WorldWideScience

Sample records for o2 plasma etching

  1. High rate dry etching of InGaZnO by BCl3/O2 plasma

    Science.gov (United States)

    Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol

    2011-08-01

    This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.

  2. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  3. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  4. Mechanisms and selectivity for etching of HfO2 and Si in BCl3 plasmas

    International Nuclear Information System (INIS)

    Wang Chunyu; Donnelly, Vincent M.

    2008-01-01

    The authors have investigated plasma etching of HfO 2 , a high dielectric constant material, and poly-Si in BCl 3 plasmas. Etching rates were measured as a function of substrate temperature (T s ) at several source powers. Activation energies range from 0.2 to 1.0 kcal/mol for HfO 2 and from 0.8 to 1.8 kcal/mol for Si, with little or no dependence on source power (20-200 W). These low activation energies suggest that product removal is limited by chemical sputtering of the chemisorbed Hf or Si-containing layer, with a higher T s only modestly increasing the chemical sputtering rate. The slightly lower activation energy for HfO 2 results in a small improvement in selectivity over Si at low temperature. The surface layers formed on HfO 2 and Si after etching in BCl 3 plasmas were also investigated by vacuum-transfer x-ray photoelectron spectroscopy. A thin boron-containing layer was observed on partially etched HfO 2 and on poly-Si after etching through HfO 2 films. For HfO 2 , a single B(1s) feature at 194 eV was ascribed to a heavily oxidized species with bonding similar to B 2 O 3 . B(1s) features were observed for poly-Si surfaces at 187.6 eV (B bound to Si), 189.8 eV, and 193 eV (both ascribed to BO x Cl y ). In the presence of a deliberately added 0.5% air, the B-containing layer on HfO 2 is largely unaffected, while that on Si converts to a thick layer with a single B(1s) peak at 194 eV and an approximate stoichiometry of B 3 O 4 Cl

  5. Comprehensive Study of SF_6/O_2 Plasma Etching for Mc-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Li Tao; Zhou Chun-Lan; Wang Wen-Jing

    2016-01-01

    The mask-free SF_6/O_2 plasma etching technique is used to produce surface texturization of mc-silicon solar cells for efficient light trapping in this work. The SEM images and mc-silicon etching rate show the influence of plasma power, SF_6/O_2 flow ratios and etching time on textured surface. With the acidic-texturing samples as a reference, the reflection and IQE spectra are obtained under different experimental conditions. The IQE spectrum measurement shows an evident increase in the visible and infrared responses. By using the optimized plasma power, SF_6/O_2 flow ratios and etching time, the optimal efficiency of 15.7% on 50 × 50 mm"2 reactive ion etching textured mc-silicon silicon solar cells is achieved, mostly due to the improvement in the short-circuit current density. The corresponding open-circuit voltage, short-circuit current density and fill factor are 611 mV, 33.6 mA/cm"2, 76.5%, respectively. It is believed that such a low-cost and high-performance texturization process is promising for large-scale industrial silicon solar cell manufacturing. (paper)

  6. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    Science.gov (United States)

    Chen, Z.; Yin, C.; Wang, S.; Ito, K.; Fu, Q. M.; Deng, Q. R.; Fu, P.; Lin, Z. D.; Zhang, Y.

    2017-01-01

    A polysulfone/TiO2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result.

  7. Antifouling enhancement of polysulfone/TiO2 nanocomposite separation membrane by plasma etching

    International Nuclear Information System (INIS)

    Chen, Z; Yin, C; Wang, S; Fu, Q M; Deng, Q R; Fu, P; Lin, Z D; Zhang, Y; Ito, K

    2017-01-01

    A polysulfone/TiO 2 nanocomposite membrane was prepared via casting method, followed by the plasma etching of the membrane surface. Doppler broadened energy spectra vs. positron incident energy were employed to elucidate depth profiles of the nanostructure for the as-prepared and treated membranes. The results confirmed that the near-surface of the membrane was modified by the plasma treatment. The antifouling characteristics for the membranes, evaluated using the degradation of Rhodamin B, indicated that the plasma treatment enhances the photo catalytic ability of the membrane, suggesting that more TiO 2 nanoparticles are exposed at the membrane surface after the plasma treatment as supported by the positron result. (paper)

  8. Surface Roughening of Polystyrene and Poly(methyl methacrylate in Ar/O2 Plasma Etching

    Directory of Open Access Journals (Sweden)

    Amy E. Wendt

    2010-12-01

    Full Text Available Selectively plasma-etched polystyrene-block-poly(methyl methacrylate (PS-b-PMMA diblock copolymer masks present a promising alternative for subsequent nanoscale patterning of underlying films. Because mask roughness can be detrimental to pattern transfer, this study examines roughness formation, with a focus on the role of cross-linking, during plasma etching of PS and PMMA. Variables include ion bombardment energy, polymer molecular weight and etch gas mixture. Roughness data support a proposed model in which surface roughness is attributed to polymer aggregation associated with cross-linking induced by energetic ion bombardment. In this model, RMS roughness peaks when cross-linking rates are comparable to chain scissioning rates, and drop to negligible levels for either very low or very high rates of cross-linking. Aggregation is minimal for very low rates of cross-linking, while very high rates produce a continuous cross-linked surface layer with low roughness. Molecular weight shows a negligible effect on roughness, while the introduction of H and F atoms suppresses roughness, apparently by terminating dangling bonds. For PS etched in Ar/O2 plasmas, roughness decreases with increasing ion energy are tentatively attributed to the formation of a continuous cross-linked layer, while roughness increases with ion energy for PMMA are attributed to increases in cross-linking from negligible to moderate levels.

  9. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    Science.gov (United States)

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  10. Angular dependence of the redeposition rates during SiO2 etching in a CF4 plasma

    International Nuclear Information System (INIS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Lee, Gyeo-Re; Moon, Sang Heup

    2001-01-01

    The angular dependence of the redeposition rates during SiO 2 etching in a CF 4 plasma was studied using three types of Faraday cages located in a transformer coupled plasma etcher. The SiO 2 substrates were fixed on sample holder slopes that have different angles to the cathode. The substrate was subjected to one of three processes depending on the design of the Faraday cage, i.e., redeposition of sputtered particles from the SiO 2 bottom surface (case I), substrate etching by incident ions (case II), or simultaneous etching and redeposition (case III). Both the redeposition and the etch rates were measured by changing the substrate-surface angle and the self-bias voltage in the range of -100 to -800 V. The redeposition-only rates (case I) at -450 and -800 V closely followed the quadratic curve of the angle whereas the rates at -100 V followed the cubic curve, indicating different mechanisms of the bottom SiO 2 etching depending on the energy regimes. The steep increase of the redeposition rate with the angle was attributed to three factors: the substrate-bottom distance, the angular distribution of emitted particles from the bottom surface, and the particle incident angle on the substrate surface. The etch-only rate curves (case II) closely followed the cosine of the surface angle. The etch-rate curve changed into a reverse-S shape when the substrate was subjected to simultaneous etching and redeposition (case III). The net etch rate for case III decreased drastically above 60 deg. , showing a negative value, i.e., a net redeposition, beyond 75 deg. . The drastic decrease in the net etch rate coincided with the steep increase in the redeposition rate, implying the significant effect of redeposition

  11. Fabrication of SiC nanopillars by inductively coupled SF6/O2 plasma etching

    International Nuclear Information System (INIS)

    Choi, J H; Bano, E; Latu-Romain, L; Dhalluin, F; Chevolleau, T; Baron, T

    2012-01-01

    In this paper, we demonstrate a top-down fabrication technique for nanometre scale silicon carbide (SiC) pillars using inductively coupled plasma etching. A set of experiments in SF 6 -based plasma was carried out in order to realize high aspect ratio SiC nanopillars. The etched SiC nanopillars using a small circular mask pattern (115 nm diameter) show high aspect ratio (7.4) with a height of 2.2 µm at an optimum bias voltage (300 V) and pressure (6 mTorr). Under the optimal etching conditions using a large circular mask pattern with 370 nm diameter, the obtained SiC nanopillars exhibit high anisotropy features (6.4) with a large etch depth (>7 µm). The etch characteristic of the SiC nanopillars under these conditions shows a high etch rate (550 nm min -1 ) and a high selectivity (over 60 for Ni). We also studied the etch profile of the SiC nanopillars and mask evolution over the etching time. As the mask pattern size shrinks in nanoscale, vertical and lateral mask erosion plays a crucial role in the etch profile of the SiC nanopillars. Long etching process makes the pillars appear with a hexagonal shape, coming from the crystallographic structure of α-SiC. It is found that the feature of pillars depends not only on the etching process parameters, but also on the crystallographic structure of the SiC phase. (paper)

  12. Angular dependence of SiO2 etch rate at various bias voltages in a high density CHF3 plasma

    International Nuclear Information System (INIS)

    Lee, Gyeo-Re; Hwang, Sung-Wook; Min, Jae-Ho; Moon, Sang Heup

    2002-01-01

    The dependence of the SiO 2 etch rate on the angle of ions incident on the substrate surface was studied over a bias voltage range from -20 to -600 V in a high-density CHF 3 plasma using a Faraday cage to control the ion incident angle. The effect of the bottom plane on the sidewall etching was also examined. Differences in the characteristics of the etch rate as a function of the ion angle were observed for different bias voltage regions. When the absolute value of the bias voltage was smaller than 200 V, the normalized etch rate (NER) defined as the etch rate normalized by the rate on the horizontal surface, changed following a cosine curve with respect to the ion incident angle, defined as the angle between the ion direction and the normal of the substrate surface. When the magnitude of the bias voltage was larger than 200 V, the NER was deviated to higher values from those given by a cosine curve at ion angles between 30 deg. and 70 deg. , and then drastically decreased at angles higher than 70 deg. until a net deposition was observed at angles near 90 deg. . The characteristic etch-rate patterns at ion angles below 70 deg. were determined by the ion energy transferred to the surface, which affected the SiO 2 etch rate and, simultaneously, the rate of removal of a fluorocarbon polymer film formed on the substrate surface. At high ion angles, particles emitted from the bottom plane contributed to polymer formation on and affected the etching characteristics of the substrate

  13. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    International Nuclear Information System (INIS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-01-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF 6 /poly-Si, a SF 6 /fluorocarbon polymer, an O 2 /fluorocarbon polymer, and a C 4 F 8 /Si. In the case of SF 6 /poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O 2 /polymer decreased and eventually reached much lower values than the cosine values at angles between 30 deg. and 70 deg. when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF 6 /polymer showed a weak dependence on the process variables. In the case of C 4 F 8 /Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed

  14. High temperature reactive ion etching of iridium thin films with aluminum mask in CF4/O2/Ar plasma

    Directory of Open Access Journals (Sweden)

    Chia-Pin Yeh

    2016-08-01

    Full Text Available Reactive ion etching (RIE technology for iridium with CF4/O2/Ar gas mixtures and aluminum mask at high temperatures up to 350 °C was developed. The influence of various process parameters such as gas mixing ratio and substrate temperature on the etch rate was studied in order to find optimal process conditions. The surface of the samples after etching was found to be clean under SEM inspection. It was also shown that the etch rate of iridium could be enhanced at higher process temperature and, at the same time, very high etching selectivity between aluminum etching mask and iridium could be achieved.

  15. Anisotropic etching of silicon for application in micro machine using plasma of SF6/CH4/O2/Ar and SF6/CF4/O2/Ar

    International Nuclear Information System (INIS)

    Reyes B, C.; Moshkalyov, S.A.; Swart, J.W.

    2004-01-01

    We investigated the reactive ion etching of silicon using SF 6 /CH 4 (CF 4 )/O 2 /Ar gas mixtures containing fluorine for MEMS applications. Etch rates and anisotropy of etch profiles were examined as a function of gas composition, material of electrode, and RF power. Etch depths were measured using a profilometers, and etch profiles were analyzed by scanning electron microscope. As a mask material, an aluminium film deposited by evaporation, was used. High anisotropy of etching of 0.95 was achieved at etch depths up to 20-30 micrometers and etch rates of approximately 0.3-0.6 μm/min. Highly anisotropic etching is based on a mechanism that enhance the ion bombarding and protects the sidewalls due to polymerization and/or oxidation mechanisms in order to avoid the lateral etch. However, under the anisotropic etching conditions, considerable damages of the etched surfaces (roughness formation), were observed. After etching experiments, wet / dry cleaning procedures were applied to remove surface residues resulting from the reactive ion etching and to improve the etched surface morphology. (Author)

  16. Improvement in ferroelectric properties of Pt/PZT/Pt capacitors etched as a function of Ar/O2 gas mixing ratio into Cl2/CF4 plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Koo, Seong-Mo; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    In this work, to investigate improvement of the damage using oxygen containing plasma, we etched PZT films as a function of Ar (x%)/O 2 (y%) gas mixing ratio in Cl 2 (56%)/CF 4 (14%) plasma (where the sum of x and y is 30). The maximum etch rate of the PZT thin films was 146 nm/min for Ar (30%)/O 2 (0%) added into the Cl 2 /CF 4 plasma. After the etching, the plasma-induced damages were characterized in terms of hysteresis curves, leakage current, switching polarization and retention capacity as a function of the gas mixing ratio. When the ferroelectric properties of PZT films were etched as a function of O 2 and Ar and the gas mixing ratios were compared, the value of remnant polarization in O 2 (30%) added Cl 2 /CF 4 plasma is higher than that in Ar (30%). The results showed that after the etching the charges accumulated by oxygen vacancies prevented further domain switching at the top electrode-ferroelectric interface and created leakage current because of modification of the interfacial Schottky barrier during the etching process. The physical damage to the near surface and the crystal structure of the etched PZT thin films was evaluated by using X-ray diffraction (XRD). The remnant polarization, leakage current, retention and fatigue properties are improved with increasing O 2 content. From XRD results, the improvement in the ferroelectric properties of PZT capacitors etched in O 2 containing plasma was consistent with the increased intensities of the (100) and (200) peaks

  17. Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. I. Effect of particle emission from the bottom surface in a CF4 plasma

    International Nuclear Information System (INIS)

    Min, Jae-Ho; Hwang, Sung-Wook; Lee, Gyeo-Re; Moon, Sang Heup

    2002-01-01

    The effect of etch-product redeposition on sidewall properties during the etching of step-shaped SiO 2 patterns in a CF 4 plasma was examined using a Faraday cage located in a transformer coupled plasma etcher. Sidewall properties were observed for two cases: with and without particles emitted from the bottom surface in normal contact with the sidewall. Particles sputtered from the bottom surface were redeposited on the sidewall, which contributes to the formation of a passivation layer on the surface of the latter. The passivation layer consisted of silicon oxide, Si x O y , and fluorocarbon, C x F y , the latter comprising the major species. Ar plasma experiments confirmed that C x F y or a fluorocarbon polymer must be present on the sidewall in order for the Si x O y species to be deposited on the surface. The redeposited particles, which were largely F-deficient fluorocarbon species, as evidenced by x-ray photoelectron spectroscopy analyses, functioned as precursors for fluorocarbon polymerization, resulting in a rough sidewall surface. The chemical etch rates of SiO 2 were retarded by the redeposition of particles, which eventually formed a thick layer, eventually covering the bulk SiO 2 . Auger electron spectroscopy analyses of the sidewall surface affected by the emission from the bottom suggest that the surface consists of three distinct layers: a surface-carbon layer, a redeposition-etch combined layer, and bulk SiO 2

  18. Predictable topography simulation of SiO2 etching by C5F8 gas combined with a plasma simulation, sheath model and chemical reaction model

    International Nuclear Information System (INIS)

    Takagi, S; Onoue, S; Iyanagi, K; Nishitani, K; Shinmura, T; Kanoh, M; Itoh, H; Shioyama, Y; Akiyama, T; Kishigami, D

    2003-01-01

    We have developed a simulation for predicting reactive ion etching (RIE) topography, which is a combination of plasma simulation, the gas reaction model, the sheath model and the surface reaction model. The simulation is applied to the SiO 2 etching process of a high-aspect-ratio contact hole using C 5 F 8 gas. A capacitively coupled plasma (CCP) reactor of an 8-in. wafer was used in the etching experiments. The baseline conditions are RF power of 1500 W and gas pressure of 4.0 Pa in a gas mixture of Ar, O 2 and C 5 F 8 . The plasma simulation reproduces the tendency that CF 2 radical density increases rapidly and the electron density decreases gradually with increasing gas flow rate of C 5 F 8 . In the RIE topography simulation, the etching profiles such as bowing and taper shape at the bottom are reproduced in deep holes with aspect ratios greater than 19. Moreover, the etching profile, the dependence of the etch depth on the etching time, and the bottom diameter can be predicted by this simulation

  19. Fast Etching of Molding Compound by an Ar/O2/CF4 Plasma and Process Improvements for Semiconductor Package Decapsulation

    NARCIS (Netherlands)

    Tang, J.; Gruber, D.; Schelen, J.B.J.; Funke, H.J.; Beenakker, C.I.M.

    2012-01-01

    Decapsulation of a SOT23 semiconductor package with 23 um copper wire bonds is conducted with an especially designed microwave induced plasma system. It is found that a 30%-60% CF4 addition in the O2/CF4 etchant gas results in high molding compound etching rate. Si3N4 overetching which is

  20. A study on etching of UO2, Co, and Mo surface with R.F. plasma using CF4 and O2

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Seo, Yong Dae

    2003-01-01

    Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of UO 2 , Co, and Mo in r.f. plasma with the etchant gas of CF 4 /O 2 mixture. UO 2 is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or Inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of O 2 in CF 4 /O 2 mixture gas is 20%, regardless of temperature and r.f. power. In case of UO 2 , the highest etching reaction rate is greater than 1000 monolayers/min. at 370 .deg. C under 150 W r.f. power which is equivalent to 0.4 μm/min. As for Co, etching reaction begins to take place significantly when the temperature exceeds 350 .deg. C. Maximum etching rate achieved at 380 .deg. C is 0.06 μm/min. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at 380 .deg. C is 1.9 μm /min. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated

  1. Angular dependence of Si3N4 etch rates and the etch selectivity of SiO2 to Si3N4 at different bias voltages in a high-density C4F8 plasma

    International Nuclear Information System (INIS)

    Lee, Jin-Kwan; Lee, Gyeo-Re; Min, Jae-Ho; Moon, Sang Heup

    2007-01-01

    The dependence of Si 3 N 4 etch rates and the etch selectivity of SiO 2 to Si 3 N 4 on ion-incident angles was studied for different bias voltages in a high-density C 4 F 8 plasma. A Faraday cage and specially designed substrate holders were used to accurately control the angles of incident ions on the substrate surface. The normalized etch yield (NEY), defined as the etch yield obtained at a given ion-incident angle normalized to that obtained on a horizontal surface, was unaffected by the bias voltage in Si 3 N 4 etching, but it increased with the bias voltage in SiO 2 etching in the range of -100 to -300 V. The NEY changed showing a maximum with an increase in the ion-incident angle in the etching of both substrates. In the Si 3 N 4 etching, a maximum NEY of 1.7 was obtained at 70 deg. in the above bias voltage range. However, an increase in the NEY at high ion-incident angles was smaller for SiO 2 than for Si 3 N 4 and, consequently, the etch selectivity of SiO 2 to Si 3 N 4 decreased with an increase in the ion-incident angle. The etch selectivity decreased to a smaller extent at high bias voltage because the NEY of SiO 2 had increased. The characteristic changes in the NEY for different substrates could be correlated with the thickness of a steady-state fluorocarbon (CF x ) film formed on the substrates

  2. Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas

    International Nuclear Information System (INIS)

    Zhong, X. X.; Huang, X. Z.; Tam, E.; Ostrikov, K.; Colpo, P.; Rossi, F.

    2010-01-01

    We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as 'laboratory on a chip' and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO 2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO 2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

  3. Plasma etching of patterned tungsten

    International Nuclear Information System (INIS)

    Franssila, S.

    1993-01-01

    Plasma etching of tungsten is discussed from the viewpoint of thin film structure and integrated circuit process engineering. The emphasis is on patterned tungsten etching for silicon device and X-ray mask fabrication. After introducing tungsten etch chemistries and mechanisms, microstructural aspects of tungsten films (crystal structure, grain size, film density, defects, impurities) in relation to etching are discussed. Approaches to etch process optimization are presented, and the current state-of-the-art of patterned tungsten etching is reviewed. (orig.)

  4. Device fabrication by plasma etching

    International Nuclear Information System (INIS)

    Mogab, C.J.

    1980-01-01

    Plasma etching as applied to many of the materials encountered in the fabrication of LSI's is complicated by loading effect-the dependence of etch rate on the integrated surface area to be etched. This problem is alleviated by appropriate choice of etchant and etching conditions. Appropriate choice of system parameters, generally most concerned with the inherent lifetime of etchant species, may also result in improvement of etch rate uniformity on a wafer-by-wafer basis

  5. A Study of Parameters Related to the Etch Rate for a Dry Etch Process Using NF3/O2 and SF6/O2

    Directory of Open Access Journals (Sweden)

    Seon-Geun Oh

    2014-01-01

    Full Text Available The characteristics of the dry etching of SiNx:H thin films for display devices using SF6/O2 and NF3/O2 were investigated using a dual-frequency capacitively coupled plasma reactive ion etching (CCP-RIE system. The investigation was carried out by varying the RF power ratio (13.56 MHz/2 MHz, pressure, and gas flow ratio. For the SiNx:H film, the etch rates obtained using NF3/O2 were higher than those obtained using SF6/O2 under various process conditions. The relationships between the etch rates and the usual monitoring parameters—the optical emission spectroscopy (OES intensity of atomic fluorine (685.1 nm and 702.89 nm and the voltages VH and VL—were investigated. The OES intensity data indicated a correlation between the bulk plasma density and the atomic fluorine density. The etch rate was proportional to the product of the OES intensity of atomic fluorine (I(F and the square root of the voltages (Vh+Vl on the assumption that the velocity of the reactive fluorine was proportional to the square root of the voltages.

  6. Optical diagnostics for plasma etching

    NARCIS (Netherlands)

    Bisschops, T.H.J.; Kroesen, G.M.W.; Veldhuizen, van E.M.; de Zeeuw, C.J.H.; Timmermans, C.J.

    1985-01-01

    Several optical diagnostics were used to det. plasma properties and etch rates in an single wafer etch reactor. Results of UV-visible spectroscopy and IR absorption spectroscopy, indicating different mol. species and their densities are presented. The construction of an interferometer to det. the

  7. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  8. Plasma Etching for Failure Analysis of Integrated Circuit Packages

    NARCIS (Netherlands)

    Tang, J.; Schelen, J.B.J.; Beenakker, C.I.M.

    2011-01-01

    Plastic integrated circuit packages with copper wire bonds are decapsulated by a Microwave Induced Plasma system. Improvements on microwave coupling of the system are achieved by frequency tuning and antenna modification. Plasmas with a mixture of O2 and CF4 showed a high etching rate around 2

  9. Fluorocarbon based atomic layer etching of Si_3N_4 and etching selectivity of SiO_2 over Si_3N_4

    International Nuclear Information System (INIS)

    Li, Chen; Metzler, Dominik; Oehrlein, Gottlieb S.; Lai, Chiukin Steven; Hudson, Eric A.

    2016-01-01

    Angstrom-level plasma etching precision is required for semiconductor manufacturing of sub-10 nm critical dimension features. Atomic layer etching (ALE), achieved by a series of self-limited cycles, can precisely control etching depths by limiting the amount of chemical reactant available at the surface. Recently, SiO_2 ALE has been achieved by deposition of a thin (several Angstroms) reactive fluorocarbon (FC) layer on the material surface using controlled FC precursor flow and subsequent low energy Ar"+ ion bombardment in a cyclic fashion. Low energy ion bombardment is used to remove the FC layer along with a limited amount of SiO_2 from the surface. In the present article, the authors describe controlled etching of Si_3N_4 and SiO_2 layers of one to several Angstroms using this cyclic ALE approach. Si_3N_4 etching and etching selectivity of SiO_2 over Si_3N_4 were studied and evaluated with regard to the dependence on maximum ion energy, etching step length (ESL), FC surface coverage, and precursor selection. Surface chemistries of Si_3N_4 were investigated by x-ray photoelectron spectroscopy (XPS) after vacuum transfer at each stage of the ALE process. Since Si_3N_4 has a lower physical sputtering energy threshold than SiO_2, Si_3N_4 physical sputtering can take place after removal of chemical etchant at the end of each cycle for relatively high ion energies. Si_3N_4 to SiO_2 ALE etching selectivity was observed for these FC depleted conditions. By optimization of the ALE process parameters, e.g., low ion energies, short ESLs, and/or high FC film deposition per cycle, highly selective SiO_2 to Si_3N_4 etching can be achieved for FC accumulation conditions, where FC can be selectively accumulated on Si_3N_4 surfaces. This highly selective etching is explained by a lower carbon consumption of Si_3N_4 as compared to SiO_2. The comparison of C_4F_8 and CHF_3 only showed a difference in etching selectivity for FC depleted conditions. For FC accumulation conditions

  10. More vertical etch profile using a Faraday cage in plasma etching

    Science.gov (United States)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  11. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  12. Plasma etching of polymers like SU8 and BCB

    Science.gov (United States)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  13. Plasma etching of electrospun polymeric nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil)]. E-mail: verdonck@imec.be; Braga Caliope, Priscila [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Moral Hernandez, Emilio del [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); Silva, Ana Neilde R. da [LSI-PSI-EPUSP, Av. Prof. Luciano Gualberto trav 3, 158, 05508-900 Sao Paulo, SP (Brazil); FATEC-SP, Pca Fernando Prestes, 30 Sao Paulo, SP (Brazil)

    2006-10-25

    Electrospun polymeric nanofibres have several applications because of their high surface area to volume and high length to diameter ratios. This paper investigates the influence of plasma etching on these fibres and the etching mechanisms. For the characterization, SEM analysis was performed to determine the forms and shapes of the fibres and SEM photos were analysed by the technique of mathematical morphology, in order to determine the area on the sample occupied by the fibres and the frequency distribution of the nanofibre diameters. The results showed that the oxygen plasma etches the nanofibres much faster when ion bombardment is present. The form of the fibres is not altered by the etching, indicating the possibility of transport of oxygen atoms over the fibre surface. The most frequent diameter, somewhat surprisingly, is not significantly dependent on the etching process, and remains of the order of 80 nm, indicating that fibres with smaller diameters are etched at high rates.

  14. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  15. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  16. High density plasma via hole etching in SiC

    International Nuclear Information System (INIS)

    Cho, H.; Lee, K.P.; Leerungnawarat, P.; Chu, S.N.G.; Ren, F.; Pearton, S.J.; Zetterling, C.-M.

    2001-01-01

    Throughwafer vias up to 100 μm deep were formed in 4H-SiC substrates by inductively coupled plasma etching with SF 6 /O 2 at a controlled rate of ∼0.6 μm min-1 and use of Al masks. Selectivities of >50 for SiC over Al were achieved. Electrical (capacitance-voltage: current-voltage) and chemical (Auger electron spectroscopy) analysis techniques showed that the etching produced only minor changes in reverse breakdown voltage, Schottky barrier height, and near surface stoichiometry of the SiC and had high selectivity over common frontside metallization. The SiC etch rate was a strong function of the incident ion energy during plasma exposure. This process is attractive for power SiC transistors intended for high current, high temperature applications and also for SiC micromachining

  17. Plasma etching: Yesterday, today, and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Vincent M.; Kornblit, Avinoam [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

    2013-09-15

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.

  18. Plasma etching: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Donnelly, Vincent M.; Kornblit, Avinoam

    2013-01-01

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices

  19. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  20. Deep reactive ion etching of 4H-SiC via cyclic SF6/O2 segments

    International Nuclear Information System (INIS)

    Luna, Lunet E; Tadjer, Marko J; Anderson, Travis J; Imhoff, Eugene A; Hobart, Karl D; Kub, Fritz J

    2017-01-01

    Cycles of inductively coupled SF 6 /O 2 plasma with low (9%) and high (90%) oxygen content etch segments are used to produce up to 46.6 µ m-deep trenches with 5.5 µ m-wide openings in single-crystalline 4H-SiC substrates. The low oxygen content segment serves to etch deep in SiC whereas the high oxygen content segment serves to etch SiC at a slower rate, targeting carbon-rich residues on the surface as the combination of carbon-rich and fluorinated residues impact sidewall profile. The cycles work in concert to etch past 30 µ m at an etch rate of ∼0.26 µ m min −1 near room temperature, while maintaining close to vertical sidewalls, high aspect ratio, and high mask selectivity. In addition, power ramps during the low oxygen content segment is used to produce a 1:1 ratio of mask opening to trench bottom width. The effect of process parameters such as cycle time and backside substrate cooling on etch depth and micromasking of the electroplated nickel etch mask are investigated. (paper)

  1. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    Science.gov (United States)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  2. Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures

    NARCIS (Netherlands)

    de Boer, Meint J.; Gardeniers, Johannes G.E.; Jansen, Henricus V.; Gilde, M.J.; Roelofs, Gerard; Sasserath, Jay N.; Elwenspoek, Michael Curt

    This paper presents guidelines for the deep reactive ion etching (DRIE) of silicon MEMS structures, employing SF6/O2-based high-density plasmas at cryogenic temperatures. Procedures of how to tune the equipment for optimal results with respect to etch rate and profile control are described. Profile

  3. Wafer scale oblique angle plasma etching

    Science.gov (United States)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  4. Reduction of etching damage in lead-zirconate-titanate thin films with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    In this work, we etched lead-zirconate-titanate (PZT) films with various additive gases (O 2 and Ar) in Cl 2 /CF 4 plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in O 2 or Ar added to Cl 2 /CF 4 were compared, the value of remanent polarization in O 2 added to Cl 2 /CF 4 plasma is higher than that in Ar added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added Cl 2 /CF 4 gas having mixing ratio of 8/2 and 110 nm/min for 10% O 2 added to that same gas mixture. In order to recover the ferroelectric properties of the PZT thin films after etching, we annealed the etched PZT thin films at 550 deg. C in an O 2 atmosphere for 10 min. From the hysteresis curves, leakage current, retention property, and switching polarization, the reduction of the etching damage and the recovery via the annealing turned out to be more effective when O 2 was added to Cl 2 /CF 4 than Ar. X-ray diffraction showed that the structural damage was lower when O 2 was added to Cl 2 /CF 4 and the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks

  5. Selective SiO2 etching in three dimensional structures using parylene-C as mask

    NARCIS (Netherlands)

    Veltkamp, Henk-Willem; Zhao, Yiyuan; de Boer, Meint J.; Wiegerink, Remco J.; Lötters, Joost Conrad

    2017-01-01

    This abstract describes an application of an easy and straightforward method for selective SiO2 etching in three dimensional structures, which is developed by our group. The application in this abstract is the protection of the buried-oxide (BOX) layer of a silicon-on-insulator (SOI) wafer against

  6. Plasma etching of niobium-SiO/sub x/ layers

    International Nuclear Information System (INIS)

    Schelle, D.; Tiller, H.J.

    1986-01-01

    CF 4 -plasma etching of niobium and SiO/sub x/ layers has been investigated in a r.f. diode reactor. Etch rates increase linearly with increasing power density and also increase with pressure. The etch rate ratio can be changed using different etch gases or operating in different plasma modes (PE or IEPE). Changing from the ion enhanced plasma etching mode (IEPE) to plasma etching mode (PE) the etch rate ratio is changing by a factor of ten. On the basis of etch rate dependences on process parametes and thermodynamic data it has been suggested the generation of fluorine radicals as the rate limiting step. A general etching model has been proposed, which explains qualitatively and quantitatively (on account of data from literature) the measured results. (author)

  7. Shapes of agglomerates in plasma etching reactors

    International Nuclear Information System (INIS)

    Huang, F.Y.; Kushner, M.J.

    1997-01-01

    Dust particle contamination of wafers in reactive ion etching (RIE) plasma tools is a continuing concern in the microelectronics industry. It is common to find that particles collected on surfaces or downstream of the etch chamber are agglomerates of smaller monodisperse spherical particles. The shapes of the agglomerates vary from compact, high fractal dimension structures to filamentary, low fractal dimension structures. These shapes are important with respect to the transport of particles in RIE tools under the influence electrostatic and ion drag forces, and the possible generation of polarization forces. A molecular dynamics simulation has been developed to investigate the shapes of agglomerates in plasma etching reactors. We find that filamentary, low fractal dimension structures are generally produced by smaller (<100s nm) particles in low powered plasmas where the kinetic energy of primary particles is insufficient to overcome the larger Coulomb repulsion of a compact agglomerate. This is analogous to the diffusive regime in neutral agglomeration. Large particles in high powered plasmas generally produce compact agglomerates of high fractal dimension, analogous to ballistic agglomeration of neutrals. copyright 1997 American Institute of Physics

  8. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.

    Science.gov (United States)

    Kook, Min-Suk; Roh, Hee-Sang; Kim, Byung-Hoon

    2018-05-02

    This study was to investigate the effects of O 2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O 2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O 2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O 2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O 2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation.

  9. A Nanoscale Plasma Etching Process for Pole Tip Recession of Perpendicular Recording Magnetic Head

    OpenAIRE

    LIU, Shoubin; HE, Dayao

    2017-01-01

    The pole tip of perpendicular recording head is constructed in a stacked structure with materials of NiCoFe, NiFe, Al2O3 and AlTiC. The surfaces of different materials are set at different heights below the air-bearing surface of slider. This paper presented a plasma dry etching process for Pole Tip Recession (PTR) based on an ion beam etching system. Ar and O2 mixed plasma at small incident angles have a high removal rate to the nonmagnetic material. It was utilised to etch the reference sur...

  10. Dry etching of LaNiO3 thin films using inductively coupled plasma

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Dong-Pyo; Kim, Kyoung-Tae; Kim, Chang-Il; Lee, Cheol-In; Kim, Tae-Hyung

    2006-01-01

    The etching characteristics of LaNiO 3 (LNO) thin films and SiO 2 in Cl 2 /Ar plasma were investigated. LNO etch rates decreased with increasing Cl 2 fraction in Ar plasma and the working pressure. Langmuir probe measurement showed a noticeable influence of Cl 2 /Ar mixing ratio on electron temperature, electron density, and ion current density. The modeling of volume kinetics for charged particles and OES measurements for neutral atoms indicated monotonous changes of both densities and fluxes of active species such as chlorine atoms and positive ions. The LNO etch rate behavior may be explained by physical mechanisms

  11. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  12. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  13. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  14. Physics of plasma etching and plasma deposition

    NARCIS (Netherlands)

    Schram, D.C.; Hoog, de F.J.; Bisschops, T.J.; Kroesen, G.M.W.; Howorka, F.; Lindinger, W.; Maerk, T.D.

    1986-01-01

    The kinetics and mechanism of the title processes are discussed on the basis of a model in which the plasma-surface system is subdivided into 5 regions: (I) plasma prodn., (II) plasma flow plus radicals, (III) gas adsorbed layer, (IV) modified surface, and (V) undisturbed solid (or liq.) state.

  15. Plasma atomic layer etching using conventional plasma equipment

    International Nuclear Information System (INIS)

    Agarwal, Ankur; Kushner, Mark J.

    2009-01-01

    The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps

  16. A study on decontamination of TRU, Co, and Mo using plasma surface etching technique

    International Nuclear Information System (INIS)

    Seo, Y.D.; Kim, Y.S.; Paek, S.H.; Lee, K.H.; Jung, C.H.; Oh, W.Z.

    2001-01-01

    Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability and the effectiveness of this new dry processing technique are experimentally investigated by examining the etching reaction of UO 2 , Co, and Mo in r.f. plasma with the etchant gas of CF 4 /O 2 mixture. UO 2 is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds and metallic Co and Mo are selected because they are the principal contaminants in the spent nuclear components such as valves and pipes made of stainless steel or INCONEL. Results show that in all cases maximum etching rate is achieved when the mole fraction of O 2 to CF 4 /O 2 mixture gas is 20 %, regardless of temperature and r.f. power. (author)

  17. Separated Type Atmospheric Pressure Plasma Microjets Array for Maskless Microscale Etching

    Directory of Open Access Journals (Sweden)

    Yichuan Dai

    2017-06-01

    Full Text Available Maskless etching approaches such as microdischarges and atmospheric pressure plasma jets (APPJs have been studied recently. Nonetheless, a simple, long lifetime, and efficient maskless etching method is still a challenge. In this work, a separated type maskless etching system based on atmospheric pressure He/O2 plasma jet and microfabricated Micro Electro Mechanical Systems (MEMS nozzle have been developed with advantages of simple-structure, flexibility, and parallel processing capacity. The plasma was generated in the glass tube, forming the micron level plasma jet between the nozzle and the surface of polymer. The plasma microjet was capable of removing photoresist without masks since it contains oxygen reactive species verified by spectra measurement. The experimental results illustrated that different features of microholes etched by plasma microjet could be achieved by controlling the distance between the nozzle and the substrate, additive oxygen ratio, and etch time, the result of which is consistent with the analysis result of plasma spectra. In addition, a parallel etching process was also realized by plasma microjets array.

  18. Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial.

    Science.gov (United States)

    Hou, Wenli; Liu, Xiaoying; Lu, Qiujun; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2018-02-01

    In this paper, the colorimetric sensing of H 2 O 2 related molecules and biothiols based on etching and anti-etching strategy was firstly proposed. Ag/carbon nanocomposite (Ag/C NC) was served as the sensing nanoprobe, which was synthesized via carbon dots (C-dots) as the reductant and stabilizer. The characteristic surface plasmon resonance (SPR) absorbance of Ag nanoparticles (AgNPs) was sensitive to the amount of hydrogen peroxide (H 2 O 2 ). It exhibited strong optical responses to H 2 O 2 with the solution colour changing from yellow to nearly colourless, which is resulted from the etching of Ag by H 2 O 2 . The sensing platform was further extended to detect H 2 O 2 related molecules such as lactate in coupling with the specific catalysis oxidation of L-lactate by lactate oxidase (LOx) and formation of H 2 O 2 . It provides wide linear range for detecting H 2 O 2 in 0.1-80μM and 80-220μM with the detection limit as low as 0.03μM (S/N=3). In the presence of biothiols, the etching from the H 2 O 2 can be hampered. Other biothiols exhibit anti-etching effects well. The strategy works well in detecting of typical biothiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH). Thus, a simple colorimetric strategy for sensitive detection of H 2 O 2 and biothiols is proposed. It is believed that the colorimetric sensor based on etching and anti-etching strategy can be applied in other systems in chemical and biosensing areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Etch characteristics of BCB film using inductively coupled plasma

    International Nuclear Information System (INIS)

    Kang, Pil Seung; Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il; Kim, Sang Gi

    2003-01-01

    The etching characteristics and mechanism of BCB thin films were investigated as a function of CF 4 /O 2 mixing ratio in ICP system. Maximum etch rate of 830 nm/min is obtained at the mixture of O 2 /CF 4 (=80%/20%). OES actinometry results showed that volume density of oxygen atoms fallows the same extreme behavior with the BCB etch rate, while the density of fluorine atoms changes monotonously. Therefore chemical destruction of BCB by oxygen atoms was proposed as the dominant etch mechanism. XPS analysis showed that the addition of CF 4 to O 2 helps to volatilize silicon atoms containing in BCB but leads to the formation of F-containing polymer layer. The profile of etched BCB film was close to 90 .deg. and the surface was clean

  20. Magnetically enhanced triode etching of large area silicon membranes in a molecular bromine plasma

    International Nuclear Information System (INIS)

    Wolfe, J.C.; Sen, S.; Pendharkar, S.V.; Mauger, P.; Shimkunas, A.R.

    1992-01-01

    The optimization of a process for etching 125 mm silicon membranes formed on 150 mm wafers and bonded to Pyrex rings is discussed. A magnetically enhanced triode etching system was designed to provide an intense, remote plasma surrounding the membrane while, at the same time, suppressing the discharge over the membrane itself. For the optimized molecular bromine process, the silicon etch rate is 40 nm/min and the selectivity relative to SiO 2 is 160:1. 14 refs., 6 figs

  1. The effect of CF4 addition on Ru etching with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu Tae; Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il

    2003-01-01

    Ru thin films were etched in CF 4 /O 2 plasma using an ICP (inductively coupled plasma etching) system. The etch rate of Ru thin films was examined as a function of gas mixing ratio. The maximum etch rate of Ru thin films was 168 nm/min at a CF 4 /O 2 gas mixing ratio of 10 %. The selectivity of Ru over SiO 2 was 1.3. From the OES (optical emission spectroscopy), the optical emission intensity of the O radical had a maximum value at 10 % of CF 4 gas concentration and decrease with further addition of CF 4 gas. From XPS (x-ray photoelectron spectroscopy) analysis, Ru-F bonds by the chemical reaction of Ru and F appeared in the surface of the etched Ru thin film in CF 4 /O 2 chemistry. RuF 3-4 compounds were suggested as a surface passivation layer that reduces the chemical reactions between Ru and O radicals. In a FE-SEM (field emission scanning electron microscope) micrograph, we had an almost perpendicular taper angle of 89 .deg.

  2. Measurement of nanosize etched pits in SiO2 optical fiber conduit using AFM

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J.I.; Vazquez, C.; Fragoso, R.

    2003-01-01

    Fission fragment tracks from 252 Cf have been observed in SiO 2 optical fiber, using an atomic force microscope (AFM), after a very short chemical etching in hydrofluoric acid solution at normal temperature. The nuclear track starting and evolution process is followed by the AFM direct measurements on the material surface and beyond a fine layer of the surface material. The images of the scanned cones were determined observing the two predominant energies from 252 Cf fission fragments and the development of the tracks in the 150 μm diameter optical fiber conduit

  3. Pulsed high-density plasmas for advanced dry etching processes

    International Nuclear Information System (INIS)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  4. Investigation of thin oxide layer removal from Si substrates using an SiO2 atomic layer etching approach: the importance of the reactivity of the substrate

    International Nuclear Information System (INIS)

    Metzler, Dominik; Oehrlein, Gottlieb S; Li, Chen; Lai, C Steven; Hudson, Eric A

    2017-01-01

    The evaluation of a plasma-based atomic layer etching (ALE) approach for native oxide surface removal from Si substrates is described. Objectives include removal of the native oxide while minimizing substrate damage, surface residues and substrate loss. Oxide thicknesses were measured using in situ ellipsometry and surface chemistry was analyzed by x-ray photoelectron spectroscopy. The cyclic ALE approach when used for removal of native oxide SiO 2 from a Si substrate did not remove native oxide to the extent required. This is due to the high reactivity of the silicon substrate during the low-energy (<40 eV) ion bombardment phase of the cyclic ALE approach which leads to reoxidation of the silicon surface. A modified process, which used continuously biased Ar plasma with periodic CF 4 injection, achieved significant oxygen removal from the Si surface, with some residual carbon and fluorine. A subsequent H 2 /Ar plasma exposure successfully removed residual carbon and fluorine while passivating the silicon surface. The combined treatment reduced oxygen and carbon levels to about half compared to as received silicon surfaces. The downside of this process sequence is a net loss of about 40 Å of Si. A generic insight of this work is the importance of the substrate and final surface chemistry in addition to precise etch control of the target film for ALE processes. By a fluorocarbon-based ALE technique, thin SiO 2 layer removal at the Ångstrom level can be precisely performed from an inert substrate, e.g. a thick SiO 2 layer. However, from a reactive substrate, like Si, complete removal of the thin SiO 2 layer is prevented by the high reactivity of low energy Ar + ion bombarded Si. The Si surfaces are reoxidized during the ALE ion bombardment etch step, even for very clean and ultra-low O 2 process conditions. (paper)

  5. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, M.

    2012-01-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used...... to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field...... in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O-2 mixtures was almost similar with that by positive ions reaching 700 nm/min. (C) 2012 American Institute of Physics...

  6. Modeling of the angular dependence of plasma etching

    International Nuclear Information System (INIS)

    Guo Wei; Sawin, Herbert H.

    2009-01-01

    An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl 2 plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at ∼60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x10 15 atoms/cm 2 on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.

  7. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  8. Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabrication

    Science.gov (United States)

    Zhao, Yiping; Jansen, Henri; de Boer, Meint; Berenschot, Erwin; Bouwes, Dominique; Gironès, Miriam; Huskens, Jurriaan; Tas, Niels

    2010-09-01

    Edge lithography in combination with fluorine-based plasma etching is employed to avoid the dependence on crystal orientation in single crystal silicon to create monolithic nanoridges with arbitrary contours. This is demonstrated by using a mask with circular structures and Si etching at cryogenic temperature with SF6+O2 plasma mixtures. Initially, the explored etch recipe was used with Cr as the masking material. Although nanoridges with perfect vertical sidewalls have been achieved, Cr causes severe sidewall roughness due to line edge roughness. Therefore, an SU-8 polymer is used instead. Although the SU-8 pattern definition needs further improvement, we demonstrate the possibility of fabricating Si nanoridges of arbitrary contours providing a width below 50 nm and a height between 25 and 500 nm with smooth surface finish. Artifacts in the ridge profile are observed and are mainly caused by the bird's beak phenomenon which is characteristic for the used LOCOS process.

  9. Fluorocarbon polymer formation, characterization, and reduction in polycrystalline-silicon etching with CF4-added plasma

    International Nuclear Information System (INIS)

    Xu Songlin; Sun Zhiwen; Chen Arthur; Qian Xueyu; Podlesnik, Dragan

    2001-01-01

    Addition of CF 4 into HBr-based plasma for polycrystalline-silicon gate etching reduces the deposition of an etch byproduct, silicon oxide, onto the chamber wall but tends to generate organic polymer. In this work, a detailed study has been carried out to analyze the mechanism of polymerization and to characterize the polymer composition and quantity. The study has shown that the polymer formation is due to the F-radical depletion by H atoms dissociated from HBr. The composition of the polymer changes significantly with CF 4 concentration in the gas feed, and the polymer deposition rate depends on CF 4 % and other process conditions such as source power, bias power, and pressure. Surface temperature also affects the polymer deposition rate. Adding O 2 into the plasma can clean the organic polymer, but the O 2 amount has to be well controlled in order to prevent the formation of silicon oxide. Based on a series of tests to evaluate polymer deposition and oxide cleaning with O 2 addition, an optimized process regime in terms of O 2 -to-CF 4 ratio has been identified to simultaneously suppress the polymer and oxide deposition so that the etch process becomes self-cleaning

  10. Etching properties of BLT films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Kim, Dong Pyo; Kim, Kyoung Tae; Kim, Chang Il

    2003-01-01

    CF 4 /Ar plasma mass content and etching rate behavior of BLT thin films were investigated in inductively coupled plasma (ICP) reactor as functions of CF 4 /Ar gas mixing ratio, rf power, and dc bias voltage. The variation of relative volume densities for F and Ar atoms were measured by the optical emission spectroscopy (OES). The etching rate as functions of Ar content showed the maximum of 803 A/min at 80 % Ar addition into CF 4 plasma. The presence of maximum etch rate may be explained by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction. The role of Ar ion bombardment includes destruction of metal (Bi, La, Ti)-O bonds as well as support of chemical reaction of metals with fluorine atoms

  11. Plasma Etching of Tapered Features in Silicon for MEMS and Wafer Level Packaging Applications

    International Nuclear Information System (INIS)

    Ngo, H-D; Hiess, Andre; Seidemann, Volker; Studzinski, Daniel; Lange, Martin; Leib, Juergen; Shariff, Dzafir; Ashraf, Huma; Steel, Mike; Atabo, Lilian; Reast, Jon

    2006-01-01

    This paper is a brief report of plasma etching as applied to pattern transfer in silicon. It will focus more on concept overview and strategies for etching of tapered features of interest for MEMS and Wafer Level Packaging (WLP). The basis of plasma etching, the dry etching technique, is explained and plasma configurations are described elsewhere. An important feature of plasma etching is the possibility to achieve etch anisotropy. The plasma etch process is extremely sensitive to many variables such as mask material, mask openings and more important the plasma parameters

  12. Inductively coupled plasma etching of III-V antimonides in BCl3/SiCl4 etch chemistry

    International Nuclear Information System (INIS)

    Swaminathan, K.; Janardhanan, P.E.; Sulima, O.V.

    2008-01-01

    Inductively coupled plasma etching of GaSb using BCl 3 /SiCl 4 etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved (∼ 4 μm/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth ∼ 90 μm. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range

  13. Effect of Cl2- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-01-01

    A Cl 2 -HBr-O 2 /Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate (∼600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO x passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl 2 -based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be ∼1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl 2 -based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl 2 -based ICP etching for the recovery of the InP material.

  14. Etching of uranium dioxide in nitrogen trifluoride RF plasma glow discharge

    Science.gov (United States)

    Veilleux, John Mark

    1999-10-01

    UO2 surface. Successive reactions between these products and F atoms lead to the formation of UF6. The UF 6 has a vapor pressure of 24 kPa, well above the operating pressure at the gas temperature (˜300 K) of the plasma, and, as a consequence, desorbs into the gas phase. The other Intermediate fluorides and oxyfluorides are solids and remain on the surface, eventually slowing or blocking the etch reaction as they accumulate. These results explain why when power was too low, the etch reactions completely stopped before all detectable UO2 could be fully etched. Comparison of UO2 with previously measured PuO2 etch rates showed that the removal of UO2 and PuO2were comparable and differences could be accounted for by differences in experimental conditions. The chemistry and reaction thermodynamics of UO2 have many parallels to those of PuO2, such as similar vapor pressures at room temperature (24 vs. 14 kPa) and favorable Gibbs free energy of formation of many species. (Abstract shortened by UMI.)

  15. Role of chamber dimension in fluorocarbon based deposition and etching of SiO2 and its effects on gas and surface-phase chemistry

    International Nuclear Information System (INIS)

    Joseph, E. A.; Zhou, B.-S.; Sant, S. P.; Overzet, L. J.; Goeckner, M. J.

    2008-01-01

    It is well understood that chamber geometry is an influential factor governing plasma processing of materials. Simple models suggest that a large fraction of this influence is due to changes in basic plasma properties, namely, density, temperature, and potential. However, while such factors do play an important role, they only partly describe the observed differences in process results. Therefore, to better elucidate the role of chamber geometry in this work, the authors explore the influence of plasma chemistry and its symbiotic effect on plasma processing by decoupling the plasma density, temperature, and potential from the plasma-surface (wall) interactions. Specifically, a plasma system is used with which the authors can vary the chamber dimension so as to vary the plasma-surface interaction directly. By varying chamber wall diameter, 20-66 cm, and source-platen distance, 4-6 cm, the etch behavior of SiO 2 (or the deposition behavior of fluorocarbon polymer) and the resulting gas-phase chemistry change significantly. Results from in situ spectroscopic ellipsometry show significant differences in etch characteristics, with etch rates as high as 350 nm/min and as low as 75 nm/min for the same self-bias voltage. Fluorocarbon deposition rates are also highly dependent on chamber dimension and vary from no net deposition to deposition rates as high as 225 nm/min. Etch yields, however, remain unaffected by the chamber size variations. From Langmuir probe measurements, it is clear that chamber geometry results in significant shifts in plasma properties such as electron and ion densities. Indeed, such measurements show that on-wafer processes are limited at least in part by ion flux for high energy reactive ion etch. However, in situ multipass Fourier transform infrared spectroscopy reveals that the line-averaged COF 2 , SiF 4 , CF 2 , and CF 3 gas-phase densities are also dependent on chamber dimension at high self-bias voltage and also correlate well to the CF x

  16. Feedback control of chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Lin Chaung; Leou, K.-C.; Shiao, K.-M.

    2005-01-01

    Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2 2 factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained

  17. Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching

    International Nuclear Information System (INIS)

    Iatsunskyi, Igor; Kempiński, Mateusz; Nowaczyk, Grzegorz; Jancelewicz, Mariusz; Pavlenko, Mykola; Załęski, Karol; Jurga, Stefan

    2015-01-01

    Highlights: • Porous silicon/TiO 2 nanocomposites have been investigated. • Morphology and chemical composition of PSi/TiO 2 nanocomposites were established. • Valence-band XPS maximums for PSi/TiO 2 nanocomposites were found and analyzed. - Abstract: PSi/TiO 2 nanocomposites fabricated by atomic layer deposition (ALD) and metal-assisted chemical etching (MACE) were investigated. The morphology and phase structure of PSi/TiO 2 nanocomposites were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The mean size of TiO 2 nanocrystals was determined by TEM and Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical elemental composition by observing the behavior of the Ti 2p, O 1s and Si 2p lines. TEM, Raman spectroscopy and XPS binding energy analysis confirmed the formation of TiO 2 anatase phase inside the PSi matrix. The XPS valence band analysis was performed in order to investigate the modification of PSi/TiO 2 nanocomposites electronic structure. Surface defects states of Ti 3+ at PSi/TiO 2 nanocomposites were identified by analyzing of XPS valence band spectra

  18. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  19. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  20. Relationship between deprotection and film thickness loss during plasma etching of positive tone chemically amplified resists

    International Nuclear Information System (INIS)

    Mahorowala, A.P.; Medeiros, D.R.

    2001-01-01

    Positive tone chemically amplified (CA) resists have demonstrated the sensitivity, contrast, and resolution necessary to print state-of-the-art subwavelength features using 248 nm and more recently 193 nm lithography. These materials are also being considered for printing sub-100 nm features with 157 nm and next-generation lithography technologies such as extreme ultraviolet and electron beam projection lithography. The basis for solubility differential and image formation in these resists is the acid catalyzed deprotection of labile protecting groups of an inherently base soluble polymer. The deprotection is effected by the photochemical generation of strong acid during the exposure process. Such acid-catalyzed deprotection reactions can also occur in unexposed resist areas when etched in a plasma. This can be due to UV exposure, high-energy ion bombardment, elevated substrate temperatures, or interaction of the resist surface with plasma species to form acidic moieties. Deprotection has been associated with resist mass loss and film shrinkage during plasma etching, leaving inadequate masking material for the entire etch step. In this article, we report the film thickness loss of several unexposed CA resists as a function of etch time in a variety of plasmas and correlate these data with film composition, monitored by Fourier transform infrared spectroscopy. These results are compared with theoretical predictions based on generally accepted deprotection mechanisms. Our findings indicate that the 'acidic' nature of certain plasmas such as Cl 2 /O 2 can result in deprotection in the resist film, even in the absence of a photoacid generator. Additionally, the data suggest that the nature of the resist polymer and, in turn, the identity of the deprotection products directly influence resist mass loss and etch rate linearity, both of which can be controlled by careful selection of resist materials

  1. Influence of redeposition on the plasma etching dynamics

    International Nuclear Information System (INIS)

    Stafford, L.; Margot, J.; Delprat, S.; Chaker, M.; Pearton, S. J.

    2007-01-01

    This work reports on measurements of the degree of redeposition of sputtered species during the etching of platinum (Pt), barium-strontium-titanate (BST), strontium-bismuth-tantalate (SBT), and photoresist (PR) in a high-density argon plasma. While PR exhibits a redeposition-free behavior, the degree of redeposition of Pt, BST, and SBT species increases from 10% to 95% as the argon pressure increases from 0.5 to 10 mTorr. These results are in good agreement with the predictions of a simple model accounting for the backscattering of sputtered species following their interaction with the gas phase. Based on these results and using other experimental data reported in the literature, it is further demonstrated that, depending on the plasma etching conditions, redeposition effects can induce misinterpretation of the etch rate data

  2. Method of plasma etching Ga-based compound semiconductors

    Science.gov (United States)

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  3. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    Science.gov (United States)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  4. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  5. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    Science.gov (United States)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.

  6. Layer-by-layer thinning of MoSe_2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF_6 + N_2 as precursors for layer-by-layer thinning of MoSe_2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe_2 were also demonstrated. • Equal numbers of MoSe_2 layers can be removed uniformly without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe_2) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe_2 can be changed from the indirect band gap to the direct band gap when MoSe_2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe_2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe_2 nanaosheets down to monolayer by using SF_6 + N_2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe_2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. By adjusting the etching rates we can achieve complete MoSe_2 removal and any disired number of MoSe_2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  7. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E H; Miao Jianmin; Sun Jianbo

    2006-01-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions

  8. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  9. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    Science.gov (United States)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  10. Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces

    International Nuclear Information System (INIS)

    Saraf, Laxmikant V

    2010-01-01

    Electrically and thermally isolated surfaces are crucial for improving the detection sensitivity of microelectronic sensors. The site-specific in situ growth of Pt nano-rods on thermally and electrically isolated SiO 2 micro-disks using wet chemical etching and a focused ion/electron dual beam (FIB-SEM) is demonstrated. Fabrication of an array of micro-cavities on top of a micro-disk is also demonstrated. The FIB source is utilized to fabricate through-holes in the micro-disks. Due to the amorphous nature of SiO 2 micro-disks, the Ga implantation possibly modifies through-hole sidewall surface chemistry rather than affecting its transport properties. Some sensor design concepts based on micro-fabrication of SiO 2 micro-disks utilizing thermally and electrically isolated surfaces are discussed from the viewpoint of applications in photonics and bio-sensing.

  11. A Macroporous TiO2 Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask

    Directory of Open Access Journals (Sweden)

    Sheng-Po Wu

    2010-01-01

    Full Text Available An innovative fabrication method to produce a macroporous Si surface by employing an anodic aluminium oxide (AAO nanopore array layer as an etching template is presented. Combining AAO with a reactive ion etching (RIE processes, a homogeneous and macroporous silicon surface can be effectively configured by modulating AAO process parameters and alumina film thickness, thus hopefully replacing conventional photolithography and electrochemical etch methods. The hybrid process integration is considered fully CMOS compatible thanks to the low-temperature AAO and CMOS processes. The gas-sensing characteristics of 50 nm TiO2 nanofilms deposited on the macroporous surface are compared with those of conventional plain (or non-porous nanofilms to verify reduced response noise and improved sensitivity as a result of their macroporosity. Our experimental results reveal that macroporous geometry of the TiO2 chemoresistive gas sensor demonstrates 2-fold higher (~33% improved sensitivity than a non-porous sensor at different levels of oxygen exposure. In addition, the macroporous device exhibits excellent discrimination capability and significantly lessened response noise at 500 °C. Experimental results indicate that the hybrid process of such miniature and macroporous devices are compatible as well as applicable to integrated next generation bio-chemical sensors.

  12. Alkali-etching growth of nest-like Ag@mTiO2 hierarchical nanostructures and their potential applications.

    Science.gov (United States)

    Zhang, Zongnan; Zhang, Haijiao

    2017-06-01

    Porous nanomaterials have attracted extensive interests in adsorption, catalysis, biosensors, and biomedicine due to their high surface area, well-defined pore structure and tunable pore size. However, how to obtain porous nanomaterials of desirable component and unique structure with multifunctionalities and synergetic properties is still a great challenge. In this work, a novel nest-like Ag@mTiO 2 hierarchical nanostructure with Ag nanoparticle as the core and a mesoporous crystalline TiO 2 as the protective shell was successfully prepared by layer-by-layer assembly technique and alkali-etching hydrothermal route. By simply changing the conditions of alkali etching, different nanostructures could be obtained, such as core-shell or rattle type. In the process, the thickness of coating silica layer and TiO 2 shell both played important roles for the formation of desired nanostructures. The as-prepared products had a large specific surface area of 301m 2 /g and a tailored TiO 2 outer shell. Raman spectra results showed perfect SERS signal of the tags enhanced and remained good stability even after one month. Doxycycline (Doxy) was chosen to evaluate their drug loading and controlled release properties. The results indicated that the obtained Ag@mTiO 2 nanoparticles exhibited good biocompatibility and excellent drug-loading capacity. Consequently, they are also expected to serve as ideal candidates for more potential applications including photocatalysis, drug controlled release, biosensor and cell imaging, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy

    Institute of Scientific and Technical Information of China (English)

    Wei; Wei; Caixia; Meng; Qiang; Fu; Xinhe; Bao

    2017-01-01

    Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H2 and O2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H2 and O2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10-5 Torr H2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10.7 Torr O2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O2 and H2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.

  14. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    Science.gov (United States)

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  15. Development of deep silicon plasma etching for 3D integration technology

    Directory of Open Access Journals (Sweden)

    Golishnikov А. А.

    2014-02-01

    Full Text Available Plasma etch process for thought-silicon via (TSV formation is one of the most important technological operations in the field of metal connections creation between stacked circuits in 3D assemble technology. TSV formation strongly depends on parameters such as Si-wafer thickness, aspect ratio, type of metallization material, etc. The authors investigate deep silicon plasma etch process for formation of TSV with controllable profile. The influence of process parameters on plasma etch rate, silicon etch selectivity to photoresist and the structure profile are researched in this paper. Technology with etch and passivation steps alternation was used as a method of deep silicon plasma etching. Experimental tool «Platrane-100» with high-density plasma reactor based on high-frequency ion source with transformer coupled plasma was used for deep silicon plasma etching. As actuation gases for deep silicon etching were chosen the following gases: SF6 was used for the etch stage and CHF3 was applied on the polymerization stage. As a result of research, the deep plasma etch process has been developed with the following parameters: silicon etch rate 6 µm/min, selectivity to photoresist 60 and structure profile 90±2°. This process provides formation of TSV 370 µm deep and about 120 µm in diameter.

  16. Plasma-assisted adsorption of elemental mercury on CeO2/TiO2 at low temperatures

    Science.gov (United States)

    Liu, Lu; Zheng, Chenghang; Gao, Xiang

    2017-11-01

    Mercury is a kind of pollutants contained in flue gas which is hazardous for human beings. In this work, CeO2 was packed in the discharge zone of a plasma reactor to adsorb elemental mercury at low temperatures. Plasma-catalyst reactor can remove Hg0 efficiently with CeO2/TiO2 catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO2/TiO2 catalysts has a promotion effect on the adsorption of Hg0. Plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed. The long-running test demonstrated that this method is an effective way to remove Hg0. The removal efficiency remained at above 99% throughout 12 hours when plasma had been turned on (15kV, 0.5 g packed CeO2/TiO2).

  17. CoSix contact resistance after etching and ashing plasma exposure

    International Nuclear Information System (INIS)

    Katahira, Ken; Fukasawa, Masanaga; Kobayashi, Shoji; Takizawa, Toshifumi; Isobe, Michio; Hamaguchi, Satoshi; Nagahata, Kazunori; Tatsumi, Tetsuya

    2009-01-01

    The authors investigated the contact resistance fluctuation caused by CoSi x damage in plasma etching and ashing processes. They found that CoSi x layers damaged by plasma process exposure are readily oxidized when exposed to air resulting in increased resistance. They also found that the contact resistance increases more when CH 3 F is used instead of CF 4 during etching process. The lower the mass number of dominant ions becomes, the deeper the ions penetrate. Molecular dynamics simulation revealed that dissociated species from lighter ions penetrate deeper and that this stimulates deeper oxidation. They also found that contact resistance further increased by using postetch ashing plasma even in an H 2 /N 2 ashing process in which O 2 was not used. Here, too, the reason for this is that the ion penetration causes deep oxidation. They observed that the contact resistance has a linear relationship with the oxide concentration in CoSi x . This leads to the conclusion that it is essential to precisely control the ion energy as well as to properly select the ion species in the plasma process in the fabrication of next-generation semiconductor devices.

  18. Research on plasma etching of nuclear fuel material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Jin Young [Hanyang University, Seoul (Korea)

    1998-04-01

    Based on the experimental result that the highest etching rate is obtained at 20% O{sub 2} mole fraction regardless of r.f. power and temperature and the RGA analysis result that major reaction product is UF{sub 6}, overall reaction of UO{sub 2} reaction in CF{sub 4}/O{sub 2} plasma is established: 8UO{sub 2} + 12CF{sub 4} + 3O{sub 2} {yields} 8UF{sub 6} + 12CO{sub 2-X} XPS confirms that at lower O{sub 2} mole fraction than 20%, the reaction is retarded by carbon residual on the surface, while XRD demonstrates that at higher O{sub 2} mole fraction than 20% U atom forms hyper-stoichiometric UO{sub 2} such as U{sub 3}O{sub 7}, U{sub 4}O{sub 9}, U{sub 3}O{sub 8}, and UO{sub 3}, rather than interacts to form volatile uranium fluoride. The reaction of UO{sub 2} with CF{sub 4}/O{sub 2} plasma follows a linear kinetics law with time, a surface-reaction controlling step, and the activation energy, 2.98 kcal/mol,is derived at 150 {approx} 450 deg C based on the kinetics. The maximum etching rate is 1100 monolayers/min. at 370 deg C under r.f. power of 150W, which is equivalent to 0.4 {mu}m/min. This etching rate is as fast as that of Si wafer in the semi-conductor processing, therefore, it is conclusively expected that CF{sub 4}/O{sub 2} mixed gas plasma process may be highly applicable to remove TRU coming form DUPIC fuel manufacturing process and enough to reduce residual TRU less than 0.01%. (author). 26 refs., 50 figs., 4 tabs.

  19. Spent nuclear fuel recycling with plasma reduction and etching

    Science.gov (United States)

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  20. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    Science.gov (United States)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

  1. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  2. SiO2 films deposited on silicon at low temperature by plasma-enhanced decomposition of hexamethyldisilazane: Defect characterization

    International Nuclear Information System (INIS)

    Croci, S.; Pecheur, A.; Autran, J.L.; Vedda, A.; Caccavale, F.; Martini, M.; Spinolo, G.

    2001-01-01

    Silicon dioxide films have been deposited by plasma-enhanced chemical vapor deposition at low substrate temperature (50 deg. C) in a parallel-plate reactor using hexamethyldisilazane (HMDS), diluted in He, and O 2 as Si and O precursors. The effect of the O 2 /(HMDS+He) flow rate ratio on the oxide properties has been investigated in the range of 0.05-1.25 by means of deposition rate, wet etching rate, secondary ion mass spectrometry, thermally stimulated luminescence, and high frequency capacitance-voltage measurements. Both the deposition rate and the etching rate increase by increasing the O 2 /(HMDS+He) flow rate ratio and reach a constant value at flow rate ratios higher than 0.6. The strong increase and saturation in the deposition rate can be attributed to the impinging oxide atoms flux and to the consumption of silyl radicals at the deposition surface, respectively. The Si/SiO 2 interface state density and the positive fixed charge density are in the range 1x10 11 -1x10 12 eV -1 cm -2 and 6x10 11 -1.5x10 12 C cm -2 , respectively. These concentrations are comparable with literature data concerning SiO 2 films obtained by plasma enhanced chemical vapor deposition at temperatures higher than 200 deg. C using other Si precursors. Moreover, the interface state density decreases while the fixed oxide charge increases by increasing the O 2 /(HMDS+He) flow rate ratio. A correlation has been found between defects monitored by thermally stimulated luminescence and fixed oxide charges. From a comparison with secondary ion mass spectrometry results, the fixed oxide charges can be preliminarily attributed to intrinsic defects

  3. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    Science.gov (United States)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  4. Dry etching of ITO by magnetic pole enhanced inductively coupled plasma for display and biosensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, T. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: tarik.meziani@jrc.it; Colpo, P. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)]. E-mail: pascal.colpo@jrc.it; Lambertini, V. [Centro Ricerche Fiat, Strada Torino 50, 10043 Orbassano (TO) (Italy); Ceccone, G. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy); Rossi, F. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)

    2006-03-15

    The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H{sub 2} mixtures and at constant bias voltage (-100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH{sub 4}/H{sub 2} mixtures, the etch rate goes through a maximum for 10% CH{sub 4} indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH{sub 4}/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH{sub 4} in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.

  5. Evaluation of Pentafluoroethane and 1,1-Difluoroethane for a Dielectric Etch Application in an Inductively Coupled Plasma Etch Tool

    Science.gov (United States)

    Karecki, Simon; Chatterjee, Ritwik; Pruette, Laura; Reif, Rafael; Sparks, Terry; Beu, Laurie; Vartanian, Victor

    2000-07-01

    In this work, a combination of two hydrofluorocarbon compounds, pentafluoroethane (FC-125, C2HF5) and 1,1-difluoroethane (FC-152a, CF2H-CH3), was evaluated as a potential replacement for perfluorocompounds in dielectric etch applications. A high aspect ratio oxide via etch was used as the test vehicle for this study, which was conducted in a commercial inductively coupled high density plasma etch tool. Both process and emissions data were collected and compared to those provided by a process utilizing a standard perfluorinated etch chemistry (C2F6). Global warming (CF4, C2F6, CHF3) and hygroscopic gas (HF, SiF4) emissions were characterized using Fourier transform infrared (FTIR) spectroscopy. FC-125/FC-152a was found to produce significant reductions in global warming emissions, on the order of 68 to 76% relative to the reference process. Although etch stopping, caused by a high degree of polymer deposition inside the etched features, was observed, process data otherwise appeared promising for an initial study, with good resist selectivity and etch rates being achieved.

  6. GaN MOSHEMT employing HfO2 as a gate dielectric with partially etched barrier

    Science.gov (United States)

    Han, Kefeng; Zhu, Lin

    2017-09-01

    In order to suppress the gate leakage current of a GaN high electron mobility transistor (GaN HEMT), a GaN metal-oxide-semiconductor high electron mobility transistor (MOSHEMT) is proposed, in which a metal-oxide-semiconductor gate with high-dielectric-constant HfO2 as an insulating dielectric is employed to replace the traditional GaN HEMT Schottky gate. A 0.5 μm gate length GaN MOSHEMT was fabricated based on the proposed structure, the {{{Al}}}0.28{{{Ga}}}0.72{{N}} barrier layer is partially etched to produce a higher transconductance without deteriorating the transport characteristics of the two-dimensional electron gas in the channel, the gate dielectric is HfO2 deposited by atomic layer deposition. Current-voltage characteristics and radio frequency characteristics are obtained after device preparation, the maximum current density of the device is 900 mA mm-1, the source-drain breakdown voltage is 75 V, gate current is significantly suppressed and the forward gate voltage swing range is about ten times higher than traditional GaN HEMTs, the GaN MOSHEMT also demonstrates radio frequency characteristics comparable to traditional GaN HEMTs with the same gate length.

  7. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    Science.gov (United States)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  8. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  9. Particle behavior in an ECR plasma etch tool

    International Nuclear Information System (INIS)

    Blain, M.G.; Tipton, G.D.; Holber, W.M.; Westerfield, P.L.; Maxwell, K.L.

    1993-01-01

    Sources of particles in a close-coupled electron cyclotron resonance (ECR) polysilicon plasma etch source include flaking of films deposited on chamber surfaces, and shedding of material from electrostatic wafer chucks. A large, episodic increase in the number of particles added to a wafer in a clean system is observed more frequently for a plasma-on than for a gas-only source condition. For polymer forming process conditions, particles were added to wafers by a polymer film which was observed to fracture and flake away from chamber surfaces. The presence of a plasma, especially when rf bias is applied to the wafer, caused more particles to be ejected from the walls and added to wafers than the gas-only condition; however, no significant influence was observed with different microwave powers. A study of effect of electrode temperatures on particles added showed that thermophoretic forces are not significant for this ECR configuration. Particles originating from the electrostatic chuck were observed to be deposited on wafers in much larger numbers in the presence of the plasma as compared to gas-only conditions

  10. Inductively coupled plasma etching of III-V antimonides in BCl{sub 3}/SiCl{sub 4} etch chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, K. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)], E-mail: swaminak@ece.osu.edu; Janardhanan, P.E.; Sulima, O.V. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2008-10-01

    Inductively coupled plasma etching of GaSb using BCl{sub 3}/SiCl{sub 4} etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved ({approx} 4 {mu}m/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth {approx} 90 {mu}m. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range.

  11. High performance a-IGZO thin-film transistors with mf-PVD SiO2 as an etch-stop-layer

    NARCIS (Netherlands)

    Nag, M.; Steudel, S.; Bhoolokam, A.; Chasin, A.; Rockele, M.; Myny, K.; Maas, J.; Fritz, T.; Trube, J.; Groeseneken, G.; Heremans, P.

    2014-01-01

    In this work, we report on high-performance bottom-gate top-contact (BGTC) amorphous-Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with SiO2 as an etch-stop-layer (ESL) deposited by medium frequency physical vapor deposition (mf-PVD). The TFTs show field-effect mobility (μFE) of

  12. Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Li Song

    2018-01-01

    Full Text Available Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher microstrain and more metallic Au0 species, respectively, which all facilitate the improvement of WGS catalytic activities. Furthermore, we successfully correlated the WGS thermocatalytic activities with their optoelectronic properties, and then tried to understand WGS pathways from the view of electron flow process. Hereinto, the narrowed forbidden band gap leads to the decreased Ohmic barrier, which enhances the transmission efficiency of “hot-electron flow”. Meanwhile, the abundant surface oxygen vacancies are considered as electron traps, thus promoting the flow of “hot-electron” and reduction reaction of H2O. As a result, the WGS catalytic activity was enhanced. The concept involved hydrogen-etching technology leading to abundant surface oxygen vacancies can be attempted on other supported catalysts for WGS reaction or other thermocatalytic reactions.

  13. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F2 remote plasmas

    International Nuclear Information System (INIS)

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-01-01

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F 2 remote plasmas. N 2 and N 2 +O 2 gases in the F 2 /Ar/N 2 and F 2 /Ar/N 2 /O 2 remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N 2 and N 2 +O 2 or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N 2 O and NO 2 by-products, respectively, and thereby enhancing SiF 4 formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature

  14. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  15. Etching and oxidation of InAs in planar inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dultsev, F.N., E-mail: fdultsev@thermo.isp.nsc.ru [Institute of Semiconductor Physics SB RAS, Lavrentiev av. 13, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Institute of Semiconductor Physics SB RAS, Lavrentiev av. 13, Novosibirsk 630090 (Russian Federation)

    2009-10-15

    The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH{sub 4}/H{sub 2}/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.

  16. Etching and oxidation of InAs in planar inductively coupled plasma

    Science.gov (United States)

    Dultsev, F. N.; Kesler, V. G.

    2009-10-01

    The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH 4/H 2/Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.

  17. Etching and oxidation of InAs in planar inductively coupled plasma

    International Nuclear Information System (INIS)

    Dultsev, F.N.; Kesler, V.G.

    2009-01-01

    The surface of InAs (1 1 1)A was investigated under plasmachemical etching in the gas mixture CH 4 /H 2 /Ar. Etching was performed using the RF (13.56 MHz) and ICP plasma with the power 30-150 and 50-300 W, respectively; gas pressure in the reactor was 3-10 mTorr. It was demonstrated that the composition of the subsurface layer less than 5 nm thick changes during plasmachemical etching. A method of deep etching of InAs involving ICP plasma and hydrocarbon based chemistry providing the conservation of the surface relief is proposed. Optimal conditions and the composition of the gas phase for plasmachemical etching ensuring acceptable etch rates were selected.

  18. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  19. Effects of gas-flow structures on radical and etch-product density distributions on wafers in magnetomicrowave plasma etching reactors

    International Nuclear Information System (INIS)

    Ikegawa, Masato; Kobayashi, Jun'ichi; Fukuyama, Ryoji

    2001-01-01

    To achieve high etch rate, uniformity, good selectivity, and etch profile control across large diameter wafers, the distributions of ions, radicals, and etch products in magnetomicrowave high-etch-rate plasma etching reactors must be accurately controlled. In this work the effects of chamber heights, a focus ring around the wafer, and gas supply structures (or gas flow structures) on the radicals and etch products flux distribution onto the wafer were examined using the direct simulation Monte Carlo method and used to determine the optimal reactor geometry. The pressure uniformity on the wafer was less than ±1% when the chamber height was taller than 60 mm. The focus ring around the wafer produced uniform radical and etch-product fluxes but increased the etch-product flux on the wafer. A downward-flow gas-supply structure (type II) produced a more uniform radical distribution than that produced by a radial gas-supply structure (type I). The impact flow of the type II structure removed etch products from the wafer effectively and produced a uniform etch-product distribution even without the focus ring. Thus the downward-flow gas-supply structure (type II) was adopted in the design for the second-generation of a magnetomicrowave plasma etching reactor with a higher etching rate

  20. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    International Nuclear Information System (INIS)

    Upadhyay, J.; Im, Do; Popović, S.; Vušković, L.; Valente-Feliciano, A.-M.; Phillips, L.

    2015-01-01

    The understanding of the Ar/Cl 2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl 2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. To understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate

  1. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  2. Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

    International Nuclear Information System (INIS)

    SHUL, RANDY J.; ZHANG, LEI; BACA, ALBERT G.; WILLISON, CHRISTI LEE; HAN, JUNG; PEARTON, S.J.; REN, F.

    1999-01-01

    Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl 2 /BCl 3 /Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions (≤ 500 W), pressures ≥2 mTorr, and at ion energies below approximately -275 V

  3. Foundations of low-temperature plasma enhanced materials synthesis and etching

    Science.gov (United States)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  4. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  5. The effect of plasma etching on the surface topography of niobium superconducting radio frequency cavities

    Science.gov (United States)

    Radjenović, B.; Radmilović-Radjenović, M.

    2014-11-01

    In this letter the evolution of the surface topography of a niobium superconducting radio frequency cavity caused by different plasma etching modes (isotropic and anisotropic) is studied by the three-dimensional level set method. The initial rough surface is generated starting from an experimental power spectral density. The time dependence of the rms roughness is analyzed and the growth exponential factors β are determined for two etching modes (isotropic and anisotropic) assuming that isotropic etching is a much more effective mechanism of smoothing. The obtained simulation results could be useful for optimizing the parameters of the etching processes needed to obtain high quality niobium surfaces for superconducting radio frequency cavities.

  6. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  7. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2012-01-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition

  9. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  10. Infinitely high etch selectivity during CH4/H2/Ar inductively coupled plasma (ICP) etching of indium tin oxide (ITO) with photoresist mask

    International Nuclear Information System (INIS)

    Kim, D.Y.; Ko, J.H.; Park, M.S.; Lee, N.-E.

    2008-01-01

    Under certain conditions during ITO etching using CH 4 /H 2 /Ar inductively coupled plasmas, the etch rate selectivity of ITO to photoresist (PR) was infinitely high because the ITO films continued to be etched, but a net deposition of the α-C:H layer occurred on the top of the PR. Analyses of plasmas and etched ITO surfaces suggested that the continued consumption of the carbon and hydrogen in the deposited α-C:H layer by their chemical reaction with In and Sn atoms in the ITO resulting in the generation of volatile metal-organic etch products and by the ion-enhanced removal of the α-C:H layer presumably play important roles in determining the ITO etch rate and selectivity

  11. Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma

    Science.gov (United States)

    Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu

    2006-09-01

    We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.

  12. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Novak, Spencer; Richardson, Kathleen [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, South Carolina 29634 (United States); Fathpour, Sasan, E-mail: fathpour@creol.ucf.edu [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  13. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    International Nuclear Information System (INIS)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-01-01

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes

  14. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaolong; Liu, Ying, E-mail: liuychch@ustc.edu.cn; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-15

    Highlights: • SSD layer of fused silica is removed by ICP etch with surface roughness of 0.23 nm. • Metal contamination is successfully avoided by employing an isolation device. • Unique low-density plasma induced pitting damage is discovered and eliminated. • Lateral etching of SSD is avoided due to the improvement of etching anisotropy. - Abstract: In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  15. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  16. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan)

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +} or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.

  17. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  18. Rapid reagent-less on-line H2O2 quantification in alkaline semiconductor etching solution, Part 2: Nephelometry application.

    Science.gov (United States)

    Zlatev, Roumen; Stoytcheva, Margarita; Valdez, Benjamin

    2018-03-01

    A simple and rapid reagent less nephelometric method for on-line H 2 O 2 quantification in semiconductors etching solutions was developed, optimized, characterized and validated. The intensity of the light scattered by the oxygen gas suspension resulted from H 2 O 2 catalytic decomposition by immobilized MnO 2 was registered as analytical response. The influences of the light wave length, the agitation rate, the temperature and the catalyst surface area on the response amplitude were studied and optimization was done. The achieved linear concentration range from 10 to 150mmolL -1 at 0.9835 calibration curve correlation coefficient, precision from 3.65% to 0.95% and response time from 35 to 20s respectively, at sensitivity of 8.01µAmmol -1 L and LOD of 2.9mmolL -1 completely satisfy the semiconductor industry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    Science.gov (United States)

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    Science.gov (United States)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  1. Operational comparison of TLD albedo dosemeters and etched-track detectors in the PuO2-UO2 mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Takada, C.; Yoshida, T.; Momose, T.

    2005-01-01

    Full text: The authors carried out an operational study that compared the use of TLD albedo dosemeters with etched-track detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel wore both TLD albedo dosemeters and etched-track detectors over a period from 1991 to 1993. The TLD albedo dosemeter is the Panasonic model UD-809P and the etched-track detector is the NEUTRAK (polyallyl diglycol carbonate + 1mm-t polyethylene radiator) commercially available from Nagase-Landauer Ltd. Both dosemeters were issued and read monthly. It was found that the TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from etched-track detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations could be small in albedo dosimetry. In addition, the calibrations of both dosemeters in the workplaces and in a bare and moderated 252 Cf calibration field were performed for quantitative validation for the results from the operational comparison. In the former experiments, locations were selected that were representative of typical neutron measurements according to the prior neutron spectra measurements with the multi-sphere spectrometer. In the latter experiments, the workplace environments were simulated by using a 252 Cf source surrounded with cylindrical steel/PMMA moderators. From both experiments, the relationship between TL readings and counted etch-pits with neutron spectrum variation was determined. As expected, the relationship obtained from the simulated workplace field calibration reproduced that from the operational comparison. (author)

  2. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  3. Plasma treatment of porous GaAs surface formed by electrochemical etching method: Characterization and properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2008-12-01

    Porous GaAs samples were formed by electrochemical anodic etching of Zn doped p-type GaAs (100) wafers at different etching parameters (time, mode of applied voltage or current and electrolyte). The effect of etching parameters and plasma surface treatment on the optical properties of the prepared sample has been investigated by using room temperature photoluminescence (PL), Raman spectroscopy and reflectance spectroscopic measurements in the range (400-800 nm). The surface morphological changes were studied by using atomic force microscope. It has been found that etching parameters can be controlled to produce a considerably low optical reflectivity porous GaAs layer, attractive for use in solar cells. In addition, it has been observed that the deposition of plasma polymerized HMDSO thin film on porous GaAs surface can be utilized to produce a surface with novel optical properties interesting for solar cells and optoelectronic devices. (author)

  4. Characterization of plasma etching damage on p-type GaN using Schottky diodes

    International Nuclear Information System (INIS)

    Kato, M.; Mikamo, K.; Ichimura, M.; Kanechika, M.; Ishiguro, O.; Kachi, T.

    2008-01-01

    The plasma etching damage in p-type GaN has been characterized. From current-voltage and capacitance-voltage characteristics of Schottky diodes, it was revealed that inductively coupled plasma (ICP) etching causes an increase in series resistance of the Schottky diodes and compensation of acceptors in p-type GaN. We investigated deep levels near the valence band of p-type GaN using current deep level transient spectroscopy (DLTS), and no deep level originating from the ICP etching damage was observed. On the other hand, by capacitance DLTS measurements for n-type GaN, we observed an increase in concentration of a donor-type defect with an activation energy of 0.25 eV after the ICP etching. The origin of this defect would be due to nitrogen vacancies. We also observed this defect by photocapacitance measurements for ICP-etched p-type GaN. For both n- and p-type GaN, we found that the low bias power ICP etching is effective to reduce the concentration of this defect introduced by the high bias power ICP etching

  5. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  6. Plasma treatment of porous GaAs surface formed by electrochemical etching method: Characterization and properties

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2010-01-01

    Porous GaAs samples were formed by electrochemical anodic etching of Zn doped p-type GaAs (100) wafers at different etching parameters (time, mode of applied voltage or current and electrolyte). The effect of etching parameters and plasma surface treatment on the optical properties of the prepared sample has been investigated by using room temperature photoluminescence (PL), Raman spectroscopy and reflectance spectroscopic measurements in the range (400-800 nm). The surface morphological changes were studied by using atomic force microscope. (author)

  7. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Joo, Young-Hee; Kim, Chang-Il

    2015-01-01

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF 4 /Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF 4 /Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF 4 /Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF 4 /Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar + sputtering and then reacted with the C-F x radicals. • The physical sputtering is dominant in etch control compared with chemical etching

  8. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    International Nuclear Information System (INIS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ohmori, Akira; Shibata, Yoshitaka; Miyano, Yasuyuki; Murai, Kensuke

    2014-01-01

    Anatase (A-) TiO 2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO 2 without HAp, TiO 2 + 10mass%HAp, and TiO 2 +30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO 2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO 2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed

  9. NH3/O2 mixed gas plasmas alter the interaction of blood components with stainless steel.

    Science.gov (United States)

    Chen, Meng; Zamora, Paul O; Peña, Louis; Som, Prantika; Osaki, Shigemasa

    2003-12-01

    Stainless steel treated with a mixed gas plasma of NH(3) plus O(2) had chemical and biologic characteristics distinct from untreated stainless steel or stainless steel treated with NH(3) or O(2) plasmas used separately. NH(3)/O(2) plasmas deposited nitrogen as both -CN (organic) and -NO (nitrate, nitrite)--materials not found on untreated stainless steel--and the contact angle changed from 44 degrees to 23 degrees. Treatment of stainless steel (and titanium) resulted in surfaces with enhanced resistance to platelet and leukocyte attachment. A gas plasma of N(2)O/O(2) also was found to reduce platelet and leukocyte attachment, suggesting that these properties may be common to surfaces coated with oxynitrites (nitrides). Upon subcutaneous implantation, no inflammation, hemolysis, or untoward thrombosis was noted in the tissue surrounding the wafers treated with the NH(3)/O(2) plasmas, although the cellular density was considerably reduced by 2 weeks after implant. Collectively, the results suggest that NH(3)/O(2) plasmas impart a unique character to stainless steel that may be useful in the construction of medical devices. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 994-1000, 2003

  10. Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

    International Nuclear Information System (INIS)

    Lee, Hye W.; Lee, Jong K.; Park, Ki Y.

    2009-01-01

    Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was 61 .deg. . The contact angles of chemical etched, plasma treated or both were improved to the range of 15∼33 .deg. . In the case of electroless plating, the thickest layer without blister was 1.6 μm. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were 75 kgf/cm 2 , 102 kgf/cm 2 , 113 kgf/cm 2 , respectively, comparing to the 24 kgf/cm 2 of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times

  11. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    International Nuclear Information System (INIS)

    Upadhyay, Janardan; Phillips, Larry; Valente, Anne-Marie

    2011-01-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  12. Etching of Niobium Sample Placed on Superconducting Radio Frequency Cavity Surface in Ar/CL2 Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Janardan Upadhyay, Larry Phillips, Anne-Marie Valente

    2011-09-01

    Plasma based surface modification is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. It has been proven with flat samples that the bulk Niobium (Nb) removal rate and the surface roughness after the plasma etchings are equal to or better than wet etching processes. To optimize the plasma parameters, we are using a single cell cavity with 20 sample holders symmetrically distributed over the cell. These holders serve the purpose of diagnostic ports for the measurement of the plasma parameters and for the holding of the Nb sample to be etched. The plasma properties at RF (100 MHz) and MW (2.45 GHz) frequencies are being measured with the help of electrical and optical probes at different pressures and RF power levels inside of this cavity. The niobium coupons placed on several holders around the cell are being etched simultaneously. The etching results will be presented at this conference.

  13. Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance

    Science.gov (United States)

    Zhao, Xiaobing; Peng, Chao; You, Jing

    2017-08-01

    Surface chemical composition and topography are two key factors in the biological performance of implants. The aim of this work is to deposit ZnO/TiO2 composite coatings on the surface of titanium substrates by plasma spraying technique. The effects of the amount of ZnO doping on the microstructure, surface roughness, corrosion resistance, and biological performance of the TiO2 coatings were investigated. The results indicated that the phase composition of the as-sprayed TiO2 coating was mainly rutile. Addition of 10% ZnO into TiO2 coating led to a slight shift of the diffraction peaks to lower angle. Anatase phase and Zn2TiO4 were formed in 20%ZnO/TiO2 and 30%ZnO/TiO2 coatings, respectively. Doping with ZnO changed the topography of the TiO2 coatings, which may be beneficial to enhance their biological performance. All coatings exhibited microsized surface roughness, and the corrosion resistance of ZnO/TiO2 coatings was improved compared with pure TiO2 coating. The ZnO/TiO2 coatings could induce apatite formation on their surface and inhibit growth of Staphylococcus aureus, but these effects were dose dependent. The 20%ZnO/TiO2 coating showed better biological performance than the other coatings, suggesting potential application for bone implants.

  14. Production of O2(1Δ) in flowing plasmas using spiker-sustainer excitation

    International Nuclear Information System (INIS)

    Babaeva, Natalia Y.; Arakoni, Ramesh A.; Kushner, Mark J.

    2006-01-01

    In chemical oxygen iodine lasers (COILs), oscillation at 1.315 μm in atomic iodine ( 2 P 1/2 → 2 P 3/2 ) is produced by collisional excitation transfer of O 2 ( 1 Δ) to I 2 and I. Plasma production of O 2 ( 1 Δ) in electrical COILs (eCOILs) eliminates liquid phase generators. For the flowing plasmas used for eCOILs (He/O 2 , a few to tens of torr), self-sustaining electron temperatures, T e , are 2-3 eV whereas excitation of O 2 ( 1 Δ) optimizes with T e =1-1.5 eV. One method to increase O 2 ( 1 Δ) production is by lowering the average value of T e using spiker-sustainer (SS) excitation where a high power pulse (spiker) is followed by a lower power period (sustainer). Excess ionization produced by the spiker enables the sustainer to operate with a lower T e . Previous investigations suggested that SS techniques can significantly raise yields of O 2 ( 1 Δ). In this paper, we report on the results from a two-dimensional computational investigation of radio frequency (rf) excited flowing He/O 2 plasmas with emphasis on SS excitation. We found that the efficiency of SS methods generally increase with increasing frequency by producing a higher electron density, lower T e , and, as a consequence, a more efficient production of O 2 ( 1 Δ)

  15. Consequences of atomic layer etching on wafer scale uniformity in inductively coupled plasmas

    Science.gov (United States)

    Huard, Chad M.; Lanham, Steven J.; Kushner, Mark J.

    2018-04-01

    Atomic layer etching (ALE) typically divides the etching process into two self-limited reactions. One reaction passivates a single layer of material while the second preferentially removes the passivated layer. As such, under ideal conditions the wafer scale uniformity of ALE should be independent of the uniformity of the reactant fluxes onto the wafers, provided all surface reactions are saturated. The passivation and etch steps should individually asymptotically saturate after a characteristic fluence of reactants has been delivered to each site. In this paper, results from a computational investigation are discussed regarding the uniformity of ALE of Si in Cl2 containing inductively coupled plasmas when the reactant fluxes are both non-uniform and non-ideal. In the parameter space investigated for inductively coupled plasmas, the local etch rate for continuous processing was proportional to the ion flux. When operated with saturated conditions (that is, both ALE steps are allowed to self-terminate), the ALE process is less sensitive to non-uniformities in the incoming ion flux than continuous etching. Operating ALE in a sub-saturation regime resulted in less uniform etching. It was also found that ALE processing with saturated steps requires a larger total ion fluence than continuous etching to achieve the same etch depth. This condition may result in increased resist erosion and/or damage to stopping layers using ALE. While these results demonstrate that ALE provides increased etch depth uniformity, they do not show an improved critical dimension uniformity in all cases. These possible limitations to ALE processing, as well as increased processing time, will be part of the process optimization that includes the benefits of atomic resolution and improved uniformity.

  16. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  17. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    Science.gov (United States)

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  18. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  19. Etching mechanism of MgO thin films in inductively coupled Cl2/Ar plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Koo, Seong-Mo; Kim, Dong-Pyo; Kim, Kyoung-Tae; Kim, Chang-Il

    2004-01-01

    The etching mechanism of MgO thin films in Cl 2 /Ar plasma was investigated. It was found that the increasing Ar in the mixing ratio of Cl 2 /Ar plasma causes nonmonotonic MgO etch rate, which reaches a maximum value at 70%Ar+30%Cl 2 . Langmuir probe measurement showed the noticeable influence of Cl 2 /Ar mixing ratio on electron temperature and electron density. The zero-dimensional plasma model indicated monotonic changes of both densities and fluxes of active species. At the same time, analyses of surface kinetics showed the possibility of nonmonotonic etch rate behavior due to the concurrence of physical and chemical pathways in ion-assisted chemical reaction

  20. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    International Nuclear Information System (INIS)

    Marciano, F.R.; Bonetti, L.F.; Pessoa, R.S.; Massi, M.; Santos, L.V.; Trava-Airoldi, V.J.

    2009-01-01

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  1. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  2. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  3. Model etch profiles for ion energy distribution functions in an inductively coupled plasma reactor

    International Nuclear Information System (INIS)

    Chen, W.; Abraham-Shrauner, B.; Woodworth, J.R.

    1999-01-01

    Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient. copyright 1999 American Vacuum Society

  4. Study of the physical discharge properties of a Ar/O2 DC plasma jet

    Science.gov (United States)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.

    2018-03-01

    In this paper, the physical properties of plasma discharge in a manufactured DC plasma jet operating with the Ar/O2 gaseous mixture are studied. Moreover, the optical emission spectroscopy technique is used to perform the experimental measurements. The obtained emission spectra are analyzed and, the plasma density, rotational, vibrational and electronic temperature are calculated. The NO emission lines from {NO }γ( A2 Σ^{+} \\to {X}2 Πr ) electronic transition are observed. It is seen that, at the higher argon contributions in Ar/O2 gaseous mixture, the emission intensities from argon ions will increase. Moreover, while the vibrational and excitation temperatures are increased at the higher input DC currents, they will decrease at the higher Ar percentages in the Ar/O2 gaseous mixture. Furthermore, at the higher DC currents and Ar contributions, both the plasma electron density and dissociation fraction of oxygen atoms are increased.

  5. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Science.gov (United States)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  6. The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates

    Science.gov (United States)

    Memos, George; Lidorikis, Elefterios; Kokkoris, George

    2018-02-01

    The surface roughness developed during plasma etching of polymeric substrates is critical for a variety of applications related to the wetting behavior and the interaction of surfaces with cells. Toward the understanding and, ultimately, the manipulation of plasma induced surface roughness, the interplay between surface charging and microscale roughness of polymeric substrates is investigated by a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module. The evolution of initially rough profiles during plasma etching is calculated by taking into account as well as by neglecting charging. It is revealed, on the one hand, that the surface charging contributes to the suppression of root mean square roughness and, on the other hand, that the decrease of the surface roughness induces a decrease of the charging potential. The effect of charging on roughness is intense when the etching yield depends solely on the ion energy, and it is mitigated when the etching yield additionally depends on the angle of ion incidence. The charging time, i.e., the time required for reaching a steady state charging potential, is found to depend on the thickness of the polymeric substrate, and it is calculated in the order of milliseconds.

  7. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    Science.gov (United States)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  8. Water-based synthesis of TiO2/CeO2 composites supported on plasma-treated montmorillonite for parathion methyl degradation

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Kormunda, M.; Šťastný, Martin; Janoš, P.; Vomáčka, Petr; Matoušek, J.; Štengl, Václav

    2017-01-01

    Roč. 144, AUG (2017), s. 26-35 ISSN 0169-1317 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Montmorillonite * Parathion methyl * Plasma treatment * TiO2 /CeO2 composites Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.101, year: 2016

  9. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    Science.gov (United States)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  10. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants

    DEFF Research Database (Denmark)

    Mortensen, Mikkel Saksø; Jakobsen, Stig Storgaard; Saksø, Henrik

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation...... was evaluated by implant osseointegration and biomechanical fixation.The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were...... compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant...

  11. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Directory of Open Access Journals (Sweden)

    Ilya Borisov

    2017-02-01

    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  12. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    Science.gov (United States)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  13. Micro-texturing into DLC/diamond coated molds and dies via high density oxygen plasma etching

    Directory of Open Access Journals (Sweden)

    Yunata Ersyzario Edo

    2015-01-01

    Full Text Available Diamond-Like Carbon (DLC and Chemical Vapor Deposition (CVD-diamond films have been widely utilized not only as a hard protective coating for molds and dies but also as a functional substrate for bio-MEMS/NEMS. Micro-texturing into these hard coated molds and dies provides a productive tool to duplicate the original mother micro-patterns onto various work materials and to construct any tailored micro-textures for sensors and actuators. In the present paper, the high density oxygen plasma etching method is utilized to make micro-line and micro-groove patterns onto the DLC and diamond coatings. Our developing oxygen plasma etching system is introduced together with characterization on the plasma state during etching. In this quantitative plasma diagnosis, both the population of activated species and the electron and ion densities are identified through the emissive light spectroscopy and the Langmuir probe method. In addition, the on-line monitoring of the plasmas helps to describe the etching process. DLC coated WC (Co specimen is first employed to describe the etching mechanism by the present method. Chemical Vapor Deposition (CVD diamond coated WC (Co is also employed to demonstrate the reliable capacity of the present high density oxygen plasma etching. This oxygen plasma etching performance is discussed by comparison of the etching rates.

  14. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  15. Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    NARCIS (Netherlands)

    George, A.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected

  16. Towards the perfect three-way junction: plasma etching and planar optical waveguides

    International Nuclear Information System (INIS)

    Boswell, R.W.; Love, J.D.

    1989-01-01

    A research program is presented in which plasma etching techniques on a microscopic scale will be used to manufacture multiple low-loss wavelength independent Y-junctions, so the optical signals they carry are efficiently coupled, meaning that signals losses should be minimal

  17. Investigation of Plasma Etching for Superconducting RF Cavities Surface Preparation. Final Report

    International Nuclear Information System (INIS)

    Vuskovic, Leposava

    2009-01-01

    Our results show that plasma-treated samples are comparable or superior to a BCP sample, both in the size of features and sharpness of the boundaries between individual features at the surface. Plasma treatment of bulk Nb cavities is a promising technique for microwave cavities preparation used in particle acceleration application. Etching rates are sufficiently high to enable efficient removal of mechanically damaged surface layer with high reproducibility. No impurities are deposited on the bulk Nb surface during plasma treatment. Surface topology characteristic are promising for complex cavity geometry, since discharge conforms the profile of the reaction chamber. In view of these experimental results, we propose plasma treatment for producing microwave cavities with high Q factor instead of using bulk Nb treated with wet etching process.

  18. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.

    Science.gov (United States)

    Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert

    2013-08-26

    We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

  19. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  20. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    Science.gov (United States)

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

  1. Investigation of plasma etch damage to porous oxycarbosilane ultra low-k dielectric

    International Nuclear Information System (INIS)

    Bruce, R L; Engelmann, S; Purushothaman, S; Volksen, W; Frot, T J; Magbitang, T; Dubois, G; Darnon, M

    2013-01-01

    There has been much interest recently in porous oxycarbosilane (POCS)-based materials as the ultra-low k dielectric (ULK) in back-end-of-line (BEOL) applications due to their superior mechanical properties compared to traditional organosilicate-based ULK materials at equivalent porosity and dielectric constant. While it is well known that plasma etching and strip processes can cause significant damage to ULK materials in general, little has been reported about the effect of plasma damage to POCS as the ULK material. We investigated the effect of changing the gas discharge chemistry and substrate bias in the dielectric trench etch and also the subsequent effect of the cap-open etch on plasma damage to POCS during BEOL integration. Large differences in surface roughness and damage behaviour were observed by changing the fluorocarbon depositing conditions. These damage behaviour trends will be discussed and potential rationalizations offered based on the formation of pits and craters at the etch front that lead to surface roughness and microtrenching. (paper)

  2. Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe

    Science.gov (United States)

    Eddy, C. R.; Leonhardt, D.; Shamamian, V. A.; Butler, J. E.

    2001-05-01

    High density plasma etching of zinc selenide using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry, using through-the-platen sampling, is used to identify and monitor etch products evolving from the surface during etching. The identifiable primary etch products are Zn, Se, ZnH2, SeH2, Zn(CH3)2, and Se(CH3)2. Their concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy, and substrate temperature are varied. General insights about the surface chemistry mechanisms of the etch process are given from these observations. Regions of process parameter space best suited for moderate rate, anisotropic, and low damage etching of ZnSe are proposed.

  3. Etch characteristics of (Pb,Sr)TiO3 thin films using CF4/Ar inductively coupled plasma

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    The investigations of the (Pb,Sr)TiO 3 (PST) etching characteristics in CF 4 /Ar plasma were carried out using the inductively coupled plasma system. Experiments showed that an increase of the Ar mixing ratio under constant pressure and input power conditions leads to increasing etch rate of PST, which reaches a maximum of 740 A/min when the Ar is 80% of the gas mixture. To understand the etching mechanism, the surface state of the etched PST samples was investigated using x-ray photoelectron spectroscopy. It was found that Pb and Ti atoms were removed mainly by the ion-assisted etching mechanism. At the same time, Sr forms extremely low volatile fluorides and therefore can be removed only by physical (sputter) etching

  4. Temperature dependence on plasma-induced damage and chemical reactions in GaN etching processes using chlorine plasma

    Science.gov (United States)

    Liu, Zecheng; Ishikawa, Kenji; Imamura, Masato; Tsutsumi, Takayoshi; Kondo, Hiroki; Oda, Osamu; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Plasma-induced damage (PID) on GaN was optimally reduced by high-temperature chlorine plasma etching. Energetic ion bombardments primarily induced PID involving stoichiometry, surface roughness, and photoluminescence (PL) degradation. Chemical reactions under ultraviolet (UV) irradiation and chlorine radical exposure at temperatures higher than 400 °C can be controlled by taking into account the synergism of simultaneous photon and radical irradiations to effectively reduce PID.

  5. Etching of UO2 in NF3 RF Plasma Glow Discharge

    International Nuclear Information System (INIS)

    John M. Veilleux

    1999-01-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO 2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO 2 from stainless steel substrates. Experiments were conducted using NF 3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO 2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO 2 in the samples had a relatively low density of 4.8 gm/cm 3 . Counting of the depleted UO 2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234 Th and 234 Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO 2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO 2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 microm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO 2 etching was also noted below 50 W in which etching increased up to a maximum pressure, approximately23 Pa, then decreased with further increases in pressure

  6. Dry etching of new phase-change material Al1.3Sb3Te in CF4/Ar plasma

    International Nuclear Information System (INIS)

    Zhang Xu; Rao Feng; Liu Bo; Peng Cheng; Zhou Xilin; Yao Dongning; Guo Xiaohui; Song Sannian; Wang Liangyong; Cheng Yan; Wu Liangcai; Song Zhitang; Feng Songlin

    2012-01-01

    The dry etching characteristic of Al 1.3 Sb 3 Te film was investigated by using a CF 4 /Ar gas mixture. The experimental control parameters were gas flow rate into the chamber, CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power applied to the lower electrode. The total flow rate was 50 sccm and the behavior of etch rate of Al 1.3 Sb 3 Te thin films was investigated as a function of the CF 4 /Ar ratio, the O 2 addition, the chamber background pressure, and the incident RF power. Then the parameters were optimized. The fast etch rate was up to 70.8 nm/min and a smooth surface was achieved using optimized etching parameters of CF 4 concentration of 4%, power of 300 W and pressure of 80 mTorr.

  7. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    Science.gov (United States)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  8. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  9. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    Science.gov (United States)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  10. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma

    Science.gov (United States)

    Abdel-Fattah, E.; Ogawa, D.; Nakamura, K.

    2017-07-01

    The oxygenation of multi-wall carbon nanotubes (MWCNTs) was performed via a radio frequency dielectric barrier discharge (RF-DBD) in an Ar/{{\\text{H}}2}\\text{O} plasma mixture. The relative intensity of the Ar/{{\\text{O}}2} plasma species was characterized by optical emission spectroscopy (OES). The effects of treatment time, RF power and oxygen gas percentage on the chemical composition and surface morphology of MWCNTs were investigated by means of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). The results of FTIR and XPS revealed the presence of oxygen-containing functional groups on the MWCNTs treated in an Ar/{{\\text{O}}2} plasma at an RF power of 50 W and pressure of 400 Pa. The amount of oxygen functional groups (C=O, C-O, and O-COO) also increased by increasing treatment time up to 6 min, but slightly decreased when treatment time was increased by 10 min. The increase of oxygen gas percentage in the plasma mixture does not affect the oxygen content in the treated MWCNTs. Meanwhile, MWCNTs treated at high power (80 W) showed a reduction in oxygen functional groups in comparison with low RF power conditions. The Raman analysis was consistent with the XPS and FTIR results. The integrity of the nanotube patterns also remained damaged as observed by FE-SEM images. The MWCNTs treated in RF-DBD using the Ar/{{\\text{O}}2} plasma mixture showed improved dispersibility in deionized water. A correlation between the OES data and the observed surface characterization for an improved understanding of the functionalization of MWCNTs in Ar/{{\\text{O}}2} plasma was presented.

  11. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films

    International Nuclear Information System (INIS)

    Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C.

    2013-01-01

    Evolution of electrical properties and thin-film transistor characteristics of amorphous indium gallium zinc oxide (IGZO) thin films synthesized by RF sputtering with O 2 plasma immersion has been examined. O 2 plasma immersion results in an enhancement in the Hall mobility and a decrease in the electron concentration; and the transistor performance can be greatly improved by the O 2 plasma immersion. X-ray photoelectron spectroscopy analysis indicates that the effect of O 2 plasma immersion on the electrical properties and the transistor performance can be attributed to the reduction of the oxygen-related defects in the IGZO thin films. - Highlights: • Oxygen plasma immersion effect on indium gallium zinc oxide thin film properties • Oxygen-related defect reduces in the InGaZnO thin film with oxygen plasma immersion. • Increasing oxygen plasma immersion duration on device will decrease the off current. • Oxygen plasma immersion enhances the performance of device

  12. Plasma kinetics of Ar/O2 magnetron discharge by two-dimensional multifluid modeling

    International Nuclear Information System (INIS)

    Costin, C.; Minea, T. M.; Popa, G.; Gousset, G.

    2010-01-01

    Multifluid two-dimensional model was developed to describe the plasma kinetics of the direct current Ar/O 2 magnetron, coupling two modules: charged particles and neutrals. The first module deals with three positive ions - Ar + , O 2 + , and O + - and two negative species - e - and O - - treated by the moments of Boltzmann's equation. The second one follows seven neutral species (Ar, O 2 , O, O 3 , and related metastables) by the multicomponent diffusion technique. The two modules are self-consistently coupled by the mass conservation and kinetic coefficients taking into account more than 100 volume reactions. The steady state is obtained when the overall convergence is achieved. Calculations for 10%O 2 in Ar/O 2 mixture at 2.67 and 4 Pa show that the oxygen excited species are mainly created by electron collisions in the negative glow of the discharge. Decreasing the pressure down to 0.67 Pa, the model reveals the nonlocal behavior of the reactive species. The density gradient of O 2 ground state is reversed with respect to all gradients of the other reactive species, since the latter ones originate from the molecular ground state of oxygen. It is also found that the wall reactions drastically modify the space gradient of neutral reactive species, at least as much as the pressure, even if the discharge operates in compound mode.

  13. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  14. Etching characteristic and mechanism of BST thin films using inductively coupled Cl2/Ar plasma with additive CF4 gas

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    BST thin films were etched with inductively coupled CF 4 /(Cl 2 +Ar) plasmas. The maximum etch rate of the BST thin films was 53.6 nm/min for a 10% CF 4 to the Cl 2 /Ar gas mixture at RF power of 700 W, DC bias of -150 V, and chamber pressure of 2 Pa. Small addition of CF 4 to the Cl 2 /Ar mixture increased chemical effect. Consequently, the increased chemical effect caused the increase in the etch rate of the BST thin films. To clarify the etching mechanism, the surface reaction of the BST thin films was investigated by X-ray photoelectron spectroscopy

  15. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching.

    Science.gov (United States)

    Wang, Yanhu; Gao, Chaomin; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2016-11-15

    A platelike tungsten trioxide (WO3) sensitized with CdS quantum dots (QDs) heterojunction is developed for solar-driven, real-time, and selective photoelectrochemical (PEC) sensing of H2O2 in the living cells. The structure is synthesized by hydrothermally growing platelike WO3 on fluorine doped tin oxide (FTO) and subsequently sensitized with CdS QDs. The as-prepared WO3-CdS QDs heterojunction achieve significant photocurrent enhancement, which is remarkably beneficial for light absorption and charge carrier separation. Based on the enzymatic etching of CdS QDs enables the activation of quenching the charge transfer efficiency, thus leading to sensitive PEC recording of H2O2 level in buffer and cellular environments. The results indicated that the proposed method will pave the way for the development of excellent PEC sensing platform with the quantum dot sensitization. This study could also provide a new train of thought on designing of self-operating photoanode in PEC sensing, promoting the application of semiconductor nanomaterials in photoelectrochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diamond growth on Fe-Cr-Al alloy by H2-plasma enhanced graphite etching

    International Nuclear Information System (INIS)

    Li, Y. S.; Hirose, A.

    2007-01-01

    Without intermediate layer and surface pretreatment, adherent diamond films with high initial nucleation density have been deposited on Fe-15Cr-5Al (wt. %) alloy substrate. The deposition was performed using microwave hydrogen plasma enhanced graphite etching in a wide temperature range from 370 to 740 degree sign C. The high nucleation density and growth rate of diamond are primarily attributed to the unique precursors used (hydrogen plasma etched graphite) and the chemical nature of the substrate. The improvement in diamond adhesion to steel alloys is ascribed to the important role played by Al, mitigation of the catalytic function of iron by suppressing the preferential formation of loose graphite intermediate phase on steel surface

  17. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  18. Mask-free surface structuring of micro- and nanocrystalline diamond films by reactive ion plasma etching

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Babchenko, Oleg; Varga, Marián; Hruška, Karel; Kromka, Alexander

    2014-01-01

    Roč. 6, č. 7 (2014), s. 780-784 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0910; GA ČR GAP108/12/0996; GA MPO FR-TI2/736 Institutional support: RVO:68378271 Keywords : micro- and nanocrystalline diamond * capacitively coupled plasma * reactive ion etching * nanostructuring * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2013-01-01

    Full Text Available To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g increased significantly than that of pure carbon nanotubes (6.7 F/g.

  20. Properties of thin films deposited from HMDSO/O2 induced remote plasma: Effect of oxygen fraction

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.; Al-Khaled, B.

    2008-01-01

    Thin films deposited from hexamethyle disiloxane (HMDSO)/O 2 mixture excited in a radio-frequency hollow cathode discharge system have been investigated for their structural, optical and corrosive properties as a function of oxygen fraction χo 2o 2 =0, 0.38, 0.61, 0.76 and 0.90). It is found that the effect of oxygen fraction on films properties is related to O 2 dissociation degree (αd) behavior in pure oxygen plasma. αd has been investigated by actinometry optical emission spectroscopy (AOES) combined with double langmuir probe measurements, a maximum of O 2 dissociation degree of 15% has been obtained for 50 sccm flow rate of O 2o 2 =0.61 in HMDSO/O 2 plasma). Fourier transform infrared spectroscopy (FTIR) and optical measurements showed that the behavior of both identified IR group densities and deposition rate as a function of oxygen fraction is similar to that of O 2 dissociation degree. The inorganic nature of the films depends significantly on oxygen fraction, the best inorganic structure of deposited films has been obtained for 62% HMDSO content in the mixture HMDSO/O 2o 2 =0.38). The refractive index for deposited films from pure HMDSO(χo 2 =0) has been found to be higher than that of films deposited from HMDSO/O 2 mixture. In HMDSO/O 2 plasma, it has a behavior similar to that of deposition rate, and it is comparable to that of quartz. The effect of oxygen fraction on the corrosive properties of thin films deposited on steel has been investigated. It is found that the measured corrosion current density in 0.1 M KCI solution decreases with the addition of O 2 to HMDSO plasma, and it is minimum for χo 2 =0.38. (author)

  1. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    Science.gov (United States)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  2. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    Science.gov (United States)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  3. Room temperature inductively coupled plasma etching of InAs/InSb in BCl 3/Cl 2/Ar

    KAUST Repository

    Sun, Jian

    2012-10-01

    Inductively coupled plasma (ICP) etching of InAs and InSb at room temperature has been investigated using BCl 3/Cl 2/Ar plasma. Specifically, the etch rate and post-etching surface morphology were investigated as functions of the gas composition, ICP power, process pressure, and RF chuck power. An optimized process has been developed, yielding anisotropic etching and very smooth surfaces with roughnesses of 0.25 nm for InAs, and 0.57 nm for InSb, which is comparable with the surface of epi-ready polished wafers. The process provides moderate etching rates of 820 /min for InAs and 2800 /min for InSb, and the micro-masking effect is largely avoided. © 2012 Elsevier B.V. All rights reserved.

  4. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  5. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  6. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  7. Influence of O2 plasma treatment on NiO x layer in perovskite solar cells

    Science.gov (United States)

    Nishihara, Yoshihiko; Chikamatsu, Masayuki; Kazaoui, Said; Miyadera, Tetsuhiko; Yoshida, Yuji

    2018-04-01

    We fabricated perovskite solar cells (PSCs) with an inverted p-i-n planar structure using a NiO x film as a hole-transporting layer. Since the surface of the NiO x film fabricated by sputtering is hydrophobic, O2 plasma treatment under various conditions was performed to improve its wettability. Water contact angles after the treatment under both normal and weak conditions on the NiO x film reached approximately 15°. After the treatment, the valence band level of the NiO x film was deeper by about 0.15 eV. The maximum efficiency of the NiO x -based device under the optimized O2 plasma condition reached 12.3%.

  8. Evolution of titanium residue on the walls of a plasma-etching reactor and its effect on the polysilicon etching rate

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Kosa, E-mail: hirota-kousa@sme.hitachi-hitec.com; Itabashi, Naoshi; Tanaka, Junichi [Hitachi, Ltd., Central Research Laboratory, 1-280, Higashi-Koigakubo, Kokubunji, Tokyo 185-8601 (Japan)

    2014-11-01

    The variation in polysilicon plasma etching rates caused by Ti residue on the reactor walls was investigated. The amount of Ti residue was measured using attenuated total reflection Fourier transform infrared spectroscopy with the HgCdTe (MCT) detector installed on the side of the reactor. As the amount of Ti residue increased, the number of fluorine radicals and the polysilicon etching rate increased. However, a maximum limit in the etching rate was observed. A mechanism of rate variation was proposed, whereby F radical consumption on the quartz reactor wall is suppressed by the Ti residue. The authors also investigated a plasma-cleaning method for the removal of Ti residue without using a BCl{sub 3} gas, because the reaction products (e.g., boron oxide) on the reactor walls frequently cause contamination of the product wafers during etching. CH-assisted chlorine cleaning, which is a combination of CHF{sub 3} and Cl{sub 2} plasma treatment, was found to effectively remove Ti residue from the reactor walls. This result shows that CH radicals play an important role in deoxidizing and/or defluorinating Ti residue on the reactor walls.

  9. Structural and electrical characterization of HBr/O2 plasma damage to Si substrate

    International Nuclear Information System (INIS)

    Fukasawa, Masanaga; Nakakubo, Yoshinori; Matsuda, Asahiko; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi; Minami, Masaki; Uesawa, Fumikatsu; Tatsumi, Tetsuya

    2011-01-01

    Silicon substrate damage caused by HBr/O 2 plasma exposure was investigated by spectroscopic ellipsometry (SE), high-resolution Rutherford backscattering spectroscopy, and transmission electron microscopy. The damage caused by H 2 , Ar, and O 2 plasma exposure was also compared to clarify the ion-species dependence. Although the damage basically consists of a surface oxidized layer and underlying dislocated Si, the damage structure strongly depends on the incident ion species, ion energy, and oxidation during air and plasma exposure. In the case of HBr/O 2 plasma exposure, hydrogen generated the deep damaged layer (∼10 nm), whereas ion-enhanced diffusion of oxygen, supplied simultaneously by the plasma, caused the thick surface oxidation. In-line monitoring of damage thicknesses by SE, developed with an optimized optical model, showed that the SE can be used to precisely monitor damage thicknesses in mass production. Capacitance-voltage (C-V) characteristics of a damaged layer were studied before and after diluted-HF (DHF) treatment. Results showed that a positive charge is generated at the surface oxide-dislocated Si interface and/or in the bulk oxide after plasma exposure. After DHF treatment, most of the positive charges were removed, while the thickness of the ''Si recess'' was increased by removing the thick surface oxidized layer. As both the Si recess and remaining dislocated Si, including positive charges, cause the degradation of electrical performance, precise monitoring of the surface structure and understanding its effect on device performance is indispensable for creating advanced devices.

  10. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, Václav; Doležalová, Eva; Šimek, Milan; Biederman, H.

    2017-01-01

    Roč. 50, č. 13 (2017), č. článku 135201. ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : dielectric barrier discharges (DBD) * bio-decontamination * etching * polymers * biomolecules * spores * surface treatment Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6463/aa5c21/meta

  11. Dose-Dependent Effects of CeO2 on Microstructure and Antibacterial Property of Plasma-Sprayed TiO2 Coatings for Orthopedic Application

    Science.gov (United States)

    Zhao, Xiaobing; Liu, Gaopeng; Zheng, Hai; Cao, Huiliang; Liu, Xuanyong

    2015-02-01

    Titanium and its alloys have been used extensively for orthopedic and dental implants. Although these devices have achieved high rates of success, two major complications may be encountered: the lack of osseointegration and the biomaterial-related infection. Accordingly, cerium oxide (CeO2)-doped titanium oxide (TiO2) materials were coated on titanium by an atmospheric plasma spraying (APS) technique. The phase structures, morphologies, and surface chemical states of the obtained coatings were characterized by x-ray diffraction, scanning electron microscopy, and x-ray photoelectron spectroscopy techniques. The in vitro antibacterial and cytocompatibility of the materials were studied with Staphylococcus aureus ( S. aureus, ATCC25923) and osteoblast precursor cell line MC3T3-E1. The results indicated that the addition of CeO2 shifts slightly the diffraction peaks of TiO2 matrix to low angles but does not change its rutile phase structure. In addition, the CeO2/TiO2 composite coatings possess dose-dependent corrosion resistance and antimicrobial properties. And doping of 10 wt.% CeO2 exhibits the highest activity against S. aureus, improved corrosion resistance, and competitive cytocompatibility, which argues a promising option for balancing the osteogenetic and antibacterial properties of titanium implants.

  12. Water Plasma Functionalized CNTs/MnO2 Composites for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Shahzad Hussain

    2013-01-01

    Full Text Available A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg−1, for untreated CNTs, up to 750 Fg−1, for water plasma-treated CNTs.

  13. Water plasma functionalized CNTs/MnO2 composites for supercapacitors.

    Science.gov (United States)

    Hussain, Shahzad; Amade, Roger; Jover, Eric; Bertran, Enric

    2013-01-01

    A water plasma treatment applied to vertically-aligned multiwall carbon nanotubes (CNTs) synthesized by plasma enhanced chemical vapour deposition gives rise to surface functionalization and purification of the CNTs, along with an improvement of their electrochemical properties. Additional increase of their charge storage capability is achieved by anodic deposition of manganese dioxide lining the surface of plasma-treated nanotubes. The morphology (nanoflower, layer, or needle-like structure) and oxidation state of manganese oxide depend on the voltage window applied during charge-discharge measurements and are found to be key points for improved efficiency of capacitor devices. MnO2/CNTs nanocomposites exhibit an increase in their specific capacitance from 678 Fg(-1), for untreated CNTs, up to 750 Fg(-1), for water plasma-treated CNTs.

  14. Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment

    International Nuclear Information System (INIS)

    Lai, C.S.; Wu, W.C.; Chao, T.S.; Chen, J.H.; Wang, J.C.; Tay, L.-L.; Rowell, Nelson

    2006-01-01

    In this letter, the effects of pre-CF 4 plasma treatment on Si for sputtered HfO 2 gate dielectrics are investigated. The significant fluorine was incorporated at the HfO 2 /Si substrate interface for a sample with the CF 4 plasma pretreatment. The Hf silicide was suppressed and Hf-F bonding was observed for the CF 4 plasma pretreated sample. Compared with the as-deposited sample, the effective oxide thickness was much reduced for the pre-CF 4 plasma treated sample due to the elimination of the interfacial layer between HfO 2 and Si substrate. These improved characteristics of the HfO 2 gate dielectrics can be explained in terms of the fluorine atoms blocking oxygen diffusion through the HfO 2 film into the Si substrate

  15. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    Science.gov (United States)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  16. NanoSIMS50 analyses of Ar/18O2 plasma-treated Escherichia coli bacteria

    International Nuclear Information System (INIS)

    Clément, F; Lecoq, E; Duday, D; Audinot, J-N; Lentzen, E; Penny, C; Cauchie, H-M; Choquet, P; Belmonte, T

    2011-01-01

    Reactive oxygen species (ROS) can be produced by electrical discharges and can be transported in uncharged regions by gas flows, in the so-called afterglows. These species are well known to have bactericidal effects but interaction mechanisms that occur with living micro-organisms remain misunderstood. In order to better understand these interactions, new analysis approaches are necessary. High-lateral-resolution secondary ion mass spectrometry (NanoSIMS) is one of the most promising ways of retrieving additional information on bacteria plasma inactivation mechanisms by combining isotopic imaging of plasma-treated bacteria and the use of 18 O 2 as process gas. Indeed, this technology combines a lateral resolution of a few tens of nanometres that is sufficient to image the interior of bacteria, and a high mass resolution allowing detection of isotopes present in low quantities (a few ppm or lower) within the bacteria. The present paper deals with Ar- 18 O 2 (2%) plasma treatment, through low-pressure microwave late afterglows, of Escherichia coli bacteria and their elemental and isotopic imaging by NanoSIMS. E. coli bacteria have been exposed to this reactive medium for varying treatment duration while keeping all other parameters unchanged. Our main goal is to determine whether the quantity of 18 O fixed in treated bacteria and the NanoSIMS50 lateral resolution are sufficient to give additional information on E. coli bacteria-plasma interaction. (paper)

  17. CoSi{sub x} contact resistance after etching and ashing plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Ken; Fukasawa, Masanaga; Kobayashi, Shoji; Takizawa, Toshifumi; Isobe, Michio; Hamaguchi, Satoshi; Nagahata, Kazunori; Tatsumi, Tetsuya [Nagasaki Production Division 1, Sony Semiconductor Kyushu Corporation, 1883-43 Tsukuba-machi, Isahaya-shi, Nagasaki 854-0065 (Japan); Semiconductor Technology Development Division, Semiconductor Business Group, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Semiconductor Technology Development Division, Semiconductor Business Group, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan)

    2009-07-15

    The authors investigated the contact resistance fluctuation caused by CoSi{sub x} damage in plasma etching and ashing processes. They found that CoSi{sub x} layers damaged by plasma process exposure are readily oxidized when exposed to air resulting in increased resistance. They also found that the contact resistance increases more when CH{sub 3}F is used instead of CF{sub 4} during etching process. The lower the mass number of dominant ions becomes, the deeper the ions penetrate. Molecular dynamics simulation revealed that dissociated species from lighter ions penetrate deeper and that this stimulates deeper oxidation. They also found that contact resistance further increased by using postetch ashing plasma even in an H{sub 2}/N{sub 2} ashing process in which O{sub 2} was not used. Here, too, the reason for this is that the ion penetration causes deep oxidation. They observed that the contact resistance has a linear relationship with the oxide concentration in CoSi{sub x}. This leads to the conclusion that it is essential to precisely control the ion energy as well as to properly select the ion species in the plasma process in the fabrication of next-generation semiconductor devices.

  18. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  19. Ripple formation on Si surfaces during plasma etching in Cl2

    Science.gov (United States)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  20. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  1. Plasma etching of (Ba,Sr)TiO3 thin films using inductively coupled Cl2/Ar and BCl3/Cl2/Ar plasma

    International Nuclear Information System (INIS)

    Kim, Gwan-Ha; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2005-01-01

    BST thin films were etched with inductively coupled plasmas. A chemically assisted physical etch of BST was experimentally confirmed by ICP under various gas mixtures. After a 20% addition of BCl 3 to the Cl 2 /Ar mixture, resulting in an increased the chemical effect. As increases of RF power and substrate power, and decrease of working pressure, the ion energy flux and chlorine atoms density increased. The maximum etch rate of the BST thin films was 90.1 nm/min, and at the RF power, substrate power, and working pressure were 700 W, 300 W, and 1.6 Pa, respectively. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products

  2. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  3. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    International Nuclear Information System (INIS)

    Zhang, Yongrui; Ma, Wenchang; Zhang, Xian; Wang, Liming; Zhang, Ruobing; Guan, Zhicheng

    2013-01-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO 2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO 2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO 2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m 3 h −1 .

  4. Thin TiO2 films deposited by implantation and sputtering in RF inductively coupled plasmas

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2012-01-01

    The achievement of titanium dioxide (TiO 2 ) thin films in the rutile crystalline phase is reported. The samples result from the implantation of oxygen ions of Ti in argon/oxygen plasma generated by inductively coupled RF at a commercial 13.56 MHz frequency. Simultaneously, a sputtering process is conducted on the titanium target in order to produce TiO 2 thin films in the anatase phase over silicon and glass substrates. Both implantation and sputtering processes shared the same 500 W plasma with the target, polarized between 0 and -3 kV. The substrates were placed between 2 and 3 cm from the target, this distance being found to be determinant of the TiO 2 deposition rate. The rutile phase in the target was obtained at temperatures in the order of 680 degrees C and the anatase (unbiased) one at about 300 degrees C without any auxiliary heating. The crystalline phases were characterized by x ray diffraction and Raman spectroscopy. The morphology and average roughness were established by means of scanning electronic and atomic force microscopy, whereas the reaction products generated during the oxidation process were analyzed by mass spectrometry. Finally, the stoichiometric composition was measured by means of X-ray photoelectron spectroscopy.

  5. Development of the DC-RF Hybrid Plasma Source and the Application to the Etching and Texturing of the Silicon Surface

    International Nuclear Information System (INIS)

    Kim, Ji Hun

    2011-02-01

    the vacuum chamber for vacuum processing. The experiment was provided on the mono-crystalline silicon wafer. The etching was carried out with plasma consisting of SF 6 (50 sccm) as a reactive etching gas with O 2 (300 sccm) as a supporting gas and Argon (2000 ∼ 3000 sccm) as a cathode protecting gas. Etching rates were 60 μm/min at low pressure (3-5 torr) and 300 μm/min at a atmospheric pressure. The sample was positioned in such as way that the plasma flow axis would coincide with the side facet of the silicon crystal. A texturing process was performed on a crystalline silicon (c-Si) wafer to increase the efficiency of a solar cell by using a high durability DC arc plasma source at atmospheric pressure and low pressure. CF 4 and SF 6 were used as the reactive etching gases at flow rates 2 as the supporting gas in the range of the 5 - 15 %. To survey the characteristics of the pyramid formation process, plasma texturing experiments were performed by varying the working time. The optimal operating conditions of the gas flow (Ar, O 2 , CF 4 , SF 6 ), plasmatron current and processing time were determined. The pyramid angle was approximately 50 .deg. to 60 .deg. when a single-crystalline silicon surface was textured in a vacuum whereas it was approximately 75 .deg. to 90 .deg. when textured at atmospheric pressure. The reflectance decreases with decreasing pyramid angle. The reflectance of the bare silicon ranged from 40 % to the 60 % but that of the textured silicon was approximately 5 % to 20 %. This reflectance is quite low, approximately half that reported by other studies using wet and reactive ion etching (RIE) texturing. Even though DC arc plasmatron has many advantages, it is difficult to apply an industry due to the small applied area. To increase an effective processing area, we suggest a DC-RF hybrid plasma system. The DC-RF hybrid plasma system was designed and made. This system consists of a DC arc plasmatron, RF parts, reaction chamber, power feeder

  6. Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Oshima, Yuichi; Ahmadi, Elaheh; Kaun, Stephen; Wu, Feng; Speck, James S.

    2018-01-01

    We investigated the homoepitaxial growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy. The growth rate of β-Ga2O3 increased with increasing Ga-flux, reaching a clear plateau of 56 nm h-1, and then decreased at higher Ga-flux. The growth rate decreased from 56 to 42 nm h-1 when the substrate temperature was increased from 750 °C to 800 °C. The growth rate was negative (net etching) when only Ga-flux was supplied. The etching rate proportionally increased with increasing the Ga-flux, reaching 84 nm h-1. The etching was enhanced at higher temperatures. It was found that Ga-etching of (001) β-Ga2O3 substrates prior to the homoepitaxial growth markedly improved the surface roughness of the film.

  7. Etch Defect Characterization and Reduction in Hard-Mask-Based Al Interconnect Etching

    International Nuclear Information System (INIS)

    Lee, H.J.; Hung, C.L.; Leng, C.H.; Lian, N.T.; Young, L.W.

    2009-01-01

    This paper identifies the defect adders, for example, post hard-mask etch residue, post metal etch residue, and blocked etch metal island and investigates the removal characteristics of these defects within the oxide-masked Al etching process sequence. Post hard-mask etch residue containing C atom is related to the hardening of photoresist after the conventional post-RIE ashing at 275 degree C. An in situ O 2 -based plasma ashing on RIE etcher was developed to prevent the photoresist hardening from the high-ashing temperature; followed wet stripping could successfully eliminate such hardened polymeric residue. Post metal etch residue was caused from the attack of the Al sidewall by Cl atoms, and too much CHF 3 addition in the Al main etch step passivated the surface of Al resulting in poor capability to remove the Al-containing residue. The lower addition of CHF 3 in the Al main etch step would benefit from the residue removal. One possibility of blocked etch metal island creating was due to the micro masking formed on the opening of Ti N during the hard-mask patterning. We report that an additional Ti N surface pretreatment with the Ar/CHF 3 /N 2 plasmas could reduce the impact of the micro masking residues on blocked metal etch.

  8. Fibroblastic response and surface characterization of O2-plasma-treated thermoplastic polyetherurethane

    International Nuclear Information System (INIS)

    Schlicht, Henning; Wintermantel, Erich; Haugen, Haavard J; Sabetrasekh, Roya

    2010-01-01

    Injection-molded samples of thermoplastic polyetherurethane (TPU) were treated with low-temperature oxygen plasma for different processing times in order to enhance cellular attachment for a gastric implant. Its effects were investigated by contact angle measurement, surface topography, cytotoxicity and cell colonization tests. No significant changes were found in the surface roughness of plasma treatment with plasma treatment time of less than 5 min. Longer treatment showed significantly higher surface roughness. It seems that there was a link between the changes in contact angle and enhanced cell growth on the treated surface, although only for the range up to plasma treatment times of 3 min. Prolonged treatment times did not cause any major changes in the water contact angle, but strongly improved the number of growing cells on the surface. Plasma treatment for 3-7 min led to a twofold increase in the number of cells compared to untreated samples and did not significantly alter the WST-1 nor worsened the lactate dehydrogenase activity compared to the control. Thus, it appears that O 2 plasma treatment is a suitable surface modification method for a gastric implant made of TPU in order to improve surface cell attachment where 3-7 min is the recommended treatment time.

  9. Surface reactions during low-k etching using H2/N2 plasma

    International Nuclear Information System (INIS)

    Fukasawa, Masanaga; Tatsumi, Tetsuya; Oshima, Keiji; Nagahata, Kazunori; Uchida, Saburo; Takashima, Seigo; Hori, Masaru; Kamide, Yukihiro

    2008-01-01

    We investigated the relationship between the hard mask faceting that occurs during organic low-k etching and the ion energy distribution function of a capacitively coupled plasma reactor. We minimized the hard mask faceting by precisely controlling the ion energy. This precise control was obtained by selecting the optimum bottom frequency and bias power. We measured the amount of damage done to a SiOCH film exposed to H 2 /N 2 plasma in order to find the H 2 /N 2 ratio at which the plasma caused the least damage. The amount of moisture uptake by the damaged SiOCH film is the dominant factor controlling the dielectric constant increase (Δk). To suppress Δk, the incident ion species and ion energies have to be precisely controlled. This reduces the number of adsorption sites in the bulk SiOCH and maintains the hydrophobic surface that suppresses water permeation during air exposure

  10. Roughness generation during Si etching in Cl{sub 2} pulsed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr; Darnon, Maxime; Despiau-Pujo, Emilie; Brichon, Paulin; Lattu-Romain, Eddy; Pons, Michel; Joubert, Olivier [Univ. Grenoble Alpes, CNRS, CEA-Leti Minatec, LTM, F-38054 Grenoble Cedex (France)

    2016-07-15

    Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that the Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.

  11. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    International Nuclear Information System (INIS)

    Altamore, C; Tringali, C; Sparta', N; Marco, S Di; Grasso, A; Ravesi, S

    2010-01-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10 5 ) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10 1 Hz to 10 6 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl 2 /Ar chemistry. The relationship between the etch rate and the Cl 2 /Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl 2 /Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  12. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)

    2010-02-15

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  13. Monitoring of PVD, PECVD and etching plasmas using Fourier components of RF voltage

    International Nuclear Information System (INIS)

    Dvorak, P; Vasina, P; Bursikova, V; Zemlicka, R

    2010-01-01

    Fourier components of discharge voltages were measured in two different reactive plasmas and their response to the creation or destruction of a thin film was studied. In reactive magnetron sputtering the effect of transition from the metallic to the compound mode accompanied by the creation of a compound film on the sputtered target was observed. Further, deposition and etching of a diamond-like carbon film and their effects on amplitudes of Fourier components of the discharge voltage were studied. It was shown that the Fourier components, including higher harmonic frequencies, sensitively react to the presence of a film. Therefore, they can be used as a powerful tool for the monitoring of deposition and etching processes. It was demonstrated that the behaviour of the Fourier components was caused in both experiments by the presence of the film. It was not caused by changes in the chemical composition of the gas phase induced by material etched from the film or decrease in gettering rate. Further, the observed behaviour was not affected by the film conductivity. The behaviour of the Fourier components can be explained by the difference between the coefficients of secondary electron emission of the film and its underlying material.

  14. Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression

    Science.gov (United States)

    Zakour, Sihem Ben; Taleb, Hassen

    2017-09-01

    Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desired device performance on the produced integrated circuit, the high optical emission spectroscopy (OES) sensor is employed. The huge number of gathered wavelengths (profiles) is then analyzed and pre-processed using a new proposed simple algorithm named Spectra peak selection (SPS) to select the important wavelengths, then we employ wavelet analysis (WA) to enhance the performance of detection by suppressing noise and redundant information. The selected and treated OES wavelengths are then used in modified multivariate control charts (MEWMA and Hotelling) for three statistics (mean, SD and CV) and windowed polynomial regression for mean. The employ of three aforementioned statistics is motivated by controlling mean shift, variance shift and their ratio (CV) if both mean and SD are not stable. The control charts show their performance in detecting endpoint especially W-mean Hotelling chart and the worst result is given by CV statistic. As the best detection of endpoint is given by the W-Hotelling mean statistic, this statistic will be used to construct a windowed wavelet Hotelling polynomial regression. This latter can only identify the window containing endpoint phenomenon.

  15. Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films

    International Nuclear Information System (INIS)

    Grieseler, Rolf; Hähnlein, Bernd; Stubenrauch, Mike; Kups, Thomas; Wilke, Marcus; Hopfeld, Marcus; Pezoldt, Jörg; Schaaf, Peter

    2014-01-01

    The knowledge of the mechanical properties of new materials determines essentially their usability and functionality when used in micro- and nanostructures. MAX phases are new and highly interesting materials due to their unique combination of materials properties. In this article a new method for producing the Cr 2 AlC MAX phase is presented. Thin film elemental multilayer deposition and subsequent rapid thermal annealing forms the MAX phase within seconds. Additionally, free standing microstructures (beams and cantilevers) based on this MAX phase films are prepared by plasma etching. The mechanical properties of these MAX phase microstructures are investigated

  16. Thermal de-isolation of silicon microstructures in a plasma etching environment

    International Nuclear Information System (INIS)

    Lee, Yong-Seok; Jang, Yun-Ho; Kim, Yong-Kweon; Kim, Jung-Mu

    2013-01-01

    This paper presents a theoretical and experimental strategy for thermal de-isolation of silicon microstructures during a plasma etching process. Heat sinking blocks and thin metal layers are implemented around a thermally isolated mass to avoid severe spring width losses by a steep temperature rise. Thermal de-isolation significantly reduces the fabrication errors from −51.0% to −9.0% and from −39.5% to −6.7% for spring widths and resonant frequencies, respectively. Thermal de-isolation also reduces the standard deviation of resonant frequencies from 8.7% to 1.5% across a wafer, which clearly demonstrates the proposed method. (paper)

  17. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available A Similarity Ratio Analysis (SRA method is proposed for early-stage Fault Detection (FD in plasma etching processes using real-time Optical Emission Spectrometer (OES data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A, takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  18. Plasma-assisted ALD for the conformal deposition of SiO2 : process, material and electronic properties

    NARCIS (Netherlands)

    Dingemans, G.; Helvoirt, van C.A.A.; Pierreux, D.; Keuning, W.; Kessels, W.M.M.

    2012-01-01

    Plasma-assisted atomic layer deposition (ALD) was used to deposit SiO2 films in the temperature range of Tdep = 50–400°C on Si(100). H2Si[N(C2H5)2]2 and an O2 plasma were used as Si precursor and oxidant, respectively. The ALD growth process and material properties were characterized in detail.

  19. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  20. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    Science.gov (United States)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  1. Thinning of N-face GaN (0001) samples by inductively coupled plasma etching and chemomechanical polishing

    International Nuclear Information System (INIS)

    Rizzi, F.; Gu, E.; Dawson, M. D.; Watson, I. M.; Martin, R. W.; Kang, X. N.; Zhang, G. Y.

    2007-01-01

    The processing of N-polar GaN (0001) samples has been studied, motivated by applications in which extensive back side thinning of freestanding GaN (FS-GaN) substrates is required. Experiments were conducted on FS-GaN from two commercial sources, in addition to epitaxial GaN with the N-face exposed by a laser lift-off process. The different types of samples produced equivalent results. Surface morphologies were examined over relatively large areas, using scanning electron microscopy and stylus profiling. The main focus of this study was on inductively coupled plasma (ICP) etch processes, employing Cl 2 /Ar or Cl 2 /BCl 3 Ar gas mixtures. Application of a standard etch recipe, optimized for feature etching of Ga-polar GaN (0001) surfaces, caused severe roughening of N-polar samples and confirmed the necessity for specific optimization of etch conditions for N-face material. A series of recipes with a reduced physical (sputter-based) contribution to etching allowed average surface roughness values to be consistently reduced to below 3 nm. Maximum N-face etch rates of 370-390 nm/min have been obtained in recipes examined to date. These are typically faster than etch rates obtained on Ga-face samples under the same conditions and adequate for the process flows of interest. Mechanistic aspects of the ICP etch process and possible factors contributing to residual surface roughness are discussed. This study also included work on chemomechanical polishing (CMP). The optimized CMP process had stock removal rates of ∼500 nm/h on the GaN N face. This was much slower than the ICP etching but showed the important capability of recovering smooth surfaces on samples roughened in previous processing. In one example, a surface roughened by nonoptimized ICP etching was smoothed to give an average surface roughness of ∼2 nm

  2. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    International Nuclear Information System (INIS)

    Lu, J.; Meng, X.; SpringThorpe, A.J.; Shepherd, F.R.; Poirier, M.

    2004-01-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated 'T electrodes' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl 2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ∼0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl 2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 deg. C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes

  3. Surface changes of biopolymers PHB and PLLA induced by Ar+ plasma treatment and wet etching

    Science.gov (United States)

    Slepičková Kasálková, N.; Slepička, P.; Sajdl, P.; Švorčík, V.

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar+ plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers - polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  4. Preparation of hydrogenated-TiO2/Ti double layered thin films by water vapor plasma treatment

    International Nuclear Information System (INIS)

    Pranevicius, L.L.; Milcius, D.; Tuckute, S.; Gedvilas, K.

    2012-01-01

    Highlights: ► We investigated reaction of water plasma with nanocrystalline TiO 2 films. ► Simultaneous oxidation and hydrogenation of Ti was observed during plasma treatment. ► Water plasma treatment forms hydrogenated nanocrystalline TiO 2 in the shallow surface. - Abstract: We have investigated the structural and compositional variations in 200–500 nm thick Ti films deposited by magnetron sputter-deposition technique and treated in water vapor plasma at different processing powers. It was found that the upper layer of treated film with the thickness of 110 nm was changed into the black hydrogenated-TiO 2 with around 16 nm sized nanocystals during 10 min for dissipated power 200 W at room temperature. Analysis of the experimental results is used to obtain insights into the effects of water layer adsorbed on hydrophilic oxidized titanium surfaces exposed to plasma radiation.

  5. An interatomic potential model for molecular dynamics simulation of silicon etching by Br+-containing plasmas

    International Nuclear Information System (INIS)

    Ohta, H.; Iwakawa, A.; Eriguchi, K.; Ono, K.

    2008-01-01

    An interatomic potential model for Si-Br systems has been developed for performing classical molecular dynamics (MD) simulations. This model enables us to simulate atomic-scale reaction dynamics during Si etching processes by Br + -containing plasmas such as HBr and Br 2 plasmas, which are frequently utilized in state-of-the-art techniques for the fabrication of semiconductor devices. Our potential form is based on the well-known Stillinger-Weber potential function, and the model parameters were systematically determined from a database of potential energies obtained from ab initio quantum-chemical calculations using GAUSSIAN03. For parameter fitting, we propose an improved linear scheme that does not require any complicated nonlinear fitting as that in previous studies [H. Ohta and S. Hamaguchi, J. Chem. Phys. 115, 6679 (2001)]. In this paper, we present the potential derivation and simulation results of bombardment of a Si(100) surface using a monoenergetic Br + beam

  6. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    Science.gov (United States)

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  7. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  8. Effects O2 plasma surface treatment on the electrical properties of the ITO substrate

    International Nuclear Information System (INIS)

    Hong, Jin-Woong; Oh, Dong-Hoon; Shim, Sang-Min; Lee, Young-Sang; Kang, Yong-Gil; Shin, Jong-Yeol

    2012-01-01

    The indium-tin-oxide (ITO) substrate is used as a transparent electrode in organic light-emitting diodes (OLEDs) and organic photovoltaic cells. The effect of an O 2 plasma surface treatment on the electrical properties of the ITO substrate was examined. The four-point probe method, an atomic force microscope (AFM), a LCR meter, a Cole-Cole plot, and a conductive mechanism analysis were used to assess the properties of the treated ITO substrates. The four-point probe method and the AFM study revealed a lower ITO surface resistance of 17.6 Ω/sq and an average roughness of 2 nm, respectively, for a substrate treated by a plasma at 250 W for 40 s. The lower surface resistance of the ITO substrate treated at 250 W for 40 s was confirmed by using a LCR meter. An amorphous fluoropolymer (AF) was deposited on an ITO substrate treated under the optimal conditions and on a non-plasma treated ITO substrate as well. The potential barriers for charge injection in these devices were 0.25 eV and 0.15 eV, respectively, indicating a 0.1-eV decrease due to the plasma treatment.

  9. High-density plasma etching characteristics of indium-gallium-zinc oxide thin films in CF{sub 4}/Ar plasma

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Hee; Kim, Chang-Il

    2015-05-29

    We investigated the etching process of indium-gallium-zinc oxide (IGZO) thin films in an inductively coupled plasma system. The dry etching characteristics of the IGZO thin films were studied by varying the CF{sub 4}/Ar gas mixing ratio, RF power, DC-bias voltage, and process pressure. We determined the following optimized process conditions: an RF power of 700 W, a DC-bias voltage of − 150 V, and a process pressure of 2 Pa. A maximum etch rate of 25.63 nm/min for the IGZO thin films was achieved in a plasma with CF{sub 4}/Ar(= 25:75), and the selectivity of IGZO to Al and TiN was found to be 1.3 and 0.7, respectively. We determined the ionic composition of the CF{sub 4}/Ar plasma using optical emission spectroscopy. Analysis of chemical reactions at the IGZO thin film surfaces was performed using X-ray photoelectron spectroscopy. - Highlights: • IGZO thin film was etched by CF{sub 4}/Ar plasma as a function of gas mixing ratio. • IGZO bonds were broken Ar{sup +} sputtering and then reacted with the C-F{sub x} radicals. • The physical sputtering is dominant in etch control compared with chemical etching.

  10. The memory characteristics of submicron feature-size PZT capacitors with PtOx top electrode by using dry-etching

    International Nuclear Information System (INIS)

    Huang, C.-K.; Wang, C.-C.; Wu, T.-B.

    2007-01-01

    Dry etching and its effect on the characteristics of submicron feature-size PbZr 1-x Ti x O 3 (PZT) capacitors with PtO x top electrode were investigated. The photoresist (PR)-masked PtO x films were etched by an Ar/(20%)Cl 2 /O 2 helicon wave plasma. A fence-free pattern with a significantly high etch rate and sidewall slope was obtained by the addition of O 2 into the etching gas mixture, due to the chemical instability of PtO x and the formation of a PtO 2 passivation layer to suppress redeposition of the etch by-products on the etched surface. The patterned PtO x electrode can be further used as a hard mask for etching the PZT film, subsequently, with the gas mixture of Ar, CF 4 and O 2 . A high etching rate of PZT and a good etching selectivity to PtO x can be obtained at 30% O 2 addition into the Ar/(50%)CF 4 plasma. The etched capacitors have a steep, 72 0 , sidewall angle with a clean surface. Moreover, the addition of O 2 into the etching gas can well preserve the properties and the fatigue endurance of PtO x /PZT capacitors

  11. Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment

    Directory of Open Access Journals (Sweden)

    Chyuan Haur Kao

    2015-09-01

    Full Text Available Multianalyte CeO2 biosensors have been demonstrated to detect pH, glucose, and urine concentrations. To enhance the multianalyte sensing capability of these biosensors, CF4 plasma treatment was applied to create nanograin structures on the CeO2 membrane surface and thereby increase the contact surface area. Multiple material analyses indicated that crystallization or grainization caused by the incorporation of flourine atoms during plasma treatment might be related to the formation of the nanograins. Because of the changes in surface morphology and crystalline structures, the multianalyte sensing performance was considerably enhanced. Multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors exhibit potential for use in future biomedical sensing device applications. Keywords: Multianalyte biosensor, CeO2 nanograin, EIS, CF4 plasma treatment, Membrane surface

  12. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    Science.gov (United States)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The

  13. A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare novel RuO2 nanorods

    International Nuclear Information System (INIS)

    Ananth, Antony; Gandhi, Mani Sanjeeva; Mok, Young Sun

    2013-01-01

    One-dimensional (1D) nanostructured materials have attracted a great deal of interest owing to their potential applications in various industries. Due to the limitations and cost associated with conventional low-pressure plasma systems, atmospheric-pressure plasma techniques such as dielectric barrier discharges (DBDs) are investigated as an alternative approach for inducing specific chemical reactions. RuO 2 nanomaterials are widely used as supercapacitor electrodes, in field-emission devices and for catalytic applications. In such applications, size and shape dependent properties of nanomaterials play critical roles in improving the performance. In this paper, an attempt is made to prepare 1D RuO 2 nanostructured materials using a DBD plasma. It is reported here that the composition of feed gas is an important factor in determining the final morphology. For example, an Ar + H 2 plasma yields aggregated RuO 2 nanostructures, whereas ‘nanopillar’ and ‘nanorod’ morphologies are obtained when using Ar + O 2 and Ar, respectively. Possible mechanisms behind the morphological differences are elucidated on the basis of the temperature variations inside the plasma reactor and the chemistry of the gaseous reactive species. The application of a DBD plasma to the synthesis of RuO 2 nanorods is reported for the first time in this paper. (paper)

  14. Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching

    Science.gov (United States)

    Yu, Eusun; Kim, Seul-Cham; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass. PMID:25791414

  15. Remote plasma enhanced chemical deposition of non-crystalline GeO2 on Ge and Si substrates.

    Science.gov (United States)

    Lucovsky, Gerald; Zeller, Daniel

    2011-09-01

    Non-crystalline GeO2 films remote were plasma deposited at 300 degrees C onto Ge substrates after a final rinse in NH4OH. The reactant precursors gas were: (i) down-stream injected 2% GeH4 in He as the Ge precursor, and (ii) up-stream, plasma excited O2-He mixtures as the O precursor. Films annealed at 400 degrees C displayed no evidence for loss of O resulting in Ge sub-oxide formation, and for a 5-6 eV mid-gap absorption associated with formation of GeOx suboxide bonding, x deposited on Ge and annealed at 600 degrees C and 700 degrees C display spectra indicative of loss of O-atoms, accompanied with a 5.5 eV absorption. X-ray absorption spectroscopy and many-electron theory are combined to describe symmetries and degeneracies for O-vacancy bonding defects. These include comparisons with remote plasma-deposited non-crystalline SiO2 on Si substrates with SiON interfacial layers. Three different properties of remote plasma GeO2 films are addressed comparisons between (i) conduction band and band edge states of GeO2 and SiO2, and (ii) electronic structure of O-atom vacancy defects in GeO2 and SiO2, and differences between (iii) annealing of GeO2 films on Ge substrates, and Si substrates passivated with SiON interfacial transition regions important for device applications.

  16. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mechanisms for plasma etching of HfO{sub 2} gate stacks with Si selectivity and photoresist trimming

    Energy Technology Data Exchange (ETDEWEB)

    Shoeb, Juline; Kushner, Mark J. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122 (United States)

    2009-11-15

    To minimize leakage currents resulting from the thinning of the insulator in the gate stack of field effect transistors, high-dielectric constant (high-k) metal oxides, and HfO{sub 2} in particular, are being implemented as a replacement for SiO{sub 2}. To speed the rate of processing, it is desirable to etch the gate stack (e.g., metal gate, antireflection layers, and dielectric) in a single process while having selectivity to the underlying Si. Plasma etching using Ar/BCl{sub 3}/Cl{sub 2} mixtures effectively etches HfO{sub 2} while having good selectivity to Si. In this article, results from integrated reactor and feature scale modeling of gate-stack etching in Ar/BCl{sub 3}/Cl{sub 2} plasmas, preceded by photoresist trimming in Ar/O{sub 2} plasmas, are discussed. It was found that BCl{sub n} species react with HfO{sub 2}, which under ion impact, form volatile etch products such as B{sub m}OCl{sub n} and HfCl{sub n}. Selectivity to Si is achieved by creating Si-B bonding as a precursor to the deposition of a BCl{sub n} polymer which slows the etch rate relative to HfO{sub 2}. The low ion energies required to achieve this selectivity then challenge one to obtain highly anisotropic profiles in the metal gate portion of the stack. Validation was performed with data from literature. The effect of bias voltage and key reactant probabilities on etch rate, selectivity, and profile are discussed.

  18. No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit model

    DEFF Research Database (Denmark)

    Saksø, Henrik; Jakobsen, Thomas Vestergaard; Mortensen, Mikkel Saksø

    2013-01-01

    Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants.......Implant surface treatments that improve early osseointegration may prove useful in long-term survival of uncemented implants. We investigated Acid Etching and Plasma Cleaning on titanium implants....

  19. Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    International Nuclear Information System (INIS)

    Jansen, H V; De Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-01-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O 2 ) or a fluorocarbon (FC) gas (C 4 F 8 or CHF 3 ). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF 3 and C 4 F 8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF 3 is roughly 30 times the flow of C 4 F 8 , and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O 2 is FC-free but shows only tolerable anisotropic results at

  20. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  1. Deposition of nanocomposite Cu-TiO2 using heterogeneous colliding plasmas

    Science.gov (United States)

    Pandey, Pramod K.; Thareja, Raj K.; Singh, Ravi Pratap; Costello, John T.

    2018-03-01

    The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10-4, 10-2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra λ =390{ nm}( {E=3.18{ eV}} ) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm ( E = 2.56 eV) and 582 nm ( E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.

  2. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  3. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  4. An extended CFD model to predict the pumping curve in low pressure plasma etch chamber

    Science.gov (United States)

    Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu

    2014-12-01

    Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.

  5. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  6. CH4/H2/Ar electron cyclotron resonance plasma etching for GaAs-based field effect transistors

    NARCIS (Netherlands)

    Hassel, van J.G.; Es, van C.M.; Nouwens, P.A.M.; Maahury, J.H.; Kaufmann, L.M.F.

    1995-01-01

    Electron cyclotron resonance (ECR) plasma etch processes with CH4/H2/AR have been investigated on different III–Vsemiconductor materials (GaAs, AlGaAs, InGaAs, and InP). The passivation depth as a function of the GaAs carrierconcentration and the recovery upon annealing at different temperatures

  7. Effects of H2/O2 mixed gas plasma treatment on electrical and optical property of indium tin oxide

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Dong-Min; Kim, Jae-Kwan; Yang, Su-Hwan; Lee, Ji-Myon

    2013-01-01

    Highlights: ► The specific resistivity of ITO was enhanced by H 2 + O 2 mixed gas plasma treatment. ► The transmittance was same as that of untreated ITO after plasma treatment. ► The process was carried out at room temperature without any step of post-treatment. - Abstract: This study examined the effects of H 2 and H 2 + O 2 mixed gas plasma treatment on the properties of ITO films. The films were deposited on corning glass by RF magnetron sputtering under Ar and Ar/O 2 mixed gas ambient. After a H 2 plasma treatment, the ITO films showed an improved specific resistance due to the formation of oxygen vacancies acting as shallow donors, but showed quenched transmittance due to the formation of agglomerated metals on the surface. After an H 2 + O 2 mixed gas plasma treatment, the specific resistance of the film was improved without deteriorating transmittance. The enhanced specific resistance by mixed gas plasma treatment was attributed to the formation of free electrons by the incorporation of H in the lattice.

  8. Particle formation and its control in dual frequency plasma etching reactors

    International Nuclear Information System (INIS)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-01-01

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively

  9. Selective dry etching of silicon containing anti-reflective coating

    Science.gov (United States)

    Sridhar, Shyam; Nolan, Andrew; Wang, Li; Karakas, Erdinc; Voronin, Sergey; Biolsi, Peter; Ranjan, Alok

    2018-03-01

    Multi-layer patterning schemes involve the use of Silicon containing Anti-Reflective Coating (SiARC) films for their anti-reflective properties. Patterning transfer completion requires complete and selective removal of SiARC which is very difficult due to its high silicon content (>40%). Typically, SiARC removal is accomplished through a non-selective etch during the pattern transfer process using fluorine containing plasmas, or an ex-situ wet etch process using hydrofluoric acid is employed to remove the residual SiARC, post pattern transfer. Using a non-selective etch may result in profile distortion or wiggling, due to distortion of the underlying organic layer. The drawbacks of using wet etch process for SiARC removal are increased overall processing time and the need for additional equipment. Many applications may involve patterning of active structures in a poly-Si layer with an underlying oxide stopping layer. In such applications, SiARC removal selective to oxide using a wet process may prove futile. Removing SiARC selectively to SiO2 using a dry etch process is also challenging, due to similarity in the nature of chemical bonds (Si - O) in the two materials. In this work, we present highly selective etching of SiARC, in a plasma driven by a surface wave radial line slot antenna. The first step in the process involves an in-situ modification of the SiARC layer in O2 plasma followed by selective etching in a NF3/H2 plasma. Surface treatment in O2 plasma resulted in enhanced etching of the SiARC layer. For the right processing conditions, in-situ NF3/H2 dry etch process demonstrated selectivity values greater than 15:1 with respect to SiO2. The etching chemistry, however, was sensitive to NF3:H2 gas ratio. For dilute NF3 in H2, no SiARC etching was observed. Presumably, this is due to the deposition of ammonium fluorosilicate layer that occurs for dilute NF3/H2 plasmas. Additionally, challenges involved in selective SiARC removal (selective to SiO2, organic

  10. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  11. Etching of UO2 in NF3 RF Plasma Glow Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, John M. [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO2 in the samples had a relatively low density of 4.8 gm/cm3. Counting of the depleted UO2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234Th and 234Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 μm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ~23 Pa, then decreased with further increases in pressure.

  12. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    International Nuclear Information System (INIS)

    Draghici, M.; Stamate, E.

    2010-01-01

    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF 6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive and negative ions are evaluated on silicon substrate for different Ar/SF 6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.

  13. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.......Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...

  14. Oxygen plasma etching of graphene: A first-principles dynamical inspection of the reaction mechanisms and related activation barriers

    Science.gov (United States)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration

    2013-03-01

    Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005

  15. TiO2-Based Phosphoproteomic Analysis of the Plasma Membrane and the Effects of Phosphatase Inhibitor Treatment

    DEFF Research Database (Denmark)

    Thingholm, Tine; Larsen, Martin Røssel; Ingrell, Christian

    2008-01-01

    Phosphorylation of plasma membrane proteins frequently initiates signal transduction pathways or attenuate plasma membrane transport processes. Because of the low abundance and hydrophobic features of many plasma membrane proteins and the low stoichiometry of protein phosphorylation, studies...... of the plasma membrane phosphoproteome are challenging. We present an optimized analytical strategy for plasma membrane phosphoproteomics that combines efficient plasma membrane protein preparation with TiO 2-based phosphopeptide enrichment and high-performance mass spectrometry for phosphopeptide sequencing....... We used sucrose centrifugation in combination with sodium carbonate extraction to achieve efficient and reproducible purification of low microgram levels of plasma membrane proteins from human mesenchymal stem cells (hMSCs, 10 (7) cells), achieving more than 70% yield of membrane proteins...

  16. Effect of Advanced Plasma Source bias voltage on properties of HfO2 films prepared by plasma ion assisted electron evaporation from metal hafnium

    International Nuclear Information System (INIS)

    Zhu, Meiping; Yi, Kui; Arhilger, Detlef; Qi, Hongji; Shao, Jianda

    2013-01-01

    HfO 2 films, using metal hafnium as starting material, are deposited by plasma-ion assisted electron evaporation with different Advanced Plasma Source (APS) bias voltages. The refractive index and extinction coefficient are calculated, the chemical state and composition, as well as the stress and aging behavior is investigated. Laser induced damage threshold (LIDT) and damage mechanism are also evaluated and discussed. Optical, structural, mechanical and laser induced damage properties of HfO 2 films are found to be sensitive to APS bias voltage. The film stress can be tuned by varying the APS bias voltage. Damage morphologies indicate the LIDT of the HfO 2 films at 1064 nm and 532 nm are dominated by the nodular-defect density in coatings, while the 355 nm LIDT is dominated by the film absorption. HfO 2 films with higher 1064 nm LIDT than samples evaporated from hafnia are achieved with bias voltage of 100 V. - Highlights: • HfO 2 films are evaporated with different Advanced Plasma Source (APS) bias voltages. • Properties of HfO 2 films are sensitive to APS bias voltage. • With a bias voltage of 100 V, HfO 2 coatings without any stress can be achieved. • Higher 1064 nm laser induced damage threshold is achieved at a bias voltage of 100 V

  17. Elemental depth profiles and plasma etching rates of positive-tone electron beam resists after sequential infiltration synthesis of alumina

    Science.gov (United States)

    Ozaki, Yuki; Ito, Shunya; Hiroshiba, Nobuya; Nakamura, Takahiro; Nakagawa, Masaru

    2018-06-01

    By scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM–EDS), we investigated the elemental depth profiles of organic electron beam resist films after the sequential infiltration synthesis (SIS) of inorganic alumina. Although a 40-nm-thick poly(methyl methacrylate) (PMMA) film was entirely hybridized with alumina, an uneven distribution was observed near the interface between the substrate and the resist as well as near the resist surface. The uneven distribution was observed around the center of a 100-nm-thick PMMA film. The thicknesses of the PMMA and CSAR62 resist films decreased almost linearly as functions of plasma etching period. The comparison of etching rate among oxygen reactive ion etching, C3F8 reactive ion beam etching (RIBE), and Ar ion beam milling suggested that the SIS treatment enhanced the etching resistance of the electron beam resists to chemical reactions rather than to ion collisions. We proposed oxygen- and Ar-assisted C3F8 RIBE for the fabrication of silica imprint molds by electron beam lithography.

  18. Dielectric and electrochemical properties through-thickness mapping on extremely thick plasma sprayed TiO2

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Pala, Zdeněk

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7183-7191 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Electrical properties * TiO2 * Plasma spraying * Annealing * Microstructure Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884216001395

  19. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyimide

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Kousal, J.; Pinosh, Y.; Choukourov, A.; Biederman, H.; Slavínská, D.; Macková, Anna; Boldyryeva, Hanna; Pešička, J.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 920-927 ISSN 0042-207X Institutional research plan: CEZ:AV0Z10480505 Keywords : composite films * magnetron * sputtering * polyimide * SiO2 Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.881, year: 2007

  20. Continuous deep reactive ion etching of tapered via holes for three-dimensional integration

    NARCIS (Netherlands)

    Li, R.; Lamy, Y.; Besling, W.F.A.; Roozeboom, F.; Sarro, P.M.

    2008-01-01

    A continuous SF6/O2 plasma process at room temperature has been used to etch tapered through-silicon vias using a DRIE-ICP tool. These features (10–100 µm in diameter) are aimed for applications in 3D integration and MEMS packaging. The effects of various process parameters such as O2 flow rate,

  1. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  2. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  3. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  4. Influence of He/O2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    International Nuclear Information System (INIS)

    Li Xuming; Lin Jun; Qiu Yiping

    2012-01-01

    The influence of He/O 2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO 3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO 3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  5. Cold plasmas

    International Nuclear Information System (INIS)

    Franz, G.

    1990-01-01

    This textbook discusses the following topics: Phenomenological description of a direct current glow discharge; the plasma (temperature distribution and measurement, potential variation, electron energy distribution function, charge neutralization, wall potentials, plasma oscillations); Production of charge carriers (ions, electrons, ionization in the cathode zone, negative glowing zone, Faraday dark space, positive column, anode zone, hollow cathode discharges); RF-discharges (charge carrier production, RF-Shields, scattering mechanisms); Sputtering (ion-surface interaction, kinetics, sputtering yield and energy distribution, systems and conditions, film formation and stresses, contamination, bias techniques, multicomponent film deposition, cohesion, magnetrons, triode systems, plasma enhanced chemical vapor deposition); Dry etching (sputter etching, reactive etching, topography, process control, quantitative investigations); Etching mechanisms (etching of Si and SiO 2 with CF 4 , of III/V-compound-semiconductors, combination of isotrope and anisotrope etching methods, surface cleaning); ion beam systems (applications, etching); Dyclotron-resonance-systems (electron cyclotron resonance systems, whistler-sources and 'resonant inductive plasma etching'); Appendix (electron energy distribution functions, Bohm's transition zone, plasma oscillations, scattering cross sections and mean free path, metastable states, Child-Langmuir-Schottky equation, loss mechanisms, charge carrier distribution in the positive column, breakdown at high frequencies, motion in a magnetic field, skin depth of an electric field for a HF-discharge, whistler waves, dispersion relations for plane wave propagation). (orig.) With 138 figs

  6. Atmospheric plasma sprayed (APS) coatings of Al2O3-TiO2 system for photocatalytic application.

    Science.gov (United States)

    Stengl, V; Ageorges, H; Ctibor, P; Murafa, N

    2009-05-01

    The goal of this study is to examine the photocatalytic ability of coatings produced by atmospheric plasma spraying (APS). The plasma gun used is a common gas-stabilized plasma gun (GSP) working with a d.c. current and a mixture of argon and hydrogen as plasma-forming gas. The TiO(2) powders are particles of about 100 nm which were agglomerated to a mean size of about 55 mum, suitable for spraying. Composition of the commercial powder is 13 wt% of TiO(2) in Al(2)O(3), whereas also in-house prepared powder with the same nominal composition but with agglomerated TiO(2) and conventional fused and crushed Al(2)O(3) was sprayed. The feedstock materials used for this purpose are alpha-alumina and anatase titanium dioxide. The coatings are analyzed by scanning electron microscopy (SEM), energy dispersion probe (EDS) and X-ray diffraction. Photocatalytic degradation of acetone is quantified for various coatings. All plasma sprayed coatings show a lamellar structure on cross section, as typical for this process. Anatase titania from feedstock powder is converted into rutile titania and alpha-alumina partly to gamma-alumina. Coatings are proven to catalyse the acetone decomposition when irradiated by UV rays.

  7. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  8. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  9. Metallo–organic compound-based plasma enhanced CVD of ZrO2 ...

    Indian Academy of Sciences (India)

    Unknown

    require a passivation barrier (oxynitride or nitride) to prevent interfacial layer growth (Ngai et al 2000). Zirconium dioxide (ZrO2) is one of the few high-k dielectrics predicted to be thermodynamically stable in contact with silicon (Qi et al 1999). ZrO2 was also characterized for low electrical conductivity and chemical inertness ...

  10. Suitability of N2 plasma for the RIE etching of thin Ag layers

    International Nuclear Information System (INIS)

    Hrkut, P.; Matay, L.; Kostic, I.; Bencurova, A.; Konecnikova, A.; Nemec, P.; Andok, R.; Hacsik, S.

    2013-01-01

    Silver layers of 48 nm thickness were evaporated using EB PVD on Si wafers. The masking resist layers were spin-coated and patterned by the EBDW lithography on the ZBA 21 (20 keV) (Carl-Zeiss, Jena; currently Vistec, Ltd.) variable shaped e-beam pattern generator in II SAS. In order to check the etching process in N 2 , we covered a part of the samples containing Ag with a layer of various resists. The samples were dried on a hot-plate and RIE etched in SCM 600 (1 Pa; 20 sccm; 500 W). After 8 minutes the non-masked Ag layer was completely etched away, what testified suitability of N 2 as an etching gas. Also the etch time of 4 minutes showed to be sufficient for etching through the Ag layer. In order to optimize the etching process it was necessary to estimate the etch-rate (E.R.) of suitable resist layers and of the silver layer. The (authors)

  11. Argon-plasma-controlled optical reset in the SiO2/Cu filamentary resistive memory stack

    Science.gov (United States)

    Kawashima, T.; Yew, K. S.; Zhou, Y.; Ang, D. S.; Zhang, H. Z.; Kyuno, K.

    2018-05-01

    We show that resistive switching in the SiO2/Cu stack can be modified by a brief exposure of the oxide to an Ar plasma. The set voltage of the SiO2/Cu stack is reduced by 33%, while the breakdown voltage of the SiO2/Si stack (control) is almost unchanged. Besides, the Ar plasma treatment suppresses the negative photoconductivity or optical resistance reset effect, where the electrically formed filamentary conductive path consisting of Cu-ion and oxygen-vacancy clusters is disrupted by the recombination of the oxygen vacancies with nearby light-excited oxygen ions. From the enhanced O-H peak in the Fourier-transform infrared spectrum of the plasma-treated oxide, it is proposed that the Ar plasma has created more oxygen vacancies in the surface region of the oxide. These vacancies in turn adsorb water molecules, which act as counter anions (OH-) promoting the migration of Cu cations into the oxide and forming a more complete Cu filament that is less responsive to light. The finding points to the prospect of a control over the optical resistance reset effect by a simple surface treatment step.

  12. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  13. Collisional radiative model for Ar-O2 mixture plasma with fully relativistic fine structure cross sections

    Science.gov (United States)

    Priti, Gangwar, Reetesh Kumar; Srivastava, Rajesh

    2018-04-01

    A collisional radiative (C-R) model has been developed to diagnose the rf generated Ar-O2 (0%-5%) mixture plasma at low temperatures. Since in such plasmas the most dominant process is an electron impact excitation process, we considered several electron impact fine structure transitions in an argon atom from its ground as well as excited states. The cross-sections for these transitions have been obtained using the reliable fully relativistic distorted wave theory. Processes which account for the coupling of argon with the oxygen molecules have been further added to the model. We couple our model to the optical spectroscopic measurements reported by Jogi et al. [J. Phys. D: Appl. Phys. 47, 335206 (2014)]. The plasma parameters, viz. the electron density (ne) and the electron temperature (Te) as a function of O2 concentration have been obtained using thirteen intense emission lines out of 3p54p → 3p54s transitions observed in their spectroscopic measurements. It is found that as the content of O2 in Ar increases from 0%-5%, Te increases in the range 0.85-1.7 eV, while the electron density decreases from 2.76 × 1012-2.34 × 1011 cm-3. The Ar-3p54s (1si) fine-structure level populations at our extracted plasma parameters are found to be in very good agreement with those obtained from the measurements. Furthermore, we have estimated the individual contributions coming from the ground state, 1si manifolds and cascade contributions to the population of the radiating Ar-3p54p (2pi) states as a function of a trace amount of O2. Such information is very useful to understand the importance of various processes occurring in the plasma.

  14. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    Science.gov (United States)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-05-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  15. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-01-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO 2 ) nanoparticles. By using a low SnO 2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris

  16. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Science.gov (United States)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  17. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Directory of Open Access Journals (Sweden)

    J. Upadhyay

    2017-12-01

    Full Text Available An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity’s inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  18. Dry etching characteristics of GaN for blue/green light-emitting diode fabrication

    International Nuclear Information System (INIS)

    Baik, K.H.; Pearton, S.J.

    2009-01-01

    The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl 2 -based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl 2 /Ar plasma chemistry and SiO 2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry

  19. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    International Nuclear Information System (INIS)

    Sivaraman, Sankar K; Santhanam, Venugopal

    2012-01-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 10 5 ) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface. (paper)

  20. Genotoxicity studies in semiconductor industry. 1. In vitro mutagenicity and genotoxicity studies of waste samples resulting from plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Huettner, E.M.; Merten, H.; Raabe, F. (Institute of Plant Genetics and Crop Plant Research, Gatersleben (Germany))

    1993-07-01

    Solid waste samples taken from the etching reactor, the turbo pump, and the waste air system of a plasma etching technology line in semiconductor production were studied as to their genotoxic properties in a bacterial repair test, in the Ames/Salmonella microsome assay, in the SOS chromotest, in primary mouse hepatocytes, and in Chinese hamster V79 cell cultures. All three waste samples were found to be active by inducing of unscheduled DNA-synthesis in mouse hepatocytes in vitro. In the bacterial rec-type repair test with Proteus mirabilis, waste samples taken from the turbo pump and the vacuum pipe system were not genotoxic. The waste sample taken from the chlorine-mediated plasma reactor was clearly positive in the bacterial repair assay and in the SOS chromotest with Escherichia coli. Mutagenic activity was demonstrated for all samples in the presence and absence of S9 mix made from mouse liver homogenate. Again, highest mutagenic activity was recorded for the waste sample taken from the plasma reactor, while samples collected from the turbo pump and from the waste air system before dilution and liberation of the air were less mutagenic. For all samples chromosomal damage in V79 cells was not detected, indicating absence of clastogenic activity in vitro. Altogether, these results indicate generation of genotoxic and mutagenic products as a consequence of chlorine-mediated plasma etching in the microelectronics industry and the presence of genotoxins even in places distant from the plasma reactor. Occupational exposure can be expected both from the precipitated wastes and from chemicals reaching the environment with the air stream.

  1. Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Píš, I.; Kotlan, J.; Pala, Zdeněk; Štengl, Václav; Homola, P.

    2013-01-01

    Roč. 22, č. 7 (2013), s. 1163-1169 ISSN 1059-9630 Institutional support: RVO:61389021 ; RVO:61388980 Keywords : bandgap * Cr2O3 * photocatalysis * resistivity * spectroscopy * TiO2 Subject RIV: BL - Plasma and Gas Discharge Physics; CA - Inorganic Chemistry (UACH-T) Impact factor: 1.491, year: 2013 http://link.springer.com/article/10.1007%2Fs11666-013-9969-9

  2. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH2F2/H2 plasmas

    International Nuclear Information System (INIS)

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-01

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si 3 N 4 hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si 3 N 4 layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH 2 F 2 /H 2 /Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P HF ), and low-frequency source power (P LF ). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si 3 N 4 layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si 3 N 4 /PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO x /PVD a-C/Si 3 N 4 MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si 3 N 4 hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  3. Micro-structuring of thick NdFeB films using high-power plasma etching for magnetic MEMS application

    International Nuclear Information System (INIS)

    Jiang, Yonggang; Fujita, Takayuki; Higuchi, Kohei; Maenaka, Kazusuke; Masaoka, Shingo; Uehara, Minoru

    2011-01-01

    This paper describes the micro-patterning of thick NdFeB magnetic films using a high-power plasma etching method. The effects of RF bias power and gas composition on the selectivity and etching rate are experimentally studied. A maximum etching rate of 60 nm min −1 is achieved with an inductively coupled plasma power of 500 W and a RF bias power of 200 W. A maximum selectivity of 0.26 between hard baked AZP4903 photoresist and NdFeB magnetic films is achieved when volumetric Cl 2 concentration is 2.5%. NdFeB micro-magnets as thick as 4.2 µm are achieved by using AZP4903 photoresist. Magnetic film as thick as 10 µm can be patterned by using SU-8 photoresist with a thickness of 100 µm as the mask. The magnetic property of patterned microstructures is characterized using a vibrating sample magnetometer and the magnetic field distribution is measured using a Hall effect sensor IC. The characterization results indicate that the patterned magnetic microstructures have a high magnetic remanance of 1.0 T, which is comparable to that of the non-patterned NdFeB films.

  4. Experimental investigation of the contact resistance of Graphene/MoS2 interface treated with O2 plasma

    Science.gov (United States)

    Lu, Qin; Liu, Yan; Han, Genquan; Fang, Cizhe; Shao, Yao; Zhang, Jincheng; Hao, Yue

    2018-02-01

    High contact resistance has been a major bottleneck for MoS2 to achieve high performances among two-dimensional material based optoelectronic and electronic devices. In this study, we investigate the contact resistances of different layered graphene film with MoS2 film with Ti/Au electrodes under different O2 plasma treatment time using the circular transmission line model (CTLM). Annealing process followed O2 plasma process to reduce the oxygen element introduced. Raman and X-ray photoelectric spectroscopy were used to analyze the quality of the materials. Finally, the current and voltage curve indicates good linear characteristics. Under the optimized condition of the O2 plasma treatment, a relatively low contact resistance (∼35.7 Ohm mm) without back gate voltage in single-layer graphene/MoS2 structure at room temperature was achieved compared with the existing reports. This method of introducing graphene as electrodes for MoS2 film demonstrates a remarkable ability to improve the contact resistance, without additional channel doping for two-dimensional materials based devices, which paves the way for MoS2 to be a more promising channel material in optoelectronic and electronic integration.

  5. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  6. Characteristics of epoxy resin/SiO2 nanocomposite insulation: effects of plasma surface treatment on the nanoparticles.

    Science.gov (United States)

    Yan, Wei; Phung, B T; Han, Zhao Jun; Ostrikov, Kostya

    2013-05-01

    The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.

  7. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    International Nuclear Information System (INIS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-01-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  8. Mechanical Stress in InP Structures Etched in an Inductively Coupled Plasma Reactor with Ar/Cl2/CH4 Plasma Chemistry

    Science.gov (United States)

    Landesman, Jean-Pierre; Cassidy, Daniel T.; Fouchier, Marc; Pargon, Erwine; Levallois, Christophe; Mokhtari, Merwan; Jimenez, Juan; Torres, Alfredo

    2018-02-01

    We investigated the crystal lattice deformation that can occur during the etching of structures in bulk InP using SiNx hard masks with Ar/Cl2/CH4 chemistries in an inductively coupled plasma reactor. Two techniques were used: degree of polarization (DOP) of the photo-luminescence, which gives information on the state of mechanical stress present in the structures, and spectrally resolved cathodo-luminescence (CL) mapping. This second technique also provides elements on the mechanical stress in the samples through analysis of the spectral shift of the CL intrinsic emission lines. Preliminary DOP mapping experiments have been conducted on the SiNx hard mask patterns without etching the underlying InP. This preliminary study demonstrated the potential of DOP to map mechanical stress quantitatively in the structures. In a second step, InP patterns with various widths between 1 μm and 20 μm, and various depths between 1 μm and 6 μm, were analyzed by the 2 techniques. DOP measurements were made both on the (100) top surface of the samples and on the (110) cleaved cross section. CL measurements were made only from the (100) surface. We observed that inside the etched features, close to the vertical etched walls, there is always some compressive deformation, while it is tensile just outside the etched features. The magnitude of these effects depends on the lateral and depth dimensions of the etched structures, and on the separation between them (the tensile deformation increases between them due to some kind of proximity effect when separation decreases).

  9. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    Science.gov (United States)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  10. Interfacial, Electrical, and Band Alignment Characteristics of HfO2/Ge Stacks with In Situ-Formed SiO2 Interlayer by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Cao, Yan-Qiang; Wu, Bing; Wu, Di; Li, Ai-Dong

    2017-05-01

    In situ-formed SiO2 was introduced into HfO2 gate dielectrics on Ge substrate as interlayer by plasma-enhanced atomic layer deposition (PEALD). The interfacial, electrical, and band alignment characteristics of the HfO2/SiO2 high-k gate dielectric stacks on Ge have been well investigated. It has been demonstrated that Si-O-Ge interlayer is formed on Ge surface during the in situ PEALD SiO2 deposition process. This interlayer shows fantastic thermal stability during annealing without obvious Hf-silicates formation. In addition, it can also suppress the GeO2 degradation. The electrical measurements show that capacitance equivalent thickness of 1.53 nm and a leakage current density of 2.1 × 10-3 A/cm2 at gate bias of Vfb + 1 V was obtained for the annealed sample. The conduction (valence) band offsets at the HfO2/SiO2/Ge interface with and without PDA are found to be 2.24 (2.69) and 2.48 (2.45) eV, respectively. These results indicate that in situ PEALD SiO2 may be a promising interfacial control layer for the realization of high-quality Ge-based transistor devices. Moreover, it can be demonstrated that PEALD is a much more powerful technology for ultrathin interfacial control layer deposition than MOCVD.

  11. Optical characteristics of a RF DBD plasma jet in various A r / O 2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  12. CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  13. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  14. Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes

    International Nuclear Information System (INIS)

    Wang, Weiqi; Chen, Jiazang; Luo, Jianqiang; Zhang, Yuzhi; Gao, Lian; Liu, Yangqiao; Sun, Jing

    2015-01-01

    Graphical abstract: - Highlights: • Plasma treatment effects on rutile nanorod arrays studied. • Dye adsorption amount increased by all plasma treatment. • Flat-band potential positively shifted after NP and OP treatments. • Cell performance improved by NP and OP treatments. - Abstract: In this paper, three types of low pressure plasma including hydrogen (HP), oxygen (OP) and nitrogen (NP) treatments have been utilized for the first time to improve DSSCs based on rutile TiO 2 array photoanodes. Their effects on the photoanodes and the cell performance have been systematically compared by characterizing the dye loading amount, flat-band potential, donor concentration, electron lifetime and the photovoltaic parameters. Experimental results show that all the three plasma treatments increase the dye loading owing to improved hydrophilicity or enhanced surface roughness. It is found that NP and OP treatments significantly increase the TiO 2 donor concentration and decrease trapping sites. By this way, the electron transport is enhanced and the electron recombination is effectively restrained. These comprehensive effects make NP and OP treatments beneficial for the overall performance, by which 13% and 5% increases in efficiency are achieved. However, HP treatment causes obvious reduction in the donor concentration and more severe electron recombination, which decreases the efficiency by about 15%

  15. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong

    2018-01-18

    Due to the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion have become major research areas. Many investigations have already been performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps towards the influence of N2 impurities have been taken, i.e. CO2/N2 and CH4/N2. In this feature article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far, and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2 and H2O, to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes, as well as for investigating the influence of N2, O2 and H2O on these processes, and even to support plasma-based multi-reforming processes.

  16. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Science.gov (United States)

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2016-05-01

    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  17. Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma cancer treatment

    Science.gov (United States)

    Yusupov, Maksudbek; Yan, Dayun; Cordeiro, Rodrigo M.; Bogaerts, Annemie

    2018-03-01

    Experiments have demonstrated the potential selective anticancer capacity of cold atmospheric plasmas (CAPs), but the underlying mechanisms remain unclear. Using computer simulations, we try to shed light on the mechanism of selectivity, based on aquaporins (AQPs), i.e. transmembrane protein channels transferring external H2O2 and other reactive oxygen species, created e.g. by CAPs, to the cell interior. Specifically, we perform molecular dynamics simulations for the permeation of H2O2 through AQP1 (one of the members of the AQP family) and the palmitoyl-oleoyl-phosphatidylcholine (POPC) phospholipid bilayer (PLB). The free energy barrier of H2O2 across AQP1 is lower than for the POPC PLB, while the permeability coefficient, calculated using the free energy and diffusion rate profiles, is two orders of magnitude higher. This indicates that the delivery of H2O2 into the cell interior should be through AQP. Our study gives a better insight into the role of AQPs in the selectivity of CAPs for treating cancer cells.

  18. Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction

    Science.gov (United States)

    Bonelli, Thiago Scremin; Pereyra, Inés

    2018-06-01

    Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.

  19. A simple method to deposit palladium doped SnO2 thin films using plasma enhanced chemical vapor deposition technique

    International Nuclear Information System (INIS)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik; Ansari, S. G.; Ansari, Z. A.

    2010-01-01

    This work presents a simple method to deposit palladium doped tin oxide (SnO 2 ) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl 4 ) was used as precursor and oxygen (O 2 , 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C 5 HF 6 O 2 ) 2 ) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd 2 Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 mΩ cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  20. Microstructure and mechanical properties of plasma sprayed Al2O3 – 13%TiO2 Ceramic Coating

    Directory of Open Access Journals (Sweden)

    Wahab Juyana A

    2017-01-01

    Full Text Available This paper focused on the effect of deposition conditions on the microstructural and mechanical properties of the ceramic coating. In this study, Al2O3 – 13%TiO2 coated mild steel were prepared by using atmospheric plasma spray technology with different plasma power ranging from 25 kW to 40 kW. The as-sprayed coatings consist of γ-Al2O3 phase as the major phase and small amount of the titania phase existed in the coating structure. High degree of fully melted region was observed in the surface morphology for the coating sprayed with high plasma power, which lead to the high hardness and low percentage of porosity. In this study, nanoindentation test was carried out to investigate mechanical properties of the coating and the results showed that the coatings possess high elastic behaviour, which beneficial in engineering practice.

  1. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.

    2003-01-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control

  2. Etching Enhancement Followed by Nitridation on Low-k SiOCH Film in Ar/C5F10O Plasma

    Science.gov (United States)

    Miyawaki, Yudai; Shibata, Emi; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Okamoto, Hidekazu; Sekine, Makoto; Hori, Masaru

    2013-02-01

    The etching rates of low-dielectric-constant (low-k), porous SiOCH (p-SiOCH) films were increased by nitrogen-added Ar/C5F10O plasma etching in dual-frequency (60 MHz/2 MHz)-excited parallel plate capacitively coupled plasma. Previously, perfluoropropyl vinyl ether [C5F10O] provided a very high density of CF3+ ions [Nagai et al.: Jpn. J. Appl. Phys. 45 (2006) 7100]. Surface nitridation on the p-SiOCH surface exposed to Ar/N2 plasma led to the etching of larger amounts of p-SiOCH in Ar/C5F10O plasma, which depended on the formation of bonds such as =C(sp2)=N(sp2)- and -C(sp)≡N(sp).

  3. InAs0.45P0.55/InP strained multiple quantum wells intermixed by inductively coupled plasma etching

    International Nuclear Information System (INIS)

    Cao, Meng; Wu, Hui-Zhen; Lao, Yan-Feng; Cao, Chun-Fang; Liu, Cheng

    2009-01-01

    The intermixing effect on InAs 0.45 P 0.55 /InP strained multiple quantum wells (SMQWs) by inductively coupled plasma (ICP) etching and rapid thermal annealing (RTA) is investigated. Experiments show that the process of ICP etching followed RTA induces the blue shift of low temperature photoluminescence (PL) peaks of QWs. With increasing etching depth, the PL intensities are firstly enhanced and then diminished. This phenomenon is attributed to the variation of surface roughness and microstructure transformation inside the QW structure during ICP processing.

  4. Molecular dynamic simulation study of plasma etching L10 FePt media in embedded mask patterning (EMP) process

    OpenAIRE

    Jianxin Zhu; P. Quarterman; Jian-Ping Wang

    2017-01-01

    Plasma etching process of single-crystal L10-FePt media [H. Wang et al., Appl. Phys. Lett. 102(5) (2013)] is studied using molecular dynamic simulation. Embedded-Atom Method [M. S. Daw and M. I. Baskes, Phy. Rev. B 29, 6443 (1984); X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Phy. Rev. B 69, 144113 (2004)] is used to calculate the interatomic potential within atoms in FePt alloy, and ZBL potential [J.F. Ziegler, J. P. Biersack and U. Littmark, “The Stopping and Range of Ions in Matter,” Vol...

  5. Novel optical and structural properties of porous GaAs formed by anodic etching of n±GaAs in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte: effect of etching time

    International Nuclear Information System (INIS)

    Naddaf, M.; Saad, M.

    2014-01-01

    Porous GaAs layers have been formed by anodic etching of n±type GaAs (10.0) substrates in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte. A dramatic impact of etching time on the optical and structural properties of porous GaAs layer is demonstrated. The nano/micro-features of porous GaAs layers are revealed by scanning electron microscopy (SEM) imaging. Two-peak room temperature photoluminescence (PL), "blue-green"and "green-yellow", is obtained in all prepared porous GaAs samples. Proper adjustment of etching time is found to produce a white color layer, instead of the usual dark gray color of porous GaAs. This is found to cause vast enhancement in the intensity of the visible PL in porous GaAs layer. Chemical composition and structural characterization by means of X-ray photoelectron spectroscopic (XPS), X-ray diffraction (XRD), and micro-Raman spectroscopy, confirm that this layer is characterized with monoclinic β-Ga_2O_3 rich surface. Etching time induced-modification of structural and chemical properties of porous GaAs layer is discussed and correlated to its PL behavior. It is inferred that the "blue-green"PL in porous GaAs can be ascribed to different degrees of quantum confinement in GaAs nano crystallites, whereas, the "green-yellow"PL is highly influenced by the As_2O_3 and Ga_2O_3, content in the porous GaAs layer. In addition, the reflectance measurements reveal an anti-refection trend of behavior of porous GaAs layers in the spectral range (500-1,100 nm). (author)

  6. PTFE treatment by remote atmospheric Ar/O2 plasmas : a simple reaction scheme model proposal

    NARCIS (Netherlands)

    Carbone, E.A.D.; Verhoeven, M.W.G.M.; Keuning, W.; van der Mullen, J.J.A.M.

    2016-01-01

    Polytetrafluoroethylene (PTFE) samples were treated by a remote atmospheric pressure microwave plasma torch and analyzed by water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS). In the case of pure argon plasma a decrease of WCA is observed meanwhile an increase of hydrophobicity was

  7. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  8. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  9. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    Science.gov (United States)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  10. Maskless Surface Modification of Polyurethane Films by an Atmospheric Pressure He/O2 Plasma Microjet for Gelatin Immobilization

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2018-04-01

    Full Text Available A localized maskless modification method of polyurethane (PU films through an atmospheric pressure He/O2 plasma microjet (APPμJ was proposed. The APPμJ system combines an atmospheric pressure plasma jet (APPJ with a microfabricated silicon micronozzle with dimension of 30 μm, which has advantages of simple structure and low cost. The possibility of APPμJ in functionalizing PU films with hydroxyl (–OH groups and covalent grafting of gelatin for improving its biocompatibility was demonstrated. The morphologies and chemical compositions of the modified surface were analyzed by scanning electronic microscopy (SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS. The fluorescent images show the modified surface can be divided into four areas with different fluorescence intensity from the center to the outside domain. The distribution of the rings could be controlled by plasma process parameters, such as the treatment time and the flow rate of O2. When the treatment time is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively local functionalized with the diameter of 170 μm. In addition, the modification mechanism of PU films by the APPμJ is investigated. The localized polymer modified by APPμJ has potential applications in the field of tissue engineering.

  11. Au-based/electrochemically etched cavity-microelectrodes as optimal tool for quantitative analyses on finely dispersed electrode materials: Pt/C, IrO2-SnO2 and Ag catalysts

    International Nuclear Information System (INIS)

    Minguzzi, Alessandro; Locatelli, Cristina; Lugaresi, Ottavio; Vertova, Alberto; Rondinini, Sandra

    2013-01-01

    In this work, we report the preparation and properties of Au-based cavity-microelectrodes. The use of gold as cavity current collector allows obtaining a regular cylindrical recess, whose volume is easily determined with good accuracy and precision. This in turn leads to an improved and much more reliable use of the cavity microelectrode (C-ME) as a tool for the quantitative characterization of finely dispersed materials and for their quantitative rapid screening. The features of Au/C-MEs are well demonstrated by the good linear correlation between the cavity volume (determined by electrochemical methods) and the quantity of charge related to the amount of electroactive powder inserted into the cavity. To prove this point, we adopted two different test systems: Pt/C and an IrO 2 -based material. Finally, we proved the adequacy of Au/C-MEs in the case of Ag particles as electrocatalysts for the hydrodehalogenation of trichloromethane. In this last part, C-ME interestingly appears as a flexible and versatile tool that presents peculiar features: the voltammetric signal can be controlled by either the electron transfer or by mass transport and can be associated to the outer surface or to the whole amount of material inserted into the cavity. This means that C-MEs can be used either as a microdisk of a desired material (that is very useful, especially in scanning electrochemical microscopy) or for precise quantitative studies of the material inserted inside it

  12. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet

    Science.gov (United States)

    Kousal, J.; Shelemin, A.; Kylián, O.; Slavínská, D.; Biederman, H.

    2017-01-01

    Bio-decontamination of surfaces by means of atmospheric pressure plasma is nowadays extensively studied as it represents promising alternative to commonly used sterilization/decontamination techniques. The non-equilibrium atmospheric pressure plasmas were already reported to be highly effective in removal of a wide range of biological residual from surfaces. Nevertheless the kinetics of removal of biological contamination from surfaces is still not well understood as the majority of performed studies were based on ex-situ evaluation of etching rates, which did not allow investigating details of plasma action on biomolecules. This study therefore presents a real-time, in-situ ellipsometric characterization of removal of bovine serum albumin (BSA) from surfaces by low-temperature atmospheric plasma jet operated in argon. Non-linear and at shorter distances between treated samples and nozzle of the plasma jet also non-monotonic dependence of the removal rate on the treatment duration was observed. According to additional measurements focused on the determination of chemical changes of treated BSA as well as temperature measurements, the observed behavior is most likely connected with two opposing effects: the formation of a thin layer on the top of BSA deposit enriched in inorganic compounds, whose presence causes a gradual decrease of removal efficiency, and slight heating of BSA that facilitates its degradation and volatilization induced by chemically active radicals produced by the plasma.

  13. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  14. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    Science.gov (United States)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  15. CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media

    Science.gov (United States)

    Szívós, János; Pothorszky, Szilárd; Soltys, Jan; Serényi, Miklós; An, Hongyu; Gao, Tenghua; Deák, András; Shi, Ji; Sáfrán, György

    2018-03-01

    CoPt thin films as possible candidates for Bit Patterned magnetic Media (BPM) were prepared and investigated by electron microscopy techniques and magnetic measurements. The structure and morphology of the Direct Current (DC) sputtered films with N incorporation were revealed in both as-prepared and annealed state. Nanopatterning of the samples was carried out by means of Radio Frequency (RF) plasma etching through a Langmuir-Blodgett film of silica nanospheres that is a fast and high throughput technique. As a result, the samples with hexagonally arranged 100 nm size separated dots of fct-phase CoPt were obtained. The influence of the order of nanopatterning and anneling on the nanostructure formation was revealed. The magnetic properties of the nanopatterned fct CoPt films were investigated by Vibrating Sample Magnetometer (VSM) and Magnetic Force Microscopy (MFM). The results show that CoPt thin film nanopatterned by means of the RF plasma etching technique is promising candidate to a possible realization of BPM. Furthermore, this technique is versatile and suitable for scaling up to technological and industrial applications.

  16. Surface changes of biopolymers PHB and PLLA induced by Ar{sup +} plasma treatment and wet etching

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Polymers, especially group of biopolymers find potential application in a wide range of disciplines due to their biodegradability. In biomedical applications these materials can be used as a scaffold or matrix. In this work, the influence of the Ar{sup +} plasma treatment and subsequent wet etching (acetone/water) on the surface properties of polymers were studied. Two biopolymers – polyhydroxybutyrate with 8% polyhydroxyvalerate (PHB) and poly-L-lactic acid (PLLA) were used in these experiments. Modified surface layers were analyzed by different methods. Surface wettability was characterized by determination of water contact angle. Changes in elemental composition of modified surfaces were performed by X-ray Photoelectron Spectroscopy (XPS). Surface morphology and roughness was examined using Atomic Force Microscopy (AFM). Gravimetry method was used to study the mass loss. It was found that the modification from both with plasma and wet etching leads to dramatic changes of surface properties (surface chemistry, morphology and roughness). Rate of changes of these features strongly depends on the modification parameters.

  17. Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Hu, Hongjie; Liu, Xuanyong; Ding, Chuanxian

    2010-01-01

    Porous and nanostructured TiO 2 /tricalcium phosphate (TCP) composite coating on titanium substrate was prepared by plasma electrolytic oxidation (PEO). The microstructure and phase composition of the coating were characterized using scanning electron microscopy and X-ray diffraction. Its bioactivity was evaluated by simulated body fluid (SBF) immersion tests. MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. Potentiodynamic polarization tests were applied to measure its corrosion resistance. The results revealed that rough and hydrophilic TiO 2 /TCP composite coating with pores of several micrometers and grains of 50-200 nm was prepared by one-step PEO treatment. The TiO 2 /TCP composite coating showed good apatite-forming ability in SBF, and the TCP phase in the coating played an important role in inducing apatite formation. MG63 cells could adhere and proliferate on the surface of the coating, indicating its good cytocompatibility. The composite coating also exhibited good corrosion resistance in 0.9% NaCl solution.

  18. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method

    International Nuclear Information System (INIS)

    Sakai, Tetsuya; Kuniyoshi, Yuji; Aoki, Wataru; Ezoe, Sho; Endo, Tatsuya; Hoshi, Yoichi

    2008-01-01

    High-rate deposition of titanium dioxide (TiO 2 ) film was attempted using oxygen plasma assisted reactive evaporation (OPARE) method. Photocatalytic properties of the film were investigated. During the deposition, the substrate temperature was fixed at 400 deg. C. The film deposition rate can be increased by increasing the supply of titanium atoms to the substrate, although oversupply of the titanium atoms causes oxygen deficiency in the films, which limits the deposition rate. The film structure depends strongly on the supply ratio of oxygen molecules to titanium atoms O 2 /Ti and changes from anatase to rutile structure as the O 2 /Ti supply ratio increased. Consequently, the maximum deposition rates of 77.0 nm min -1 and 145.0 nm min -1 were obtained, respectively, for the anatase and rutile film. Both films deposited at such high rates showed excellent hydrophilicity and organic decomposition performance. Even the film with rutile structure deposited at 145.0 nm min -1 had a contact angle of less than 2.5 deg. by UV irradiation for 5.0 h and an organics-decomposition performance index of 8.9 [μmol l -1 min -1 ] for methylene blue

  19. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  20. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    Science.gov (United States)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  1. Studies of the confinement at laser-induced backside dry etching using infrared nanosecond laser pulses

    Science.gov (United States)

    Ehrhardt, M.; Lorenz, P.; Bayer, L.; Han, B.; Zimmer, K.

    2018-01-01

    In the present study, laser-induced backside etching of SiO2 at an interface to an organic material using laser pulses with a wavelength of λ = 1064 nm and a pulse length of τ = 7 ns have been performed in order to investigate selected processes involved in etching of the SiO2 at confined ablation conditions with wavelengths well below the band gap of SiO2. Therefore, in between the utilized metallic absorber layer and the SiO2 surface, a polymer interlayer with a thickness between 20 nm to 150 nm was placed with the aim, to separate the laser absorption process in the metallic absorber layer from the etching process of the SiO2 surface due to the provided organic interlayer. The influence of the confinement of the backside etching process was analyzed by the deposition of different thick polymer layers on top of the metallic absorber layer. In particular, it was found that the SiO2 etching depth decreases with higher polymer interlayer thickness. However, the etching depth increases with increasing the confinement layer thickness. SEM images of the laser processed areas show that the absorber and confinement layers are ruptured from the sample surface without showing melting, and suggesting a lift off process of these films. The driving force for the layers lift off and the etching of the SiO2 is probably the generated laser-induce plasma from the confined ablation that provides the pressure for lift off, the high temperatures and reactive organic species that can chemically attack the SiO2 surface at these conditions.

  2. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    Science.gov (United States)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  3. Black Silicon formation using dry etching for solar cells applications

    International Nuclear Information System (INIS)

    Murias, D.; Reyes-Betanzo, C.; Moreno, M.; Torres, A.; Itzmoyotl, A.; Ambrosio, R.; Soriano, M.; Lucas, J.; Cabarrocas, P. Roca i

    2012-01-01

    A study on the formation of Black Silicon on crystalline silicon surface using SF 6 /O 2 and SF 6 /O 2 /CH 4 based plasmas in a reactive ion etching (RIE) system is presented. The effect of the RF power, chamber pressure, process time, gas flow rates, and gas mixtures on the texture of silicon surface has been analyzed. Completely Black Silicon surfaces containing pyramid like structures have been obtained, using an optimized mask-free plasma process. Moreover, the Black Silicon surfaces have demonstrated average values of 1% and 4% for specular and diffuse reflectance respectively, feature that is suitable for the fabrication of low cost solar cells.

  4. Improved performance of solution-processed a-InGaZnO thin-film transistors due to Ar/O2 mixed-plasma treatment

    International Nuclear Information System (INIS)

    Kim, Kwan-Soo; Hwang, Yeong-Hyeon; Hwang, In-Chan; Cho, Won-Ju

    2014-01-01

    We investigated the effects of Ar and O 2 treatment and of Ar/O 2 mixed plasma treatment on the electrical characteristics of solution-processed amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The electrical performance and the instability of a-IGZO TFTs were significantly improved by the plasma treatments. The plasma treatments reduced the carbon-based residual contamination that acted as possible trap sites. In particular, the O 2 -plasma treatment produced a significant improvement in the reliability of a-IGZO TFTs when compared with the Ar-plasma-treated device, owing to the elimination of residual carbon in the active channel of the solution-processed a-IGZO. However, the optimized improvement of the solution-processed a-IGZO TFT under a gate bias stress was obtained for the device treated with an Ar/O 2 mixed-gas plasma. The plasma treatment in the Ar/O 2 -mixed ambience remarkably enhanced not only the reliability but also the electrical performance of the a-IGZO TFT; the on/off-current ratio, the field-effect mobility, and the subthreshold slope were 6.78 x 10 7 , 1.24 cm 2 /V·s, and 513 mV/dec, respectively.

  5. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    Science.gov (United States)

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Dry Etch Black Silicon with Low Surface Damage: Effect of Low Capacitively Coupled Plasma Power

    DEFF Research Database (Denmark)

    Iandolo, Beniamino; Plakhotnyuk, Maksym; Gaudig, Maria

    2017-01-01

    Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we pr...... carrier lifetime thanks to reduced ion energy. Surface passivation using atomic layer deposition of Al2O3 improves the effective lifetime to 7.5 ms and 0.8 ms for black silicon n- and p-type wafers, respectively.......Black silicon fabricated by reactive ion etch (RIE) is promising for integration into silicon solar cells thanks to its excellent light trapping ability. However, intensive ion bombardment during the RIE induces surface damage, which results in enhanced surface recombination velocity. Here, we...... present a RIE optimization leading to reduced surface damage while retaining excellent light trapping and low reflectivity. In particular, we demonstrate that the reduction of the capacitively coupled power during reactive ion etching preserves a reflectance below 1% and improves the effective minority...

  7. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2011-08-01

    Full Text Available We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.

  8. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  9. Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale

    Science.gov (United States)

    Medvecká, Veronika; Kováčik, Dušan; Zahoranová, Anna; Černák, Mirko

    2018-01-01

    Atmospheric pressure plasma assisted calcination by the preparation of TiO2 submicron fibers as a low-temperature alternative to the conventional thermal annealing was studied. A special type of dielectric barrier discharge was used for plasma treatment of hybrid titanium butoxide/polyvinylpyrrolidone (Ti(Bu)/PVP) fibers prepared by forcespinning to decompose and oxidize the base polymer and precursor. The obtained fibers were characterized by changes in chemical bonds on the surface using Fourier Transform Infrared Spectroscopy (FTIR), chemical composition by using Energy-Dispersive X-Ray Spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS). The morphology of fibers was investigated by Scanning Electron Microscopy (SEM). A significant decrease of organic components was reached by short plasma exposure times less than 1 h. The obtained fibers exhibit a high surface porosity without degradation of the fibrous structure. The results obtained indicate that atmospheric pressure plasma assisted calcination can be a viable low-temperature, energy- and time-saving alternative or pre-treatment method for the conventional high-temperature thermal calcination.

  10. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    Science.gov (United States)

    Naddaf, M.; Saloum, S.

    2008-09-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ( \\chi _{O_2 } =0 , 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at \\chi _{O_2 } =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (~one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm-1) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  11. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    International Nuclear Information System (INIS)

    Naddaf, M; Saloum, S

    2008-01-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O 2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions (χ O 2 =0, 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at (χ O 2 =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (∼one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O 2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm -1 ) in the spectral range of their PL emission, attractive for possible integrated optics devices

  12. Reactive ion etching of microphotonic structures

    International Nuclear Information System (INIS)

    Du, J.; Glasscock, J.; Vanajek, J.; Savvides, N.

    2004-01-01

    Full text: Fabrication of microphotonic structures such as planar waveguides and other periodic structures based on silicon technology has become increasingly important due to the potential for integration of planar optical devices. We have fabricated various periodic microstructures on silicon wafers using standard optical lithography and reactive ion etching (RIE). For optical applications the surface roughness and the sidewall angle or steepness of microstructures are the most critical factors. In particular, sidewall roughness of the etched waveguide core accounts for most of the optical propagation loss. We show that by varying the main RIE parameters such as gas pressure, RF power and CF 4 /Ar/O 2 gas composition it is possible to produce microstructures with near-vertical sidewalls and very smooth surfaces. In addition to plasma etching conditions, poor edge quality of the mask often causes sidewall roughness. We employed Ni/Cr metal masks in these experiments for deep etching, and used Ar + ion milling instead of wet chemical etching to open the mask. This improves the edge quality of the mask and ultimately results in smooth sidewalls

  13. Low-temperature plasma etching of high aspect-ratio densely packed 15 to sub-10 nm silicon features derived from PS-PDMS block copolymer patterns

    International Nuclear Information System (INIS)

    Liu, Zuwei; Sassolini, Simone; Olynick, Deirdre L; Gu, Xiaodan; Hwu, Justin

    2014-01-01

    The combination of block copolymer (BCP) lithography and plasma etching offers a gateway to densely packed sub-10 nm features for advanced nanotechnology. Despite the advances in BCP lithography, plasma pattern transfer remains a major challenge. We use controlled and low substrate temperatures during plasma etching of a chromium hard mask and then the underlying substrate as a route to high aspect ratio sub-10 nm silicon features derived from BCP lithography. Siloxane masks were fabricated using poly(styrene-b-siloxane) (PS-PDMS) BCP to create either line-type masks or, with the addition of low molecular weight PS-OH homopolymer, dot-type masks. Temperature control was essential for preventing mask migration and controlling the etched feature’s shape. Vertical silicon wire features (15 nm with feature-to-feature spacing of 26 nm) were etched with aspect ratios up to 17 : 1; higher aspect ratios were limited by the collapse of nanoscale silicon structures. Sub-10 nm fin structures were etched with aspect ratios greater than 10 : 1. Transmission electron microscopy images of the wires reveal a crystalline silicon core with an amorphous surface layer, just slightly thicker than a native oxide. (paper)

  14. High-density plasma-induced etch damage of wafer-bonded AlGaInP/mirror/Si light-emitting diodes

    CERN Document Server

    Wuu, D S; Huang, S H; Chung, C R

    2002-01-01

    Dry etch of wafer-bonded AlGaInP/mirror/Si light-emitting diodes (LEDs) with planar electrodes was performed by high-density plasma using an inductively coupled plasma (ICP) etcher. The etching characteristics were investigated by varying process parameters such as Cl sub 2 /N sub 2 gas combination, chamber pressure, ICP power and substrate-bias power. The corresponding plasma properties (ion flux and dc bias), in situ measured by a Langmuir probe, show a strong relationship to the etch results. With a moderate etch rate of 1.3 mu m/min, a near vertical and smooth sidewall profile can be achieved under a Cl sub 2 /(Cl sub 2 +N sub 2) gas mixture of 0.5, ICP power of 800 W, substrate-bias power of 100 W, and chamber pressure of 0.67 Pa. Quantitative analysis of the plasma-induced damage was attempted to provide a means to study the mechanism of leakage current and brightness with various dc bias voltages (-110 to -328 V) and plasma duration (3-5 min) on the wafer-bonded LEDs. It is found that the reverse leaka...

  15. Formation Of Carbon Oxides In CH4/O2 Plasmas Produced By Inductively Coupled RF Discharges At Low Pressure

    International Nuclear Information System (INIS)

    Moeller, Ivonne; Soltwisch, Henning

    2003-01-01

    The formation of CO and CO2 has been studied in inductively coupled rf (13.56 MHz) discharges with varied mixtures of CH4 and O2 as feed gases at a total pressure of 10 Pa, flow rates of <10 sccm, and input powers of <500 W. The primary diagnostic tool has been TDLAS (tunable diode laser absorption spectroscopy) to measure absolute concentrations of molecular species as well as their kinetic and rovibrational temperatures. Of particular interest is the sudden transition between different modes of power coupling (capacitive and inductive mode, resp.) and the related changes of the plasma composition. We have found that the power threshold for this transition exhibits a clear hysteresis and depends on the oxygen content. Comparing the ratio of the CO- and CO2-concentrations in capacitive mode with corresponding data from a parallel-plate discharge, clear differences have been observed. The findings can partly be explained on the basis of plasma-chemical reaction chains using tabulated cross-sections in combination with estimations of the electron energy distribution function. Some observations (as, e.g. the presence of CO in inductively coupled plasmas that are fed by pure oxygen) cannot be understood from volume reactions only but point to an important role of surface processes, which depend on the materials of the discharge chamber and on its history and cleaning method

  16. Interaction of SF6 and O2 plasma with porous poly phenyl methyl silsesquioxane low-κ films

    International Nuclear Information System (INIS)

    Cherunilam, J F; Rajani, K V; Daniels, S; Byrne, C; Heise, A; McNally, P J

    2015-01-01

    A reduction in the κ-value of dielectric materials is of great interest today as it leads to the reduction of resistance–capacitance delays and parasitic capacitances within integrated circuits, thereby improving device performance. We have recently reported our studies on the great potential of the Poly phenyl methyl silsesquioxane (PMSQ) low-κ films (κ = 2.7  ±  0.2) for interlayer dielectric applications. Here we report on the deposition and characterisation of porous PMSQ thin films using Heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin as the porogen. A reduction in the κ-value of the films was achieved as a function of the increase in porogen loading in the film. The removal of the thermally liable porogen material from the hybrid films was studied using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The change in density as a function of the porosity was studied using x-ray reflectivity techniques. The interaction of the films with pure SF 6 and O 2 plasmas was studied and the surface modification that occurs in the films as a result of the interaction was studied using FTIR and x-ray photoelectron spectroscopy. A change in the κ-value of the films was observed after plasma treatment which is attributed to the chemical modification of the film surface due to plasma interaction. (paper)

  17. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  18. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    Science.gov (United States)

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust.

  19. Modeling of silicon etching in CF sub 4 /O sub 2 and CF sub 4 /H sub 2 plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Trachtenberg, I.; Edgar, T.F. (Dept. of Chemical Engineering, Univ. of Texas at Austin, Austin, TX (US)); Venkatesan, S.P. (Morgantown Energy Technology Center, Morgantown, WV (US))

    1990-07-01

    A one-dimensional radial flow reactor model that includes fairly detailed free radical gas-phase chemistry has been developed for the etching of silicon in CF{sub 4}/O{sub 2} and CF{sub 4}/H{sub 2} plasmas. Attention has been restricted to transport and reaction of neutral species. The model equations were solved by orthogonal collocation. The sensitivities of the model predictions to flow rate, inlet gas composition, electron density, silicon loading, and other factors have been examined. The major loss path for fluorine atoms is different in CF{sub 4}/O{sub 2} and CF{sub 4}/H{sub 2} systems, and this results in significant qualitative differences in the parametric sensitivities of the two systems.

  20. Evaluation of silicon-chemiluminescence monitoring as a novel method for atomic fluorine determination and end point detection in plasma etch systems

    NARCIS (Netherlands)

    Zijlstra, P.A.; Beenakker, C.I.M.

    1981-01-01

    Optical methods for the detection of atomic fluorine in plasma etch systems are discussed and an experimental comparison is made between detection by optical emission and by a novel method based on the chemiluminescence from solid silicon in the presence of atomic fluorine. Although both methods

  1. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  2. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  3. Enhanced sensing of dengue virus DNA detection using O_2 plasma treated-silicon nanowire based electrical biosensor

    International Nuclear Information System (INIS)

    Rahman, S.F.A.; Yusof, N.A.; Hashim, U.; Hushiarian, R.; Nuzaihan, M.N.M.; Hamidon, M.N.; Zawawi, R.M.; Fathil, M.F.M.

    2016-01-01

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O_2) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O_2 plasma treated-SiNW device could be reduced to 1.985 × 10"−"1"4 M with a linear detection range of the sequence-specific DNA from 1.0 × 10"−"9 M to 1.0 × 10"−"1"3 M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (LoD) as low as 1.985

  4. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  5. Formation of metallic Si and SiC nanoparticles from SiO2 particles by plasma-induced cathodic discharge electrolysis in chloride melt

    International Nuclear Information System (INIS)

    Tokushige, M.; Tsujimura, H.; Nishikiori, T.; Ito, Y.

    2013-01-01

    Silicon nanoparticles are formed from SiO 2 particles by conducting plasma-induced cathodic discharge electrolysis. In a LiCl–KCl melt in which SiO 2 particles were suspended at 450 °C, we obtained Si nanoparticles with diameters around 20 nm. During the electrolysis period, SiO 2 particles are directly reduced by discharge electrons on the surface of the melt just under the discharge, and the deposited Si atom clusters form Si nanoparticles, which leave the surface of the original SiO 2 particle due to free spaces caused by a molar volume difference between SiO 2 and Si. We also found that SiC nanoparticles can be obtained using carbon anode. Based on Faraday's law, the current efficiency for the formation of Si nanoparticles is 70%

  6. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A.; Wei, Ta-Chin

    2012-01-01

    Highlights: ► Plasma and grafting parameters that maximized TiO 2 binding sites were found. ► PVDF hydrophilicity was vastly improved compared to other modification techniques. ► At least 1.5% TiO 2 and 30 min UV exposure were needed to attain full flux recovery. ► Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO 2 is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 °C for 2 h maximized the number of TiO 2 binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO 2 , following a direct proportionality to TiO 2 loading. The membrane with 0.5% TiO 2 loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO 2 and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO 2 -modified membranes removed 30–42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  7. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  8. A plasmaless, photochemical etch process for porous organosilicate glass films

    Science.gov (United States)

    Ryan, E. Todd; Molis, Steven E.

    2017-12-01

    A plasmaless, photochemical etch process using ultraviolet (UV) light in the presence of NH3 or O2 etched porous organosilicate glass films, also called pSiCOH films, in a two-step process. First, a UV/NH3 or UV/O2 treatment removed carbon (mostly methyl groups bonded to silicon) from a pSiCOH film by demethylation to a depth determined by the treatment exposure time. Second, aqueous HF was used to selectively remove the demethylated layer of the pSiCOH film leaving the methylated layer below. UV in the presence of inert gas or H2 did not demethylate the pSiCOH film. The depth of UV/NH3 demethylation followed diffusion limited kinetics and possible mechanisms of demethylation are presented. Unlike reactive plasma processes, which contain ions that can damage surrounding structures during nanofabrication, the photochemical etch contains no damaging ions. Feasibility of the photochemical etching was shown by comparing it to a plasma-based process to remove the pSiCOH dielectric from between Cu interconnect lines, which is a critical step during air gap fabrication. The findings also expand our understanding of UV photon interactions in pSiCOH films that may contribute to plasma-induced damage to pSiCOH films.

  9. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Science.gov (United States)

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-01-01

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment) to 54.6 cm2/V∙s (with CF4 plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability. PMID:29772767

  10. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2018-05-01

    Full Text Available In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment to 54.6 cm2/V∙s (with CF4 plasma treatment, which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability.

  11. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  12. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties

    International Nuclear Information System (INIS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Rodríguez, Carmen Serra

    2017-01-01

    Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO 2 )/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO 2 /PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5–20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO 2 /PVP were grafted using a simple dip-coating method. In addition, the TiO 2 /PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO 2 /PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO 2 /PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli . The result reveals that the grafting of TiO 2 /PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO 2 /PVP-grafted film is also greatly improved compared with an air- and argon

  13. Lifetime Extension of the Gas Discharge Detectors with Plasma Etching of Silicon Deposits in 80%CF4 + 20%CO2

    Science.gov (United States)

    Gavrilov, G. E.; Vakhtel, V. M.; Maysuzenko, D. A.; Tavtorkina, T. A.; Fetisov, A. A.; Shvetsova, N. Yu.

    2017-12-01

    A method of elimination of silicon compounds from the anode wire of an aged proportional counter is presented. The aging of a counter with a 70%Ar + 30%CO2 and a 60%Ar + 30%CO2 + 10%CF4 working mixture was stimulated by a 90Sr β source. To accelerate the process of aging, the gas mixture flow to the counter was supplied through a pipe with RTV coated wall. As a result, the amplitude of the signal decreased 70% already at accumulated charge of Q = 0.03 C/cm. The etching of the silicon compounds on the wire surface with an 80%CF4 + 20%CO2 gas mixture discharge led to full recovery of the operating characteristics of detector and an increase in the lifetime. A scanning electron microscopy and X-ray spectroscopy analysis of the recovered wire surface were performed. In accordance with the results, a good quality of wire cleaning from SiO2 compounds was obtained.

  14. Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model

    International Nuclear Information System (INIS)

    Bultinck, E; Bogaerts, A

    2011-01-01

    A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiO x thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar + ions, O 2 + ions, fast Ar atoms and sputtered Ti atoms). The deposition of the TiO x film is treated by an analytical surface model. The implementation of our so-called multi-species MC model is presented, and some typical calculation results are shown, such as densities, fluxes, energies and collision rates. The advantages and disadvantages of the multi-species MC model are illustrated by a comparison with a particle-in-cell/Monte Carlo collisions (PIC/MCC) model. Disadvantages include the fact that certain input values and assumptions are needed. However, when these are accounted for, the results are in good agreement with the PIC/MCC simulations, and the calculation time has drastically decreased, which enables us to simulate large and complicated reactor geometries. To illustrate this, the effect of larger target-substrate distances on the film properties is investigated. It is shown that a stoichiometric film is deposited at all investigated target-substrate distances (24, 40, 60 and 80 mm). Moreover, a larger target-substrate distance promotes film uniformity, but the deposition rate is much lower.

  15. Physicochemical properties and enhanced cellullar responses of biocompatible polymeric scaffolds treated with atmospheric pressure plasma using O2 gas

    International Nuclear Information System (INIS)

    Lee, Hyun-Uk; Park, So-Young; Kang, Yoon-Hee; Jeong, Se-Young; Choi, Sae-Hae; Jahng, Yoon-Young; Chung, Gook-Hyun; Kim, Moon-Bum; Cho, Chae-Ryong

    2011-01-01

    Biocompatible polymeric scaffolds were fabricated by mixing 5 wt.% poly(ε-caprolactone) (P) with 4 wt.% gelatin (G) and 1.6 wt.% Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (D). These PGD scaffolds were also treated with atmospheric pressure (AP) plasma using O 2 reactive gas (to create O-PGD scaffolds). The physicochemical and mechanical properties of the PGD scaffolds were characterized by in vitro biodegradability tests, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, contact angle measurements, and tensile strength measurements. The wettability and hydrophilic properties of the scaffold surface were improved remarkably by adding G and D to P, and by subsequent oxygen-assisted AP plasma treatment. An MTT assay, a cell attachment efficiency assay, scanning electron microscopy, and confocal microscopy revealed that Chinese Hamster Ovary (CHO)-K1 cells exhibited higher cell attachment and viability on the PGD and O-PGD scaffolds than on the P and PG scaffolds. Furthermore, the long-term viability of the CHO cells on the PGD and O-PGD scaffolds without exchanging the cell culture media was significantly improved compared to their viability on the P and PG scaffolds. Overall, the PGD and O-PGD scaffolds are expected to be useful as cell growth supporting biomaterials in tissue engineering.

  16. Plasma etching treatment for surface modification of boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ito, Hiroyuki [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kusakabe, Kazuhide [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ohkawa, Kazuhiro [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)]. E-mail: kawai@ci.kagu.tus.ac.jp

    2007-03-01

    Boron-doped diamond (BDD) thin film surfaces were modified by brief plasma treatment using various source gases such as Cl{sub 2}, CF{sub 4}, Ar and CH{sub 4}, and the electrochemical properties of the surfaces were subsequently investigated. From X-ray photoelectron spectroscopy analysis, Cl and F atoms were detected on the BDD surfaces after 3 min of Cl{sub 2} and CF{sub 4} plasma treatments, respectively. From the results of cyclic voltammetry and electrochemical AC impedance measurements, the electron-transfer rate for Fe(CN){sub 6} {sup 3-/4-} and Fe{sup 2+/3+} at the BDD electrodes was found to decrease after Cl{sub 2} and CF{sub 4} plasma treatments. However, the electron-transfer rate for Ru(NH{sub 3}){sub 6} {sup 2+/3+} showed almost no change after these treatments. This may have been related to the specific interactions of surface halogen (C-Cl and C-F) moieties with the redox species because no electrical passivation was observed after the treatments. In addition, Raman spectroscopy showed that CH{sub 4} plasma treatment of diamond surfaces formed an insulating diamond-like carbon thin layer on the surfaces. Thus, by an appropriate choice of plasma source, short-duration plasma treatments can be an effective way to functionalize diamond surfaces in various ways while maintaining a wide potential window and a low background current.

  17. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  18. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  19. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  20. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H2, O2, and Ar gases

    International Nuclear Information System (INIS)

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-01-01

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H 2 , O 2 , and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O 2 plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E VBM ) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O 2 and H 2 plasma treatments partially would compensate for the decrease in E VBM . After Ar plasma treatment, the smallest value of E VBM resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  1. Frictional properties of CeO$_{2}$-Al$_{2}$O$_{3}$-ZrO$_{2}$ plasma-sprayed film under mixed and boundary lubricating conditions

    CERN Document Server

    Kita, H; Osumi, K; 10.2109/jcersj.112.615

    2004-01-01

    In order to find a counterpart for reducing the frictional coefficient of Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma-sprayed film, the sliding properties in mixed and boundary lubricating conditions was investigated. It was found that combination of a CrN- coated cast iron pin and an Al/sub 2/O/sub 3/-ZrO/sub 2/-CeO/sub 2/ plasma sprayed plate provided the lowest frictional coefficient among several combinations chosen from practical materials. The coefficient of friction was much lower than that of the materials combination widely used for piston ring and cylinder liner. It was inferred that the combination of a pin made of hard materials with high density, a smooth surface such as CrN-coated cast iron and a porous plate can reduce the frictional coefficient because less sliding resistance is implemented and porosity retains oil.

  2. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  3. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  4. Influence of ion bombardment on structural and electrical properties of SiO2 thin films deposited from O2/HMDSO inductively coupled plasmas under continuous wave and pulsed modes

    International Nuclear Information System (INIS)

    Bousquet, A.; Goullet, A.; Leteinturier, C.; Granier, A.; Coulon, N.

    2008-01-01

    Low pressure Plasma Enhanced Chemical Vapour Deposition is commonly used to deposit insulators on temperature sensitive substrates. In these processes, the ion bombardment experienced by films during its growth is known to have benefits but also some disadvantages on material properties. In the present paper, we investigate the influence of this bombardment on the structure and the electrical properties of SiO 2 -like film deposited from oxygen/hexa-methyl-di-siloxane radiofrequency plasma in continuous and pulsed modes. First, we studied the ion kinetics thanks to time-resolved measurements by Langmuir probe. After, we showed the ion bombardment in such plasma controls the OH bond content in deposited films. Finally, we highlight the impressive reduction of fixed charge and interface state densities in films obtained in pulsed mode due to a lower ion bombardment. (authors)

  5. Diagnostic study of low-pressure Ar-O2 remote plasma generated in HCD-L 300 system: Relative density of O atom

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2007-01-01

    The relative density of O atom of Ar-O 2 remote plasma excited in a low pressure 13.56 HMz hollow cathode discharge system has been investigated. The measurements were carried out at a total pressure of 0.05 mbar, radiofrequency (RF) power of 200 W and at three different axial distances in the plasma chamber below the outlet of the discharge source. Using optical emission spectroscopy (OES), the relative density of O ground state was determined from intensity ratio of O(844.6 nm) and Ar(750.4 nm) lines. The electron temperature and O 2 + densities have been measured using double langmuir probe measurements. The kinetic study of Ar-O 2 plasma, combined with both spectroscopy and langmuir probe measurements, revealed that the main production mechanism of the excited O(3p 3 P) is direct excitation by electron impact. A maximum of O ground state relative density and correspondingly a minimum of O 2 + density are obtained for the ratio O 2 /Ar: 60/40. The maximum O density in the remote zone is found to be 4.5 times higher than at the outlet of source. (author)

  6. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O2/N2 ternary mixture

    International Nuclear Information System (INIS)

    Kylian, O; Rossi, F

    2009-01-01

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O 2 /N 2 mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O 2 /N 2 plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O 2 discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  7. Dry etching of ferroelectric Bi4-xEuxTi3O12 (BET) thin films

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2004-01-01

    Bi 4-x Eu x Ti 3 O 12 (BET) thin films were etched by using a inductively coupled Cl 2 /Ar plasma. We obtained a maximum etch rate of 69 nm/min at a gas mixing ratio of Cl 2 (20 %)/Ar (80 %). This result suggests that an effective method for BET etching is chemically assisted physical etching. With increasing coil RF power, the plasma density increases so that the increased reactive free radicals and ions enhance the etch rates of BET, Pt, and SiO 2 . As the dc-bias voltage is increased, the increased ion energy leads to an increased etch rate of BET films. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O, and the Ti-O peaks change with increasing Cl 2 concentration. For a pure Ar plasma, the peak associated with the oxygen-metal (O-M: TiO 2 , Bi 2 O 3 , Eu 2 O 3 ) bond seems to disappear while the pure oxygen peak does not appear. After the BET thin films is etched by using a Cl 2 /Ar plasma, the peak associated with the O-M bond increases slowly, but more quickly than the peak associated with pure oxygen atoms, due to a decrease in the Ar-ion bombardment. These results seem to indicate that Bi and Eu react little with Cl atoms and are removed predominantly by argon-ion bombardment. Also, Ti reacts little with Cl radicals and is mainly removed by chemically assisted physical etching.

  8. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2009-01-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyldisiloxane (HMDSO)/O 2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions (χ0 2 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (∼one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O 2 mixtures exhibit two separated green-blue and yellow-green PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm -1 ) in the spectral range of their PL emission, attractive for possible integrated optics devices. (authors)

  9. Surface Modification of Polystyrene with O Atoms Produced Downstream from an Ar/O2 Microwave Plasma

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2018-02-01

    Full Text Available Because discarded polystyrene (PS is little affected by degrading agents, PS was treated with a remote microwave (MW plasma discharge of an Ar/O2 mixture in the absence of radiation to increase wettability and introduce functional groups which make the waste more liable to degradation and useful for technological applications. X-ray photoelectron spectroscopy (XPS detected decreases in the aromatic sp2 and aliphatic sp3 carbons with treatment and, initially, increases in C–O and carbonyl groups, present in the formation of ethers, epoxides, alcohols, ketones and aldehydes. At longer treatment times, ester, O–C=O; carbonate-like, O–(C=O–O; and anhydride, O=C–O–C=O; moieties are observed with an overall oxygen saturation level of 23.6 ± 0.9 at% O. Atomic Force Microscopy (AFM measurements detected little change in surface roughness with treatment time. Advancing water contact angle decreased by ca. 50% compared to pristine PS indicating an increase in hydrophilicity because of oxidation. Washing the treated samples in deionized water decreased the oxygen concentrations at the saturation treatment times down to 18.6 ± 1 at% O due to the washing away of a weak boundary layer.

  10. Sensing performance of plasma-enhanced chemical vapor deposition SiC-SiO2-SiC horizontal slot waveguides

    NARCIS (Netherlands)

    Pandraud, G.; Margallo-Balbas, E.; Sarro, P.M.

    2012-01-01

    We have studied, for the first time, the sensing capabilities of plasma-enhanced chemical vapor deposition (PECVD) SiC-SiO2-SiC horizontal slot waveguides. Optical propagation losses were measured to be 23.9 dB?cm for the quasi-transverse magnetic mode. To assess the potential of this device as a

  11. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (0Etching selectivity for silicon, silicon oxide, and photoresist was determined at different etching temperatures, ICP and RF powers, and SF6 to O2 ratios. The study demonstrates that the etching selectivity of the SiGe mask for silicon depends strongly on three factors: Ge content; boron concentration; and etching temperature. Compared to conventional SiO2 and SiN masks, the proposed SiGe masking material exhibited several advantages, including high etching selectivity to silicon (>1:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  12. Dry etch challenges for CD shrinkage in memory process

    Science.gov (United States)

    Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji

    2015-03-01

    Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.

  13. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    Czech Academy of Sciences Publication Activity Database

    Reznickova, A.; Kolská, Z.; Hnatowicz, Vladimír; Svorcik, V.

    2011-01-01

    Roč. 13, č. 7 (2011), s. 2929-2938 ISSN 1388-0764 R&D Projects: GA ČR GA106/09/0125; GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : ARGON PLASMA * POLYMER-FILMS * POLYETHYLENE * DISCHARGE * POLYETHYLENETEREPHTHALATE Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.287, year: 2011

  14. Etching effects of low temperature hydrogen plasma on encapsulated diamond transistors

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Neykova, Neda; Kromka, Alexander; Rezek, Bohuslav

    2012-01-01

    Roč. 53, č. 2 (2012), s. 97-103 ISSN 0001-7140 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional research plan: CEZ:AV0Z10100521 Keywords : encapsulated diamond transistors * hydrogen plasma Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Spectroscopic ellipsometry on Si/SiO2/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    International Nuclear Information System (INIS)

    Eren, Baran; Fu, Wangyang; Marot, Laurent; Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-01

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation

  16. Synthesis and characterization of Al2O3 and SiO2 films with fluoropolymer content using rf-plasma magnetron sputtering technique

    International Nuclear Information System (INIS)

    Islam, Mohammad; Inal, Osman T.

    2008-01-01

    Pure and molecularly mixed inorganic films for protection against atomic oxygen in lower earth orbit were prepared using radio-frequency (rf) plasma magnetron sputtering technique. Alumina (Al 2 O 3 ) and silica (SiO 2 ) films with average grain size in the range of 30-80 nm and fully dense or dense columnar structure were synthesized under different conditions of pressure and power. Simultaneous oxide sputtering and plasma polymerization (PP) of hexafluoropropylene (HFP) led to the formation of molecularly mixed films with fluoropolymer content. The degree of plasma polymerization was strongly influenced by total chamber pressure and the argon to HFP molar ratio (n Ar /n M ). An order of magnitude increase in pressure due to argon during codeposition changed the plasma-polymerization mechanism from radical-chain- to radical-radical-type processes. Subsequently, a shift from linear CH 2 group based chain polymerization to highly disordered fluoropolymer content with branching and cross-linking was observed. Fourier transform infrared spectroscopy studies revealed chemical interaction between depositing SiO 2 and PP-HFP through appearance of absorption bands characteristic of Si-F stretching and expansion of SiO 2 network. The relative amount and composition of plasma-polymerized fluoropolymer in such films can be controlled by changing argon to HFP flow ratio, total chamber pressure, and applied power. These films offer great potential for use as protective coatings in aerospace applications

  17. Strong temperature effect on X-ray photo-etching of polytetrafluoroethylene using a 10Hz laser-plasma radiation source based on a gas puff target

    Czech Academy of Sciences Publication Activity Database

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Juha, Libor; Kostecki, J.; Rakowski, R.; Szczurek, M.

    2006-01-01

    Roč. 82, - (2006), s. 529-532 ISSN 0946-2171 R&D Projects: GA MŠk(CZ) LC510 Grant - others:Ministery of Scientific Research(PL) 3 T08C 002 27 Institutional research plan: CEZ:AV0Z10100523 Keywords : photo-etching * organic polymers * laser-produced plasmas Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.023, year: 2006

  18. Inactivation of Gram-Negative Bacteria by Low-Pressure RF Remote Plasma Excited in N2-O2 Mixture and SF6 Gases

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2013-12-01

    Full Text Available The role of low-pressure RF plasma in the inactivation of Escherichia coli O157, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter sakazakii using N2-O2 and SF6 gases was assessed. 1×109 colony-forming units (CFUs of each bacterial isolate were placed on three polymer foils. The effects of pressure, power, distance from the source, and exposure time to plasma gases were optimized. The best conditions to inactivate the four bacteria were a 91%N2-9%O2 mixture and a 30-minute exposure time. SF6 gas was more efficient for all the tested isolates in as much as the treatment time was reduced to only three minutes. Therefore, low-pressure plasma could be used to sterilize heat and/or moisture-sensitive medical instruments.

  19. Modeling of block copolymer dry etching for directed self-assembly lithography

    Science.gov (United States)

    Belete, Zelalem; Baer, Eberhard; Erdmann, Andreas

    2018-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is a promising alternative technology to overcome the limits of patterning for the semiconductor industry. DSA exploits the self-assembling property of BCPs for nano-scale manufacturing and to repair defects in patterns created during photolithography. After self-assembly of BCPs, to transfer the created pattern to the underlying substrate, selective etching of PMMA (poly (methyl methacrylate)) to PS (polystyrene) is required. However, the etch process to transfer the self-assemble "fingerprint" DSA patterns to the underlying layer is still a challenge. Using combined experimental and modelling studies increases understanding of plasma interaction with BCP materials during the etch process and supports the development of selective process that form well-defined patterns. In this paper, a simple model based on a generic surface model has been developed and an investigation to understand the etch behavior of PS-b-PMMA for Ar, and Ar/O2 plasma chemistries has been conducted. The implemented model is calibrated for etch rates and etch profiles with literature data to extract parameters and conduct simulations. In order to understand the effect of the plasma on the block copolymers, first the etch model was calibrated for polystyrene (PS) and poly (methyl methacrylate) (PMMA) homopolymers. After calibration of the model with the homopolymers etch rate, a full Monte-Carlo simulation was conducted and simulation results are compared with the critical-dimension (CD) and selectivity of etch profile measurement. In addition, etch simulations for lamellae pattern have been demonstrated, using the implemented model.

  20. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O_2/H_2O low-temperature plasma treatment

    International Nuclear Information System (INIS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    Graphical abstract: - Highlights: • O_2/H_2O can increase oxygen concentration in the plasma compared to the pure O_2 atmosphere. • Pores at the surface of natural leather became larger and deeper with enhanced permeability of water. • The initial water contact angle was about 21°. • Its preferable surface hydrophilicity kept for 3 days, which gives guidance for next process. • The elongation of the treated sample for 10 min was twice as large as that of the untreated sample. - Abstract: The natural leather was modified through O_2/H_2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O_2/H_2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  1. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    Science.gov (United States)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  2. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  3. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  4. Etching characteristics and application of physical-vapor-deposited amorphous carbon for multilevel resist

    International Nuclear Information System (INIS)

    Kim, H. T.; Kwon, B. S.; Lee, N.-E.; Park, Y. S.; Cho, H. J.; Hong, B.

    2008-01-01

    For the fabrication of a multilevel resist (MLR) based on a very thin, physical-vapor-deposited (PVD) amorphous carbon (a-C) layer, the etching characteristics of the PVD a-C layer with a SiO x hard mask were investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in O 2 /N 2 /Ar plasmas: high-frequency/low-frequency combination (f HF /f LF ), HF/LF power ratio (P HF /P LF ), and O 2 and N 2 flow rates. The very thin nature of the a-C layer helps to keep the aspect ratio of the etched features low. The etch rate of the PVD a-C layer increased with decreasing f HF /f LF combination and increasing P LF and was initially increased but then decreased with increasing N 2 flow rate in O 2 /N 2 /Ar plasmas. The application of a 30 nm PVD a-C layer in the MLR structure of ArF PR/BARC/SiO x /PVD a-C/TEOS oxide supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the TEOS-oxide layer

  5. Silicon nitride and silicon etching by CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams

    Energy Technology Data Exchange (ETDEWEB)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Department of Chemical and Biomolecular Engineering, Plasma Processing Laboratory, University of Houston, Houston, Texas 77204 (United States)

    2016-07-15

    Silicon nitride (SiN, where Si:N ≠ 1:1) films low pressure-chemical vapor deposited on Si substrates, Si films on Ge on Si substrates, and p-Si samples were exposed to plasma beams emanating from CH{sub 3}F/O{sub 2} or CH{sub 3}F/CO{sub 2} inductively coupled plasmas. Conditions within the plasma beam source were maintained at power of 300 W (1.9 W/cm{sup 3}), pressure of 10 mTorr, and total gas flow rate of 10 sccm. X-ray photoelectron spectroscopy was used to determine the thicknesses of Si/Ge in addition to hydrofluorocarbon polymer films formed at low %O{sub 2} or %CO{sub 2} addition on p-Si and SiN. Polymer film thickness decreased sharply as a function of increasing %O{sub 2} or %CO{sub 2} addition and dropped to monolayer thickness above the transition point (∼48% O{sub 2} or ∼75% CO{sub 2}) at which the polymer etchants (O and F) number densities in the plasma increased abruptly. The C(1s) spectra for the polymer films deposited on p-Si substrates appeared similar to those on SiN. Spectroscopic ellipsometry was used to measure the thickness of SiN films etched using the CH{sub 3}F/O{sub 2} and CH{sub 3}F/CO{sub 2} plasma beams. SiN etching rates peaked near 50% O{sub 2} addition and 73% CO{sub 2} addition. Faster etching rates were measured in CH{sub 3}F/CO{sub 2} than CH{sub 3}F/O{sub 2} plasmas above 70% O{sub 2} or CO{sub 2} addition. The etching of Si stopped after a loss of ∼3 nm, regardless of beam exposure time and %O{sub 2} or %CO{sub 2} addition, apparently due to plasma assisted oxidation of Si. An additional GeO{sub x}F{sub y} peak was observed at 32.5 eV in the Ge(3d) region, suggesting deep penetration of F into Si, under the conditions investigated.

  6. Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO2/Ti Electrode as Catalyst

    Science.gov (United States)

    Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng

    2013-12-01

    Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.

  7. Surface etching mechanism of carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} phase change material in fluorocarbon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanlan [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China)

    2016-09-15

    Recently, carbon-doped Ge2Sb2Te5 (CGST) phase change material has been widely researched for being highly promising material for future phase change memory application. In this paper, the reactive-ion etching of CGST film in CF{sub 4}/Ar plasma is studied. Compared with GST, the etch rate of CGST is relatively lower due to the existence of carbon which reduce the concentration of F or CF{sub x} reactive radicals. It was found that Argon plays an important role in defining the sidewall edge acuity. Compared with GST, more physical bombardment is required to obtain vertical sidewall of CGST. The effect of fluorocarbon gas on the damage of the etched CGST film was also investigated. A Ge- and Sb-deficient layer with tens of nanometers was observed by TEM combining with XPS analysis. The reaction between fluorocarbon plasma and CGST is mainly dominated by the diffusion and consumption of reactive fluorine radicals through the fluorocarbon layer into the CGST substrate material. The formation of damage layer is mainly caused by strong chemical reactivity, low volatility of reaction compounds and weak ion bombardment. (orig.)

  8. Determination, through titration with NO, of the concentration of oxygen atoms in the flowing afterglow of Ar-O2 and N2-O2 plasmas used for sterilization purposes

    Science.gov (United States)

    Ricard, A.; Moisan, M.; Moreau, S.

    2001-04-01

    Les méthodes existantes de titrage de N et O d'une post-décharge au moyen de l'intensité d'émission de la molécule NO excitée ne permettant pas d'aller au-delà de x = 5% dans un mélange xO2-(100%-x)N2, nous présentons une démarche valable pour x≤20%. Cette technique est fondée sur la mesure de l'intensité d'émission de NO2(A), en fonction du débit de NO introduit, en relation avec une dérivation analytique des équations des concentrations [N] et [O]. La concentration d'oxygène atomique obtenue par cette méthode est validée de façon indépendante à partir de la mesure du rapport des intensités d'émission de NO(B) et de N2(B, 11) (celle-ci détectable pour x≤8%). Enfin, la méthode proposée est mise en oeuvre pour apprécier l'influence de la valeur de la concentration d'oxygène atomique sur le temps de stérilisation dans une post-décharge en flux à partir d'un plasma de N2-O2. \\engabstract Existing titration methods of N and O in an afterglow based on the emission intensity of the excited NO molecule cannot be used at x values exceeding 5% in the xO2-(100%-x)N2 mixture. Our technique extends the x range to 20%. It utilizes the emission intensity measurement of NO2(A), as a function of the introduced NO flow, in relation with analytically derived equations for the O and N concentrations. The atomic oxygen concentration obtained in this way is validated independently through measurements of the emission intensity ratio of NO(B) and N2(B, 11) (detectable for x≤8%). Finally, the proposed method is used to assess the influence of the oxygen atom concentration on the sterilization time in the flowing afterglow of an N2-O2 plasma.

  9. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    Science.gov (United States)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  10. Optimization of Fluorine Plasma Treatment for Interface Improvement on HfO2/In0.53Ga0.47As MOSFETs

    Directory of Open Access Journals (Sweden)

    Yen-Ting Chen

    2012-03-01

    Full Text Available This paper reports significant improvements in the electrical performance of In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors (MOSFET by a post-gate CF4/O2 plasma treatment. The optimum condition of CF4/O2 plasma treatment has been systematically studied and found to be 30 W for 3–5 min. Approximately 5× reduction in interface trap density from 2.8 × 1012 to 4.9 × 1011 cm−2eV−1 has been demonstrated with fluorine (F incorporation. Subthreshold swing has been improved from 127 to 109 mV/dec. Effective channel mobility has been enhanced from 826 to 1,144 cm2/Vs.

  11. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    Science.gov (United States)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  12. Characterization and mechanical investigation of Ti–O2−x film prepared by plasma immersion ion implantation and deposition for cardiovascular stents surface modification

    International Nuclear Information System (INIS)

    Xie Dong; Wan Guojiang; Maitz, Manfred F.; Lei Yifeng; Huang Nan; Sun Hong

    2012-01-01

    Highlights: ► We prepared Ti–O 2−x films of good quality by PIII and D successfully on stents product. ► The Ti–O 2−x film shows good homogeneity and intergradient film/substrate interface. ► The Ti–O 2−x films on stent sustain clinically-required expansion without failure. ► The films show good mechanical durability for cardiovascular stents application. - Abstract: Up to date, materials for cardiovascular stents are still far from satisfactory because of high risk of biomaterials-associated restenosis and thrombosis. Extensive efforts have been made to improve the biocompatibility of the materials by various surface modification techniques. Ti–O 2−x films prepared by plasma immersion ion implantation and deposition (PIII and D) have shown good blood compatibility. For clinical application, surface quality and mechanical durability of the Ti–O 2−x film on stents are also of critical importance for the long-term serving. In this paper we present our research results on surface quality, mechanical investigation and characterization of Ti–O 2−x films prepared using PIII and D on stent products provided by Boston Scientific SCIMED. Ti–O 2−x films with mostly Rutile and little non-stoichiometric phases were obtained with smoothness of 2−x films on stents products were sustained balloon-expansion of clinically-required extent without mechanical failure, showing highly potential feasibility for cardiovascular stents application.

  13. Depth-resolved detection and process dependence of traps at ultrathin plasma-oxidized and deposited SiO2/Si interfaces

    International Nuclear Information System (INIS)

    Brillson, L. J.; Young, A. P.; White, B. D.; Schaefer, J.; Niimi, H.; Lee, Y. M.; Lucovsky, G.

    2000-01-01

    Low-energy electron-excited nanoluminescence spectroscopy reveals depth-resolved optical emission associated with traps near the interface between ultrathin SiO 2 deposited by plasma-enhanced chemical vapor deposition on plasma-oxidized crystalline Si. These near-interface states exhibit a strong dependence on local chemical bonding changes introduced by thermal/gas processing, layer-specific nitridation, or depth-dependent radiation exposure. The depth-dependent results provide a means to test chemical and structural bond models used to develop advanced dielectric-semiconductor junctions. (c) 2000 American Vacuum Society

  14. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  15. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    Science.gov (United States)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  16. The Performance Improvement of N2 Plasma Treatment on ZrO2 Gate Dielectric Thin-Film Transistors with Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition IGZO Channel.

    Science.gov (United States)

    Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei

    2016-06-01

    The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).

  17. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  18. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  19. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities.

    Science.gov (United States)

    Kim, YongBok; Kim, GeunHyung

    2015-01-01

    Herein, poly(ɛ-caprolactone) (PCL) surfaces were treated to form various roughness values (R(a)=290-445 nm) and polar functional groups on the surfaces using a plasma-etching process, followed by immersion into simulated body fluid (SBF) for apatite formation. The surface morphology, chemical composition, and mean roughness of the plasma-etched PCL surfaces were measured, and various physical and morphological properties (water contact angles, protein absorption ability, and crystallite size of the apatite layer) of the in vitro mineralized PCL surfaces were evaluated. The roughened PCL surface P-3, which was treated with a sufficient plasma exposure time (4 h), achieved homogeneously distributed apatite formation after soaking in SBF for 7 days, as compared with other surfaces that were untreated or plasma-treated for 30 min or 2 h. Furthermore, to demonstrate their feasibility as a biomimetic surface, pre-osteoblast cells (MC3T3-E1) were cultured on the mineralized PCL surfaces, and cell viability, DAPI-phalloidin fluorescence assay, and alizarin red-staining of the P-3 surface were highly improved compared to the P-1 surface treated with a 30-min plasma exposure time; compared to untreated mineralized PCL surface (N-P), P-3 showed even greater improvements in cell viability and DAPI-phalloidin fluorescence assay. Based on these results, we found that the mineralized PCL surface supplemented with the appropriate plasma treatment can be implicitly helpful to achieve rapid hard tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  1. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hee-Sang [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Sunchon 57922 (Korea, Republic of); Kook, Min-Suk [Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of)

    2016-12-01

    Highlights: • PLGA and PLGA/n-HAp/β-TCP scaffolds were successfully fabricated by 3D printing. • Oxygen plasma etching increases the wettability and surface roughness. • Bioceramics and oxygen plasma etching and could be used to improve the cell affinity. - Abstract: Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on

  2. Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells

    NARCIS (Netherlands)

    Zardetto, V.; Di Giacomo, F.; Lucarelli, G.; Kessels, W.M.M.; Brown, T.M.; Creatore, M.

    2017-01-01

    In mesostructured perovskite solar cell devices, charge recombination processes at the interface between the transparent conductive oxide, perovskite and hole transport layer are suppressed by depositing an efficient compact TiO2 blocking layer. In this contribution we investigate the role of the

  3. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  4. Enhanced ozone production in a pulsed dielectric barrier discharge plasma jet with addition of argon to a He-O2 flow gas

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa; Scofield, James

    2013-09-01

    Ozone production in a plasma jet DBD driven with a 20-ns risetime unipolar pulsed voltage can be significantly enhanced using helium as the primary flow gas with an O2 coflow. The overvolted discharge can be sustained with up to a 5% O2 coflow at pulse repetition frequency at 13 kV applied voltage. Ozone production scales with the pulse repetition frequency up to a ``turnover frequency'' that depends on the O2 concentration, total gas flow rate, and applied voltage. For example, peak ozone densities >1016 cm-3 were measured with 3% O2 admixture and discharge current and 777 nm O(5 P) emission, but decreased ozone production and is followed by a transition to a filamentary discharge mode. The addition of argon at concentrations >=5% reduces the channel conductivity and shifts the turnover frequency to higher frequencies. This results in increased ozone production for a given applied voltage and gas flow rate. Time-resolved Ar(1s5) and He(23S1) metastable densities were acquired along with discharge current and ozone density measurements to gain insight into the mechanisms of optimum ozone production.

  5. Limitations of Cl2/O2-based ICP-RIE of deep holes for planar photonic crystals in InP

    International Nuclear Information System (INIS)

    Kaspar, Peter; Fougner, Christopher; Kappeler, Roman; Jaeckel, Heinz

    2012-01-01

    A detailed study of dry-etching of high-aspect-ratio holes into an indium phosphide substrate is presented for a Cl 2 /O 2 -based plasma chemistry. The etching is performed in an inductively coupled plasma reactive ion etching reactor. The separate influence of the various etching parameters on the quality of the etched holes is identified. Quality measures such as high aspect ratio, hole cylindricity and verticality as well as sidewall smoothness can be controlled by varying the ICP power, the relative O 2 flow rate and the self-bias of the plasma. We were able to clearly identify trade-offs that have to be made and limitations of the etching chemistry/technology used: If the aspect ratio improves, then the cylindricity also improves, whereas the verticality and the sidewall smoothness degrade. In previous reports, a certain ambiguity is generally observed in the sense that different process parameters exhibit partially contradicting trade-offs. We show that this behaviour can be remedied by a careful selection of the variable parameters. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    Science.gov (United States)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  7. Effects of O2 and H2O plasma immersion ion implantation on surface chemical composition and surface energy of poly vinyl chloride

    International Nuclear Information System (INIS)

    Zhang Wei; Chu, Paul K.; Ji Junhui; Zhang, Yihe; Jiang Zhimin

    2006-01-01

    Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O 2 and H 2 O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many C-C bonds are transformed into more polar oxygen containing functional groups

  8. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  9. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    International Nuclear Information System (INIS)

    Roozeboom, F; Kniknie, B; Lankhorst, A M; Winands, G; Knaapen, R; Smets, M; Poodt, P; Dingemans, G; Keuning, W; Kessels, W M M

    2012-01-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF 6 to form gaseous SiF x etch products, and 2) passivation with C 4 F 8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ∼20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C 4 F 8 passivation steps by ALD-based oxide (e.g. SiO 2 ) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  10. Dry Phosphorus silicate glass etching and surface conditioning and cleaning for multi-crystalline silicon solar cell processing

    International Nuclear Information System (INIS)

    Kagilik, Ahmed S.

    2014-01-01

    As an alternative to the wet chemical etching method, dry chemical etching processes for Phosphorus silicate glass [PSG} layer removal using Trifluormethane/Sulfur Hexafluoride (CHF 3 / SF 6 ) gas mixture in commercial silicon-nitride plasma enhanced chemical vapour deposition (SiN-PECVD) system is applied. The dependence of the solar cell performance on the etching temperature is investigated and optimized. It is found that the SiN-PECVD system temperature variation has a significant impact on the whole solar cell characteristics. A dry plasma cleaning treatment of the Si wafer surface after the PSG removal step is also investigated and developed. The cleaning step is used to remove the polymer film which is formed during the PSG etching using both oxygen and hydrogen gases. By applying an additional cleaning step, the polymer film deposited on the silicon wafer surface after PSG etching is eliminated. The effect of different plasma cleaning conditions on solar cell performance is investigated. After optimization of the plasma operating conditions, the performance of the solar cell is improved and the overall gain in efficiency of 0.6% absolute is yielded compared to a cell without any further cleaning step. On the other hand, the best solar cell characteristics can reach values close to that achieved by the conventional wet chemical etching processes demonstrating the effectiveness of the additional O 2 /H 2 post cleaning treatment.(author)

  11. Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O{sub 2}/Cl{sub 2} mixed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seolhye; Roh, Hyun-Joon; Jang, Yunchang; Jeong, Sangmin; Ryu, Sangwon; Choe, Jae-Myung; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-03-31

    Vacuum pumps of different ages were used to prepare Cl{sub 2} based plasmas for use in Cr etching. The effects of the vacuum pump age on the etching results were investigated using optical emission spectroscopy analysis. The composition of gas at the base pressure was mainly nitrogen and oxygen, although the ratio depended on the vacuum pump age and therefore, modulated the etch rate in a manner that was difficult to monitor. The effects of the pump age on the etch rate were clearly observed in the Cl{sub 2} plasma-assisted chromium film etching process, in which oxygen and chlorine radicals were responsible for the etching process. The electron energy distribution function (EEDF), which provided a proxy for the thermal equilibrium properties of the etching plasmas, was monitored. The shape of EEDF was derived from an analysis of the optical emission spectral data using an analysis model described previously. Because molecular nitrogen has a higher threshold energy and a larger cross-section of inelastic collisional processes than oxygen, the tail of the EEDF depends on the mixing ratio between nitrogen and oxygen. The various mechanisms that contribute to the chromium etch rate varied with subtle differences in the vacuum conditions, which were determined by age of the turbo molecular pump. The rates at which oxygen and chlorine radicals were generated were estimated using the measured EEDF, and the estimated oxygen radical and etching product contents were verified by comparing the residual gas analyzer data. The results revealed that the residual nitrogen partial pressures in two etchers equipped with either a new or an aged pump differed by 0.18%, and the EEDF tail areas differed by 10{sup −4}. Importantly, the chromium etch rates in these two instruments differed by 30%. These results suggest that the chamber-to-chamber mismatch should be monitored during plasma-assisted device fabrication processes. - Highlights: • We observed the vacuum pump age effect

  12. Damage-free plasma etching of porous organo-silicate low-k using micro-capillary condensation above -50 °C.

    Science.gov (United States)

    Chanson, R; Zhang, L; Naumov, S; Mankelevich, Yu A; Tillocher, T; Lefaucheux, P; Dussart, R; Gendt, S De; Marneffe, J-F de

    2018-01-30

    The micro-capillary condensation of a new high boiling point organic reagent (HBPO), is studied in a periodic mesoporous oxide (PMO) with ∼34 % porosity and k-value ∼2.3. At a partial pressure of 3 mT, the onset of micro-capillary condensation occurs around +20 °C and the low-k matrix is filled at -20 °C. The condensed phase shows high stability from -50 < T ≤-35 °C, and persists in the pores when the low-k is exposed to a SF 6 -based plasma discharge. The etching properties of a SF 6 -based 150W-biased plasma discharge, using as additive this new HBPO gas, shows that negligible damage can be achieved at -50 °C, with acceptable etch rates. The evolution of the damage depth as a function of time was studied without bias and indicates that Si-CH 3 loss occurs principally through Si-C dissociation by VUV photons.

  13. Experimental study of a RF plasma source with helicon configuration in the mix Ar/H_2. Application to the chemical etching of carbon materials surfaces in the framework of the plasma-wall interactions studies of ITER's divertor

    International Nuclear Information System (INIS)

    Bieber, T.

    2012-01-01

    The issue of the interaction wall-plasma is important in thermonuclear devices. The purpose of this work is to design a very low pressure atomic plasma source in order to study chemical etching of carbon surfaces in the same conditions as edge plasma in tokamaks. The experimental work has consisted in 2 stages: first, the characterisation of the new helicon configuration reactor developed for this research and secondly the atomic hydrogen source used for the chemical etching. The first chapter recalls what thermonuclear fusion is. The helicon configuration reactor as well as its diagnostics (optical emission spectroscopy, laser induced fluorescence - LIF, and Langmuir probe) are described in the second chapter. The third chapter deals with the different coupling modes (RF power and plasma) identified in pure argon plasmas and how they are obtained by setting experimental parameters such as injected RF power, magnetic fields or pressure. The fourth chapter is dedicated to the study of the difference in behavior between the electronic density and the relative density of metastable Ar"+ ions. The last chapter presents the results in terms of mass losses of the carbon material surfaces obtained with the atomic hydrogen source. (A.C.)

  14. Plasma deposition of Au-SiO2 multilayers for surface plasmon resonance based red colored coatings

    NARCIS (Netherlands)

    Takele Beyene, H.T.; Tichelaar, F.D.; Sanden, van de M.C.M.; Creatore, M.; Kondruweit, S.; Szyszka, B.; Pütz, J.

    2010-01-01

    Nanocomposite thin films with metallic nanoparticles embedded in a dielectric material show attractive plasmonic properties due to dielectric and quantum confinement effects. In this work. the expanding thermal plasma chemical vapor deposition in combination with radjo frequency magnetron sputtering

  15. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  16. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  17. Simple O2 Plasma-Processed V2O5 as an Anode Buffer Layer for High-Performance Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bao, Xichang; Zhu, Qianqian; Wang, Ting

    2015-01-01

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating...... the illumination of AM 1.5G (100 mW/cm2). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PEDOT:PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2...... plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge...

  18. Influence of chemical composition on dielectric properties of Al2O3-ZrO2 plasma deposits

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Neufuss, Karel

    2003-01-01

    Roč. 29, - (2003), s. 527-532 ISSN 0272-8842 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spray, ceramics, oxides Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.704, year: 2003

  19. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.

    Science.gov (United States)

    Chen, Hao; Zhang, Qi; Chou, Stephen Y

    2015-02-27

    Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.

  20. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong; Snoeckx, Ramses; Zhang, Xuming; Cha, Min; Bogaerts, Annemie

    2018-01-01

    performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2

  1. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Jiang N

    2016-09-01

    Full Text Available Nan Jiang,1,2 Pinggong Du,2 Weidong Qu,2 Lin Li,2 Zhonghao Liu,2 Songsong Zhu1 1State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 2Yantai City Stomatological Hospital, Yantai, People’s Republic of China Abstract: For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM, atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and

  2. Influence of O2 or H2O in a plasma jet and its environment on plasma electrical and biochemical performances

    Science.gov (United States)

    Adhikari, Ek R.; Samara, Vladimir; Ptasinska, Sylwia

    2018-05-01

    Because environmental conditions, such as room temperature and humidity, fluctuate arbitrarily, effects of atmospheric pressure plasma jets (APPJs) used in medical applications operating at various places and time might vary. Therefore, understanding the possible effects of air components in and outside APPJs is essential for clinical use, which requires reproducibility of plasma performance. These air components can influence the formation of reactive species in the APPJ, and the type and amount of these species formed depend on the feed gas inside the APPJ and the plasma jet environment. In this study, we monitored changes in plasma current and power, as well as in the level of DNA damage attributable to plasma irradiation, by adjusting the fraction of oxygen and water vapor in the plasma jet environment and feed gas. Here, DNA was used as a molecular probe to identify chemical changes that occurred in the plasma jet under these various environmental conditions. The damaged and undamaged fractions of DNA were quantified using agarose gel electrophoresis. We obtained an optimal amount of oxygen or water vapor in the plasma jet environment, as well as in the feed gas, which increased the level of DNA damage significantly. This increase can be attributed primarily to the formation of reactive species caused by water and oxygen decomposition in the APPJ detected with mass spectrometry. Moreover, we observed that the plasma power remained the same or decreased when gas was added to the jet environment or the feed gas, respectively, but in both cases, DNA damage increased. This indicates the superiority of plasma chemistry over the electrical power applied for APPJ ignition of the plasma sources used in medical applications.

  3. Comparison of damage introduced into GaN/AlGaN/GaN heterostructures using selective dry etch recipes

    International Nuclear Information System (INIS)

    Green, R T; Luxmoore, I J; Houston, P A; Ranalli, F; Wang, T; Parbrook, P J; Uren, M J; Wallis, D J; Martin, T

    2009-01-01

    A SiCl 4 /SF 6 dry etch plasma recipe is presented giving a selectivity of 14:1 between GaN and AlGaN. Using a leakage test structure, which enables bulk and surface leakage components to be identified independently, the optimized recipe is compared to an un-etched sample and devices recessed using a Cl 2 /Ar/O 2 -based plasma chemistry. Devices etched using the SiCl 4 /SF 6 recipe demonstrated reduced bulk and surface leakage currents when operated over a wide range of temperatures. Consequently the SiCl 4 /SF 6 recipe is identified as most suitable for the fabrication of gate recessed AlGaN/GaN HEMTs

  4. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    CERN Document Server

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K

    2000-01-01

    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  5. Plasma parameters in the vicinity of the quartz window of a low pressure surface wave discharge produced in O2

    DEFF Research Database (Denmark)

    Nakao, S.; Stamate, Eugen; Sugai, H.

    2007-01-01

    Plasma parameters in the vicinity of the dielectric window of a low density, microwave discharge produced in 0, at 915 N/FHz are investigated by a spherical probe and optical emission spectroscopy while the microwave field distribution is measured by a spectrum analyzer. The electron energy...... distribution function is found to be strongly dependent on the position with respect to the slot antenna, exhibiting a group of energetic electrons at locations where the electric field and the optical intensity exhibit maximum values. The density of energetic electrons decreases sharply just a few cm away...

  6. Atmospheric plasma sprayed (APS) coatings of Al2O3–TiO2 system for photocatalytic application

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Ageorges, H.; Ctibor, Pavel; Murafa, Nataliya

    2009-01-01

    Roč. 8, č. 5 (2009), s. 733-738 ISSN 1474-905X. [European Meeting on Solar Chemistry and Photocatalysis:Environmental Applications /5th./. Palermo, 04.10.2008-08.10.2008] R&D Projects: GA AV ČR IAAX00430803 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * reflectivity * bangap * phase composition Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.708, year: 2009

  7. Plasma treatment for influence of cold in different phases of formation of calcium phosphate on the surface of nanocomposite Al_2O_3/ZrO_2

    International Nuclear Information System (INIS)

    Santos, K.H.; Ferreira, J.A.; Osiro, D.; Nascimento, L.I.S.; Pallone, E.M.J.A.; Alves Junior, C.

    2016-01-01

    Among the different techniques used in surface treatment of biomaterials, the plasma has been noted for its ability to promote changes in surface roughness of the treated material. The objective of this study was to evaluate the influence of treatment by plasma in the formation of calcium phosphate nanocomposite on the surface of Al2O3/ZrO2 (5% by vol.). For this, samples were formed, calcined, sintered, surface treated and coated biomimeticamente plasma for 14 days. The surface characterization was performed by confocal microscopy and spectroscopy, Fourier transform infrared (FTIR). After coating, the samples were characterized by FTIR and X-ray diffraction X-ray (XRD). It was observed that the treatments improved surface roughness. Furthermore, regardless of the surface treatment were observed only three phases of calcium phosphates: HA α -TCP and -β-TCP. It is worth noting that depending on the composition, there are variations in the amount of phosphates, as well as the percentages of the different phases. (author)

  8. TiO2 thin and thick films grown on Si/glass by sputtering of titanium targets in an RF inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2015-01-01

    TiO 2 thin and thick films were deposited on silicon/glass substrates using RF inductive plasma in continuous wave. The films thickness, as well as phases control, is achieved with a gradual increase in temperature substrates varying supplied RF power or working gas pressure besides deposition time as well. The deposition conditions were: argon 80%/oxygen 20% carefully calibrated mixture of 2 to 7×10 −2 mbar as working gas pressure range. Deposition time 0.5 to 5 hours, 500 or 600 W RF power at 13.56 MHz frequency and 242-345 °C substrates temperature range. The titanium dioxide deposited on the substrates is grown by sputtering of a titanium target negatively polarized at 3-5 kV DC situated 14 mm in front of such substrates. The plasma reactor is a simple Pyrex-like glass cylindrical vessel of 50 cm long and 20 cm in diameter. Using the before describe plasma parameters we obtained films only anatase and both anatase/rutile phases with stoichiometric different. The films were characterized by X-ray photoelectron spectroscopy (XPS), stylus profilometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. (paper)

  9. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2009-01-01

    Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO 2 , MgF 2 . Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO 2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.

  11. Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Bourlange, A.; Payne, D.J.; Palgrave, R.G.; Foord, J.S.; Egdell, R.G.; Jacobs, R.M.J.; Schertel, A.; Hutchison, J.L.; Dobson, P.J.

    2009-01-01

    Thin films of In 2 O 3 have been grown on Y-stabilised ZrO 2 (100) substrates by oxygen plasma assisted molecular beam epitaxy over a range of substrate temperatures between 650 o C and 900 o C. Growth at 650 o C leads to continuous but granular films and complete extinction of substrate core level structure in X-ray photoelectron spectroscopy. However with increasing substrate temperature the films break up into a series of discrete micrometer sized islands. Both the continuous and the island films have excellent epitaxial relationship with the substrate as gauged by X-ray diffraction and selected area electron diffraction and lattice imaging in high resolution transmission electron microscopy.

  12. Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications

    International Nuclear Information System (INIS)

    Sobczyk-Guzenda, A.; Gazicki-Lipman, M.; Szymanowski, H.; Kowalski, J.; Wojciechowski, P.; Halamus, T.; Tracz, A.

    2009-01-01

    Thin titanium oxide films were deposited using a radio frequency (RF) plasma enhanced chemical vapour deposition method. Their optical properties and thickness were determined by means of ultraviolet-visible absorption spectrophotometry. Films of the optical parameters very close to those of titanium dioxide have been obtained at the high RF power input. Their optical quality is high enough to allow for their use in a construction of stack interference optical filters. At the same time, these materials exhibit strong photocatalytic effects. The results of structural analysis, carried out by Raman Shift Spectroscopy, show that the coatings posses amorphous structure. However, Raman spectra of the same films subjected to thermal annealing at 450 o C disclose an appearance of a crystalline form, namely that of anatase. Surface morphology of the films has also been characterized by Atomic Force Microscopy revealing granular, broccoli-like topography of the films.

  13. Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    Science.gov (United States)

    Chang, Yuan-Ming; Jian, Sheng-Rui; Juang, Jenh-Yih

    2010-09-01

    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures.

  14. Prevention of sidewall redeposition of etched byproducts in the dry Au etch process

    International Nuclear Information System (INIS)

    Aydemir, A; Akin, T

    2012-01-01

    In this paper we present a new technique of etching thin Au film in a dual frequency inductively coupled plasma (ICP) system on Si substrate to prevent the redeposition of etched Au particles over the sidewall of the masking material known as veils. First, the effect of the lithography step was investigated. Then the effects of etch chemistry and the process parameters on the redeposition of etched Au particles on the sidewall of the masking material were investigated. The redeposition effect was examined by depositing a thin Ti film over the masking material acting as a hard mask. The results showed that depositing a thin Ti film over the masking material prevents the formation of veils after etching Au in plasma environments for submicron size structures. Based on the results of this study, we propose a new technique that completely eliminates formation of veils after etching Au in plasma environments for submicron size structures. (paper)

  15. Improved thrombogenicity on oxygen etched Ti6Al4V surfaces

    International Nuclear Information System (INIS)

    Riedel, Nicholas A.; Smith, Barbara S.; Williams, John D.; Popat, Ketul C.

    2012-01-01

    Thrombus formation on blood contacting biomaterials continues to be a key factor in initiating a critical mode of failure in implantable devices, requiring immediate attention. In the interest of evaluating a solution for one of the most widely used biomaterials, titanium and its alloys, this study focuses on the use of a novel surface oxidation treatment to improve the blood compatibility. This study examines the possibility of using oblique angle ion etching to produce a high quality oxide layer that enhances blood compatibility on medical grade titanium alloy Ti6Al4V. An X-ray photoelectron spectroscopy (XPS) analysis of these oxygen-rich surfaces confirmed the presence of TiO 2 peaks and also indicated increased surface oxidation as well as a reduction in surface defects. After 2 h of contact with whole human plasma, the oxygen etched substrates demonstrated a reduction in both platelet adhesion and activation as compared to bare titanium substrates. The whole blood clotting behavior was evaluated for up to 45 min, showing a significant decrease in clot formation on oxygen etched substrates. Finally, a bicinchoninic acid (BCA) total protein assay and XPS were used to evaluate the degree of key blood serum protein (fibrinogen, albumin, immunoglobulin G) adsorption on the substrates. The results showed similar protein levels for both the oxygen etched and control substrates. These results indicate that oblique angle oxygen etching may be a promising method to increase the thrombogenicity of Ti6Al4V. - Highlights: ►Oblique angle oxygen ion etching creates a high quality, uniform oxide surface. ►Oxygen etched substrates showed fewer adhered platelets. ►Platelet activation was reduced by the improved oxide surface. ►Oxygen etched substrates exhibited increased whole blood clotting times. ►Although clotting reductions were seen, protein adsorption remained similar.

  16. Fluorocarbon assisted atomic layer etching of SiO{sub 2} and Si using cyclic Ar/C{sub 4}F{sub 8} and Ar/CHF{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu [Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Li, Chen [Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2016-01-15

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C{sub 4}F{sub 8} ALE based on steady-state Ar plasma in conjunction with periodic, precise C{sub 4}F{sub 8} injection and synchronized plasma-based low energy Ar{sup +} ion bombardment has been established for SiO{sub 2} [Metzler et al., J. Vac. Sci. Technol. A 32, 020603 (2014)]. In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF{sub 3} as a precursor is examined and compared to C{sub 4}F{sub 8}. CHF{sub 3} is shown to enable selective SiO{sub 2}/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and x-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. Plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.

  17. Influence of an O2 background gas on the composition and kinetic energies of species in laser induced La0.4Ca0.6MnO3 plasmas

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Bator, Matthias; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    Oxygen is one of the most commonly used background gases for pulsed laser deposition of oxide thin films. In this work the properties of a 308 nm laser-induced La0.4Ca0.6MnO3 plasma were analyzed using a quadrupole mass spectrometer combined with an energy analyzer, to investigate the interaction between the various plasma species and the background gas. The composition and kinetic energies of the plasma species were compared in vacuum and an O2 background gas at different pressures. It has been observed that the O2 background gas decreases the kinetic energy of the positively charged atomic plasma species. In addition, the interaction with the O2 background gas causes the generation of positive diatomic oxide species of LaO+, CaO+ and MnO+. The amount of negatively charged diatomic or tri-atomic oxide species decreases in the O2 background compared to vacuum, while the amount of O2- increases strongly.

  18. High degree reduction and restoration of graphene oxide on SiO2 at low temperature via remote Cu-assisted plasma treatment

    Science.gov (United States)

    Obata, Seiji; Sato, Minoru; Akada, Keishi; Saiki, Koichiro

    2018-06-01

    A high throughput synthesis method of graphene has been required for a long time to apply graphene to industrial applications. Of the various synthesis methods, the chemical exfoliation of graphite via graphene oxide (GO) is advantageous as far as productivity is concerned; however, the quality of the graphene produced by this method is far inferior to that synthesized by other methods, such as chemical vapor deposition on metals. Developing an effective reduction and restoration method for GO on dielectric substrates has been therefore a key issue. Here, we present a method for changing GO deposited on a dielectric substrate into high crystallinity graphene at 550 °C this method uses CH4/H2 plasma and a Cu catalyst. We found that Cu remotely catalyzed the high degree reduction and restoration of GO on SiO2 and the effect ranged over at least 8 mm. With this method, field-effect transistor devices can be fabricated without any post treatment such as a transfer process. This plasma treatment increased electron and hole mobilities of GO to 480 cm2 V‑1 s‑1 and 460 cm2 V‑1 s‑1 respectively; these values were more than 50 times greater than that of conventional reduced GO. Furthermore, the on-site conversion ensured that the shape of the GO sheets remained unchanged after the treatment. This plasma treatment realizes the high throughput synthesis of a desired shaped graphene on any substrate without any residue and damage being caused by the transfer process; as such, it expands the potential applicability of graphene.

  19. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  20. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed; Rubin, Andrew; Refaat, Mohamed; Sedky, Sherif; Abdo, Mohammad

    2014-01-01

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  1. Electromigration-induced drift in damascene and plasma-etched Al(Cu). II. Mass transport mechanisms in bamboo interconnects

    Science.gov (United States)

    Proost, Joris; Maex, Karen; Delacy, Luc

    2000-01-01

    We have discussed electromigration (EM)-induced drift in polycrystalline damascene versus reactive ion etched (RIE) Al(Cu) in part I. For polycrystalline Al(Cu), mass transport is well documented to occur through sequential stages : an incubation period (attributed to Cu depletion beyond a critical length) followed by the Al drift stage. In this work, the drift behavior of bamboo RIE and damascene Al(Cu) is analyzed. Using Blech-type test structures, mass transport in RIE lines was shown to proceed both by lattice and interfacial diffusion. The dominating mechanism depends on the Cu distribution in the line, as was evidenced by comparing as-patterned (lattice EM) and RTP-annealed (interface EM) samples. The interfacial EM only occurs at metallic interfaces. In that case, Cu alloying was observed to retard Al interfacial mass transport, giving rise to an incubation time. Although the activation energy for the incubation time was found similar to the one controlling Al lattice drift, for which no incubation time was observed, lattice EM is preferred over interfacial EM because it is insensitive to enhancing geometrical effects upon scaling. When comparing interfacial electromigration in RIE with bamboo damascene Al(Cu), with the incubation time rate controlling for both, the higher EM threshold observed for damascene was shown to be insufficient to compensate for its significantly increased Cu depletion rate, contrary to the case of polycrystalline Al(Cu) interconnects. Two factors were demonstrated to contribute. First, there are more metallic interfaces, intrinsically related to the use of wetting or barrier layers in recessed features. Second, specific to this study, the additional formation of TiAl3 at the trench sidewalls further enhanced the Cu depletion rate, and reduced the rate-controlling incubation time. A separate drift study on RIE via-type test structures indicated that it is very difficult to suppress interfacial mass transport in favor of lattice EM

  2. Photoemission study on electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces

    International Nuclear Information System (INIS)

    Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2017-01-01

    Electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces have been investigated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. From the analysis of the cut-off energy for secondary photoelectrons measured at each thinning step of a dielectric layer by wet-chemical etching, an abrupt potential change caused by electrical dipole at SiO_2/Si and HfO_2/SiO_2 interfaces has been clearly detected. Al-gate MOS capacitors with thermally-grown SiO_2 and a HfO_2/SiO_2 dielectric stack were fabricated to evaluate the Al work function from the flat band voltage shift of capacitance-voltage (C-V) characteristics. Comparing the results of XPS and C-V measurements, we have verified that electrical dipole formed at the interface can be directly measured by photoemission measurements. (author)

  3. Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics

    International Nuclear Information System (INIS)

    Georgieva, V.; Bogaerts, A.

    2005-01-01

    A one-dimensional particle-in-cell/Monte Carlo model is used to investigate Ar/CF 4 /N 2 discharges sustained in capacitively coupled dual frequency reactors, with special emphasis on the influence of the reactor parameters such as applied voltage amplitudes and frequencies of the two voltage sources. The presented calculation results include plasma density, ion current, average sheath potential and width, electron and ion average energies and energy distributions, and ionization rates. The simulations were carried out for high frequencies (HFs) of 27, 40, 60, and 100 MHz and a low frequency (LF) of 1 or 2 MHz, varying the LF voltage and keeping the HF voltage constant and vice versa. It is observed that the decoupling of the two sources is possible by increasing the applied HF to very high values (above 60 MHz) and it is not defined by the frequency ratio. Both voltage sources have influence on the plasma characteristics at a HF of 27 MHz and to some extent at 40 MHz. At HFs of 60 and 100 MHz, the plasma density and ion flux are determined only by the HF voltage source. The ion energy increases and the ion energy distribution function (IEDF) becomes broader with HF or LF voltage amplitude, when the other voltage is kept constant. The IEDF is broader with the increase of HF or the decrease of LF

  4. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    Science.gov (United States)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  5. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications.

    Science.gov (United States)

    Kunuku, Srinivasu; Sankaran, Kamatchi Jothiramalingam; Tsai, Cheng-Yen; Chang, Wen-Hao; Tai, Nyan-Hwa; Leou, Keh-Chyang; Lin, I-Nan

    2013-08-14

    We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.

  6. PHOTO-ELECTROCHEMICAL QUANTUM EFFICIENCY OF TiO2 THIN FILMS : EFFECT OF CRISTAL STRUCTURE, PLASMA HYDROGENATION AND SURFACE PHOTOETCHING

    Directory of Open Access Journals (Sweden)

    E TEYAR

    2007-12-01

    a proportion 1 to 9. The cyclic voltametry and the impedance spectroscopy showed that the incorporation of hydrogen by plasma in TiO2 films decreases  photoelectrochemical quantum efficiency in NaOH electrolyte and increases the doping concentration. The photoelectrochemical quantum efficiency in NaOH electrolyte of photoetched films in H2SO4 at full UV light increased two times greater than of non photoetched one (26.7% versus 14%.

  7. [The spectra of a laser-produced plasma source with CO2, O2 and CF4 liquid aerosol spray target].

    Science.gov (United States)

    Ni, Qi-Liang; Chen, Bo

    2008-11-01

    A laser-produced plasma (LPP) source with liquid aerosol spray target and nanosecond laser was developed, based on both soft X-ray radiation metrology and extreme ultraviolet projection lithography (EUVL). The LPP source is composed of a stainless steel solenoid valve whose temperature can be continuously controlled, a Nd : YAG laser with pulse width, working wavelength and pulse energy being 7 ns, 1.064 microm and 1J respectively, and a pulse generator which can synchronously control the valve and the laser. A standard General Valve Corporation series 99 stainless steel solenoid valve with copper gasket seals and a Kel-F poppet are used in order to minimize leakage and poppet deformation during high-pressure cryogenic operation. A close fitting copper cooling jacket surrounds the valve body. The jacket clamps a copper coolant carrying tube 3 mm in diameter, which is fed by an automatically pressurized liquid nitrogen-filled dewar. The valve temperature can be controlled between 77 and 473 K. For sufficiently high backing pressure and low temperature, the valve reservoir gas can undergo a gas-to-liquid phase transition. Upon valve pulsing, the liquid is ejected into a vacuum and breaks up into droplets, which is called liquid aerosol spray target. For the above-mentioned LPP source, firstly, by the use of Cowan program on the basis of non-relativistic quantum mechanics, the authors computed the radiative transition wavelengths and probabilities in soft X-ray region for O4+, O5+, O6+, O7+, F5+, F6+ and F7+ ions which were correspondingly produced from the interaction of the 10(11)-10(12) W x cm(-2) power laser with liquid O2, CO2 and CF4 aerosol spray targets. Secondly, the authors measured the spectra of liquid O2, CO2 and CF4 aerosol spray target LPP sources in the 6-20 nm band for the 8 x 10(11) W x cm(-2) laser irradiance. The measured results were compared with the Cowan calculated results ones, and the radiative transition wavelength and probability for the

  8. Ar + NO microwave plasmas for Escherichia coli sterilization

    International Nuclear Information System (INIS)

    Hueso, Jose L; Rico, Victor J; Cotrino, Jose; Gonzalez-Elipe, Agustin R; Frias, Jose E

    2008-01-01

    Ar + NO microwave discharges are used for sterilization and the results are compared with additional experiments with Ar, O 2 and N 2 -O 2 plasma mixtures. The NO * species produced in the Ar-NO mixtures remain up to long distances from the source, thus improving the sterilization efficiency of the process. E. coli individuals exposed to the Ar + NO plasma undergo morphological damage and cell lysis. Combined effects of etching (by O * and Ar * species) and UV radiation (from deactivation of NO * species) are responsible for the higher activity found for this plasma mixture. (fast track communication)

  9. Dry etching technologies for reflective multilayer

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  10. Hydrogen effects in hydrofluorocarbon plasma etching of silicon nitride: Beam study with CF{sup +}, CF{sub 2}{sup +}, CHF{sub 2}{sup +}, and CH{sub 2}F{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomoko; Karahashi, Kazuhiro; Fukasawa, Masanaga; Tatsumi, Tetsuya; Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan); Semiconductor Technology Development Division, SBG, CPDG, Sony Corporation, Atsugi, Kanagawa 243-0014 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan)

    2011-09-15

    Hydrogen in hydrofluorocarbon plasmas plays an important role in silicon nitride (Si{sub 3}N{sub 4}) reactive ion etching. This study focuses on the elementary reactions of energetic CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions with Si{sub 3}N{sub 4} surfaces. In the experiments, Si{sub 3}N{sub 4} surfaces were irradiated by monoenergetic (500-1500 eV) beams of CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions as well as hydrogen-free CF{sub 2}{sup +} and CF{sup +} ions generated by a mass-selected ion beam system and their etching yields and surface properties were examined. It has been found that, when etching takes place, the etching rates of Si{sub 3}N{sub 4} by hydrofluorocarbon ions, i.e., CHF{sub 2}{sup +} and CH{sub 2}F{sup +}, are higher than those by the corresponding fluorocarbon ions, i.e., CF{sub 2}{sup +} and CF{sup +}, respectively. When carbon film deposition takes place, it has been found that hydrogen of incident hydrofluorocarbon ions tends to scavenge fluorine of the deposited film, reducing its fluorine content.

  11. Directional Etching of Silicon by Silver Nanostructures

    Science.gov (United States)

    Sharma, Pradeep; Wang, Yuh-Lin

    2011-02-01

    We report directional etching of nanostructures (nanochannels and nanotrenches) into the Si(100) substrates in aqueous HF and H2O2 solution by lithographically defined Ag patterns (nanoparticles, nanorods, and nanorings). The Effect of Ag/Si interface oxide on the directional etching has been studied by etching Ag/SiOx/Si samples of known interface oxide thickness. Based on high resolution transmission electron microscopy (HRTEM) imaging and TEM-energy dispersive X-ray (EDX) spectra of the Ag/Si interfaces, we propose that maintenance of the sub-nanometer oxide at the Ag/Si interfaces and Ag-Si interaction are the key factors which regulate the directional etching of Si.

  12. Electron cyclotron resonance ion stream etching of tantalum for x-ray mask absorber

    International Nuclear Information System (INIS)

    Oda, Masatoshi; Ozawa, Akira; Yoshihara, Hideo

    1993-01-01

    Electron cyclotron resonance ion stream etching of Ta film was investigated for preparing x-ray mask absorber patterns. Ta is etched by the system at a high rate and with high selectivity. Using Cl 2 as etching gas, the etch rate decreases rapidly with decreasing pattern width below 0.5 μm and large undercutting is observed. The problems are reduced by adding Ar or O 2 gas to the Cl 2 . Etching with a mixture of Cl 2 and O 2 produces highly accurate Ta absorber patterns for x-ray masks. The pattern width dependence of the etch rate and the undercutting were simulated with a model that takes account of the angular distribution of active species incident on the sample. The experimental results agree well with those calculated assuming that the incidence angles are distributed between -36 degrees and 36 degrees. The addition of O 2 or Ar enhances ion assisted etching. 16 refs., 16 figs

  13. Incorporation of sol-gel SnO2:Sb into nanoporous SiO2

    International Nuclear Information System (INIS)

    Canut, B.; Blanchin, M.G.; Ramos-Canut, S.; Teodorescu, V.; Toulemonde, M.

    2006-01-01

    Silicon oxide films thermally grown on Si(1 0 0) wafers were irradiated with 200 MeV 197 Au ions in the 10 9 -10 1 cm -2 fluence range. The targets were then etched at room temperature in aqueous HF solution (1 vol.%) for various durations. Atomic force microscopy (AFM) in the tapping mode was used to probe the processed surfaces. Conical holes with a low size dispersion were evidenced. Their surface diameter varies between 20 and 70 nm, depending on the etching time. Sol-gel dip coating technique, associated with a further annealing treatment performed at 500 o C for 15 min, was used to fill the nanopores created in SiO 2 with a transparent conductive oxide (SnO 2 doped with antimony). Transmission electron microscopy (TEM) performed on cross-sectional specimen showed that SnO 2 :Sb crystallites of ∼5 nm mean size are trapped in the holes without degrading their geometry

  14. Dry etching of thin chalcogenide films

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Kiril [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 1113 Sofia (Bulgaria); Vassilev, Gergo; Vassilev, Venceslav, E-mail: kpetkov@clf.bas.b [Department of Semiconductors, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    Fluorocarbon plasmas (pure and mixtures with Ar) were used to investigate the changes in the etching rate depending on the chalcogenide glasses composition and light exposure. The experiments were performed on modified commercial HZM-4 vacuum equipment in a diode electrode configuration. The surface microstructure of thin chalcogenide layers and its change after etching in CCl{sub 2}F{sub 2} and CF{sub 4} plasmas were studied by SEM. The dependence of the composition of As-S-Ge, As-Se and multicomponent Ge-Se-Sb-Ag-I layers on the etching rate was discussed. The selective etching of some glasses observed after light exposure opens opportunities for deep structure processing applications.

  15. Potentiodynamical deposition of nanostructured MnO2 film at the assist of electrodeposited SiO2 as template

    International Nuclear Information System (INIS)

    Wu, Lian-Kui; Xia, Jie; Hou, Guang-Ya; Cao, Hua-Zhen; Tang, Yi-Ping; Zheng, Guo-Qu

    2016-01-01

    Highlights: • MnO 2 -SiO 2 composite film is prepared by potentiodynamical deposition. • Hierarchical porous MnO 2 films is obtained after the etching of SiO 2 . • The obtained MnO 2 film electrode exhibit high specific capacitance. - Abstract: We report a novel silica co-electrodeposition route to prepare nanostructured MnO 2 films. Firstly, MnO 2 -SiO 2 composite film was fabricated on a stainless steel substrate by potentiodynamical deposition, i.e. cyclic deposition, and then the SiO 2 template was removed by simple immersion in concentrated alkaline solution, leading to the formation of a porous MnO 2 (po-MnO 2 ) matrix. The structure and morphology of the obtained films were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties of the po-MnO 2 film were evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results showed that this porous MnO 2 derived from the MnO 2 -SiO 2 composite film exhibits good electrochemical performance for potential use as a supercapacitor material.

  16. Application of Radio-Frequency Plasma Glow Discharge to Removal of Uranium Dioxide from Metal Surfaces

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2000-01-01

    Recent experiments have shown that radio-frequency (rf) plasma glow discharge using NF 3 gas is an effective technique for the removal of uranium oxide from metal surfaces. The results of these experiments are analyzed to explain the measured dependence of the UO 2 removal or etch rate on the NF 3 gas pressure and the absorbed power in the plasma. The NF 3 gas pressure in the experiments was varied from 10.8 to 40 Pa, and the deposited power in the plasma was varied from 25 to 210 W. The UO 2 etch rate was strongly dependent on the absorbed power and, to a lesser extent, on the NF 3 pressure and decreased exponentially with immersion time. At 210 W and 17 Pa, all detectable UO 2 in the samples (∼10.6 mg each) was removed at the endpoint, whereas the initial etch rate was ∼3.11 μm/min. When the absorbed power was ≤50 W, however, the etch rate was initially ∼0.5 μg/min and almost zero at the endpoint, with UO 2 only partially etched. This self-limiting etching of UO 2 at low power is attributed to the formation of nonvolatile intermediates UF 2 , UF 3 , UF 4 , UF 5 , UO 2 F, and UO 2 F 2 on the surface. Analysis indicated that the accumulation of UF 6 and, to a lesser extent, O 2 near the surface partially contributed to the exponential decrease in the UO 2 etch rate with immersion time. Unlike fluorination with F 2 gas, etching of UO 2 using rf glow discharge is possible below 663 K. The average etch rates of the amorphous UO 2 in the NF 3 experiments are comparable to the peak values reported in other studies for crystalline UO 2 using CF 4 /O 2 glow discharge performed at ∼150 to 250 K higher sample temperatures

  17. Si etching with reactive neutral beams of very low energy

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuhiro [Organization for Research and Development of Innovative Science and Technology, Kansai University, 3-3-35 Yamate-chou, Suita, Osaka 565-0871 (Japan); Hamagaki, Manabu; Mise, Takaya [RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan); Iwata, Naotaka; Hara, Tamio [Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku-ku, Nagoya 468-8511 (Japan)

    2014-12-14

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF{sub 4} and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy rea