)

    Friedman, Michael C; Castel, Alan D

    2013-01-01

    It is often necessary to remember important information while directing attention away from encoding less valuable information. To examine how aging influences the ability to control and update the encoding of high-value information, younger and older adults studied six lists of words that varied in terms of the point values associated with each word. The words were paired with the same high and low point values for three study-test cycles, but on the fourth and subsequent cycles the value-word pairings were switched such that the lowest value pairs became the highest values (and vice versa). For the first three study-test cycles, younger adults outperformed older adults in terms of the number of words recalled and overall point totals, but performance was similar in terms of selectively remembering high-value words. When the values were switched, both groups displayed substantial interference from the previous pairings. Although both groups improved with additional study-test cycles, only younger adults were able to fully recover from the interference effects. A similar, and more pronounced, set of results were obtained when positive and negative point values were paired with the words. The findings are interpreted in a value-directed remembering framework, emphasizing the role of benefits and costs of strategic encoding and age-related differences in the effects of interference on memory.

  3. Three-dimensional trace measurements for fast-moving objects using binary-encoded fringe projection techniques.

    Science.gov (United States)

    Su, Wei-Hung; Kuo, Cho-Yo; Kao, Fu-Jen

    2014-08-20

    A fringe projection technique to trace the shape of a fast-moving object is proposed. A binary-encoded fringe pattern is illuminated by a strobe lamp and then projected onto the moving object at a sequence of time. Phases of the projected fringes obtained from the sequent measurements are extracted by the Fourier transform method. Unwrapping is then performed with reference to the binary-encoded fringe pattern. Even though the inspected object is colorful, fringe orders can be identified. A stream of profiles is therefore retrieved from the sequent unwrapped phases. This makes it possible to analyze physical properties of the dynamic objects. Advantages of the binary-encoded fringe pattern for phase unwrapping also include (1) reliable performance for colorful objects, spatially isolated objects, and surfaces with large depth discontinuities; (2) unwrapped errors only confined in a local area; and (3) low computation cost.

  4. Encoding: the keystone to efficient functioning of verbal short-term memory.

    Science.gov (United States)

    Barry, Johanna G; Sabisch, Beate; Friederici, Angela D; Brauer, Jens

    2011-11-01

    Verbal short-term memory (VSTM) is thought to play a critical role in language learning. It is indexed by the nonword repetition task where listeners are asked to repeat meaningless words like 'blonterstaping'. The present study investigated the effect on nonword repetition performance of differences in efficiency of functioning of some part of the neural architecture mediating VSTM. Hypotheses were stated within Baddeley and Hitch's (1974) multicomponent model of VSTM, with respect to regions of the brain known to be active during tasks tapping into VSTM. We were specifically interested in activations associated with the posterior planum temporale (Spt) which emerge during rehearsal since this region is hypothesized to be central to VTSM (Buchsbaum, Olsen, Koch, & Berman, 2005a). Participants performed a delayed reaction time task in the scanner which explicitly mimicked the three main stages of information-processing involved in VSTM (encoding, rehearsal, recall (here recognition)). The data for each stage were then convolved with scores from a separately measured nonword repetition task. Rather than observing a pattern of individual differences located to specific regions specialized for supporting VSTM, a dissociation in direction of correlation in overlapping regions of the brain was observed during encoding and recognition. Larger hemodynamic responses during encoding were associated with better nonword repetition, and vice versa during recognition. There was little evidence for a network of activations specialized for VSTM. Instead, the main correlations were observed in regions also known to be involved in long-term memory. It seems that individuals who are better at nonword repetition and hence at language learning, activate these regions more efficiently than poorer nonword-repeaters early after stimulus input. These observations are discussed with respect to various models proposed for explaining the phenomenon of VSTM. Crown Copyright © 2011

  5. Encoding and immediate retrieval tasks in patients with epilepsy: A functional MRI study of verbal and visual memory.

    Science.gov (United States)

    Saddiki, Najat; Hennion, Sophie; Viard, Romain; Ramdane, Nassima; Lopes, Renaud; Baroncini, Marc; Szurhaj, William; Reyns, Nicolas; Pruvo, Jean Pierre; Delmaire, Christine

    2018-05-01

    Medial lobe temporal structures and more specifically the hippocampus play a decisive role in episodic memory. Most of the memory functional magnetic resonance imaging (fMRI) studies evaluate the encoding phase; the retrieval phase being performed outside the MRI. We aimed to determine the ability to reveal greater hippocampal fMRI activations during retrieval phase. Thirty-five epileptic patients underwent a two-step memory fMRI. During encoding phase, subjects were requested to identify the feminine or masculine gender of faces and words presented, in order to encourage stimulus encoding. One hour after, during retrieval phase, subjects had to recognize the word and face. We used an event-related design to identify hippocampal activations. There was no significant difference between patients with left temporal lobe epilepsy, patients with right temporal lobe epilepsy and patients with extratemporal lobe epilepsy on verbal and visual learning task. For words, patients demonstrated significantly more bilateral hippocampal activation for retrieval task than encoding task and when the tasks were associated than during encoding alone. Significant difference was seen between face-encoding alone and face retrieval alone. This study demonstrates the essential contribution of the retrieval task during a fMRI memory task but the number of patients with hippocampal activations was greater when the two tasks were taken into account. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Effects of Pre-Encoding Stress on Brain Correlates Associated with the Long-Term Memory for Emotional Scenes

    Science.gov (United States)

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O.

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400–800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes. PMID:24039697

  7. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Directory of Open Access Journals (Sweden)

    Janine Wirkner

    Full Text Available Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  8. Benefits of deep encoding in Alzheimer disease. Analysis of performance on a memory task using the Item Specific Deficit Approach.

    Science.gov (United States)

    Oltra-Cucarella, J; Pérez-Elvira, R; Duque, P

    2014-06-01

    the aim of this study is to test the encoding deficit hypothesis in Alzheimer disease (AD) using a recent method for correcting memory tests. To this end, a Spanish-language adaptation of the Free and Cued Selective Reminding Test was interpreted using the Item Specific Deficit Approach (ISDA), which provides three indices: Encoding Deficit Index, Consolidation Deficit Index, and Retrieval Deficit Index. We compared the performances of 15 patients with AD and 20 healthy control subjects and analysed results using either the task instructions or the ISDA approach. patients with AD displayed deficient encoding of more than half the information, but items that were encoded properly could be retrieved later with the help of the same semantic clues provided individually during encoding. Virtually all the information retained over the long-term was retrieved by using semantic clues. Encoding was shown to be the most impaired process, followed by retrieval and consolidation. Discriminant function analyses showed that ISDA indices are more sensitive and specific for detecting memory impairments in AD than are raw scores. These results indicate that patients with AD present impaired information encoding, but they benefit from semantic hints that help them recover previously learned information. This should be taken into account for intervention techniques focusing on memory impairments in AD. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  9. Control of information in working memory: Encoding and removal of distractors in the complex-span paradigm.

    Science.gov (United States)

    Oberauer, Klaus; Lewandowsky, Stephan

    2016-11-01

    The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Encoding into working memory of spatial location, color, and shape: electrophysiological investigations.

    Science.gov (United States)

    Martín-Loeches, M; Rubia, F J

    1997-10-01

    Event-related potentials (ERP) were recorded while subjects memorized either the location, the color or the shape of stimuli which could be located in 1 of 4 positions relative to a central fixation point (top, bottom, left or right), be of 1 of 4 positions relative to a central fixation point (top, bottom, left or right), be of 1 of 4 colors (white, green, red or blue), and present 1 of 4 shapes (triangle, cross, circle or square). These ERP were compared to ERP recorded while subjects looked at the same stimuli but performed other control, nonmemory tasks. Only ERP corresponding to the memorization of spatial location showed a differential pattern which could be specifically attributed to memory encoding processes. This reveals an important difference in ERP modulation between a working memory subsystem for spatial location and other subsystem (or subsystems) for color or shape, which would provide evidence supporting the existence of different working memory subsystems for visual information in the brain.

  11. Intensive video gaming improves encoding speed to visual short-term memory in young male adults.

    Science.gov (United States)

    Wilms, Inge L; Petersen, Anders; Vangkilde, Signe

    2013-01-01

    The purpose of this study was to measure the effect of action video gaming on central elements of visual attention using Bundesen's (1990) Theory of Visual Attention. To examine the cognitive impact of action video gaming, we tested basic functions of visual attention in 42 young male adults. Participants were divided into three groups depending on the amount of time spent playing action video games: non-players (15h/month, N=20). All participants were tested in three tasks which tap central functions of visual attention and short-term memory: a test based on the Theory of Visual Attention (TVA), an enumeration test and finally the Attentional Network Test (ANT). The results show that action video gaming does not seem to impact the capacity of visual short-term memory. However, playing action video games does seem to improve the encoding speed of visual information into visual short-term memory and the improvement does seem to depend on the time devoted to gaming. This suggests that intense action video gaming improves basic attentional functioning and that this improvement generalizes into other activities. The implications of these findings for cognitive rehabilitation training are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Structural encoding processes contribute to individual differences in face and object cognition: Inferences from psychometric test performance and event-related brain potentials.

    Science.gov (United States)

    Nowparast Rostami, Hadiseh; Sommer, Werner; Zhou, Changsong; Wilhelm, Oliver; Hildebrandt, Andrea

    2017-10-01

    The enhanced N1 component in event-related potentials (ERP) to face stimuli, termed N170, is considered to indicate the structural encoding of faces. Previously, individual differences in the latency of the N170 have been related to face and object cognition abilities. By orthogonally manipulating content domain (faces vs objects) and task demands (easy/speed vs difficult/accuracy) in both psychometric and EEG tasks, we investigated the uniqueness of the processes underlying face cognition as compared with object cognition and the extent to which the N1/N170 component can explain individual differences in face and object cognition abilities. Data were recorded from N = 198 healthy young adults. Structural equation modeling (SEM) confirmed that the accuracies of face perception (FP) and memory are specific abilities above general object cognition; in contrast, the speed of face processing was not differentiable from the speed of object cognition. Although there was considerable domain-general variance in the N170 shared with the N1, there was significant face-specific variance in the N170. The brain-behavior relationship showed that faster face-specific processes for structural encoding of faces are associated with higher accuracy in both perceiving and memorizing faces. Moreover, in difficult task conditions, qualitatively different processes are additionally needed for recognizing face and object stimuli as compared with easy tasks. The difficulty-dependent variance components in the N170 amplitude were related with both face and object memory (OM) performance. We discuss implications for understanding individual differences in face cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    Science.gov (United States)

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  15. The influence of strategic encoding on false memory in patients with mild cognitive impairment and Alzheimer's disease dementia.

    Science.gov (United States)

    Tat, Michelle J; Soonsawat, Anothai; Nagle, Corinne B; Deason, Rebecca G; O'Connor, Maureen K; Budson, Andrew E

    2016-11-01

    Patients with Alzheimer's disease (AD) dementia exhibit high rates of memory distortions in addition to their impairments in episodic memory. Several investigations have demonstrated that when healthy individuals (young and old) engaged in an encoding strategy that emphasized the uniqueness of study items (an item-specific encoding strategy), they were able to improve their discrimination between old items and unstudied critical lure items in a false memory task. In the present study we examined if patients with AD could also improve their memory discrimination when engaging in an item-specific encoding strategy. Healthy older adult controls, patients with mild cognitive impairment (MCI) due to AD, and patients with mild AD dementia were asked to study lists of categorized words. In the Item-Specific condition, participants were asked to provide a unique detail or personal experience with each study item. In the Relational condition, they were asked to determine how each item in the list was related to the others. To assess the influence of both strategies, recall and recognition memory tests were administered. Overall, both patient groups exhibited poorer memory in both recall and recognition tests compared to controls. In terms of recognition, healthy older controls and patients with MCI due to AD exhibited improved memory discrimination in the Item-Specific condition compared to the Relational condition, whereas patients with AD dementia did not. We speculate that patients with MCI due to AD use intact frontal networks to effectively engage in this strategy. Published by Elsevier Inc.

  16. The influence of strategic encoding on false memory in patients with mild cognitive impairment and Alzheimer’s disease dementia

    Science.gov (United States)

    Tat, Michelle J.; Soonsawat, Anothai; Nagle, Corinne B.; Deason, Rebecca G.; O’Connor, Maureen K.; Budson, Andrew E.

    2018-01-01

    Patients with Alzheimer’s disease (AD) dementia exhibit high rates of memory distortions in addition to their impairments in episodic memory. Several investigations have demonstrated that when healthy individuals (young and old) engaged in an encoding strategy that emphasized the uniqueness of study items (an item-specific encoding strategy), they were able to improve their discrimination between old items and unstudied critical lure items in a false memory task. In the present study we examined if patients with AD could also improve their memory discrimination when engaging in an item-specific encoding strategy. Healthy older adult controls, patients with mild cognitive impairment (MCI) due to AD, and patients with mild AD dementia were asked to study lists of categorized words. In the Item-Specific condition, participants were asked to provide a unique detail or personal experience with each study item. In the Relational condition, they were asked to determine how each item in the list was related to the others. To assess the influence of both strategies, recall and recognition memory tests were administered. Overall, both patient groups exhibited poorer memory in both recall and recognition tests compared to controls. In terms of recognition, healthy older controls and patients with MCI due to AD exhibited improved memory discrimination in the Item-Specific condition compared to the Relational condition, whereas patients with AD dementia did not. We speculate that patients with MCI due to AD use intact frontal networks to effectively engage in this strategy. PMID:27643951

  17. An object location memory paradigm for older adults with and without mild cognitive impairment.

    Science.gov (United States)

    Külzow, Nadine; Kerti, Lucia; Witte, Veronica A; Kopp, Ute; Breitenstein, Caterina; Flöel, Agnes

    2014-11-30

    Object-location memory is critical in every-day life and known to deteriorate early in the course of neurodegenerative disease. We adapted the previously established learning paradigm "LOCATO" for use in healthy older adults and patients with mild cognitive impairment (MCI). Pictures of real-life buildings were associated with positions on a two-dimensional street map by repetitions of "correct" object-location pairings over the course of five training blocks, followed by a recall task. Correct/incorrect associations were indicated by button presses. The original two 45-item sets were reduced to 15 item-sets, and tested in healthy older adults and MCI for learning curve, recall, and re-test effects. The two 15-item versions showed comparable learning curves and recall scores within each group. While learning curves increased linearly in both groups, MCI patients performed significantly worse on learning and recall compared to healthy controls. Re-testing after 6 month showed small practice effects only. LOCATO is a simple standardized task that overcomes several limitation of previously employed visuospatial task by using real-life stimuli, minimizing verbal encoding, avoiding fine motor responses, combining explicit and implicit statistical learning, and allowing to assess learning curve in addition to recall. Results show that the shortened version of LOCATO meets the requirements for a robust and ecologically meaningful assessment of object-location memory in older adults with and without MCI. It can now be used to systematically assess acquisition of object-location memory and its modulation through adjuvant therapies like pharmacological or non-invasive brain stimulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H215O PET

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H 2 1 5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H 2 1 5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H 2 1 5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.=20

  19. Such stuff as dreams are made on? Elaborative encoding, the ancient art of memory, and the hippocampus.

    Science.gov (United States)

    Llewellyn, Sue

    2013-12-01

    This article argues that rapid eye movement (REM) dreaming is elaborative encoding for episodic memories. Elaborative encoding in REM can, at least partially, be understood through ancient art of memory (AAOM) principles: visualization, bizarre association, organization, narration, embodiment, and location. These principles render recent memories more distinctive through novel and meaningful association with emotionally salient, remote memories. The AAOM optimizes memory performance, suggesting that its principles may predict aspects of how episodic memory is configured in the brain. Integration and segregation are fundamental organizing principles in the cerebral cortex. Episodic memory networks interconnect profusely within the cortex, creating omnidirectional "landmark" junctions. Memories may be integrated at junctions but segregated along connecting network paths that meet at junctions. Episodic junctions may be instantiated during non-rapid eye movement (NREM) sleep after hippocampal associational function during REM dreams. Hippocampal association involves relating, binding, and integrating episodic memories into a mnemonic compositional whole. This often bizarre, composite image has not been present to the senses; it is not "real" because it hyperassociates several memories. During REM sleep, on the phenomenological level, this composite image is experienced as a dream scene. A dream scene may be instantiated as omnidirectional neocortical junction and retained by the hippocampus as an index. On episodic memory retrieval, an external stimulus (or an internal representation) is matched by the hippocampus against its indices. One or more indices then reference the relevant neocortical junctions from which episodic memories can be retrieved. Episodic junctions reach a processing (rather than conscious) level during normal wake to enable retrieval. If this hypothesis is correct, the stuff of dreams is the stuff of memory.

  20. Neural Mechanisms Underlying Visual Short-Term Memory Gain for Temporally Distinct Objects.

    Science.gov (United States)

    Ihssen, Niklas; Linden, David E J; Miller, Claire E; Shapiro, Kimron L

    2015-08-01

    Recent research has shown that visual short-term memory (VSTM) can substantially be improved when the to-be-remembered objects are split in 2 half-arrays (i.e., sequenced) or the entire array is shown twice (i.e., repeated), rather than presented simultaneously. Here we investigate the hypothesis that sequencing and repeating displays overcomes attentional "bottlenecks" during simultaneous encoding. Using functional magnetic resonance imaging, we show that sequencing and repeating displays increased brain activation in extrastriate and primary visual areas, relative to simultaneous displays (Study 1). Passively viewing identical stimuli did not increase visual activation (Study 2), ruling out a physical confound. Importantly, areas of the frontoparietal attention network showed increased activation in repetition but not in sequential trials. This dissociation suggests that repeating a display increases attentional control by allowing attention to be reallocated in a second encoding episode. In contrast, sequencing the array poses fewer demands on control, with competition from nonattended objects being reduced by the half-arrays. This idea was corroborated by a third study in which we found optimal VSTM for sequential displays minimizing attentional demands. Importantly these results provide support within the same experimental paradigm for the role of stimulus-driven and top-down attentional control aspects of biased competition theory in setting constraints on VSTM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Adult age differences in memory for schema-consistent and schema-inconsistent objects in a real-world setting.

    Science.gov (United States)

    Prull, Matthew W

    2015-01-01

    The present study examined age-related differences in the inconsistency effect, in which memory is enhanced for schema-inconsistent information compared to schema-consistent information. Young and older adults studied schema-consistent and schema-inconsistent objects in an academic office under either intentional or incidental encoding instructions, and were given two recognition tests either immediately or after 48 hr: A yes/no item recognition test that included modified remember/know judgments and a token recognition test that required determining whether an original object was replaced with a different object with the same name. Young and older adults showed equivalent inconsistency effects in both item and token recognition tests, although older adults reported phenomenologically less rich memories of schema-inconsistent objects relative to young adults. These findings run counter to previous reports suggesting that aging is associated with processing declines at encoding that impair memory for details of schema-inconsistent or distinctive events. The results are consistent with a retrieval-based account in which age-related difficulties in retrieving contextual details can be offset by environmental support.

  2. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding

    DEFF Research Database (Denmark)

    Kirov, Roumen; Weiss, Carsten; Siebner, Hartwig R

    2009-01-01

    typically occurring during this state of sleep were also enhanced. Here, we show that the same tSOS applied in the waking brain also induced an increase in endogenous EEG slow oscillations (0.4-1.2 Hz), although in a topographically restricted fashion. Applied during wakefulness tSOS, additionally, resulted......The application of transcranial slow oscillation stimulation (tSOS; 0.75 Hz) was previously shown to enhance widespread endogenous EEG slow oscillatory activity when applied during a sleep period characterized by emerging endogenous slow oscillatory activity. Processes of memory consolidation...... induced by tSOS critically depend on brain state. In response to tSOS during wakefulness the brain transposes stimulation by responding preferentially with theta oscillations and facilitated encoding....

  3. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila.

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-12-23

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.

  4. Impact of encoding depth on awareness of perceptual effects in recognition memory.

    Science.gov (United States)

    Gardiner, J M; Gregg, V H; Mashru, R; Thaman, M

    2001-04-01

    Pictorial stimuli are more likely to be recognized if they are the same size, rather than a different size, at study and at test. This size congruency effect was replicated in two experiments in which the encoding variables were respectively undivided versus divided attention and level of processing. In terms of performance, these variables influenced recognition and did not influence size congruency effects. But in terms of awareness, measured by remember and know responses, these variables did influence size congruency effects. With undivided attention and with a deep level of processing, size congruency effects occurred only in remembering. With divided attention and with a shallow level of processing, size congruency effects occurred only in knowing. The results show that effects that occur in remembering may also occur independently in knowing. They support theories in which remembering and knowing reflect different memory processes or systems. They do not support the theory that remembering and knowing reflect differences in trace strength.

  5. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli.

    Science.gov (United States)

    Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan

    2011-04-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Pictures as cues or as support to verbal cues at encoding and execution of prospective memories in individuals with intellectual disability

    OpenAIRE

    Levén, Anna; Lyxell, Björn; Andersson, Jan; Danielsson, Henrik

    2013-01-01

    This study focused on prospective memory in persons with intellectual disability and age-matched controls. Persons with intellectual disability have limited prospective memory function. We investigated prospective memory with words and pictures as cues at encoding and retrieval. Prospective and episodic memory was estimated from Prospective Memory Game performance. Pictures at retrieval were important for prospective memory in particular in the intellectual disability group. Prospective memor...

  7. Visual Working Memory Capacity for Objects from Different Categories: A Face-Specific Maintenance Effect

    Science.gov (United States)

    Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.

    2008-01-01

    The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…

  8. An Excitatory Neural Assembly Encodes Short-Term Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2018-02-01

    Full Text Available Short-term memory (STM is crucial for animals to hold information for a small period of time. Persistent or recurrent neural activity, together with neural oscillations, is known to encode the STM at the cellular level. However, the coding mechanisms at the microcircuitry level remain a mystery. Here, we performed two-photon imaging on behaving mice to monitor the activity of neuronal microcircuitry. We discovered a neuronal subpopulation in the medial prefrontal cortex (mPFC that exhibited emergent properties in a context-dependent manner underlying a STM-like behavior paradigm. These neuronal subpopulations exclusively comprise excitatory neurons and mainly represent a group of neurons with stronger functional connections. Microcircuitry plasticity was maintained for minutes and was absent in an animal model of Alzheimer’s disease (AD. Thus, these results point to a functional coding mechanism that relies on the emergent behavior of a functionally defined neuronal assembly to encode STM.

  9. Differences in prefrontal cortex activation and deactivation during strategic episodic verbal memory encoding in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Joana Bisol Balardin

    2015-08-01

    Full Text Available In this study we examined differences in fMRI activation and deactivation patterns during episodic verbal memory encoding between individuals with MCI (n=18 and healthy controls (n=17. Participants were scanned in two different sessions during the application of self-initiated or directed instructions to apply semantic strategies at encoding of word lists. MCI participants showed reduced free recall scores when using self-initiated encoding strategies that were increased to baseline controls’ level after directed instructions were provided. During directed strategic encoding, greater recruitment of frontoparietal regions was observed in both MCI and control groups; group differences between sessions were observed in the ventromedial prefrontal cortex and the right superior frontal gyrus. This study provides evidence suggesting that differences of activity in these regions may be related to encoding deficits in MCI, possibly mediating executive functions during task performance.

  10. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze.

    Science.gov (United States)

    Yang, Yang; Mailman, Richard B

    2018-05-02

    Strategic neuronal encoding in the medial prefrontal cortex (mPFC) of the rat was correlated with spatial working memory (sWM) assessed by behavior in the T-maze. Neurons increased their firing rate around choice, with the increase largely occurring before choice as a prospective encode of behavior. This could be classified as sensitive-to-spatial information or sensitive-to-choice outcome. The sensitivity-to-spatial choice was defined by distinct firing rate changes before left- or right-choice. The percentage of left-choice sensitive neurons was not different from the percentage of right-choice sensitive neurons. There was also location-related neuronal activity in which neurons fired at distinct rates when rats were in a left- or right-location. More neurons were sensitive to left-location, as most of them were recorded from rats preferring to enter the right-location. The sensitivity to outcome was defined by a distinct firing rate around correct or error choice. Significantly more neurons were sensitive to error outcome, and, among these, more preferred to encode prospectively, increasing firing in advance of an error outcome. Similar to single neuron activity, the mPFC enhanced its neuronal network as measured by the oscillation of local field potential. The maximum power of oscillation was around choice, and occurred slightly earlier before error versus before correct outcome. Thus, sWM modulation in the mPFC includes not only spatial, but also outcome-related inputs, and neuronal ensembles monitor behavioral outcome to make strategic adjustments ensuring successful task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    Science.gov (United States)

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  12. Acoustic Masking Disrupts Time-Dependent Mechanisms of Memory Encoding in Word-List Recall

    Science.gov (United States)

    Cousins, Katheryn A.Q.; Dar, Jonathan; Wingfield, Arthur; Miller, Paul

    2013-01-01

    Recall of recently heard words is affected by the clarity of presentation: even if all words are presented with sufficient clarity for successful recognition, those that are more difficult to hear are less likely to be recalled. Such a result demonstrates that memory processing depends on more than whether a word is simply “recognized” versus “not-recognized”. More surprising is that when a single item in a list of spoken words is acoustically masked, prior words that were heard with full clarity are also less likely to be recalled. To account for such a phenomenon, we developed the Linking by Active Maintenance Model (LAMM). This computational model of perception and encoding predicts that these effects are time dependent. Here we challenge our model by investigating whether and how the impact of acoustic masking on memory depends on presentation rate. We find that a slower presentation rate causes a more disruptive impact of stimulus degradation on prior, clearly heard words than does a fast rate. These results are unexpected according to prior theories of effortful listening, but we demonstrate that they can be accounted for by LAMM. PMID:24838269

  13. Revisiting the effect of reminders on infants' media memories: does the encoding format matter?

    Science.gov (United States)

    Barr, Rachel; Brito, Natalie; Simcock, Gabrielle

    2013-11-01

    With the present research, the authors examined whether reminders could maintain 18-month-olds' memories generated from picture books and videos. Infants (N = 98) were shown a series of target actions in a picture book or on video. Either 24 hr or 2 weeks prior to a 4-week deferred imitation test, they were exposed to a reminder, a partial presentation of the original media demonstration. After both reminder delays, groups that received a video demonstration and a video reminder (video/video) performed significantly better than did the video-reminder-only control group (x/video), but groups that received a picture-book demonstration and a picture-book reminder (book/book) did not perform better than did the picture-book-reminder-only control (x/book). Additionally, if reminders did not veridically match the conditions of encoding (e.g., video demonstration and a book reminder, video/book or vice versa), infants also failed to perform better than controls. Theoretical implications for the understanding of long-term memory processing during early childhood and practical implications for early multimedia usage are discussed.

  14. Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes

    Directory of Open Access Journals (Sweden)

    Tiziana ePedale

    2015-02-01

    Full Text Available One of the most important issues in the study of cognition is to understand which are the factors determining internal representation of the external world. Previous literature has started to highlight the impact of low-level sensory features (indexed by saliency-maps in driving attention selection, hence increasing the probability for objects presented in complex and natural scenes to be successfully encoded into working memory(WM and then correctly remembered. Here we asked whether the probability of retrieving high-saliency objects modulates the overall contents of WM, by decreasing the probability of retrieving other, lower-saliency objects. We presented pictures of natural scenes for 4 secs. After a retention period of 8 secs, we asked participants to verbally report as many objects/details as possible of the previous scenes. We then computed how many times the objects located at either the peak of maximal or minimal saliency in the scene (as indexed by a saliency-map; Itti et al., 1998 were recollected by participants. Results showed that maximal-saliency objects were recollected more often and earlier in the stream of successfully reported items than minimal-saliency objects. This indicates that bottom-up sensory salience increases the recollection probability and facilitates the access to memory representation at retrieval, respectively. Moreover, recollection of the maximal- (but not the minimal- saliency objects predicted the overall amount of successfully recollected objects: The higher the probability of having successfully reported the most-salient object in the scene, the lower the amount of recollected objects. These findings highlight that bottom-up sensory saliency modulates the current contents of WM during recollection of objects from natural scenes, most likely by reducing available resources to encode and then retrieve other (lower saliency objects.

  15. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    Science.gov (United States)

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  16. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    Science.gov (United States)

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.

  17. Neural correlates of memory encoding and recognition for own-race and other-race faces in an associative-memory task.

    Science.gov (United States)

    Herzmann, Grit; Minor, Greta; Adkins, Makenzie

    2017-01-15

    The ability to recognize faces of family members, friends, and acquaintances plays an important role in our daily interactions. The other-race effect is the reduced ability to recognize other-race faces as compared to own-race faces. Previous studies showed different patterns of event-related potentials (ERPs) associated with recollection and familiarity during memory encoding (i.e., Dm) and recognition (i.e., parietal old/new effect) for own-race and other-race faces in a subjective-recollection task (remember-know judgments). The present study investigated the same neural correlates of the other-race effect in an associative-memory task, in which Caucasian and East Asian participants learned and recognized own-race and other-race faces along with background colors. Participants made more false alarms for other-race faces indicating lower memory performance. During the study phase, subsequently recognized other-race faces (with and without correct background information) elicited more positive mean amplitudes than own-race faces, suggesting increased neural activation during encoding of other-race faces. During the test phase, recollection-related old/new effects dissociated between own-race and other-race faces. Old/new effects were significant only for own-race but not for other-race faces, indicating that recognition only of own-race faces was supported by recollection and led to more detailed memory retrieval. Most of these results replicated previous studies that used a subjective-recollection task. Our study also showed that the increased demand on memory encoding during an associative-memory task led to Dm patterns that indicated similarly deep memory encoding for own-race and other-race faces. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Shawn M. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lockhart, Samuel N. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Baker, Suzanne L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging; Jagust, William J. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging

    2017-03-22

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.

  19. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    Science.gov (United States)

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Science.gov (United States)

    Meeuwissen, Esther Berendina; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-01-01

    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions. PMID:21738641

  1. Evidence for human fronto-central gamma activity during long-term memory encoding of word sequences.

    Directory of Open Access Journals (Sweden)

    Esther Berendina Meeuwissen

    Full Text Available Although human gamma activity (30-80 Hz associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG we identified significant differences in the gamma and beta activity. Robust gamma activity (55-65 Hz in left BA6 (supplementary motor area (SMA/pre-SMA was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions.

  2. Associative Symmetry versus Independent Associations in the Memory for Object-Location Associations

    Science.gov (United States)

    Sommer, Tobias; Rose, Michael; Buchel, Christian

    2007-01-01

    The formation of associations between objects and locations is a vital aspect of episodic memory. More specifically, remembering the location where one experienced an object and, vice versa, the object one encountered at a specific location are both important elements for the memory of an event. Whether episodic associations are holistic…

  3. Visual Short-Term Memory Capacity for Simple and Complex Objects

    Science.gov (United States)

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-01-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…

  4. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    Science.gov (United States)

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  5. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Context reinstatement and memory for intrinsic versus extrinsic context: the role of item generation at encoding or retrieval.

    Science.gov (United States)

    Nieznański, Marek

    2014-10-01

    According to many theoretical accounts, reinstating study context at the time of test creates optimal circumstances for item retrieval. The role of context reinstatement was tested in reference to context memory in several experiments. On the encoding phase, participants were presented with words printed in two different font colors (intrinsic context) or two different sides of the computer screen (extrinsic context). At test, the context was reinstated or changed and participants were asked to recognize words and recollect their study context. Moreover, a read-generate manipulation was introduced at encoding and retrieval, which was intended to influence the relative salience of item and context information. The results showed that context reinstatement had no effect on memory for extrinsic context but affected memory for intrinsic context when the item was generated at encoding and read at test. These results supported the hypothesis that context information is reconstructed at retrieval only when context was poorly encoded at study. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  7. Influence of controlled encoding and retrieval facilitation on memory performance in patients with different profiles of mild cognitive impairment.

    Science.gov (United States)

    Perri, Roberta; Monaco, Marco; Fadda, Lucia; Serra, Laura; Marra, Camillo; Caltagirone, Carlo; Bruni, Amalia C; Curcio, Sabrina; Bozzali, M; Carlesimo, Giovanni A

    2015-01-01

    Memory tests able to differentiate encoding and retrieval processes from the memoranda storing ones should be used to differentiate patients in a very early phase of AD. In fact, individuals with mild cognitive impairment (MCI) can be characterized by two different memory profiles: a pure amnestic one (with poor learning and retrieval and poor improvement when encoding is assisted and retrieval is facilitated) and a dysexecutive one (with inefficient encoding and/or poor retrieval strategies and improvement with assisted encoding and retrieval). The amnestic profile characterizes subjects affected by medio-temporal atrophy typical of AD. In this study, a Grober-Buschke memory procedure was used to evaluate normal controls and MCI patients with different cognitive profiles: pure amnestic (aMCIsd), amnestic plus other cognitive impairments (aMCImd) and non-amnestic (naMCI). An index of sensitivity of cueing (ISC) measured the advantage passing from free to cued recall. Results showed that both strategic and consolidation abilities were impaired in the aMCIsd and aMCImd groups and were preserved in the naMCI group. aMCImd, however, compensated the memory deficit with assisted encoding and retrieval, but aMCIsd performed very poorly. When MCI subjects were defined according to the ISC value, subjects with poor ISC were primarily in the aMCIsd group and, to a lesser extent, in the aMCImd group and the naMCI group. Finally, patients with a poor ISC showed cerebral atrophy documented in the precocious phase of AD and the retrosplenial cerebral areas seemed to be the most useful areas for identifying patients in the early phase of AD.

  8. Encoding and retrieval processes involved in the access of source information in the absence of item memory.

    Science.gov (United States)

    Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

    2014-09-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.

  9. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.

    Science.gov (United States)

    Tan, Huibing; Lauzon, Nicole M; Bishop, Stephanie F; Bechard, Melanie A; Laviolette, Steven R

    2010-06-01

    The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.

  10. A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment.

    Science.gov (United States)

    Xie, Long; Dolui, Sudipto; Das, Sandhitsu R; Stockbower, Grace E; Daffner, Molly; Rao, Hengyi; Yushkevich, Paul A; Detre, John A; Wolk, David A

    2016-01-01

    Arterial spin labeled perfusion magnetic resonance imaging (ASL MRI) provides non-invasive quantification of cerebral blood flow, which can be used as a biomarker of brain function due to the tight coupling between cerebral blood flow (CBF) and brain metabolism. A growing body of literature suggests that regional CBF is altered in neurodegenerative diseases. Here we examined ASL MRI CBF in subjects with amnestic mild cognitive impairment (n = 65) and cognitively normal healthy controls (n = 62), both at rest and during performance of a memory-encoding task. As compared to rest, task-enhanced ASL MRI improved group discrimination, which supports the notion that physiologic measures during a cognitive challenge, or "stress test", may increase the ability to detect subtle functional changes in early disease stages. Further, logistic regression analysis demonstrated that ASL MRI and concomitantly acquired structural MRI provide complementary information of disease status. The current findings support the potential utility of task-enhanced ASL MRI as a biomarker in early Alzheimer's disease.

  11. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

    Science.gov (United States)

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-01-01

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794

  12. Power shifts track serial position and modulate encoding in human episodic memory.

    Science.gov (United States)

    Serruya, Mijail D; Sederberg, Per B; Kahana, Michael J

    2014-02-01

    The first events in a series exert a powerful influence on cognition and behavior in both humans and animals. This is known as the law of primacy. Here, we analyze the neural correlates of primacy in humans by analyzing electrocorticographic recordings in 84 neurosurgical patients as they studied and subsequently recalled lists of common words. We found that spectral power in the gamma frequency band (28-100 Hz) was elevated at the start of the list and gradually subsided, whereas lower frequency (2-8 Hz) delta and theta band power exhibited the opposite trend. This gradual shift in the power spectrum was found across a widespread network of brain regions. The degree to which the subsequent memory effect was modulated by list (serial) position was most pronounced in medial temporal lobe structures. These results suggest that globally increased gamma and decreased delta-theta spectral powers reflect a brain state that predisposes medial temporal lobe structures to enhance the encoding and maintenance of early list items.

  13. Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization

    Institute of Scientific and Technical Information of China (English)

    Xu Liu; Tiao-Tiao Liu; Wen-Wen Bai; Hu Yi; Shuang-Yan Li; Xin Tian

    2013-01-01

    Working memory plays an important role in human cognition.This study investigated how working memory was encoded by the power of multi-channel local field potentials (LFPs) based on sparse nonnegative matrix factorization (SNMF).SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four Sprague-Dawley rats during a memory task in a Y maze,with 10 trials for each rat.Then the power-increased LFP components were selected as working memory-related features and the other components were removed.After that,the inverse operation of SNMF was used to study the encoding of working memory in the timefrequency domain.We demonstrated that theta and gamma power increased significantly during the working memory task.The results suggested that postsynaptic activity was simulated well by the sparse activity model.The theta and gamma bands were meaningful for encoding working memory.

  14. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    Science.gov (United States)

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults

    Science.gov (United States)

    Hayes, Scott M.; Hayes, Jasmeet P.; Williams, Victoria J.; Liu, Huiting; Verfaellie, Mieke

    2017-01-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO2) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  16. FMRI activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults.

    Science.gov (United States)

    Hayes, Scott M; Hayes, Jasmeet P; Williams, Victoria J; Liu, Huiting; Verfaellie, Mieke

    2017-06-01

    Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO 2 ) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO 2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO 2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions

  17. Conceptual distinctiveness supports detailed visual long-term memory for real-world objects.

    Science.gov (United States)

    Konkle, Talia; Brady, Timothy F; Alvarez, George A; Oliva, Aude

    2010-08-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers' capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. 2010 APA, all rights reserved

  18. Glucocorticoid effects on object recognition memory require training-associated emotional arousal

    OpenAIRE

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2004-01-01

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague–Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two condition...

  19. Massive Memory Revisited: Limitations on Storage Capacity for Object Details in Visual Long-Term Memory

    Science.gov (United States)

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…

  20. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    Science.gov (United States)

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  1. Understanding women's experience of memory over the menopausal transition: subjective and objective memory in pre-, peri-, and postmenopausal women.

    Science.gov (United States)

    Unkenstein, Anne E; Bryant, Christina A; Judd, Fiona K; Ong, Ben; Kinsella, Glynda J

    2016-12-01

    Many women complain of forgetfulness during the menopausal transition. This study aimed to examine women's subjective perception of memory and their objective memory performance across the menopausal transition. One hundred thirty women, aged 40 to 60 years were recruited from outpatient Menopause and Gynaecological clinics at the Royal Women's Hospital, Melbourne. Women were divided into menopausal stage groups according to the Stages of Reproductive Aging Workshop criteria based on menstrual patterns. All women completed self-report measures of depressive, anxiety, vasomotor, and sleep symptoms; attitude to menopause; and various aspects of memory, including memory contentment, frequency of forgetting, sense of control over memory, and use of memory strategies. Women also completed a comprehensive neuropsychological evaluation assessing memory and executive function. Comprehensive neuropsychological assessment showed no difference between premenopausal (n = 36), perimenopausal (n = 54), and postmenopausal (n = 40) groups in performance on memory and executive tasks. Perimenopausal women, however, reported significantly more frequent forgetting (η = 0.09, P memory (η = 0.08, P memory. During the menopausal transition women with a more negative attitude to menopause and more intense depressive, anxiety, vasomotor, and sleep symptoms are more vulnerable to feeling less content with their memory.

  2. Divided attention can enhance early-phase memory encoding: the attentional boost effect and study trial duration.

    Science.gov (United States)

    Mulligan, Neil W; Spataro, Pietro

    2015-07-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result. (c) 2015 APA, all rights reserved.

  3. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    Science.gov (United States)

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  4. Medial prefrontal-hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity

    NARCIS (Netherlands)

    Berkers, R.M.W.J.; Klumpers, F.; Fernandez, G.S.E.

    2016-01-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to

  5. Medial prefrontal–hippocampal connectivity during emotional memory encoding predicts individual differences in the loss of associative memory specificity

    NARCIS (Netherlands)

    Berkers, R.M.W.J.; Klumpers, F.; Fernandez, G.S.E.

    2016-01-01

    Emotionally charged items are often remembered better, whereas a paradoxical loss of specificity is found for associative emotional information (specific memory). The balance between specific and generalized emotional memories appears to show large individual differences, potentially related to

  6. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    Science.gov (United States)

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  7. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  8. Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory.

    Science.gov (United States)

    Langston, Rosamund F; Wood, Emma R

    2010-10-01

    The hippocampus is thought to be required for the associative recognition of objects together with the spatial or temporal contexts in which they occur. However, recent data showing that rats with fornix lesions perform as well as controls in an object-place task, while being impaired on an object-place-context task (Eacott and Norman (2004) J Neurosci 24:1948-1953), suggest that not all forms of context-dependent associative recognition depend on the integrity of the hippocampus. To examine the role of the hippocampus in context-dependent recognition directly, the present study tested the effects of large, selective, bilateral hippocampus lesions in rats on performance of a series of spontaneous recognition memory tasks: object recognition, object-place recognition, object-context recognition and object-place-context recognition. Consistent with the effects of fornix lesions, animals with hippocampus lesions were impaired only on the object-place-context task. These data confirm that not all forms of context-dependent associative recognition are mediated by the hippocampus. Subsequent experiments suggested that the object-place task does not require an allocentric representation of space, which could account for the lack of impairment following hippocampus lesions. Importantly, as the object-place-context task has similar spatial requirements, the selective deficit in object-place-context recognition suggests that this task requires hippocampus-dependent neural processes distinct from those required for allocentric spatial memory, or for object memory, object-place memory or object-context memory. Two possibilities are that object, place, and context information converge only in the hippocampus, or that recognition of integrated object-place-context information requires a hippocampus-dependent mode of retrieval, such as recollection. © 2009 Wiley-Liss, Inc.

  9. Regional activation of the human medial temporal lobe during intentional encoding of objects and positions

    DEFF Research Database (Denmark)

    Ramsøy, Thomas Z.; Liptrot, Matthew G.; Skimminge, Arnold

    2009-01-01

    The medial temporal lobe (MTL) consists of several regions thought to be involved in learning and memory. However, the degree of functional specialization among these regions remains unclear. Previous studies have demonstrated effects of both content and processing stage, but findings have been i...

  10. Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects

    Science.gov (United States)

    Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude

    2010-01-01

    Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…

  11. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Distinct neuronal interactions in anterior inferotemporal areas of macaque monkeys during retrieval of object association memory.

    Science.gov (United States)

    Hirabayashi, Toshiyuki; Tamura, Keita; Takeuchi, Daigo; Takeda, Masaki; Koyano, Kenji W; Miyashita, Yasushi

    2014-07-09

    In macaque monkeys, the anterior inferotemporal cortex, a region crucial for object memory processing, is composed of two adjacent, hierarchically distinct areas, TE and 36, for which different functional roles and neuronal responses in object memory tasks have been characterized. However, it remains unknown how the neuronal interactions differ between these areas during memory retrieval. Here, we conducted simultaneous recordings from multiple single-units in each of these areas while monkeys performed an object association memory task and examined the inter-area differences in neuronal interactions during the delay period. Although memory neurons showing sustained activity for the presented cue stimulus, cue-holding (CH) neurons, interacted with each other in both areas, only those neurons in area 36 interacted with another type of memory neurons coding for the to-be-recalled paired associate (pair-recall neurons) during memory retrieval. Furthermore, pairs of CH neurons in area TE showed functional coupling in response to each individual object during memory retention, whereas the same class of neuron pairs in area 36 exhibited a comparable strength of coupling in response to both associated objects. These results suggest predominant neuronal interactions in area 36 during the mnemonic processing, which may underlie the pivotal role of this brain area in both storage and retrieval of object association memory. Copyright © 2014 the authors 0270-6474/14/349377-12$15.00/0.

  13. The dual effect of context on memory of related and unrelated themes: discrimination at encoding and cue at retrieval.

    Science.gov (United States)

    Levy-Gigi, Einat; Vakil, Eli

    2012-01-01

    The influence of contextual factors on encoding and retrieval in recognition memory was investigated using a retroactive interference paradigm. Participants were randomly assigned to four context conditions constructed by manipulating types of presentation modality (pictures vs words) for study, interference, and test stages, respectively (ABA, ABB, AAA, & AAB). In Experiment 1 we presented unrelated items in the study and interference stages, while in Experiment 2 each stage contained items from the same semantic category. The results demonstrate a dual role for context in memory processes-at encoding as well as at retrieval. In Experiment 1 there is a hierarchical order between the four context conditions, depending on both target-test and target-interference contextual similarity. Adding a categorical context in Experiment 2 helped to specify each list and therefore better distinguish between target and interferer information, and in some conditions compensated for their perceptual similarity.

  14. Infliximab ameliorates AD-associated object recognition memory impairment.

    Science.gov (United States)

    Kim, Dong Hyun; Choi, Seong-Min; Jho, Jihoon; Park, Man-Seok; Kang, Jisu; Park, Se Jin; Ryu, Jong Hoon; Jo, Jihoon; Kim, Hyun Hee; Kim, Byeong C

    2016-09-15

    Dysfunctions in the perirhinal cortex (PRh) are associated with visual recognition memory deficit, which is frequently detected in the early stage of Alzheimer's disease. Muscarinic acetylcholine receptor-dependent long-term depression (mAChR-LTD) of synaptic transmission is known as a key pathway in eliciting this type of memory, and Tg2576 mice expressing enhanced levels of Aβ oligomers are found to have impaired mAChR-LTD in this brain area at as early as 3 months of age. We found that the administration of Aβ oligomers in young normal mice also induced visual recognition memory impairment and perturbed mAChR-LTD in mouse PRh slices. In addition, when mice were treated with infliximab, a monoclonal antibody against TNF-α, visual recognition memory impaired by pre-administered Aβ oligomers dramatically improved and the detrimental Aβ effect on mAChR-LTD was annulled. Taken together, these findings suggest that Aβ-induced inflammation is mediated through TNF-α signaling cascades, disturbing synaptic transmission in the PRh, and leading to visual recognition memory deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.

    Science.gov (United States)

    Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S

    2007-10-17

    The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.

  16. Saccades phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding

    OpenAIRE

    Noachtar, Soheyl; Doeller, Christian; Jensen, Ole; Hartl, Elisabeth; Staudigl, Tobias

    2017-01-01

    Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and MEG recordings, we show that saccades are locked to the phase of visual alpha oscillations, and that this coordination supports mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the inter...

  17. The effect of contextual cues on the encoding of motor memories.

    Science.gov (United States)

    Howard, Ian S; Wolpert, Daniel M; Franklin, David W

    2013-05-01

    Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.

  18. The attentional blink reveals serial working memory encoding: evidence from virtual and human event-related potentials.

    Science.gov (United States)

    Craston, Patrick; Wyble, Brad; Chennu, Srivas; Bowman, Howard

    2009-03-01

    Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST(2) model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom-up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST(2) model's neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate "virtual ERPs" by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST(2) model.

  19. The influence of object relative size on priming and explicit memory.

    Science.gov (United States)

    Uttl, Bob; Graf, Peter; Siegenthaler, Amy L

    2008-09-01

    We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views.

  20. The influence of object relative size on priming and explicit memory.

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views.

  1. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination.

    Science.gov (United States)

    Ferrara, Nicole C; Cullen, Patrick K; Pullins, Shane P; Rotondo, Elena K; Helmstetter, Fred J

    2017-09-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress. © 2017 Ferrara et al.; Published by Cold Spring Harbor Laboratory Press.

  2. The effects of eye movements on emotional memories: using an objective measure of cognitive load

    Directory of Open Access Journals (Sweden)

    Suzanne C. van Veen

    2016-07-01

    Full Text Available Background: Eye movement desensitization and reprocessing (EMDR is an effective treatment for posttraumatic stress disorder. The working memory (WM theory explains its efficacy: recall of an aversive memory and making eye movements (EM both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. Objective: We hypothesized that 1 recall of an aversive autobiographical memory loads WM compared to no recall, and 2 recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM. Method: Undergraduates (N=108 were randomly assigned to one of three conditions: 1 recall relevant memory with EM, 2 recall relevant memory without EM, and 3 recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s, and after (16×24 s the intervention. Results: Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Conclusions: Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory.

  3. To boost or to CRUNCH? Effect of effortful encoding on episodic memory in older adults is dependent on executive functioning.

    Directory of Open Access Journals (Sweden)

    Li Fu

    Full Text Available It is essential to develop effective interventions aimed at ameliorating age-related cognitive decline. Previous studies found that effortful encoding benefits episodic memory in older adults. However, to date it is unclear whether this benefit is different for individuals with strong versus weak executive functioning (EF. Fifty-one older adults were recruited and divided into low (N = 26 and high (N = 25 functioning groups, based on their EF capacity. All participants performed a semantic and a perceptual incidental encoding task. Each encoding task was performed under four difficulty levels to establish different effort levels. Encoding was followed by a recognition task. Results showed that the high EF group benefitted from increased effort in both tasks. However, the low EF group only showed a beneficial effect under low levels of effort. Results are consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH and suggest that future research directed at developing efficient memory strategies to reduce negative cognitive aging effects should take individual cognitive differences among older adults into account, such as differences in EF.

  4. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    Science.gov (United States)

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  5. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    Science.gov (United States)

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  6. Massive memory revisited: Limitations on storage capacity for object details in visual long-term memory

    OpenAIRE

    Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.

    2015-01-01

    Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The results reveal that while VLTM representations are typically sufficient to support performance when the procedure probes gist-based information, they...

  7. Social cues at encoding affect memory in 4-month-old infants.

    Science.gov (United States)

    Kopp, Franziska; Lindenberger, Ulman

    2012-01-01

    Available evidence suggests that infants use adults' social cues for learning by the second half of the first year of life. However, little is known about the short-term or long-term effects of joint attention interactions on learning and memory in younger infants. In the present study, 4-month-old infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high vs. low). Brain activity in response to familiar and novel objects was assessed immediately after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). The latency of the Nc component differentiated between recognition of old versus new objects. Pb amplitude and latency were affected by joint attention in delayed recognition. Moreover, the frequency of infant gaze to the experimenter during familiarization differed between the two experimental groups and modulated the Pb response. Results show that joint attention affects the mechanisms of long-term retention in 4-month-old infants. We conclude that joint attention helps children at this young age to recognize the relevance of learned items.

  8. Toward self-stabilizing wait-free shared memory objects

    NARCIS (Netherlands)

    J.H. Hoepman (Jaap-Henk); M. Papatriantafilou (Marina); P. Tsigas (Philippas)

    1995-01-01

    textabstractPast research on fault tolerant distributed systems has focussed on either processor failures, ranging from benign crash failures to the malicious byzantine failure types, or on transient memory failures, which can suddenly corrupt the state of the system. An interesting question in the

  9. Observing how others lift light or heavy objects: time-dependent encoding of grip force in the primary motor cortex.

    Science.gov (United States)

    Alaerts, Kaat; de Beukelaar, Toon T; Swinnen, Stephan P; Wenderoth, Nicole

    2012-07-01

    During movement observation, corticomotor excitability of the observer's primary motor cortex (M1) is modulated according to the force requirements of the observed action. Here, we explored the time course of observation-induced force encoding. Force-related changes in M1-excitability were assessed by delivering transcranial magnetic stimulations at distinct temporal phases of an observed reach-grasp-lift action. Temporal changes in force-related electromyographic activity were also assessed during active movement execution. In observation conditions in which a heavy object was lifted, M1-excitability was higher compared to conditions in which a light object was lifted. Both during observation and execution, differential force encoding tended to gradually increase from the grasping phase until the late lift phase. Surprisingly, however, during observation, force encoding was already present at the early reach phase: a time point at which no visual cues on the object's weight were available to the observer. As the observer was aware that the same weight condition was presented repeatedly, this finding may indicate that prior predictions concerning the upcoming weight condition are reflected by M1 excitability. Overall, findings may provide indications that the observer's motor system represents motor predictions as well as muscular requirements to infer the observed movement goal.

  10. Visual long-term memory has a massive storage capacity for object details

    OpenAIRE

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.; Oliva, Aude

    2008-01-01

    One of the major lessons of memory research has been that human memory is fallible, imprecise, and subject to interference. Thus, although observers can remember thousands of images, it is widely assumed that these memories lack detail. Contrary to this assumption, here we show that long-term memory is capable of storing a massive number of objects with details from the image. Participants viewed pictures of 2,500 objects over the course of 5.5 h. Afterward, they were shown pairs of images an...

  11. A class Hierarchical, object-oriented approach to virtual memory management

    Science.gov (United States)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  12. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    OpenAIRE

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hy...

  13. Detecting changes in real-world objects: The relationship between visual long-term memory and change blindness.

    Science.gov (United States)

    Brady, Timothy F; Konkle, Talia; Oliva, Aude; Alvarez, George A

    2009-01-01

    A large body of literature has shown that observers often fail to notice significant changes in visual scenes, even when these changes happen right in front of their eyes. For instance, people often fail to notice if their conversation partner is switched to another person, or if large background objects suddenly disappear.1,2 These 'change blindness' studies have led to the inference that the amount of information we remember about each item in a visual scene may be quite low.1 However, in recent work we have demonstrated that long-term memory is capable of storing a massive number of visual objects with significant detail about each item.3 In the present paper we attempt to reconcile these findings by demonstrating that observers do not experience 'change blindness' with the real world objects used in our previous experiment if they are given sufficient time to encode each item. The results reported here suggest that one of the major causes of change blindness for real-world objects is a lack of encoding time or attention to each object (see also refs. 4 and 5).

  14. Human Memory Limitations in Multi-Object Tracking.

    Science.gov (United States)

    1982-06-01

    processing concepts of Norman (1968) and Atkinson and Shiffrin (1968), and from the " levels of processing " formulation of Craik and Lockhart ...distinct memory representations that result from different levels of processing . Craik and Lockhart (1972) have argued convincingly for a process -oriented...learning and motivation (Vol. 2). New York: Academic Press, 1968, pp. 89-105. Craik , F. I. M., & Lockhart , R. S. Levels of processing

  15. Forms of Memory for Representation of Visual Objects

    Science.gov (United States)

    1991-04-15

    neuropsychological syndromes that involve disruption of perceptual representation systems should pay rich dividends for implicit memory research (Schacter et al...BLACKORDi. 1988b. Deficits in the implicit retention of new associations by alcoholic Korsakoff patients. Brain and Cognition 7: 145-156. COFER, C. C...MOREINES & N. BUTTERS. 1973. Retrieving information from Korsakoff patients: Effects of categorical cues and reference to the task. Cortex 9: 165

  16. Sexual Orientation and Spatial Position Effects on Selective Forms of Object Location Memory

    Science.gov (United States)

    Rahman, Qazi; Newland, Cherie; Smyth, Beatrice Mary

    2011-01-01

    Prior research has demonstrated robust sex and sexual orientation-related differences in object location memory in humans. Here we show that this sexual variation may depend on the spatial position of target objects and the task-specific nature of the spatial array. We tested the recovery of object locations in three object arrays (object…

  17. The effects of eye movements on emotional memories: using an objective measure of cognitive load.

    Science.gov (United States)

    van Veen, Suzanne C; Engelhard, Iris M; van den Hout, Marcel A

    2016-01-01

    Eye movement desensitization and reprocessing (EMDR) is an effective treatment for posttraumatic stress disorder. The working memory (WM) theory explains its efficacy: recall of an aversive memory and making eye movements (EM) both produce cognitive load, and competition for the limited WM resources reduces the memory's vividness and emotionality. The present study tested several predictions from WM theory. We hypothesized that 1) recall of an aversive autobiographical memory loads WM compared to no recall, and 2) recall with EM reduces the vividness, emotionality, and cognitive load of recalling the memory more than only recall or only cognitive effort (i.e., recall of an irrelevant memory with EM). Undergraduates (N=108) were randomly assigned to one of three conditions: 1) recall relevant memory with EM, 2) recall relevant memory without EM, and 3) recall irrelevant memory with EM. We used a random interval repetition task to measure the cognitive load of recalling the memory. Participants responded to randomly administered beeps, with or without recalling the memory. The degree to which participants slow down during recall provides an index of cognitive load. We measured the cognitive load and self-reported vividness and emotionality before, halfway through (8×24 s), and after (16×24 s) the intervention. Reaction times slowed down during memory recall compared to no recall. The recall relevant with EM condition showed a larger decrease in self-reported vividness and emotionality than the control conditions. The cognitive load of recalling the memory also decreased in this condition but not consistently more than in the control conditions. Recall of an aversive memory loads WM, but drops in vividness and emotionality do not immediately reduce the cognitive load of recalling the memory. More research is needed to find objective measures that could capture changes in the quality of the memory.

  18. Sustaining prospective memory functioning in amnestic mild cognitive impairment: A lifespan approach to the critical role of encoding.

    Science.gov (United States)

    Pereira, Antonina; Altgassen, Mareike; Atchison, Lesley; de Mendonça, Alexandre; Ellis, Judi

    2018-04-16

    Prospective memory (PM), the ability to remember to perform future activities, is a fundamental requirement for independent living. PM tasks pervade our daily lives, and PM failures represent one of the most prominent memory concerns across the entire life span. This study aimed to address this issue by exploring the potential benefits of specific encoding strategies on memory for intentions across healthy adulthood and in the early stages of cognitive impairment. PM performance was explored through an experimental paradigm in 96 participants: 32 amnestic mild cognitively impaired patients aged 64-87 years (M = 6.75, SD = 5.88), 32 healthy older adults aged 62-84 years (M = 76.06, SD = 6.03), and 32 younger adults 18-22 years (M = 19.75, SD = 1.16). The potential benefit of the use of enactment (i.e., physically simulating the intended action) at encoding to support an autonomous performance despite neuronal degeneration was assessed. PM was consistently identified as a sensitive and specific indicator of cognitive impairment. Importantly, enacted encoding was consistently beneficial for PM performance of all the participants, but especially so in the case of healthy and cognitively impaired older adults. These positive results have unveiled the potential of this encoding technique to optimize attentional demands through an adaptive allocation of strategic resources across both healthy and cognitively impaired samples. Theoretical implications of this work are discussed as well as the considerable translational potential to improve social well-being. A better understanding of the strategies that can enhance PM offers the potential for cost-effective and widely applicable tools which may support independent living across the adult life span. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Preserving objects, preserving memories: Repair professionals and object owners on the relation between traces on personal possessions and memories

    NARCIS (Netherlands)

    Zijlema, A.F.; van den Hoven, E.A.W.H.; Eggen, J.H.; Bakker, C.; Mugge, R.

    2017-01-01

    Traces of ageing and use on the material of products, and memories associated with products, have been found to contribute to product attachment and can stimulate product longevity. We present findings of a qualitative study that focused on the relation between traces of ageing and use on personal

  20. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  1. Distinct neural correlates of associative working memory and long-term memory encoding in the medial temporal lobe

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2012-01-01

    Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies

  2. Suppressing memories of words and familiar objects results in their affective devaluation: Evidence from Think/No-think tasks.

    Science.gov (United States)

    De Vito, David; Fenske, Mark J

    2017-05-01

    Potentially distracting or otherwise-inappropriate stimuli, thoughts, or actions often must be inhibited to prevent interference with goal-directed behaviour. Growing evidence suggests that the impact of inhibition is not limited to reduced neurocognitive processing, but also includes negative affective consequences for any associated stimuli. The link between inhibition and aversive response has primarily been studied using tasks involving attentional- or response-related inhibition of external sensory stimuli. Here we show that affective devaluation also occurs when inhibition is applied to fully-encoded stimulus representations in memory. We first replicated prior findings of increased forgetting of words whose memories were suppressed in a Think/No-think procedure (Experiment 1). Incorporating a stimulus-evaluation task within this procedure revealed that suppressing memories of words (Experiment 2) and visual objects (Experiment 3) also results in their affective devaluation. Given the critical role of memory for guiding thoughts and actions, these results suggest that the affective consequences of inhibition may occur across a far broader range of situations than previously understood. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  4. PKMzeta maintains 1-day- and 6-day-old long-term object location but not object identity memory in dorsal hippocampus.

    Science.gov (United States)

    Hardt, Oliver; Migues, Paola V; Hastings, Margaret; Wong, Jacinda; Nader, Karim

    2010-06-01

    Continuous activity of the atypical protein kinase C isoform M zeta (PKMzeta) is necessary for maintaining long-term memory acquired in aversively or appetitively motivated associative learning tasks, such as active avoidance, aversive taste conditioning, auditory and contextual fear conditioning, radial arm maze, and watermaze. Whether unreinforced, nonassociative memory will also require PKMzeta for long-term maintenance is not known. Using recognition memory for object location and object identity, we found that inactivating PKMzeta in dorsal hippocampus abolishes 1-day and 6-day-old long-term recognition memory for object location, while recognition memory for object identity was not affected by this treatment. Memory for object location persisted for no more than 35 days after training. These results suggest that the dorsal hippocampus mediates long-term memory for where, but not what things have been encountered, and that PKMzeta maintains this type of spatial knowledge as long as the memory exists.

  5. Differing Time of Onset of Concurrent TMS-fMRI during Associative Memory Encoding: A Measure of Dynamic Connectivity

    Directory of Open Access Journals (Sweden)

    Colin Hawco

    2017-08-01

    Full Text Available There has been a distinct shift in neuroimaging from localization of function into a more network based approach focused on connectivity. While fMRI has proven very fruitful for this, the hemodynamic signal is inherently slow which limits the temporal resolution of fMRI-only connectivity measures. The brain, however, works on a time scale of milliseconds. This study utilized concurrent transcranial magnetic stimulation (TMS-fMRI in a novel way to obtain measures of dynamic connectivity by measuring changes in fMRI signal amplitude in regions distal to the site of stimulation following differing TMS onset times. Seventeen healthy subjects completed an associative memory encoding task known to involve the DLPFC, viewing pairs of objects which could be semantically related or unrelated. Three pulses of 10 Hz repetitive TMS were applied over the left DLPFC starting either at 200, 600, or 1000 ms after stimulus onset. Associations for related pairs were better remembered than unrelated pairs in a post-scan cued recall test. Differences in neural activity were assessed across different TMS onsets, separately for related and unrelated pairs. Time specific TMS effects were observed in several regions, including those associated with higher-level processing (lateral frontal, anterior cingulate, visual areas (occipital, and regions involved in semantic processing (e.g., left mid-temporal and medial frontal. Activity in the frontal cortex was decreased at 200 ms post-stimulus for unrelated pairs, and 1000 ms post-stimulus for related pairs. This suggests differences in the timing across conditions in which the DLFPC interacts with other PFC regions, consistent with the notion that the DLPFC is facilitating extended semantic processing for related items. This study demonstrates that time-varying TMS onset inside the MRI can be used to reliably measure fast dynamic connectivity with a temporal resolution in the hundreds of milliseconds.

  6. Effects of grasp compatibility on long-term memory for objects.

    Science.gov (United States)

    Canits, Ivonne; Pecher, Diane; Zeelenberg, René

    2018-01-01

    Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  8. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults.

    Science.gov (United States)

    Lineweaver, Tara T; Bondi, Mark W; Galasko, Douglas; Salmon, David P

    2014-02-01

    The knowledge that one carries the apolipoprotein E (APOE) ε4 allele risk factor for Alzheimer's disease was recently found to have little short-term psychological risk. The authors investigated the impact of knowledge of carrying the risk allele on subjective ratings of memory and objective memory test performance of older adults. Using a nested case-control design, the authors administered objective verbal and visual memory tests and self-rating scales of memory function to 144 cognitively normal older adults (ages 52-89) with known APOE genotype who knew (ε4+, N=25; ε4-, N=49) or did not know (ε4+, N=25; ε4-, N=45) their genotype and genetic risk for Alzheimer's disease prior to neuropsychological evaluation. Significant genotype-by-disclosure interaction effects were observed on several memory rating scales and tests of immediate and delayed verbal recall. Older adults who knew their ε4+ genotype judged their memory more harshly and performed worse on an objective verbal memory test than did ε4+ adults who did not know. In contrast, older adults who knew their ε4- genotype judged their memory more positively than did ε4- adults who did not know, but these groups did not differ in objective memory test performance. Informing older adults that they have an APOE genotype associated with an increased risk of Alzheimer's disease can have adverse consequences on their perception of their memory abilities and their performance on objective memory tests. The patient's knowledge of his or her genotype and risk of Alzheimer's disease should be considered when evaluating cognition in the elderly.

  9. Nicotine enhances the reconsolidation of novel object recognition memory in rats.

    Science.gov (United States)

    Tian, Shaowen; Pan, Si; You, Yong

    2015-02-01

    There is increasing evidence that nicotine is involved in learning and memory. However, there are only few studies that have evaluated the relationship between nicotine and memory reconsolidation. In this study, we investigated the effects of nicotine on the reconsolidation of novel object recognition memory in rats. Behavior procedure involved four training phases: habituation (Days 1 and 2), sample (Day 3), reactivation (Day 4) and test (Day 6). Rats were injected with saline or nicotine (0.1, 0.2 and 0.4 mg/kg) immediately or 6h after reactivation. The discrimination index was used to assess memory performance and calculated as the difference in time exploring on the novel and familiar objects. Results showed that nicotine administration immediately but not 6 h after reactivation significantly enhanced memory performance of rats. Further results showed that the enhancing effect of nicotine on memory performance was dependent on memory reactivation, and was not attributed to the changes of the nonspecific responses (locomotor activity and anxiety level) 48 h after nicotine administration. The results suggest that post-reactivation nicotine administration enhances the reconsolidation of novel object recognition memory. Our present finding extends previous research on the nicotinic effects on learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Memory for Emotional Words in the First and the Second Language: Effects of the Encoding Task

    Science.gov (United States)

    Ferre, Pilar; Sanchez-Casas, Rosa; Fraga, Isabel

    2013-01-01

    Emotional words are better remembered than neutral words in the first language. Ferre, Garcia, Fraga, Sanchez-Casas and Molero (2010) found this emotional effect also for second language words by using an encoding task focused on emotionality. The aim of the present study was to test whether the same effect can also be observed with encoding tasks…

  11. The relationship between protein synthesis and protein degradation in object recognition memory.

    Science.gov (United States)

    Furini, Cristiane R G; Myskiw, Jociane de C; Schmidt, Bianca E; Zinn, Carolina G; Peixoto, Patricia B; Pereira, Luiza D; Izquierdo, Ivan

    2015-11-01

    For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  13. Object Selection Costs in Visual Working Memory: A Diffusion Model Analysis of the Focus of Attention

    Science.gov (United States)

    Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.

    2016-01-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…

  14. Effects of testosterone administration on selective aspects of object-location memory in healthy young women

    NARCIS (Netherlands)

    Postma, A; Tuiten, A; van Honk, J; Kessels, RPC; Thijssen, J

    Previous work has indicated that object-location memory is sensitive to sex differences as well as variations in the menstrual cycle. The goal of the present study was to further examine the hormonal basis of human spatial memory by assessing the effects of a single dose of exogenous testosterone in

  15. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    Science.gov (United States)

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  16. Memory in pregnancy and post-partum: Item specific and relational encoding processes in recall and recognition.

    Science.gov (United States)

    Spataro, Pietro; Saraulli, Daniele; Oriolo, Debora; Costanzi, Marco; Zanetti, Humberto; Cestari, Vincenzo; Rossi-Arnaud, Clelia

    2016-08-01

    It has been recently proposed that pregnant women would perform memory tasks by focusing more on item-specific processes and less on relational processing, compared to post-partum women (Mickes, Wixted, Shapiro & Scarff, ). The present cross-sectional study tested this hypothesis by directly manipulating the type of encoding employed in the study phase. Pregnant, post-partum and control women either rated the pleasantness of word meaning (which induced item-specific elaboration) or named the semantic category to which they belonged (which induced relational elaboration). Memory for the encoded words was later tested in free recall (which emphasizes relational processing) and in recognition (which emphasizes item-specific processing). In line with Mickes et al.'s () conclusions, pregnant women in the item-specific condition performed worse than post-partum women in the relational condition in free recall, but not in recognition. However, compared to the other two groups, pregnant women also exhibited lower recognition accuracy in the item-specific condition. Overall, these results confirm that pregnant women rely on relational encoding less than post-partum women, but additionally suggest that the former group might use item-specific processes less efficiently than post-partum and control women. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  17. Imbalance of incidental encoding across tasks: An explanation for non-memory-related hippocampal activations?

    OpenAIRE

    Reas, Emilie T.; Brewer, James B.

    2013-01-01

    Functional neuroimaging studies have increasingly noted hippocampal activation associated with a variety of cognitive functions such as decision-making, attention, perception, incidental learning, prediction and working memory, which have little apparent relation to declarative memory. Such findings might be difficult to reconcile with classical hippocampal lesion studies that show remarkable sparing of cognitive functions outside the realm of declarative memory. Even the oft-reported hippoca...

  18. Grasping an object comfortably: orientation information is held in memory

    NARCIS (Netherlands)

    Roche, K; Verheij, R.; Voudouris, D.; Chainay, H.; Smeets, J.B.J.

    2015-01-01

    It has been shown that memorized information can influence real-time visuomotor control. For instance, a previously seen object (prime) influences grasping movements toward a target object. In this study, we examined how general the priming effect is: does it depend on the orientation of the target

  19. Are Categorical Spatial Relations Encoded by Shifting Visual Attention between Objects?

    Science.gov (United States)

    Yuan, Lei; Uttal, David; Franconeri, Steven

    2016-01-01

    Perceiving not just values, but relations between values, is critical to human cognition. We tested the predictions of a proposed mechanism for processing categorical spatial relations between two objects--the "shift account" of relation processing--which states that relations such as "above" or "below" are extracted…

  20. The role of object categories in hybrid visual and memory search

    Science.gov (United States)

    Cunningham, Corbin A.; Wolfe, Jeremy M.

    2014-01-01

    In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054

  1. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    Science.gov (United States)

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Role of Local and Distal Landmarks in the Development of Object Location Memory

    Science.gov (United States)

    Bullens, Jessie; Klugkist, Irene; Postma, Albert

    2011-01-01

    To locate objects in the environment, animals and humans use visual and nonvisual information. We were interested in children's ability to relocate an object on the basis of self-motion and local and distal color cues for orientation. Five- to 9-year-old children were tested on an object location memory task in which, between presentation and…

  3. Visual Short-Term Memory for Complex Objects in 6- and 8-Month-Old Infants

    Science.gov (United States)

    Kwon, Mee-Kyoung; Luck, Steven J.; Oakes, Lisa M.

    2014-01-01

    Infants' visual short-term memory (VSTM) for simple objects undergoes dramatic development: Six-month-old infants can store in VSTM information about only a simple object presented in isolation, whereas 8-month-old infants can store information about simple objects presented in multiple-item arrays. This study extended this work to examine…

  4. A Visual Short-Term Memory Advantage for Objects of Expertise

    Science.gov (United States)

    Curby, Kim M.; Glazek, Kuba; Gauthier, Isabel

    2009-01-01

    Visual short-term memory (VSTM) is limited, especially for complex objects. Its capacity, however, is greater for faces than for other objects; this advantage may stem from the holistic nature of face processing. If the holistic processing explains this advantage, object expertise--which also relies on holistic processing--should endow experts…

  5. Semantic and functional relationships among objects increase the capacity of visual working memory.

    Science.gov (United States)

    O'Donnell, Ryan E; Clement, Andrew; Brockmole, James R

    2018-04-12

    Visual working memory (VWM) has a limited capacity of approximately 3-4 visual objects. Current theories of VWM propose that a limited pool of resources can be flexibly allocated to objects, allowing them to be represented at varying levels of precision. Factors that influence the allocation of these resources, such as the complexity and perceptual grouping of objects, can thus affect the capacity of VWM. We sought to identify whether semantic and functional relationships between objects could influence the grouping of objects, thereby increasing the functional capacity of VWM. Observers viewed arrays of 8 to-be-remembered objects arranged into 4 pairs. We manipulated both the semantic association and functional interaction between the objects, then probed participants' memory for the arrays. When objects were semantically related, participants' memory for the arrays improved. Participants' memory further improved when semantically related objects were positioned to interact with each other. However, when we increased the spacing between the objects in each pair, the benefits of functional but not semantic relatedness were eliminated. These findings suggest that action-relevant properties of objects can increase the functional capacity of VWM, but only when objects are positioned to directly interact with each other. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Retrospective Cues Based on Object Features Improve Visual Working Memory Performance in Older Adults

    OpenAIRE

    Gilchrist, Amanda L.; Duarte, Audrey; Verhaeghen, Paul

    2015-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were either presented with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an u...

  7. The list-composition effect in memory for emotional and neutral pictures: Differential contribution of ventral and dorsal attention networks to successful encoding

    OpenAIRE

    Barnacle, Gemma; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias

    2016-01-01

    The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded