WorldWideScience

Sample records for o-type stars studied

  1. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). III. 142 ADDITIONAL O-TYPE SYSTEMS

    International Nuclear Information System (INIS)

    Apellániz, J. Maíz; Sota, A.; Alfaro, E. J.; Arias, J. I.; Barbá, R. H.; Walborn, N. R.; Simón-Díaz, S.; Herrero, A.; Negueruela, I.; Marco, A.; Leão, J. R. S.; Gamen, R. C.

    2016-01-01

    This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R  ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.

  2. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). III. 142 ADDITIONAL O-TYPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Apellániz, J. Maíz [Centro de Astrobiología, CSIC-INTA, campus ESAC, camino bajo del castillo s/n, E-28 692 Madrid (Spain); Sota, A.; Alfaro, E. J. [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18 008 Granada (Spain); Arias, J. I.; Barbá, R. H. [Departamento de Física, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); Walborn, N. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21 218 (United States); Simón-Díaz, S.; Herrero, A. [Instituto de Astrofísica de Canarias, E-38 200 La Laguna, Tenerife (Spain); Negueruela, I.; Marco, A. [DFISTS, EPS, Universidad de Alicante, carretera San Vicente del Raspeig s/n, E-03 690 Alicante (Spain); Leão, J. R. S. [Univ. Federal do Rio Grande do Norte—UFRN, Caixa Postal 1524, CEP 59 078-970, Natal—RN (Brazil); Gamen, R. C., E-mail: jmaiz@cab.inta-csic.es [Instituto de Astrofísica de La Plata (CONICET, UNLP), Paseo del Bosque s/n, 1900 La Plata (Argentina)

    2016-05-01

    This is the third installment of the Galactic O-Star Spectroscopic Survey (GOSSS), a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R  ∼ 2500 digital observations selected from the Galactic O-Star Catalog. In this paper, we present 142 additional stellar systems with O stars from both hemispheres, bringing the total of O-type systems published within the project to 590. Among the new objects, there are 20 new O stars. We also identify 11 new double-lined spectroscopic binaries, 6 of which are of O+O type and 5 of O+B type, and an additional new tripled-lined spectroscopic binary of O+O+B type. We also revise some of the previous GOSSS classifications, present some egregious examples of stars erroneously classified as O-type in the past, introduce the use of luminosity class IV at spectral types O4-O5.5, and adapt the classification scheme to the work of Arias et al.

  3. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-03-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbor Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive-star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive-star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  4. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  5. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    NARCIS (Netherlands)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-01-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type

  6. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  7. Wolf-Rayet stars and O-star runaways with HIPPARCOS - I. Kinematics

    NARCIS (Netherlands)

    Moffat, AFJ; Marchenko, SV; Seggewiss, W; van der Hucht, KA; Schrijver, H; Stenholm, B; Lundstrom, [No Value; Gunawan, DYAS; Sutantyo, W; van den Heuvel, EPJ; De Cuyper, JP; Gomez, AE

    Reliable systemic radial velocities are almost impossible to secure for Wolf-Rayet stars, difficult for O stars. Therefore, to study the motions - both systematic in the Galaxy and peculiar - of these two related types of hot, luminous star, we have examined the Hipparcos proper motions of some 70

  8. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    Science.gov (United States)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  9. The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    Science.gov (United States)

    Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.

    2018-06-01

    Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement

  10. THE RUNAWAYS AND ISOLATED O-TYPE STAR SPECTROSCOPIC SURVEY OF THE SMC (RIOTS4)

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. B.; Oey, M. S.; Segura-Cox, D. M.; Graus, A. S.; Golden-Marx, J. B. [Astronomy Department, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109-1107 (United States); Kiminki, D. C. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Parker, J. Wm., E-mail: joellamb@umich.edu [Southwest Research Institute, Department of Space Studies, Suite 300, 1050 Walnut Street, Boulder, CO 80302-5150 (United States)

    2016-02-01

    We present the Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4), a spatially complete survey of uniformly selected field OB stars that covers the entire star-forming body of the Small Magellanic Cloud (SMC). Using the IMACS (Inamori-Magellan Areal Camera and Spectrograph) multislit spectrograph and MIKE (Magellan Inamori Kyocera Echelle) echelle spectrograph on the Magellan telescopes, we obtained spectra of 374 early-type field stars that are at least 28 pc from any other OB candidates. We also obtained spectra of an additional 23 field stars in the SMC bar identified from slightly different photometric criteria. Here, we present the observational catalog of stars in the RIOTS4 survey, including spectral classifications and radial velocities. For three multi-slit fields covering 8% of our sample, we carried out monitoring observations over 9–16 epochs to study binarity, finding a spectroscopic, massive binary frequency of at least ∼60% in this subsample. Classical Oe/Be stars represent a large fraction of RIOTS4 (42%), occurring at much higher frequency than in the Galaxy, consistent with expectation at low metallicity. RIOTS4 confirmed a steep upper initial mass function in the field, apparently caused by the inability of the most massive stars to form in the smallest clusters. Our survey also yields evidence for in situ field OB star formation, and properties of field emission-line star populations, including sgB[e] stars and classical Oe/Be stars. We also discuss the radial velocity distribution and its relation to SMC kinematics and runaway stars. RIOTS4 presents a first quantitative characterization of field OB stars in an external galaxy, including the contributions of sparse, but normal, star formation; runaway stars; and candidate isolated star formation.

  11. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star

    Energy Technology Data Exchange (ETDEWEB)

    Neugent, Kathryn F.; Massey, Philip [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillier, D. John [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: hillier@pitt.edu, E-mail: nmorrell@lco.cl [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2017-05-20

    As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.

  12. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O.; Pereira, C. B. [Observatório Nacional, Rua José Cristino 77, CEP 20921-400, São Cristóvão, Rio de Janeiro (Brazil); Miranda, L. F. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, E-36310 Vigo (Spain)

    2013-11-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in

  13. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    International Nuclear Information System (INIS)

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    2013-01-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K s ) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K s ) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10 8-9 cm –3 ), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S-type

  14. Optical-NIR dust extinction towards Galactic O stars

    Science.gov (United States)

    Maíz Apellániz, J.; Barbá, R. H.

    2018-05-01

    Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting the Galactic O-Star Spectroscopic Survey (GOSSS), which is generating a large sample of O stars with accurate spectral types within several kpc of the Sun. Aims: We aim to obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods: We have processed a carefully selected photometric set with the CHORIZOS code to measure the amount [E(4405 - 5495)] and type [R5495] of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results: The Maíz Apellániz et al. (2014, A&A, 564, A63) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989, ApJ, 345, 245) or Fitzpatrick (1999, PASP, 111, 63) families, so it should be preferentially used when analysing samples similar to the one in this paper. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R5495 effect of molecular clouds and others by the large-grain-size, high-R5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust

  15. SIMULTANEOUS OBSERVATIONS OF SiO AND H2O MASERS TOWARD SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Cho, Se-Hyung; Kim, Jaeheon

    2010-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, J = 1-0, 29 SiO v = 0, J = 1-0, and H 2 O 6 16 -5 23 maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 November to 2010 January. We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and H 2 O masers were detected from seven stars of which six were D-type symbiotic stars and one was an S-type star, WRAY 15-1470. In the SiO maser emission, the 28 SiO v = 1 maser was detected from 10 stars, while the v = 2 maser was detected from 15 stars. In particular, the 28 SiO v = 2 maser emission without the v = 1 maser detection was detected from nine stars with a detection rate of 60%, which is much higher than that of isolated Miras/red giants. The 29 SiO v = 0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the 28 SiO v = 2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  16. A new interpretation of the feature of SiO maser spectra associated with M-type star

    International Nuclear Information System (INIS)

    Liu Hanping; Sun Jin

    1989-09-01

    There exists a systematic redshift of spectra (ν=1,2; J=1-0) of SiO masers associated with a number of late-type M stars. On the contrary, the redshift is rather small for the spectra (ν=1; J=2-1). The latter is approximately symmetrical with respect to the star. For the above, no good interpretation has been given up to now. A new redshift mechanism of SiO spectra, the mechanism of radiation frequency shift, has been derived here from the interaction between the radiation field of the star and the energy levels of the maser. Detailed calculations show that, under the influence of the radiation field of the star, the redshift of the SiO spectra (J=1-0) is more substantial than that of the spectra (J=2-1). This is consistent with the result of the observation, and shows that the non-kinematic effect of the spectra is non negligible for the SiO maser of the star. (author). 10 refs, 1 fig., 1 tab

  17. O3 stars

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1982-01-01

    A brief review of the 10 known objects in this earliest spectral class is presented. Two new members are included: HD 64568 in NGC 2467 (Puppis OB2), which provides the first example of an O3 V((f*)) spectrum; and Sk -67 0 22 in the Large Magellanic Cloud, which is intermediate between types O3 If* and WN6-A. In addition, the spectrum of HDE 269810 in the LMC is reclassified as the first of type O3 III (f*). The absolute visual magnitudes of these stars are rediscussed

  18. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    Science.gov (United States)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  19. Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?

    Science.gov (United States)

    Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.

    2018-06-01

    The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.

  20. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    Science.gov (United States)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-06-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type (proto)stars. Aims: In order to establish whether disc-mediated accretion is the formation mechanism for the most massive stars, we have searched for circumstellar, rotating discs around a limited sample of six luminous (>105L⊙) young stellar objects. These objects were selected on the basis of their IR and radio properties in order to maximize the likelihood of association with disc+jet systems. Methods: We used ALMA with 0.̋2 resolution to observe a large number of molecular lines typical of hot molecular cores. In this paper we limit our analysis to two disc tracers (methyl cyanide, CH3CN, and its isotopologue, 13CH3CN), and an outflow tracer (silicon monoxide, SiO). Results: We reveal many cores, although their number depends dramatically on the target. We focus on the cores that present prominent molecular line emission. In six of these a velocity gradient is seen across the core,three of which show evidence of Keplerian-like rotation. The SiO data reveal clear but poorly collimated bipolar outflow signatures towards two objects only. This can be explained if real jets are rare (perhaps short-lived) in very massive objects and/or if stellar multiplicity significantly affects the outflow structure.For all cores with velocity gradients, the velocity field is analysed through position-velocity plots to establish whether the gas is undergoing rotation with νrot ∝ R- α, as expected for Keplerian-like discs. Conclusions: Our results suggest that in three objects we are observing rotation in circumstellar discs, with three more tentative cases, and one core where no evidence for rotation is found. In all cases but one, we find that the gas mass is less than the mass of

  1. B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), τ Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  2. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  3. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Nakajima, Tadashi; Sorahana, Satoko

    2016-01-01

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H 2 O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  4. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tadashi [Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Sorahana, Satoko, E-mail: tadashi.nakajima@nao.ac.jp, E-mail: sorahana@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-10-20

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H{sub 2}O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  5. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  6. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  7. Classification of O Stars in the Yellow-Green: The Exciting Star VES 735

    Science.gov (United States)

    Kerton, C. R.; Ballantyne, D. R.; Martin, P. G.

    1999-05-01

    Acquiring data for spectral classification of heavily reddened stars using traditional criteria in the blue-violet region of the spectrum can be prohibitively time consuming using small to medium sized telescopes. One such star is the Vatican Observatory emission-line star VES 735, which we have found excites the H II region KR 140. In order to classify VES 735, we have constructed an atlas of stellar spectra of O stars in the yellow-green (4800-5420 Å). We calibrate spectral type versus the line ratio He I lambda4922:He II lambda5411, showing that this ratio should be useful for the classification of heavily reddened O stars associated with H II regions. Application to VES 735 shows that the spectral type is O8.5. The absolute magnitude suggests luminosity class V. Comparison of the rate of emission of ionizing photons and the bolometric luminosity of VES 735, inferred from radio and infrared measurements of the KR 140 region, to recent stellar models gives consistent evidence for a main-sequence star of mass 25 M_solar and age less than a few million years with a covering factor 0.4-0.5 by the nebular material. Spectra taken in the red (6500-6700 Å) show that the stellar Hα emission is double-peaked about the systemic velocity and slightly variable. Hβ is in absorption, so that the emission-line classification is ``(e)''. However, unlike the case of the more well-known O(e) star zeta Oph, the emission from VES 735 appears to be long-lived rather than episodic.

  8. Large-scale Organized Magnetic Fields in O, B and A Stars

    Science.gov (United States)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  9. The Galactic O-Star Catalog (GOSC) and the Galactic O-Star Spectroscopic Survey (GOSSS): current status

    Science.gov (United States)

    Maíz Apellániz, J.; Alonso Moragón, A.; Ortiz de Zárate Alcarazo, L.; The Gosss Team

    2017-03-01

    We present the updates of the Galactic O-Star Catalog (GOSC) that we have undertaken in the last two years: new spectral types, more objects, additional information, and coordination with CDS. We also present updates for the Galactic O-Star Spectroscopic Survey (GOSSS). A new paper (GOSSS-III) has been published and ˜ 1000 targets have been observed since 2014. Four new setups have been added to our lineup and for two of them we have already obtained over 100 spectra: with OSIRIS at the 10.4 m GTC we are observing northern dim stars and with FRODOspec at the 2.0 m Liverpool Telescope we are observing northern bright stars. Finally, we also make available new versions of MGB, the spectral classification tool associated with the project, and of the GOSSS grid of spectroscopic standards.

  10. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that

  11. Velocity-mass correlation of the O-type stars: model results

    International Nuclear Information System (INIS)

    Stone, R.C.

    1982-01-01

    This paper presents new model results describing the evolution of massive close binaries from their initial ZAMS to post-supernova stages. Unlike the previous conservative study by Stone [Astrophys. J. 232, 520 (1979) (Paper II)], these results allow explicitly for mass loss from the binary system occurring during the core hydrogen- and helium-burning stages of the primary binary star as well as during the Roche lobe overflow. Because of uncertainties in these rates, model results are given for several reasonable choices for these rates. All of the models consistently predict an increasing relation between the peculiar space velocities and masses for runaway OB stars which agrees well with the observed correlations discussed in Stone [Astron. J. 86, 544 (1981) (Paper III)] and also predict a lower limit at Mroughly-equal11M/sub sun/ for the masses of runaway stars, in agreement with the observational limit found by A. Blaauw (Bull. Astron. Inst. Neth. 15, 265, 1961), both of which support the binary-supernova scenario described by van den Heuvel and Heise for the origin of runaway stars. These models also predict that the more massive O stars will produce correspondingly more massive compact remnants, and that most binaries experiencing supernova-induced kick velocities of magnitude V/sub k/> or approx. =300 km s -1 will disrupt following the explosions. The best estimate for this velocity as established from pulsar observations is V/sub k/roughly-equal150 km s -1 , in which case probably only 15% if these binaries will be disrupted by the supernova explosions, and therefore, almost all runaway stars should have either neutron star or black hole companions

  12. Spectroscopic and physical parameters of Galactic O-type stars. III. Mass discrepancy and rotational mixing

    Science.gov (United States)

    Markova, N.; Puls, J.; Langer, N.

    2018-05-01

    Context. Massive stars play a key role in the evolution of galaxies and our Universe. Aims: Our goal is to compare observed and predicted properties of single Galactic O stars to identify and constrain uncertain physical parameters and processes in stellar evolution and atmosphere models. Methods: We used a sample of 53 objects of all luminosity classes and with spectral types from O3 to O9.7. For 30 of these, we determined the main photospheric and wind parameters, including projected rotational rates accounting for macroturbulence, and He and N surface abundances, using optical spectroscopy and applying the model atmosphere code FASTWIND. For the remaining objects, similar data from the literature, based on analyses by means of the CMFGEN code, were used instead. The properties of our sample were then compared to published predictions based on two grids of single massive star evolution models that include rotationally induced mixing. Results: Any of the considered model grids face problem in simultaneously reproducing the stellar masses, equatorial gravities, surface abundances, and rotation rates of our sample stars. The spectroscopic masses derived for objects below 30 M⊙ tend to be smaller than the evolutionary ones, no matter which of the two grids have been used as a reference. While this result may indicate the need to improve the model atmosphere calculations (e.g. regarding the treatment of turbulent pressure), our analysis shows that the established mass problem cannot be fully explained in terms of inaccurate parameters obtained by quantitative spectroscopy or inadequate model values of Vrot on the zero age main sequence. Within each luminosity class, we find a close correlation of N surface abundance and luminosity, and a stronger N enrichment in more massive and evolved O stars. Additionally, we also find a correlation of the surface nitrogen and helium abundances. The large number of nitrogen-enriched stars above 30 M⊙ argues for rotationally

  13. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  14. The stellar content of NGC 346 - A plethora of O stars in the SMC

    International Nuclear Information System (INIS)

    Massey, P.; Parker, J.W.; Garmany, C.D.

    1989-01-01

    The stellar content of NGC 346, the largest and brightest H II region in the SMC, was investigated using the results of CCD UBV photometry and spectroscopy. Spectra of 42 blue stars were classified, showing that 33 are of the O type, of which 11 are of type O6.5 or earlier, which is as many early-type O stars known in the rest of the SMC. The results identify 25-30 NGC 346 stars more massive than 25 solar masses, and six stars more massive than 40 solar masses, indicating that the upper-mass cutoff to the IMF is not lower in the SMC than in the Galaxy or the LMC. The presence of evolved 15 solar-mass stars in the NGC 346 indicates that some massive stars formed 15 million yr ago. The results of spatial distribution suggest that star formation began at the southwest side of the association and has spread to where the central cluster lies now, providing an example of sequential star formation in the SMC. 69 refs

  15. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    Science.gov (United States)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  16. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  17. Activity in X-ray-selected late-type stars

    International Nuclear Information System (INIS)

    Takalo, L.O.; Nousek, J.A.

    1988-01-01

    A spectroscopic study has been conducted of nine X-ray bright late-type stars selected from two Einstein X-ray surveys: the Columbia Astrophysical Laboratory Survey (five stars) and the CFA Medium Sensitivity Survey (MSS; four stars). Spectral classes were determined and radial and V sin(i) velocities were measured for the stars. Four of the Columbia Survey stars were found to be new RS CVn-type binaries. The fifth Columbia survey star was found to be an active G dwarf star without evidence for binarity. None of the four MSS stars were found to be either binaries or optically active stars. Activity in these stars was assessed by measuring the excess emission in H-alpha and the Ca II IRT (8498, 8542) lines in comparison with inactive stars of similar spectral types. A correlation was found between X-ray luminosity and V sin(i) and H-alpha line excess. The measured excess line emission in H-alpha was also correlated with V sin(i) but not with the IRT line excess. 36 references

  18. A study of visual double stars with early type primaries. IV. Astrophysical data

    International Nuclear Information System (INIS)

    Lindroos, K.P.

    1985-01-01

    Astrophysical parameters (MK class, colour excess, absolute magnitude, distance, effective temperature mass and age) are derived from calibrations of the uvbyβ indices for the members of 253 double stars with O or B type primaries and faint secondaries. The photometric spectral classification is compared to the MK classes and the agreement is very good. The derived data together with spectroscopic and JHKL data are used for deciding which pairs are likely to be physical and which are optical and it is shown that 98 (34%) of the secondaries are likely to be members of physical systems. For 90% of the physical pairs the projected separations between the components is less than 25000 AU. A majority of the physical secondaries are late type stars and 50% of them are contracting towards the zero-age main-sequence. Also presented are new uvbyβ data for 43 secondaries and a computer programme for determining astrophysical parameters from uvbyβ data

  19. Circumstellar H2O maser emission associated with four late-type stars

    International Nuclear Information System (INIS)

    Johnston, K.J.; Spencer, J.H.; Bowers, P.F.

    1985-01-01

    The positions and structure of H2O maser associated with four long-period stars were measured using the VLA, and the results are discussed. The four stars observed were: RX Boo; R Aq1; RR Aq1; and NML Cyg. The spatial resolution of the VLA measurements was 0.07 arcsec. The H2O maser emission features appear as unresolved knots distributed over an area of no more than 0.4 arcsec. The velocity and spatial characteristics of the maser regions in R Aq1 and RR Aq1 were found to change considerably over time. The estimated sizes of the H2O maser emission were 8 x 10 to the 14th for RX Boo, R Aq1, and RR Aq1. The supergiant star NML Cyg had the largest maser region (10 to the 16th) which is comparable to that of VY CMa. The positional accuracy for individual maser features ranged between 0.03 and 0.09 arcsec. However, the precise location of the maser emission relative to the stellar photocenter did not fit the velocity and spatial distributions of the emission and therefore may be inappropriate as a standard for comparisons of stellar reference frames. 20 references

  20. Subluminous Wolf-Rayet stars: Observations

    International Nuclear Information System (INIS)

    Heap, S.R.

    1982-01-01

    The author has used the fact that some central stars are WR stars and others are say, O stars, as a focal point for his presentation. In attempting to answer this question he has considered how the properties of WR-type central stars differ from those of O-type stars. The study begins with the classification and calibration of WR spectra, then goes on to the physical properties of WR-type central stars, and at the end returns to the question of what distinguishes a Wolf-Rayet star. The observational data for central stars are neither complete nor precise. Nevertheless, they suggest that what distinguishes a WR central star is not so much its present physical properties (e.g. temperature, gravity), but rather, its fundamental properties (initial and evolutionary history). (Auth.)

  1. Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.

    1979-01-01

    The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)

  2. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  3. Ultraviolet colors of subdwarf O stars

    International Nuclear Information System (INIS)

    Wesselius, P.R.

    1978-01-01

    The group of subdwarf O stars consisting of field stars and some central stars of old planetary nebulae does occupy an interesting place in the HR diagram. Greenstein and Sargent (1974) have tried to establish this place, and conclude that especially the hottest ones need ultraviolet data to improve the values of effective temperature and absolute luminosity. The author therefore observed some twenty sdO stars in the far ultraviolet using the spectrophotometer in the Netherlands' satellite ANS. (Auth.)

  4. Terminal velocities for a large sample of O stars, B supergiants, and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Prinja, R.K.; Barlow, M.J.; Howarth, I.D.

    1990-01-01

    It is argued that easily measured, reliable estimates of terminal velocities for early-type stars are provided by the central velocity asymptotically approached by narrow absorption features and by the violet limit of zero residual intensity in saturated P Cygni profiles. These estimators are used to determine terminal velocities, v(infinity), for 181 O stars, 70 early B supergiants, and 35 Wolf-Rayet stars. For OB stars, the values are typically 15-20 percent smaller than the extreme violet edge velocities, v(edge), while for WR stars v(infinity) = 0.76 v(edge) on average. New mass-loss rates for WR stars which are thermal radio emitters are given, taking into account the new terminal velocities and recent revisions to estimates of distances and to the mean nuclear mass per electron. The relationships between v(infinity), the surface escape velocities, and effective temperatures are examined. 67 refs

  5. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    International Nuclear Information System (INIS)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina; Walborn, Nolan R.; Díaz, Sergio Simón; Apellániz, Jesús Maíz; Gamen, Roberto C.; Morrell, Nidia I.; Sota, Alfredo; Marco, Amparo; Negueruela, Ignacio

    2016-01-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  6. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina [Departamento de Física y Astronomía, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, MD 21218, Baltimore (United States); Díaz, Sergio Simón [Instituto de Astrofísica de Canarias, E-38200, Departamento de Astrofísica, Universidad de La Laguna, E-38205, La Laguna, Tenerife (Spain); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, campus ESAC, Camino Bajo del Castillo s/n, E-28 692 Madrid (Spain); Gamen, Roberto C. [Instituto de Astrofísica de La Plata (CONICET, UNLP), Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Sota, Alfredo [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18 008 Granada (Spain); Marco, Amparo; Negueruela, Ignacio, E-mail: jarias@userena.cl [Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E03690, San Vicente del Raspeig (Spain); and others

    2016-08-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  7. Luminosity effect of O I 7771-5 triplet and atmospheric microturbulence in evolved A-, F-, and G-type stars

    Science.gov (United States)

    Takeda, Yoichi; Jeong, Gwanghui; Han, Inwoo

    2018-01-01

    It is known that the strength of neutral oxygen triplet lines at 7771-5 Å shows a luminosity effect in evolved A through G stars. However, its general behavior across the HR diagram is not yet well understood, since the applicability limit of the relations proposed by various previous work (tending to be biased toward supergiants) still remains unclear. Besides, our understanding on the nature of atmospheric micro-scale turbulence, which is considered to play a significant role (along with the non-LTE line intensification) for the cause of this effect, is still insufficient. Towards clarifying these problems, we carried out an extensive non-LTE spectrum-fitting analysis of O I 7771-5 lines for unbiased sample of 75 evolved A-, F,- and G-type stars over wide luminosity classes (from subgiants through supergiants) including rapid rotators, from which the total equivalent width (W77) was derived and the microturbulence (ξ) was determined by two different (profile- and abundance-based) methods for each star. While we confirmed that W77 tends to increase in the global sense as a star's absolute magnitude (MV) becomes more luminous, distinctly different trends were found between lower-gravity (log g ≲ 2.5) and higher-gravity (log g ≳ 2.5) stars, in the sense that the MV vs. W77 formulas proposed by past studies are applicable only to the former supergiant group. In case of using W77 for empirical MV evaluation by such simple formulas, it is recommended to confine only to supergiants of -5 ≳ MV ≳ -10. Regarding the microturbulence significantly controlling W77, it roughly shows an increasing tendency with a decrease in surface gravity. However, the trend is not monotonic but rather intricate (e.g., hump, stagnation, or discontinuously large increase) depending on the stellar type and evolutionary stage.

  8. Five-colour photometry of early-type stars in the direction of galactic X-ray sources

    International Nuclear Information System (INIS)

    Van Paradijs, J.; Van Amerongen, S.; Damen, E.; Van der Woerd, H.

    1986-01-01

    We present the results of five-colour photometry of 551 O- and B-type stars located in 17 fields of a few square degrees around galactic X-ray sources. From a comparison of reddening-free combinations of colour indices with theoretical values, calculated for model atmospheres of Kurucz, we derive effective temperature and surface gravity for these stars. In addition we find their absolute magnitude by combining these parameters with the results of evolutionary calculations of massive stars. These effective temperatures are in good agreement with the temperature scale of Bohm-Vitense for stars of luminosity classes II to V. For the supergiants the effective temperatures are about 40% higher. For stars of luminosity classes III to V the absolute magnitudes we find agree well with the results of independent luminosity calibrations of spectral types, but for brighter stars they deviate systematically. We suspect that the origin of these deviations lies in the failure of present low-gravity model atmospheres to represent supergiant atmospheres. We have used the photometric data to study the interstellar reddening in the direction of the X-ray sources

  9. Detailed empirical models for the winds of early-type stars

    International Nuclear Information System (INIS)

    Olson, G.L.; Castor, J.I.

    1981-01-01

    Owing to the recent accumulation of ultraviolet data from the IUE satellite, of X-ray data from the Einstein (HEAO 2) satellite, of visible data from ground based electronic detectors, and of radio data from the Very Large Array (VLA) telescope, it is becoming possible to build much more complete models for the winds of early-type stars. The present work takes the empirical approach of assuming that there exists a coronal region at the base of a cool wind (T/sub e/roughly-equalT/sub eff/). This will be an extension of previous papers by Olson and by Cassinelli and Olson; however, refinements to the model will be presented, and the model will be applied to seven O stars and one BO star. Ionization equilibria are computed to match the line strengths found in UV spectra. The coronal fluxes that are required to produce the observed abundance of O +5 are compared to the X-ray fluxes observed by the Einstein satellite

  10. ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE?

    International Nuclear Information System (INIS)

    Harman, C. E.; Kasting, J. F.; Schwieterman, E. W.; Schottelkotte, J. C.

    2015-01-01

    In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O 2 (and its photochemical byproduct, O 3 ). However, O 2 can also be produced abiotically by photolysis of CO 2 , followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whether O 2 and CO can accumulate to appreciable concentrations depends on the ratio of far-ultraviolet (FUV) to near-ultraviolet (NUV) radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O 2 derived from CO 2 photolysis should not accumulate to measurable concentrations on planets around F- and G-type stars. K-star, and especially M-star planets, however, may build up O 2 because of the low NUV flux from their parent stars, in agreement with some previous studies. On such planets, a “false positive” for life is possible if recombination of dissolved CO and O 2 in the oceans is slow and if other O 2 sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O 3 , on the other hand, could be detectable at UV wavelengths (λ < 300 nm) for a much broader range of boundary conditions and stellar types

  11. Observations spotted solar type stars in Pleiades

    International Nuclear Information System (INIS)

    Magnitskij, A.K.

    1987-01-01

    The september - october 1986 observations discovered periodic light variations in three solar type stars in the Pleiades cluster: Hz 296 (0.8 M Sun ), Hz152(0.91 M Sun ) and Hz739(1.15 M Sun ). Periods and amplitudes are accordingly 2 d and 0 m .11, 4 d .12 and 0 m .07, 2 d .70 and 0 m .05. Considerable light variations of these stars in Pleiades are due to the rotation of spotted stars. Contrast spots of solar type stars likely exist when stars are young and rapidly rotate

  12. Far-ultraviolet spectrophotometry of two very hot O type subdwarfs

    Science.gov (United States)

    Drilling, J. S.; Holberg, J. B.; Schoenberner, D.

    1984-01-01

    As a result of a spectroscopic survey of stars classified as nonemission OB+, Drilling (1983) has detected 12 new subluminous O stars. It was found that these stars are the hottest known O type subdwarfs. The effective temperatures of the stars are 60,000 K or higher. It has been possible to observe two of these stars with Voyager 1, taking into account LSE 21 and LS IV +10.9 deg. LSE 21 is one of the hottest of the new subdwarfs, with an effective temperature of at least 100,000 K. The optical spectrum indicates a hydrogen-rich atmosphere of high surface gravity. LX IV +10.9 deg is one of the cooler objects with an effective temperature of 65,000 K. The optical spectrum indicates an extremely helium-rich atmosphere and a somewhat lower surface gravity than LSE 21. The Voyager 1 observations confirm the temperature scale set up by Schoenberger and Drilling (1984) for the hottest O type subdwarfs.

  13. Field O stars: formed in situ or as runaways?

    Science.gov (United States)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical

  14. DD 13 - A very young and heavily reddened early O star in the Large Magellanic Cloud

    Science.gov (United States)

    Conti, Peter S.; Fitzpatrick, Edward L.

    1991-01-01

    This paper investigates the Large Magellanic Cloud star DD 13, which is likely the major ionizing source of the nebula N159A. New optical spectroscopy and new estimates of the broadband photometric properties of DD 13 are obtained. A spectral type of O3-O6 V, E(B-V) = 0.64, and M(V) = -6.93 is found. The spectral type cannot be more precisely defined due to contamination of the spectral data by nebular emission, obliterating the important He I classification lines. These results, plus a published estimate of the Lyman continuum photon injection rate into N159A, suggest that DD 13 actually consists of about 2-4 young, early O stars still enshrouded by their natal dust cloud. The star DD 13 may be a younger example of the type of tight cluster represented by the LMC 'star' Sk-66 deg 41, recently revealed to be composed of six or more components.

  15. Detection of new southern SiO maser sources associated with Mira and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.; Hall, P.J.; Norris, R.P.; Troup, E.R.; Wark, R.M.; Wright, A.E.

    1989-01-01

    In 1987 July the Parkes radio telescope was used to search for 43.12 GHz SiO maser emission from southern late-type stars. We report the discovery of such emission from 12 Mira-like systems, including the symbiotic star H1-36, and discuss the implications of our data for the symbiotic stars. We identify several M-type Mira variables with unusually low SiO/infrared flux ratios, but with present data are not able to discredit the correlation between the two parameters. In addition, we present line profiles for the only other known symbiotic maser, R Aqr, at unprecedented signal-to-noise ratio; these profiles show linearly polarized emission from several components of the source. (author)

  16. Einstein Observatory coronal temperatures of late-type stars

    Science.gov (United States)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  17. Variable K-type stars in the Pleiades

    International Nuclear Information System (INIS)

    Leeuwen, F. van; Alphenaar, P.

    1983-01-01

    Photometric observations in the VBLUW system (Lub, 1979) have been performed during 1980 and 1981 of 19 late G and early K-type members of the Pleiades Cluster, in order to study their variability. All stars showed variations with amplitudes of 0.02 to 0.20 magn. in V. For 12 stars light curves were obtained which show periods that range from 0.24 to 1.22 days. The light curves are semi-regular and resemble those of BY Dra stars, although the periods are shorter. (Auth.)

  18. STAR-TYPE LOCAL AREA NETWORK ACCESS CONTROL

    Institute of Scientific and Technical Information of China (English)

    逯昭义; 齐藤忠夫

    1990-01-01

    The multiple access fashion is a new resolution for the star-type local area network (LAN) access control and star-type optical fibre LAN. Arguments about this network are discussed, and the results are introduced.

  19. A survey of TiOλ567 nm absorption in solar-type stars

    Science.gov (United States)

    Azizi, Fatemeh; Mirtorabi, Mohammad Taghi

    2018-04-01

    Molecular absorption bands are estimators of stellar activity and spot cycles on magnetically active stars. We have previously introduced a new colour index that compares absorption strength of the titanium oxide (TiO) at 567 nm with nearby continuum. In this paper, we implement this index to measure long-term activity variations and the statistical properties of the index in a sample of 302 solar-type stars from the High Accuracy Radial Velocity Planet search Spectrograph planet search programme. The results indicate a pattern of change in star's activity, covers a range of periods from 2 yr up to 17 yr.

  20. On the O/Fe versus Fe/H relationship and the progenitors of type I supernovae

    International Nuclear Information System (INIS)

    Abia, C.; Canal, R.; Isern, J.

    1991-01-01

    The new observational O/Fe versus Fe/H abundance relationship for halo stars is studied in terms of several models of chemical evolution for the solar neighborhood. Nucleosynthesis products from type I (both Ia and Ib) and Type II SNs are taken into account. The behavior of the O/Fe ratio for halo and disk stars is well reproduced by assuming (1) a lower iron production in SN II than in previous theoretical prescriptions, (2) the coalescence by gravitational wave radiation of two CO white dwarfs as the scenario for type Ia supernovae, and (3) stars in the Wolf-Rayet stage as progenitors of type Ib supernovae. Nevertheless, the best agreement with the observations is obtained by adopting an IMF favoring massive star formation only at very early epochs in the life of the Galaxy. Model predictions from other plausible scenarios for the origin of type I supernovae are also discussed. 41 refs

  1. Technetium in late-type stars. I. Observations

    International Nuclear Information System (INIS)

    Little-Marenin, I.R.; Little, S.J.

    1979-01-01

    An analysis of about 90 spectra (11 or 13A/mm) of nonvariable and variable (mostly Mira variables) M, MS, S, CS, and C stars for the presence of the radioactive element technetium (T/sub 1/2/approx. =2 x 10 5 y) suggests that Tc is most often present at certain variability periods. Stars with no Tc I lines in their spectra can be found at most periods (P-bar=234/sup d/), whereas stars with Tc I lines have periods in most cases in excess of 300 days (P-bar=330/sup d/ +- 83/sup d/). Interpreting our data in terms of kinematic studies by Feast (1963) suggests that the stars with Tc are Pop I and that variables without Tc are largely Pop II type stars

  2. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    Science.gov (United States)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  3. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    Science.gov (United States)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  4. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    Science.gov (United States)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  5. ABIOTIC O{sub 2} LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE?

    Energy Technology Data Exchange (ETDEWEB)

    Harman, C. E.; Kasting, J. F. [Geosciences Department, Pennsylvania State University, University Park, PA 16802 (United States); Schwieterman, E. W. [NASA Astrobiology Institute—Virtual Planetary Laboratory (United States); Schottelkotte, J. C., E-mail: ceharmanjr@psu.edu [Astronomy Department, Pennsylvania State University, University Park, PA 16802 (United States)

    2015-10-20

    In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet's atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth's atmosphere is O{sub 2} (and its photochemical byproduct, O{sub 3}). However, O{sub 2} can also be produced abiotically by photolysis of CO{sub 2}, followed by recombination of O atoms with each other. CO is produced in stoichiometric proportions. Whether O{sub 2} and CO can accumulate to appreciable concentrations depends on the ratio of far-ultraviolet (FUV) to near-ultraviolet (NUV) radiation coming from the planet's parent star and on what happens to these gases when they dissolve in a planet's oceans. Using a one-dimensional photochemical model, we demonstrate that O{sub 2} derived from CO{sub 2} photolysis should not accumulate to measurable concentrations on planets around F- and G-type stars. K-star, and especially M-star planets, however, may build up O{sub 2} because of the low NUV flux from their parent stars, in agreement with some previous studies. On such planets, a “false positive” for life is possible if recombination of dissolved CO and O{sub 2} in the oceans is slow and if other O{sub 2} sinks (e.g., reduced volcanic gases or dissolved ferrous iron) are small. O{sub 3}, on the other hand, could be detectable at UV wavelengths (λ < 300 nm) for a much broader range of boundary conditions and stellar types.

  6. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY. I. CLASSIFICATION SYSTEM AND BRIGHT NORTHERN STARS IN THE BLUE-VIOLET AT R ∼ 2500

    International Nuclear Information System (INIS)

    Sota, A.; Maiz Apellaniz, J.; Alfaro, E. J.; Walborn, N. R.; Barba, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-01-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of MaIz Apellaniz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20 0 and includes all of the northern objects in MaIz Apellaniz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in MaIz Apellaniz et al.

  7. Late-type components of slow novae and symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia); Royal Observatory, Edinburgh (UK))

    1980-08-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 ..mu..m spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section.

  8. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    International Nuclear Information System (INIS)

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-01-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two δ Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffer cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.

  9. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  10. Radio molecular maser line study of symbiotic stars

    International Nuclear Information System (INIS)

    Cohen, N.L.; Ghigo, F.D.

    1980-01-01

    A sample of symbiotic stars has been searched for maser emission from the 1665- and 1667-MHz OH mainlines, the 22-GHz H 2 O line, and the 43-GHz SiO line. R Aqr remains the sole symbiotic for which maser emission has been detected. Its SiO spectrum reveals a pedestal of emission with a narrow superposed peak at V/sub LSR/ -26.4 +- 0.7 km/s. The line's existence and the pedestal feature are both characteristic of SiO lines found in late-type variables by Snyder et al. [Astrophys. J. 224, 512 (1978)]. For the other symbiotic stars, it is possible that conditions favorable for maser emission have been suppressed by the presence of a hot companion. Alternatively our findings may argue against the presence of late-type variables in symbiotic stars. In either case, R Aqr seems to be in a class by itself. We cannot confirm the suggestion that R Aqr is a binary, since the spectral feature has not shifted noticeably in the two years since the observations by Lepine, LeSqueren, and Scalise [Astrophys. J. 225, 869 (1978)]. However, we point out that monitoring the pedestal emission over a number of years is the least ambiguous way to discern any velocity shift that might result from orbital motion

  11. Colour relations for Mira and Semiregular (SR) type stars

    International Nuclear Information System (INIS)

    Guney, Yavuz; Yesilyaprak, Cahit

    2016-01-01

    In this study, the period-colour relations, the colour-colour relations and the effective temperature were examined for Semiregular (SR) and Mira type variable stars. SR variables show an obvious period-colour relations, especially in infrared (IR). There are differences between SR and Mira type variable stars with respect to their colour relations. It has been thought that these differencies are caused by their mass loss rates and their effective temperatures. (paper)

  12. ON THE MULTIPLICITY OF THE ZERO-AGE MAIN-SEQUENCE O STAR HERSCHEL 36

    International Nuclear Information System (INIS)

    Arias, Julia I.; Barba, Rodolfo H.; Gamen, Roberto C.; Morrell, Nidia I.; Apellaniz, Jesus MaIz; Alfaro, Emilio J.; Sota, Alfredo; Walborn, Nolan R.; Bidin, Christian Moni

    2010-01-01

    We present the analysis of high-resolution optical spectroscopic observations of the zero-age main-sequence O star Herschel 36 spanning six years. This star is definitely a multiple system, with at least three components detected in its spectrum. Based on our radial-velocity (RV) study, we propose a picture of a close massive binary and a more distant companion, most probably in wide orbit about each other. The orbital solution for the binary, whose components we identify as O9 V and B0.5 V, is characterized by a period of 1.5415 ± 0.0006 days. With a spectral type O7.5 V, the third body is the most luminous component of the system and also presents RV variations with a period close to 498 days. Some possible hypotheses to explain the variability are briefly addressed and further observations are suggested.

  13. The O2-O3 Stars Presaged in the Boletín de los Observatorios de Tonantzintla y Tacubaya

    Science.gov (United States)

    Walborn, N. R.

    2011-04-01

    Following an irrelevant, mildly humorous personal anecdote involving the Boletín, two papers published there that are relevant to the discovery of the most massive hot stars, of spectral types O2-O3, are noted and related to subsequent developments in that field.

  14. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-α EXCESS

    International Nuclear Information System (INIS)

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-01-01

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-α (Pα) emission-line excess, following a narrowband imaging survey of the central 0. 0 65 x 0. 0 25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong Pα excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  15. Investigation of superflares frequency variability of solar-type stars

    International Nuclear Information System (INIS)

    Akopian, A.A.

    2015-01-01

    Statistical study of the variability of the superflares frequency of 46 solar-type stars detected by orbital observatory 'Kepler' is presented. Two possible scenarios for changes in frequency are considered. In the first, the temporal sequence of superflares is regarded as a piecewise stationary Poissonian process. Statistically significant change in the frequency of superflares by several times is revealed at five stars. Moments of change of frequency are accompanied by sudden changes in the behavior of the star's brightness. Brightness of a star for a short time becomes irregular, with a significant decrease in the amplitude

  16. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  17. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    International Nuclear Information System (INIS)

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-01-01

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 ± 0.4 kpc, has an age of around 4 Myr, and a physical size of ∼6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  18. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    Science.gov (United States)

    Niemczura, E.; Polińska, M.; Murphy, S. J.; Smalley, B.; Kołaczkowski, Z.; Jessen-Hansen, J.; Uytterhoeven, K.; Lykke, J. M.; Triviño Hage, A.; Michalska, G.

    2017-09-01

    We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin I, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature.

  19. Polycyclic aromatic hydrocarbons in disks around young solar-type stars

    NARCIS (Netherlands)

    Geers, Vincent Carlo

    2007-01-01

    In this thesis we study the dust around solar-type young stars. In particular, we focus on one specific species of dust, namely the Polycyclic Aromatic Hydrocarbons (PAHs), a family of large molecules, or small grains, that are widely observed in nearby star-forming regions. We address the following

  20. Kepler observations of the variability in B-type stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Pigulski, A.; De Cat, P.

    2011-01-01

    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars. Seven of these stars also show a few weak, isolated high frequencies and they could be cons...

  1. On the late-type components of slow novae and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1980-01-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 μm spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section. (author)

  2. IUE observations of solar-type stars in the Pleiades and the Hyades

    Science.gov (United States)

    Caillault, Jean-Pierre; Vilhu, Osmi; Linsky, Jeffrey L.

    1991-01-01

    An extensive set of IUE observations of solar-type stars (spectral types F5-G5) in the Pleiades is presented. Spectra were obtained in January and August 1988 for both the transition region and chromospheric emission wavelength regions, respectively. Mg II fluxes were detected for two out of three Pleiades stars and C IV upper limits for two of these stars. Long-wavelength high-resolution spectra were also obtained for previously unobserved solar-type stars in the Hyades. With the inclusion of spectra of additional Hyades stars obtained from the IUE archives, surface fluxes and fractional luminosities for both clusters' solar-type stars are calculated; these values provide a better estimate for the Mg II saturation line for single stars.

  3. Asteroseismic modelling of the solar-type subgiant star β Hydri

    DEFF Research Database (Denmark)

    Brandão, I.M.; Dogan, Gülnur; Christensen-Dalsgaard, Jørgen

    2011-01-01

    Context. Comparing models and data of pulsating stars is a powerful way to understand the stellar structure better. Moreover, such comparisons are necessary to make improvements to the physics of the stellar models, since they do not yet perfectly represent either the interior or especially...... the surface layers of stars. Because β Hydri is an evolved solar-type pulsator with mixed modes in its frequency spectrum, it is very interesting for asteroseismic studies. Aims: The goal of the present work is to search for a representative model of the solar-type star β Hydri, based on up-to-date non...... frequencies of β Hydri: (i) we assume that the best model is the one that reproduces the star's interior based on the radial oscillation frequencies alone, to which we have applied the correction for the near-surface effects; (ii) we assume that the best model is the one that produces the lowest value...

  4. Kepler observations of variability in B-type stars

    OpenAIRE

    Balona, L. A.; Pigulski, A.; De Cat, P.; Handler, G.; Gutierrez-Soto, J; Engelbrecht, C. A.; Frescura, F.; Briquet, M.; Cuypers, J.; Daszynska-Daszkiewicz, J.; Degroote, P.; Dukes, R. J.; Garcia, R. A.; Green, E. M.; Heber, U.

    2011-01-01

    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree ...

  5. Vector space methods of photometric analysis - Applications to O stars and interstellar reddening

    Science.gov (United States)

    Massa, D.; Lillie, C. F.

    1978-01-01

    A multivariate vector-space formulation of photometry is developed which accounts for error propagation. An analysis of uvby and H-beta photometry of O stars is presented, with attention given to observational errors, reddening, general uvby photometry, early stars, and models of O stars. The number of observable parameters in O-star continua is investigated, the way these quantities compare with model-atmosphere predictions is considered, and an interstellar reddening law is derived. It is suggested that photospheric expansion affects the formation of the continuum in at least some O stars.

  6. Initial mass function for early-type stars in starburst galaxies

    International Nuclear Information System (INIS)

    Sekiguchi, K.; Anderson, K.S.

    1987-01-01

    The IMF slope of early-type stars in starburst galaxies is investigated using IUE observations and a technique that utilizes mass-linewidth relations for early-type stars. Fourteen low-resolution IUE spectra of eight starburst galaxies and three H II region galaxies are used to obtain line-strength ratios Si IV(1400 A)/C IV(1550 A). These are compared to model line ratios, and indicate that the average IMF slope for OB stars in these intense star-formation regions is appreciably flatter than that of the solar neighborhood. 46 references

  7. Spectra of Wolf-Rayet stars. I. Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Leep, E.M.; Perry, D.N.

    1983-01-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semiquantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He>2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV lambda5805/N IV lambda4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with ''evolved'' models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes

  8. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  9. Spectroscopy of late type giant stars

    Science.gov (United States)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  10. An Einstein Observatory SAO-based catalog of B-type stars

    Science.gov (United States)

    Grillo, F.; Sciortino, S.; Micela, G.; Vaiana, G. S.; Harnden, F. R., Jr.

    1992-01-01

    About 4000 X-ray images obtained with the Einstein Observatory are used to measure the 0.16-4.0 keV emission from 1545 B-type SAO stars falling in the about 10 percent of the sky surveyed with the IPC. Seventy-four detected X-ray sources with B-type stars are identified, and it is estimated that no more than 15 can be misidentified. Upper limits to the X-ray emission of the remaining stars are presented. In addition to summarizing the X-ray measurements and giving other relevant optical data, the present extensive catalog discusses the reduction process and analyzes selection effects associated with both SAO catalog completeness and IPC target selection procedures. It is concluded that X-ray emission, at the level of Lx not less than 10 exp 30 ergs/s, is quite common in B stars of early spectral types (B0-B3), regardless of luminosity class, but that emission, at the same level, becomes less common, or nonexistent, in later B-type stars.

  11. DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Plavchan, P.; Stauffer, J. R.; Gorlova, N. I.

    2010-01-01

    We present Spitzer MIPS observations at 24 μm of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% ± 6.8%, have excesses at 24 μm at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity on the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.

  12. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Science.gov (United States)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  13. VizieR Online Data Catalog: Spectral types of stars in CoRoT fields (Sebastian+, 2012)

    Science.gov (United States)

    Sebastian, D.; Guenther, E. W.; Schaffenroth, V.; Gandolfi, D.; Geier, S.; Heber, U.; Deleuil, M.; Moutou, C.

    2012-03-01

    Spectroscopic classification for 2950 O-, B-, and A-type stars in the CoRoT-fields IRa01, LRa01, and LRa02. Stars are named by their CoRoT-identifier and Coordinates are given. The visual magnitudes were obtained with the Wide Field Camera filter-system of the Isaac Newton Telescope at Roque de los Muchachos Observatory on La Palma and can be converted into Landolt standards, as shown in Deleuil et al. (2009AJ....138..649D). (1 data file).

  14. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    Science.gov (United States)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  15. Ca II H and K emission from late-type stars

    International Nuclear Information System (INIS)

    Middlekoop, F.

    1982-01-01

    This thesis is based on a study of the Ca II H and K emission features of late main-sequence stars. In Chapter II it is shown that rotation periods can be determined from a modulation in the Ca II H and K signal for many stars in a broad range of spectral types. In Chapter III it is shown that a clear correlation exists between Ca II H and K emission and rotational velocity in active main-sequence stars. There is an indication for a (probably colour-dependent) critical velocity at which the Ca II H and K emission suddenly drops. Chapter IV discusses the dependence of Ca II H and K emission on the rotation rate for evolved stars. (Auth./C.F.)

  16. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    Science.gov (United States)

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  17. Understand B-type stars

    Science.gov (United States)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  18. THE VLT-FLAMES TARANTULA SURVEY: THE FASTEST ROTATING O-TYPE STAR AND SHORTEST PERIOD LMC PULSAR-REMNANTS OF A SUPERNOVA DISRUPTED BINARY?

    Energy Technology Data Exchange (ETDEWEB)

    Dufton, P. L.; Dunstall, P. R.; Fraser, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Brott, I. [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Cantiello, M.; Langer, N. [Argelander Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, 53121 Bonn (Germany); De Koter, A.; Sana, H. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); De Mink, S. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Henault-Brunet, V.; Taylor, W. D. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Howarth, I. D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lennon, D. J. [ESA, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Markova, N., E-mail: p.dufton@qub.ac.uk [Institute of Astronomy with NAO, Bulgarian Academy of Sciences, P.O. Box 136, 4700 Smoljan (Bulgaria)

    2011-12-10

    We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s{sup -1} and probably as large as 600 km s{sup -1}; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s{sup -1} from the mean for 30 Doradus, suggesting that it is a runaway. VFTS102 lies 12 pc from the X-ray pulsar PSR J0537-6910 in the tail of its X-ray diffuse emission. We suggest that these objects originated from a binary system with the rotational and radial velocities of VFTS102 resulting from mass transfer from the progenitor of PSR J0537-691 and the supernova explosion, respectively.

  19. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  20. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  1. Type II critical phenomena of neutron star collapse

    International Nuclear Information System (INIS)

    Noble, Scott C.; Choptuik, Matthew W.

    2008-01-01

    We investigate spherically symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially 'ingoing' velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma law equation of state. The initial values of (1) the amplitude of the velocity profile, and (2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Γ=2)--the observed type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.

  2. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  3. Chemical fingerprints of He-sdO stars

    Directory of Open Access Journals (Sweden)

    Schindewolf Markus

    2018-02-01

    Full Text Available The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element’s abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  4. Chemical fingerprints of He-sdO stars

    Science.gov (United States)

    Schindewolf, Markus; Németh, Peter; Heber, Ulrich; Battich, Tiara; Miller Bertolami, Marcelo M.; Latour, Marilyn

    2018-02-01

    The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element's abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  5. Double white dwarfs as progenitors of R coronae borealis stars and type I supernovae

    International Nuclear Information System (INIS)

    Webbink, R.F.

    1984-01-01

    Close double white dwarfs should arise from the second phase of mass exchagne in close binaries which first encountered mass exchange while the more massive star was crossing the Hertzprung gap. Tidal mass transfer in these double degenerate systems is explored. The sequence of double white dwarf divides naturally into three segments. (1) Low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars. (2) In helium/carbon-oxygen pairs, mass transfer occurs on the time scale for gravitational radiation losses (approx.10 -4 M/sub sun/ yr -1 ); the accreted helium is quickly ignited, and the accretor expands to dimensions characteristic of R CrB stars, engulfing its companion star. (3) Carbon-oxygen/carbon-oxygen pairs are again unstable to dynamical time-scale mass transfer and, since their total masses exceed the Chandrasekhar limit, are destined to become supernovae. Inactive lifetimes in these latter systems between creation and interaction can exceed 10 10 years. Birthrates of R CrB stars and Type I supernovae by evolution of double white dwarfs are in reasonable agreement with observational estimates

  6. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars

    Science.gov (United States)

    Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.

    2017-03-01

    Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies

  7. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  8. Linear series of stellar models. Pt. 4. Helium-carbon stars of 3.5Msub(o) and 1Msub(o)

    International Nuclear Information System (INIS)

    Kozlowski, M.; Paczynski, B.; Popova, K.

    1973-01-01

    One linear series of models for a star of 3.5Msub(o) and two linear series of models for a star of 1Msub(o) are constructed. Models consist of helium rich envelopes (Y = 0.97, Z = 0.03) and pure carbon cores, and they have a rectangular helium profile, Y(Msub(r)). The linear series for a star of 3.5Msub(o) begins on the normal branch of the helium main sequence and terminates on the normal branch of the carbon main sequence. This series has eight turning points at which the core mass attains a local extremum. One of the two linear series for a star of 1Msub(o) begins on the normal branch of the helium main sequence, terminates on the high density branch of the helium main sequence, and has one turning point. The second linear series for a star of 1Msub(o) begins on the normal branch of the carbon main sequence, terminates on the high density branch of the carbon main sequence, and has three turning points. Two such linear series may have a common bifurcation point for a star of about 1.26Msub(o). (author)

  9. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  10. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    Science.gov (United States)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  11. A Search for Circumstellar Gas-Disk Variability in F-type Stars

    Science.gov (United States)

    Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry

    2018-01-01

    Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.

  12. The Galactic O-Star Spectroscopic Survey. I. Classification System and Bright Northern Stars in the Blue-violet at R ~ 2500

    Science.gov (United States)

    Sota, A.; Maíz Apellániz, J.; Walborn, N. R.; Alfaro, E. J.; Barbá, R. H.; Morrell, N. I.; Gamen, R. C.; Arias, J. I.

    2011-04-01

    We present the first installment of a massive spectroscopic survey of Galactic O stars, based on new, high signal-to-noise ratio, R ~ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog of Maíz Apellániz et al. and Sota et al. The spectral classification system is rediscussed and a new atlas is presented, which supersedes previous versions. Extensive sequences of exceptional objects are given, including types Ofc, ON/OC, Onfp, Of?p, Oe, and double-lined spectroscopic binaries. The remaining normal spectra bring this first sample to 184 stars, which is close to complete to B = 8 and north of δ = -20° and includes all of the northern objects in Maíz Apellániz et al. that are still classified as O stars. The systematic and random accuracies of these classifications are substantially higher than previously attainable, because of the quality, quantity, and homogeneity of the data and analysis procedures. These results will enhance subsequent investigations in Galactic astronomy and stellar astrophysics. In the future, we will publish the rest of the survey, beginning with a second paper that will include most of the southern stars in Maíz Apellániz et al. The spectroscopic data in this article were gathered with three facilities: the 1.5 m telescope at the Observatorio de Sierra Nevada (OSN), the 3.5 m telescope at Calar Alto Observatory (CAHA), and the du Pont 2.5 m telescope at Las Campanas Observatory (LCO). Some of the supporting imaging data were obtained with the 2.2 m telescope at CAHA and the NASA/ESA Hubble Space Telescope (HST). The rest were retrieved from the DSS2 and Two Micron All Sky Survey (2MASS) surveys. The HST data were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Irrgang, A.; Fontaine, G.

    2018-01-01

    Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims: We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81°266, and LS II+18°9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods: We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results: The four bright sdO stars have very similar atmospheric parameters with Teff between 60 000 and 63 000 K and log g (cm s-2) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK+81°266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s-1. The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars

  14. Properties of hot luminous stars; Proceedings of the First Boulder-Munich Workshop, Boulder, CO, Aug. 6-11, 1988

    International Nuclear Information System (INIS)

    Garmany, C.D.

    1990-01-01

    Various papers on the properties of hot luminous stars are presented. Individual topics addressed include: problems in photometry of early-type stars; digital optical morphology of OB spectra; massive-star content of the Magellanic Clouds; observations of massive OB stars; LSS 3074, a new double-lined early O-type binary; non-LTE line blanketing with elements 1-28; non-LTE analysis of four PG1159 stars; rescaling method for model atmospheres of hot stars; stellar wind albedo effects on hot photospheres; atomic data and models for hot star abundance determinations; ring nebulae analysis as a probe for WR atmospheres; coordinated observations of P Cygni; radiation-driven winds of hot luminous stars; winds of O stars: velocities and ionization; methods of radiative transfer in expanding atmospheres; mass loss from extragalactic O stars; H-alpha observations of O- and B-type stars; applicability of steady models for hot-star winds; mass of the O6Iaf star HD 153919; stellar winds in Beta Lyrae; models of WR stars; observational abundances of WR stars, the all-variable WC7 binary HD193793

  15. Wolf-Rayet stars and O-star runaways with HIPPARCOS - II. Photometry

    NARCIS (Netherlands)

    Marchenko, SV; Moffat, AFJ; van der Hucht, KA; Seggewiss, W; Schrijver, H; Stenholm, B; Lundstrom, [No Value; Setia Gunawan, DYA; Sutantyo, W; van den Heuvel, EPJ; De Cuyper, JP; Gomez, AE

    Abundant HIPPARCOS photometry over 3 years of 141 O and Wolf-Rayet stars, including 8 massive X-ray binaries, provides a magnificent variety of light curves at the sigma similar to 1-5% level. Among the most interesting results, we mention: optical outbursts in HD 102567 (MXRB), coinciding with

  16. Type-I superconductivity and neutron star precession

    International Nuclear Information System (INIS)

    Sedrakian, Armen

    2005-01-01

    Type-I proton superconducting cores of neutron stars break up in a magnetic field into alternating domains of superconducting and normal fluids. We examine two channels of superfluid-normal fluid friction where (i) rotational vortices are decoupled from the nonsuperconducting domains and the interaction is due to the strong force between protons and neutrons; (ii) the nonsuperconducting domains are dynamically coupled to the vortices and the vortex motion generates transverse electric fields within them, causing electronic current flow and Ohmic dissipation. The obtained dissipation coefficients are consistent with the Eulerian precession of neutron stars

  17. Properties of O dwarf stars in 30 Doradus

    Science.gov (United States)

    Sabín-Sanjulián, Carolina; VFTS Collaboration

    2017-11-01

    We perform a quantitative spectroscopic analysis of 105 presumably single O dwarf stars in 30 Doradus, located within the Large Magellanic Cloud. We use mid-to-high resolution multi-epoch optical spectroscopic data obtained within the VLT-FLAMES Tarantula Survey. Stellar and wind parameters are derived by means of the automatic tool iacob-gbat, which is based on a large grid of fastwind models. We also benefit from the Bayesian tool bonnsai to estimate evolutionary masses. We provide a spectral calibration for the effective temperature of O dwarf stars in the LMC, deal with the mass discrepancy problem and investigate the wind properties of the sample.

  18. Abell 48 - a rare WN-type central star of a planetary nebula

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  19. A Be-type star with a black-hole companion.

    Science.gov (United States)

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  20. Asteroseismology of solar-type stars with Kepler: II. Stellar modeling

    DEFF Research Database (Denmark)

    Metcalfe , T.S.; Karoff, Christoffer

    2010-01-01

    Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that the star has evolved...... significantly. We have derived initial estimates of the properties of KIC 11026764 from the oscillation frequencies observed by Kepler, combined with ground-based spectroscopic data. We present preliminary results from detailed modeling of this star, employing a variety of independent codes and analyses...

  1. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  2. A-type central stars of planetary nebulae. 1. A radial-velocity study of the central stars of NGC2346 and NGC3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H; Niemela, V S [Instituto de Astronomia y Fisica del Espacio, Succuoa, Buenos Aires (Argentina); Lee, P

    1978-08-01

    Radial-velocity measurements of the A-type central stars of NGC2346 and NGC3132 are presented. The first one is almost certainly a spectroscopic binary; no definite statement can be made about the second.

  3. Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars

    Science.gov (United States)

    Bowler, Brendan P.; Johnson, John Asher; Marcy, Geoffrey W.; Henry, Gregory W.; Peek, Kathryn M. G.; Fischer, Debra A.; Clubb, Kelsey I.; Liu, Michael C.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 lsim M */M sunlsim 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov-Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26+9 -8%, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN vprop M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets. Based on observations obtained at the Lick Observatory, which is operated by the University of California.

  4. Dark stars: a new study of the first stars in the Universe

    International Nuclear Information System (INIS)

    Freese, Katherine; Bodenheimer, Peter; Gondolo, Paolo; Spolyar, Douglas

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the Universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a DS, powered by DM annihilation as long as there is DM fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼10 6 L o-dot ) and cool (T surf surf > 50 000 K); hence DS should be observationally distinct from standard Pop III stars. Once the DM fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.

  5. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  6. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  7. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  8. IRAS far-infrared colours of normal stars

    Science.gov (United States)

    Waters, L. B. F. M.; Cote, J.; Aumann, H. H.

    1987-01-01

    The analysis of IRAS observations at 12, 25, 60 and 100 microns of bright stars of spectral type O to M is presented. The objective is to identify the 'normal' stellar population and to characterize it in terms of the relationships between (B-V) and (V-/12/), between (R-I) and (V-/12/), and as a function of spectral type and luminosity class. A well-defined relation is found between the color of normal stars in the visual (B-V), (R-I) and in the IR, which does not depend on luminosity class. Using the (B-V), (V-/12/) relation for normal stars, it is found that B and M type stars show a large fraction of deviating stars, mostly with IR excess that is probably caused by circumstellar material. A comparison of IRAS colors with the Johnson colors as a function of spectral type shows good agreement except for the K0 to M5 type stars. The results will be useful in identifying the deviating stars detected with IRAS.

  9. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenegger, Lisa [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Haghighipour, Nader, E-mail: kaltenegger@mpia.de [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States)

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  10. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    International Nuclear Information System (INIS)

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-01-01

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886

  11. A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars

    Science.gov (United States)

    Henry, Todd J.; Soderblom, David R.; Donahue, Robert A.; Baliunas, Sallie L.

    1996-01-01

    More than 800 southern stars within 50 pc have been observed for chromospheric emission in the cores of the Ca II H and K lines. Most of the sample targets were chosen to be G dwarfs on the basis of colors and spectral types. The bimodal distribution in stellar activity first noted in a sample of northern stars by Vaughan and Preston in 1980 is confirmed, and the percentage of active stars, about 30%, is remarkably consistent between the northern and southern surveys. This is especially compelling given that we have used an entirely different instrumental setup and stellar sample than used in the previous study. Comparisons to the Sun, a relatively inactive star, show that most nearby solar-type stars have a similar activity level, and presumably a similar age. We identify two additional subsamples of stars -- a very active group, and a very inactive group. The very active group may be made up of young stars near the Sun, accounting for only a few percent of the sample, and appears to be less than ~0.1 Gyr old. Included in this high-activity tail of the distribution, however, is a subset of very close binaries of the RS CVn or W UMa types. The remaining members of this population may be undetected close binaries or very young single stars. The very inactive group of stars, contributting ~5%--10% to the total sample, may be those caught in a Maunder Minimum type phase. If the observations of the survey stars are considered to be a sequence of snapshots of the Sun during its life, we might expect that the Sun will spend about 10% of the remainder of its main sequence life in a Maunder Minimum phase.

  12. On the spatial density of W UMa type stars

    International Nuclear Information System (INIS)

    Budding, E.

    1982-01-01

    Attention is directed to the anomalous incidence of W UMa stars, which can be regarded as coming from not only a disproportionately large accumulation among close binary systems with primaries later than around mid-F spectral type, but also as a deficit at early types. Doubt is placed on the necessity of a straightforward identification of W UMa type light curves with contact binaries; and this allows some reduction in the estimated spatial incidence of contact binaries, from the figure of Van 't Veer (1975), to 8 x 10 -4 of all stars. The incidence is considered, with the aid of some simplifying assumptions, as an example of the general evolution of the distribution of binary systems in the primary spectral type - orbital period plane, subject to some known mechanisms of binary evolution. (Auth.)

  13. Identification and period investigation of pulsation variable star UY Camelopardalis, an RR Lyrae star in binary system

    Science.gov (United States)

    Li, Lin-Jia; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Liao, Wen-Ping

    2018-06-01

    We present photometric measurements of the short period variable star UY Cam, which has been classified as a δ Scuti or c-type RR Lyrae (RRc) variable in different catalogs. Based on the analyses on Fourier coefficients and (NUV - V)0, we find that UY Cam is probably an RRc star. We obtain 58 new times of light maximum for UY Cam based on several sky surveys and our observations. Combining these with the times of light maximum in literature, a total of 154 times of light maximum are used to analyze the O - C diagram of UY Cam. The results show that the O - C pattern can be described by a downward parabolic component with a rate of -6.86 ± 0.47 × 10-11 d d-1, and a cyclic variation with a period of 65.7 ± 2.4 yr. We suppose these components are caused by the stellar evolution and the light travel time effect (LiTE) of a companion in elliptical orbit, respectively. By calculation, the minimum mass of the potential companion is about 0.17 M⊙, and its mass should be less than or equal to the pulsation primary star when the inclination i > 22.5°D. Therefore, the companion should be a low-mass star, like a late-type main-sequence star or a white dwarf. Due to the unique property of UY Cam, we suggest that more observations and studies on UY Cam and other RRc stars are needed to check the nature of these stars, including the pulsations and binarities.

  14. IUE observations of W UMa-type stars

    International Nuclear Information System (INIS)

    Rucinski, S.M.; Vilhu, O.

    1983-01-01

    IUE (International Ultraviolet Explorer) low-resolution SWP images of the contract binaries 44i Boo, VW Cep, W UMa, V566 Oph, AW UMa, V502 Oph, epsilon CrA, RR Cen and the very close non-contact binary ER Vul have been studied. The results are compared with other UV and soft X-ray data and it is found that the stellar activity within this group is quite similar to solar activity but much more intense; the higher the general level of activity, the higher are the excitation energies that are seen, except that the soft X-ray emission of the W UMa stars does not conform to this picture. The ultraviolet chromospheric and transition-region normalized line fluxes (fsub(line)/fsub(bol)) are not very sensitive to spectral type and orbital period among W UMa stars. However, a small weakening towards earlier spectral types is evident. The far ultraviolet chromospheric and transition-region activity seems to level off towards short periods; for soft X-rays the coronal radiation of contact binaries is actually weaker than for detached binaries with somewhat longer periods. The C IV emission variations with phase in 44i Boo have also been analysed. (author)

  15. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Garmany, C. D.; Glaspey, J. W. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K. [Observatório Nacional-MCTI, Rua José Cristino, 77. CEP: 20921-400, Rio de Janeiro, RJ (Brazil); Oey, M. S. [University of Michigan, Department of Astronomy, 311 West Hall, 1085 S. University Ave., Ann Arbor, MI: 48109-1107 (United States); Bensby, T., E-mail: garmany@noao.edu [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund (Sweden)

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  16. Profile disparity of Raman-scattered O VI in symbiotic stars

    International Nuclear Information System (INIS)

    Lee, Hee-Won

    2016-01-01

    Symbiotic stars are wide binary systems consisting of a hot compact star (usually a white dwarf) and a mass losing giant. Symbiotic activities are believed to occur through gravitational capture of a fraction of the slow stellar wind from the giant. Raman scattered features of O VI resonance doublet 1032 and 1038 appearing at around 6825 Å and 7082 Å are a unique spectroscopic diagnostic tool to probe the mass transfer process in symbiotic stars. The Raman O VI features often exhibit multiple peak structures and in many cases the blue peak of 7082 features is relatively more suppressed than that of 6825 features. We propose that the disparity of the two profiles is attributed to the local variation of optical depths of O VI, implying that the accretion flow is convergent in the red emission region and divergent in the blue emission region. It is argued in this presentation that Raman scattering by atomic hydrogen is a natural mirror to provide an edge-on view of the accretion disk and a lateral view of the bipolar outflow in symbiotic stars. We discuss the spectropolarimetric implications of this interpretation. (paper)

  17. A dust shell around the early-type Wolf-Ryate star WR 19

    International Nuclear Information System (INIS)

    Williams, P.M.; Hucht, K.A. van der; Bouchet, P.

    1990-01-01

    Infrared photometry of the WC4-type Wolf-Rayet star WR 19 (LS 3) in 1988-90 shows evidence for an expanding dust shell in its wind, similar to those observed from late-type WR stars like WR 48a (WC8), WR 140 (WC7+04) and WR 137 (WC7+). This demonstrates that dust formation by Wolf-Rayet stars is not restricted to later WC subtypes and is more common than hitherto supposed. (author)

  18. Parameters and abundances in luminous stars

    International Nuclear Information System (INIS)

    Earle Luck, R.

    2014-01-01

    Parameters and abundances for 451 stars of spectral types F, G, and K of luminosity classes I and II have been derived. Absolute magnitudes and E(B – V) have been derived for the warmer stars in order to investigate the galactic abundance gradient. The value found here: d[Fe/H]/dR ∼ –0.06 dex kpc –1 , agrees well with previous determinations. Stellar evolution indicators have also been investigated with the derived C/O ratios indicating that standard CN processing has been operating. Perhaps the most surprising result found in these supposedly relatively young intermediate-mass stars is that both [O/Fe] and [C/Fe] show a correlation with [Fe/H] much the same as found in older populations. While the stars were selected based on luminosity class, there does exist a significant [Fe/H] range in the sample. The likely explanation of this is that there is a significant range in age in the sample; that is, some of the sample are low-mass red-giant stars with types that place them within the selection criteria.

  19. The onset of chromospheric activity among the A- and F- type stars

    Science.gov (United States)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  20. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    Science.gov (United States)

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  1. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  2. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Walborn, Nolan R.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-01-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L X /L bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  3. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Povich, Matthew S., E-mail: alexamic@lafayette.edu, E-mail: rjh314@lehigh.edu, E-mail: mcswain@lehigh.edu, E-mail: mspovich@cpp.edu [Department of Physics and Astronomy, California State Polytechnic University, Pomona, CA 91768 (United States)

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had high enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.

  4. Open clusters. III. Fundamental parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type stars with circumstellar envelopes

    Science.gov (United States)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2018-02-01

    Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (operating under agreement of CONICET and the Universities of La Plata, Córdoba, and San Juan, Argentina.Tables 1, 2, 9-16 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A30

  5. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  6. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  7. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  8. The VLT-FLAMES Tarantula Survey . XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N. J.; Schneider, F. R. N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J. M.; Castro, N.; Crowther, P. A.; Evans, C. J.; García, M.; Gräfener, G.; Herrero, A.; van Kempen, B.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Taylor, W. D.; Vink, J. S.

    2017-04-01

    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims: Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods: We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results: We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not

  9. On x radiation of double systems containing Wolf-Rayet type stars

    International Nuclear Information System (INIS)

    Prilutskij, O.F.; Usov, V.V.

    1976-01-01

    It is shown that the close binary systems must be rather intensive sources of X radiation one or both components of which are young massive stars with strong outflow of matter from them (Wolf-Rayet type stars and OB supergiants). X-radiation of such binary systems is stimulated by gas heating behind the front of shock waves formed as a result of collision of gas outflowing from one component either with the second star surface or with its magnetosphere or with gas outflowing from the second star. The most possible candidates of X-ray sources among double Wolf-Rayet stars are γ 2 Vel and V 444 Cyg

  10. Ultraviolet spectra of field horizontal-branch A-type stars. II

    International Nuclear Information System (INIS)

    Philip, A.G.D.; Hayes, D.S.; Adelman, S.J.

    1990-01-01

    The spectra of six additional A-type stars have been obtained at low resolution between 1200 and 1900 A with the IUE. The energy distributions of four of the stars match that of the field horizontal branch (FHB) distribution in Huenemoerder et al. (1984) while those of the other two do not. Three of the FHB stars fall above a line in the C(19 - V)0 vs. (b-y)0 diagram; however, HD 60825 is anomalously blue for its C(19 - V) color. 7 refs

  11. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  12. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  13. The magnetic early B-type stars I: magnetometry and rotation

    Science.gov (United States)

    Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration

    2018-04-01

    The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.

  14. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  15. Observations on the variability of linear polarization in late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Huovelin, J.; Linnaluoto, S.; Tuominen, I.; Virtanen, H.

    1989-04-01

    Broadband (UBV) linear polarimetric observations of a sample of late-type (F7-K5) dwarfs are reported. The observations include ten stars and extend over a maximum of 20 nights. Seven stars show significant temporal variability of polarization, which could be interpreted as rotational modulation due to slowly varying magnetic regions. Magnetic intensification in saturated Zeeman sensitive absorption lines is suggested as the dominant effect connecting linear polarization with magnetic activity in the most active single late-type dwarfs, while the wavelength dependence in the less active stars could also be due to a combination of Rayleigh and Thomson scattering.

  16. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  17. Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars

    International Nuclear Information System (INIS)

    Przybilla, Norbert; Nieva, Maria-Fernanda; Butler, Keith

    2011-01-01

    It is generally accepted that the atmospheres of cool/lukewarm stars of spectral types A and later are described well by LTE model atmospheres, while the O-type stars require a detailed treatment of NLTE effects. Here model atmosphere structures, spectral energy distributions and synthetic spectra computed with ATLAS9/SYNTHE and TLUSTY/SYNSPEC, and results from a hybrid method combining LTE atmospheres and NLTE line-formation with DETAIL/SURFACE are compared. Their ability to reproduce observations for effective temperatures between 15 000 and 35 000 K are verified. Strengths and weaknesses of the different approaches are identified. Recommendations are made as to how to improve the models in order to derive unbiased stellar parameters and chemical abundances in future applications, with special emphasis on Gaia science.

  18. Determination of the term symbiotic star

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1982-01-01

    The author proposes the following criteria for the use of the term symbiotic star: The symbiotic stars must have a spectrum which simultaneously present the cool star features (TiO bands or G-band, etc.), and the emission lines of HeII and/or [OIII], and/or [NeIII], and lines which require even higher ionization level. He also proposes a classification of symbiotic stars according to different types of observations: according to 1) UBV photometry, 2) infrared observations, 3) radio observations, 4) absorption spectrum, 5) emission spectrum. The limted amount of ultraviolet and X-ray observations prevents any classification. The author thinks that the groups are not independent, one type showing variations belonging to another group. (Auth./C.F.)

  19. A Spectroscopic Orbit for the Late-type Be Star β CMi

    Energy Technology Data Exchange (ETDEWEB)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L. [Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390 (United States); Carciofi, Alex C. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP 05508-900 (Brazil); Klement, Robert [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Wang, Luqian, E-mail: noel.richardson@UToledo.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2017-02-10

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α line with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  20. The Kepler characterization of the variability among A- and F-type stars. I. General overview

    DEFF Research Database (Denmark)

    Uytterhoeven, K.; Moya, A.; Grigahcène, A.

    2011-01-01

    candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods: We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each...... no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical...... constructed variables, "efficiency" and "energy", as a means to explore the relation between γ Dor and δ Sct stars. Conclusions: Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ...

  1. Late stages of massive star evolution and nucleosynthesis

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi; Hashimoto, Masa-aki.

    1986-01-01

    The evolution of massive stars in the mass range of 8 to 25 M solar mass is reviewed. The effect of electron degeneracy on the gravothermal nature of stars is discussed. Depending on the stellar mass, the stars form three types of cores, namely, non-degenerate, semi-degenerate, and strongly degenerate cores. The evolution for these cases is quite distinct from each other and leads to the three different types of final fate. It is suggested that our helium star model, which is equivalent to a 25 M solar mass star, will form a relatively small mass iron core despite the faster 12 C(α,γ) 16 O reaction. 50 refs., 21 figs

  2. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission

    DEFF Research Database (Denmark)

    Chaplin, William J.; Kjeldsen, Hans; Christensen-Dalsgaard, Jørgen

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar...

  3. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission

    NARCIS (Netherlands)

    Chaplin, W.J.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Basu, S.; Miglio, A.; Appourchaux, T.; Bedding, T.R.; Elsworth, Y.; Garcia, R.A.; Gilliland, R.L.; Girardi, L.; Houdek, G.; Karoff, C.; Kawaler, S.D.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Verner, G.A.; Ballot, J.; Bonanno, A.; Brandao, I.M.; Broomhall, A.M.; Bruntt, H.; Campante, T.L.; Corsaro, E.; Creevey, O.L.; Esch, L.; Gai, N.; Gaulme, P.; Hale, S.J.; Handberg, R.; Hekker, S.; Huber, D.; Jimenez, A.; Mathur, S.; Mazumdar, A.; Mosser, B.; New, R.; Pinsonneault, M.H.; Pricopi, D.; Quirion, P.O.; Regulo, C.; Salabert, D.; Serenelli, A.M.; Silva Aguirre, V.; Sousa, S.G.; Stello, D.; Stevens, I.R.; Suran, M.D.; Uytterhoeven, K.; White, T.R.; Borucki, W.J.; Brown, T.M.; Jenkins, J.M.; Kinemuchi, K.; Van Cleve, J.; Klaus, T.C.

    2011-01-01

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar

  4. EVOLUTION OF ROTATIONAL VELOCITIES OF A-TYPE STARS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Meng Xiangcun

    2013-01-01

    The equatorial velocity of A-type stars undergoes an acceleration in the first third of the main sequence (MS) stage, but the velocity decreases as if the stars were not undergoing any redistribution of angular momentum in the external layers in the last stage of the MS phase. Our calculations show that the acceleration and the decrease of the equatorial velocity can be reproduced by the evolution of the differential rotation zero-age MS model with the angular momentum transport caused by hydrodynamic instabilities during the MS stage. The acceleration results from the fact that the angular momentum stored in the interiors of the stars is transported outward. In the last stage, the core and the radiative envelope are uncoupling, and the rotation of the envelope is a quasi-solid rotation; the uncoupling and the expansion of the envelope indicate that the decrease of the equatorial velocity approximately follows the slope for the change in the equatorial velocity of the model without any redistribution of angular momentum. When the fractional age 0.3 ∼ MS ∼< 0.5, the equatorial velocity remains almost constant for stars whose central density increases with age in the early stage of the MS phase, while the velocity decreases with age for stars whose central density decreases with age in the early stage of the MS phase.

  5. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Stephan, Thomas; Boehnke, Patrick; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J., E-mail: nliu@carnegiescience.edu [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States)

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  6. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  7. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    Science.gov (United States)

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  8. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    Science.gov (United States)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  9. The Westerlund-Olander sample of S stars in the southern Milky Way

    International Nuclear Information System (INIS)

    Evans, T.L.; Catchpole, R.M.

    1989-01-01

    Infrared (JHKL) photometry and spectroscopy (5200-7700 A, 6 A resolution) is given for 72 stars classed as type S by Westerlund and Olander. There are 38 S stars, 26 M stars, of which most are supergiants, and eight stars without prominent absorption bands. The S stars are predominantly of the nearly pure S type (S index ∼ 6) and represent a substantial addition to the known sample of such stars. Several probable Mira variables and three stars with strong Li I 6707 A are included. A wide range in LaO strength for stars of similar temperature and ZrO strength may result from differing ratios of heavy to light s-process elements. A possible dependence of Na D strength on luminosity is found. The galactic distribution of the S stars is not significantly different from that of carbon stars in the same field, excluding the suggestion that these S stars are of much higher mass than carbon stars. The infrared colours, taken in conjunction with IRAS data, reveal heavy interstellar reddening as well as circumstellar shells around many stars of all three groups. One of the bandless stars, WO48, has a particularly extensive shell. (author)

  10. THE O- AND B-TYPE STELLAR POPULATION IN W3: BEYOND THE HIGH-DENSITY LAYER

    Energy Technology Data Exchange (ETDEWEB)

    Kiminki, Megan M.; Kim, Jinyoung Serena; Bagley, Micaela B.; Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Sherry, William H., E-mail: mbagley@email.arizona.edu [National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-11-01

    We present the first results from our survey of the star-forming complex W3, combining VRI photometry with multiobject spectroscopy to identify and characterize the high-mass stellar population across the region. With 79 new spectral classifications, we bring the total number of spectroscopically confirmed O- and B-type stars in W3 to 105. We find that the high-mass slope of the mass function in W3 is consistent with a Salpeter IMF, and that the extinction toward the region is best characterized by an R{sub V} of approximately 3.6. B-type stars are found to be more widely dispersed across the W3 giant molecular cloud (GMC) than previously realized: they are not confined to the high-density layer (HDL) created by the expansion of the neighboring W4 H ii region into the GMC. This broader B-type population suggests that star formation in W3 began spontaneously up to 8–10 Myr ago, although at a lower level than the more recent star formation episodes in the HDL. In addition, we describe a method of optimizing sky subtraction for fiber spectra in regions of strong and spatially variable nebular emission.

  11. THE O- AND B-TYPE STELLAR POPULATION IN W3: BEYOND THE HIGH-DENSITY LAYER

    International Nuclear Information System (INIS)

    Kiminki, Megan M.; Kim, Jinyoung Serena; Bagley, Micaela B.; Rieke, George H.; Sherry, William H.

    2015-01-01

    We present the first results from our survey of the star-forming complex W3, combining VRI photometry with multiobject spectroscopy to identify and characterize the high-mass stellar population across the region. With 79 new spectral classifications, we bring the total number of spectroscopically confirmed O- and B-type stars in W3 to 105. We find that the high-mass slope of the mass function in W3 is consistent with a Salpeter IMF, and that the extinction toward the region is best characterized by an R V of approximately 3.6. B-type stars are found to be more widely dispersed across the W3 giant molecular cloud (GMC) than previously realized: they are not confined to the high-density layer (HDL) created by the expansion of the neighboring W4 H ii region into the GMC. This broader B-type population suggests that star formation in W3 began spontaneously up to 8–10 Myr ago, although at a lower level than the more recent star formation episodes in the HDL. In addition, we describe a method of optimizing sky subtraction for fiber spectra in regions of strong and spatially variable nebular emission

  12. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  13. Shock waves in luminous early-type stars

    International Nuclear Information System (INIS)

    Castor, J.I.

    1986-01-01

    Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs

  14. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  15. Macroclumping as solution of the discrepancy between Hα and P v mass loss diagnostics for O-type stars

    Science.gov (United States)

    Šurlan, B.; Hamann, W.-R.; Aret, A.; Kubát, J.; Oskinova, L. M.; Torres, A. F.

    2013-11-01

    Context. Recent studies of O-type stars have demonstrated that discrepant mass-loss rates are obtained when different diagnostic methods are employed. Fitting the unsaturated UV resonance lines (e.g., P v) gives drastically lower values than obtained from the Hα emission. Wind inhomogeneity (so-called "clumping") may be the main cause of this discrepancy. Aims: In a previous paper, we presented 3D Monte-Carlo calculations for the formation of scattering lines in a clumped stellar wind. In the present paper we select five O-type supergiants (from O4 to O7) and test whether the reported discrepancies can be resolved this way. Methods: In the first step, the analyses started with simulating the observed spectra with Potsdam Wolf-Rayet (PoWR) non-LTE model atmospheres. The mass-loss rates are adjusted to fit to the observed Hα emission lines best. For the unsaturated UV resonance lines (i.e., P v) we then applied our 3D Monte-Carlo code, which can account for wind clumps of any optical depths ("macroclumping"), a non-void interclump medium, and a velocity dispersion inside the clumps. The ionization stratifications and underlying photospheric spectra were adopted from the PoWR models. The properties of the wind clumps were constrained by fitting the observed resonance line profiles. Results: Our results show that with the mass-loss rates that fit Hα (and other Balmer and He ii lines), the UV resonance lines (especially the unsaturated doublet of P v) can also be reproduced with no problem when macroclumping is taken into account. There is no need to artificially reduce the mass-loss rates or to assume a subsolar phosphorus abundance or an extremely high clumping factor, unlike what was claimed by other authors. These consistent mass-loss rates are lower by a factor of 1.3 to 2.6, compared to the mass-loss rate recipe from Vink et al. Conclusions: Macroclumping resolves the previously reported discrepancy between Hα and P v mass-loss diagnostics. Based on

  16. Analysis of the lambda 5696 Carbon III line in the O stars

    International Nuclear Information System (INIS)

    Cardona-Nunez, O.

    1978-01-01

    Lines of twice-ionized Carbon, specifically lambda 5695 and lambda 8500, in the O stars were analyzed on the basis of a detailed solution of the coupled statistical-equilibrium and transfer equations for a multilevel, multiline, multi-ion ensemble. It is significant that these plane-parallel non-LTE statistical equilibrium calculations reproduce successfully the observed emission a lambda 5696 and absorption at lambda 8500. The 3p 1 P 0 -3d 1 D transition is found to come into emission at the observed temperatures for both main-sequence and low-gravity objects. The equivalent widths of the emission and absorption lines agree very well with those measured for O stars. In these stars the basic physical mechanism responsible for this phenomenon is the overpopulation of 3d by means of direct recombination and cascades from upper states (with dielectronic recombination taking part in the earliest types) with subsequent cascade to 3p. The 3p state is drained by the two-electron transitions coupling 3p to the 2p 2 ( 1 S, 1 D) states; emission in the 3s 1 S-3p 1 P 0 line is thus prevented. The mechanism of formation of C III is different from that of N III because of dielectronic recombination is not necessary in the former case. The fact that the C III emission line can be produced in a static nonextended atmosphere in radiative equilibrium indicates that the presence of emission lines is not sufficient evidence for the existence of extended atmospheres

  17. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  18. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    Science.gov (United States)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  19. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS-PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Johnson, John Asher; Liu, Michael C.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Henry, Gregory W.; Fischer, Debra A.; Clubb, Kelsey I.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ∼5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 ∼ * /M sun ∼ +9 -8 %, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN ∝ M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (∼50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.

  20. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  1. Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary

    Science.gov (United States)

    Fekel, Francis C.

    1988-01-01

    It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.

  2. Acoustic glitches in solar-type stars from Kepler

    DEFF Research Database (Denmark)

    Mazumdar, A.; Monteiro, M. J. P. F. G.; Ballot, J

    2012-01-01

    We report the measurement of the acoustic locations of layers of sharp variation in sound speed in the interiors of 19 solar-type stars observed by the Kepler mission. The oscillatory signal in the frequencies arising due to the acoustic glitches at the base of the convection zone and the second...

  3. A statistical spectropolarimetric study of Herbig Ae/Be stars

    Science.gov (United States)

    Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.

    2017-11-01

    We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.

  4. FORMING AN O STAR VIA DISK ACCRETION?

    International Nuclear Information System (INIS)

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  5. Torsional oscillations and observed rotational period variations in early-type stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Mikulášek, Z.; Henry, G.W.; Kurfürst, P.; Karlický, Marian

    2017-01-01

    Roč. 464, č. 1 (2017), s. 933-939 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA16-01116S; GA ČR GAP209/12/0103 Institutional support: RVO:67985815 Keywords : MHD * chemically peculiar stars * early-type stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  6. Synthesis and morphology of AgReO{sub 4} plates, rods, and stars

    Energy Technology Data Exchange (ETDEWEB)

    Bruetsch, Lennart; Feldmann, Claus [Institut fuer Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2017-07-03

    AgReO{sub 4} nanoplates and micron-sized AgReO{sub 4} rods and stars are obtained for the first time from controlled particle growth in THF. [NBu{sub 4}][ReO{sub 4}] or [NMe{sub 4}][ReO{sub 4}] and Ag(OTf) (OTf: triflate) are used as the starting materials. The crystal growth is directed by the presence (i.e., plates) or absence (i.e., rods, stars) of trioctylphosphine (TOP) as a coordinating agent as well as by the temperature of the reaction (i.e., plates, rods in refluxing THF; stars at room temperature). Altogether, the growth of the respective morphology can be attributed to the availability and diffusion rate of dissolved Ag{sup +} that is influenced by the reaction temperature and the presence of TOP. The differently shaped AgReO{sub 4} particles are characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Further RIOTS4 Characterization of Field OB Stars in the SMC

    Science.gov (United States)

    Oey, M. S.; Barnes, Jesse R.; Paggeot, Kevin J.; Dorigo Jones, John; Castro, Norberto; Simon-Diaz, Sergio; Kratter, Kaitlin M.; Moe, Maxwell; Szymanski, Michal

    2018-06-01

    We present recent results from the Runaways and O-Type Star Spectroscopic Survey of the SMC (RIOTS4), a survey quantifying properties of the field OB stars in the Small Magellanic Cloud (SMC). Based on PSF-fitting photometry and astrometry of OGLE-III I-band images, we quantify the degree of isolation for the target OB stars, classifying them as "tip-of-the-iceberg" stars accompanied by small, sparse, clusters; or as true, isolated field stars. Many of these field stars must be runaways, which we evaluate using GAIA DR2 proper motions. We measure v sin i using the IACOB code Fourier analysis, finding that the bimodal distribution of projected rotation velocities is less pronounced for O stars than early B stars. We examine rotation in relation to relative isolation and runaway status.

  8. What stars become peculiar type I supernovae?

    International Nuclear Information System (INIS)

    Uomoto, A.

    1986-01-01

    Hot hydrogen-deficient binaries such as Upsilon Sgr and KS Per are suggested as the stars most likely to become Type Ib supernovae. These systems satisfy the preexplosion constraints imposed by Type Ib observations by not having any hydrogen in their atmospheres (explaining their spectra), being truncated at the Roche lobe (explaining their light curves), and having large main-sequence masses (explaining their presence in extreme Population I locations). Although none of those known seems to be in danger of exploding, a system with a current primary mass of about solar masses may do so by core collapse. 36 references

  9. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    Science.gov (United States)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  10. Optical region elemental abundance analyses of B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; Young, J.M.; Baldwin, H.E.

    1984-01-01

    Abundance analyses using optical region data and fully line blanketed model atmospheres have been performed for two sharp-lined hot Am stars o Pegasi and σ Aquarii and for the sharp-lined marginally peculiar A star v Cancri. The derived abundances exhibit definite anomalies compared with those of normal B-type stars and the Sun. (author)

  11. The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Lambert, David L. [The University of Texas at Austin, Department of Astronomy, RLM 16.316, Austin, TX 78712 (United States); Schneider, Fabian R. N. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); De Wit, Willem-Jan [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago 19 (Chile)

    2017-06-10

    There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.

  12. Dynamics of H II regions around exiled O stars

    Science.gov (United States)

    Mackey, Jonathan; Langer, Norbert; Gvaramadze, Vasilii V.

    2013-11-01

    At least 25 per cent of massive stars are ejected from their parent cluster, becoming runaways or exiles, travelling with often-supersonic space velocities through the interstellar medium (ISM). Their overpressurized H II regions impart kinetic energy and momentum to the ISM, compress and/or evaporate dense clouds, and can constrain properties of both the star and the ISM. Here, we present one-, two- and (the first) three-dimensional simulations of the H II region around a massive star moving supersonically through a uniform, magnetized ISM, with properties appropriate for the nearby O star ζ Oph. The H II region leaves an expanding overdense shell behind the star and, inside this, an underdense wake that should be filled with hot gas from the shocked stellar wind. The gas column density in the shell is strongly influenced by the ISM magnetic field strength and orientation. Hα emission maps show that H II region remains roughly circular, although the star is displaced somewhat from the centre of emission. For our model parameters, the kinetic energy feedback from the H II region is comparable to the mechanical luminosity of the stellar wind, and the momentum feedback rate is >100 times larger than that from the wind and ≈10 times larger than the total momentum input rate available from radiation pressure. Compared to the star's eventual supernova explosion, the kinetic energy feedback from the H II region over the star's main-sequence lifetime is >100 times less, but the momentum feedback is up to 4 times larger. H II region dynamics are found to have only a small effect on the ISM conditions that a bow shock close to the star would encounter.

  13. Automated Asteroseismic Analysis of Solar-type Stars

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Campante, T.L.; Chaplin, W.J.

    2010-01-01

    The rapidly increasing volume of asteroseismic observations on solar-type stars has revealed a need for automated analysis tools. The reason for this is not only that individual analyses of single stars are rather time consuming, but more importantly that these large volumes of observations open...... are calculated in a consistent way. Here we present a set of automated asterosesimic analysis tools. The main engine of these set of tools is an algorithm for modelling the autocovariance spectra of the stellar acoustic spectra allowing us to measure not only the frequency of maximum power and the large......, radius, luminosity, effective temperature, surface gravity and age based on grid modeling. All the tools take into account the window function of the observations which means that they work equally well for space-based photometry observations from e.g. the NASA Kepler satellite and ground-based velocity...

  14. The new Be-type star HD 147196 in the Rho Ophiuchi dark cloud region

    Science.gov (United States)

    The, P. S.; Perez, M. R.; De Winter, D.; Van Den Ancker, M. E.

    1993-01-01

    The newly discovered hot-emission line star, HD 147196 in the Rho Oph dark cloud region was observed spectroscopically and photometrically and high and low resolution IUE spectra were obtained. The finding of Irvine (1990) that this relatively bright star show its H-alpha-line in emission is confirmed. Previous H-alpha-surveys of the Rho Oph star-forming region did not detect HD 147196 as an H-alpha-emission star, meaning that it must recently be very active and has perhaps transformed itself from a B-type star at shell phase to a Be-phase. The Mg II h + k resonance lines are in absorption and they appear to be interstellar in nature, which means that either the abundance of Mg in the extended atmosphere of the star is low or that the shell is not extended enough to produce emission lines of Mg II. Photometric observations of this B8 V type star do not show any variations during at least the years covered by our monitoring or any excess of NIR radiation in its spectral energy distribution up to the M-passband at 4.8 microns.

  15. Lithium abundances, K line emission and ages of nearby solar type stars

    International Nuclear Information System (INIS)

    Duncan, D.K.

    1981-01-01

    Li abundances and chromospheric emission fluxes measured in the core of the Ca II K line have been determined in over 100 field F5--G5 dwarfs and subgiants. Although both quantities are known statistically to decrease in older stars, the correlation between them is not good. In particular, there are a number of anomalous solar type stars which show high Li abundances and very little chromospheric flux; the converse is rare. This might be understood if the intensity of chromospheric emission undergoes a sudden decrease when stars reach an age of 1 to 2 x 10 9 years, before much Li depletion occurs. Some of the anomalous stars appear to be older than this, however. Such stars must have preserved their Li from main sequence destruction

  16. Non-LTE analysis of extremely helium-rich stars. The hot sdO stars LSE 153, 259 and 263

    Science.gov (United States)

    Husfeld, D.; Butler, K.; Heber, U.; Drilling, J. S.

    1989-01-01

    Results of a non-LTE fine analysis based mainly on high-resolution CASPEC spectra for three extremely helium-rich sdO stars are discussed in order to explain hydrogen deficiency in single stars. High temperature (Teff = 70,000 to 75,000 K) and a position in the log Teff - log g diagram were found close to the Eddington limit. Various abundance estimates are derived for hydrogen (upper limits only), carbon, nitrogen, and magnesium. Hydrogen is reduced to less than 10 percent by number in LSE 153 and LSE 263, and to less than 5 percent in LSE 259. The hydrogen deficiency is accompanied by nitrogen- and carbon-enrichment in LSE 153 and LSE 259 only. In LSE 263, carbon is depleted by about 1 dex. Stellar masses obtained by assuming that a core mass-luminosity relation holds for these stars, were found to be in the range 0.6-0.9 solar mass, yielding luminosities log L/L:solar = 3.7-4.5. Two of the program stars (LSE 153 and 259) appear to be possible successors of the R CrB and helium B stars, whereas the third star (LSE 263) displays a much lower carbon content in its photosphere making it an exceptional case among the known hydrogen deficient stars.

  17. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  18. Modeling Type II-P/II-L Supernovae Interacting with Recent Episodic Mass Ejections from Their Presupernova Stars with MESA and SNEC

    Science.gov (United States)

    Das, Sanskriti; Ray, Alak

    2017-12-01

    We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.

  19. A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes

    Science.gov (United States)

    Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh

    2018-01-01

    Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.

  20. A MODERN SEARCH FOR WOLF–RAYET STARS IN THE MAGELLANIC CLOUDS. II. A SECOND YEAR OF DISCOVERIES

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F. [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2015-07-01

    The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf–Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, with WN3-type emission combined with O3-type absorption features. Yet these stars are 2–3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ∼60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.

  1. An Undergraduate Research Experience on Studying Variable Stars

    Science.gov (United States)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  2. The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary

    Science.gov (United States)

    Maíz Apellániz, J.; Negueruela, I.; Barbá, R. H.; Walborn, N. R.; Pellerin, A.; Simón-Díaz, S.; Sota, A.; Marco, A.; Alonso-Santiago, J.; Sanchez Bermudez, J.; Gamen, R. C.; Lorenzo, J.

    2015-07-01

    Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims: We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.

  3. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  5. Near-infrared photometric study of open star cluster IC 1805

    International Nuclear Information System (INIS)

    Sagar, R.; Yu, Q.Z.

    1990-01-01

    The JHK magnitudes of 29 stars in the region of open star cluster IC 1805 were measured. These, and the existing infrared and optical observations, indicate a normal interstellar extinction law in the direction of the cluster. Further, most of the early-type stars have near-infrared fluxes as expected from their spectral types. Patchy distribution of ionized gas and dust appears to be the cause of nonuniform extinction across the cluster face. 36 refs

  6. On the spatial distribution of the M spectral type stars

    International Nuclear Information System (INIS)

    Kevanishvili, G.T.

    1982-01-01

    The distribution of M stars with known radial velocities is studied on the base of the Wilson catalogue data. M stars have turned out to show a trend to clustering. The analysis of distances between these grouping stars as well as of their radial velocities, proper motions and other physical characteristics has allowed to keep 24 such groupings. Data concerning the grouping configurations and different physical characteristics of group stars are given. The stars belonging to one group are mostly giants. As a rule each grouping has one or two emission stars, but sometimes all the stars of a grouping are emission ones. It is possible that these groupings are the physical ones and the stars contained in them are of a common origin

  7. Catching Carbon Stars in the Baade's Windows

    Science.gov (United States)

    Azzopardi, M.; Lequeux, J.; Rebeirot, E.

    1984-12-01

    Near-infrared objective prism surveys at low dispersion (1 700 to 3400 Amm-1) using Schmidt telescopes have been extensively used to detect M-, S- and C-type stars in the galactic equatorial zone, and in other strategically selected regions of the Milky Way. The detection techniques have been perfected by Nassau and his associates (Nassau and Velghe, 1964, Astrophysical Journal 139, 190) during their survey, at Cleveland, of the northern part of the Milky Way. These techniques are based on the identification of a number of typical molecular bands (TiO, CN, LaO, Va) that fall in the 6800-8800 Aspectral range, and which are used to classify M-, S- and C-type stars (Mavridis, 1967, Coll. on Late Type Stars, p. 420). Using the same method, partial or entire nearinfrared surveys of the southern Milky Way have been carried out by Blanco and Münch (1955, Bol. Obs. Tonantzintla y Tacubaya 12, 273) at Tonantzintla, Smith and Smith (1956, Astronomical Journal 61, 273) at Bloemfontein, and later by Westerlund (1971, Astronomy and Astrophysics Suppl. 4, 51 ; 1978, ibid. 32, 401) with the Uppsala Schmidt telescope at Mount Stromlo Observatory.

  8. VLBA Teams With Optical Interferometer to Study Star's Layers

    Science.gov (United States)

    2007-05-01

    Two of the World's Largest Interferometric Facilities Team-up to Study a Red Giant Star Using ESO's VLTI on Cerro Paranal and the VLBA facility operated by NRAO, an international team of astronomers has made what is arguably the most detailed study of the environment of a pulsating red giant star. They performed, for the first time, a series of coordinated observations of three separate layers within the star's tenuous outer envelope: the molecular shell, the dust shell, and the maser shell, leading to significant progress in our understanding of the mechanism of how, before dying, evolved stars lose mass and return it to the interstellar medium. S Orionis (S Ori) belongs to the class of Mira-type variable stars. It is a solar-mass star that, as will be the fate of our Sun in 5 billion years, is nearing its gloomy end as a white dwarf. Mira stars are very large and lose huge amounts of matter. Every year, S Ori ejects as much as the equivalent of Earth's mass into the cosmos. ESO PR Photo 25a/07 ESO PR Photo 25a/07 Evolution of the Mira-type Star S Orionis "Because we are all stardust, studying the phases in the life of a star when processed matter is sent back to the interstellar medium to be used for the next generation of stars, planets... and humans, is very important," said Markus Wittkowski, lead author of the paper reporting the results. A star such as the Sun will lose between a third and half of its mass during the Mira phase. S Ori pulsates with a period of 420 days. In the course of its cycle, it changes its brightness by a factor of the order of 500, while its diameter varies by about 20%. Although such stars are enormous - they are typically larger than the current Sun by a factor of a few hundred, i.e. they encompass the orbit of the Earth around the Sun - they are also distant and to peer into their deep envelopes requires very high resolution. This can only be achieved with interferometric techniques. ESO PR Photo 25b/07 ESO PR Photo 25b/07

  9. Long-Term Spectroscopic Monitoring and Surveys of Early-Type Stars with and without Circumstellar Envelopes

    Directory of Open Access Journals (Sweden)

    Miroshnichenko Anatoly S.

    2017-11-01

    Full Text Available Ongoing studies of different groups of stars result in improving our knowledge of their fundamental parameters and evolutionary status. Also, they result in finding new phases of stellar evolution, which require theoretical explanation. At the same time, availability of large telescopes and sensitivity improvement of detectors shift the focus of many observational programs toward fainter and more distant objects. However, there are still many problems in our understanding of details of stellar evolution which can now be solved with small telescopes and observations of bright stars. Approaching these problems implies conducting surveys of large groups of stars and long-term monitoring of individual objects. In this talk, we present the results of recent international programs of photometric and spectral monitoring of several groups of early-type stars. In particular, we discuss the role of binarity in creation of the Be phenomenon and show examples of recently discovered binary systems as well as the problem of refining fundamental parameters of B and A type supergiants. Special attention will be paid to collaboration with the amateur community and use of échelle spectrographs mounted on small telescopes.

  10. IUE observations of the chromospheric activity-age relation in young solar-type stars

    International Nuclear Information System (INIS)

    Simon, T.; Boesgaard, A.M.

    1983-01-01

    Except for the synoptic observations of the chromospheric Ca II H-K lines by Wilson (1978), in which he sought evidence for magnetic activity cycles, there is still scant data on stellar activity, especially at UV and X-ray wavelengths where 10 5 K TRs and 10 6 - 10 7 K coronae are expected to radiate. This paper presents new UV data, obtained with the IUE spacecraft, for a dozen solar-type stars in the field. The stars are of spectral type F6 V - G1 V; on the basis of their high Li content, they range in age from 0.1 to 2.8 Gyr. The purpose is to study the evolution of TR and chromospheric emission with stellar age, and also the surface distribution of magnetically active regions as revealed by rotational modulation of UV emission line fluxes. (Auth.)

  11. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  12. Spectroscopic studies of Wolf-Rayet stars. V - Optical spectrophotometry of the emission lines in Small Magellanic Cloud stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Garmany, C.D.; Massey, P.

    1989-01-01

    Spectrophotometry of the strongest emission-line features for the eight known WR stars in the SMC is presented. Seven are relatively early WN types; and one is a WO. These are compared to stars of similar spectral types in the Galaxy and the LMC. The hydrogen-burning CNO cycle equilibrium nitrogen abundance with respect to helium appears to be similar to that in WN stars of the Galaxy and LMC even though the SMC objects presumably began their lives with appreciably smaller CNO content. 28 refs

  13. Exciting Message from a Dying Monster Star

    Science.gov (United States)

    1996-03-01

    . Plans for this are being elaborated in Australia with the Australia Telescope (a combination of many single radio telescopes like at Mopra), as well as within ESO. When more SiO masers in the LMC will have been discovered, we will be able to study how the mass loss differs from star to star. This will help us to learn how the mass loss depends on the overall characteristics of the star, for instance its brightness or its mass. Strangely enough, it is easier to do this type of study with stars in another galaxy, despite the fact that they are much more distant than the maser stars in the Milky Way. The main reason is that it is very difficult to measure distances to individual stars in our own galaxy. And if the distance to a star is not known, many other characteristics of the star will not be known either, e.g. its total energy production (intrinsic brightness) or its mass. However, as we know the distance to the LMC, about 170,000 light-years, we also know the distance to all the maser stars, which will be detected in this small galaxy. SiO masers are extremely powerful velocity indicators for celestial objects. We can therefore use them, not only to measure the motion of the molecules in the atmospheres of stars, but also to measure the velocities of the stars themselves. A study of the velocities of many SiO masers in the Milky Way indicates how the stars move through our galaxy. From this we gain a better understanding of how the Milky Way was formed; this is one of the great mysteries present-day astronomers are very eager to solve. And in the future, we may extend this type of study to other nearby galaxies. There is indeed a great potential for important new knowledge in this exciting area of modern astronomical research ! Notes: [1] The team consists of Jacco Th. van Loon and Albert A. Zijlstra (ESO/Garching), Lars-Ake Nyman (ESO/La Silla), and Valentin Bujarrabal (Observatorio Astronomico Nacional, Madrid, Spain). [2] Depending on the wavelength (and therefore

  14. Kinematic evidence for feedback-driven star formation in NGC 1893

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  15. Spectral analysis of the He-enriched sdO-star HD 127493

    Science.gov (United States)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  16. H2O masers in star-forming regions

    International Nuclear Information System (INIS)

    Downes, D.

    1985-01-01

    Water vapour near star forming regions was first detected by Cheung et al. (1969) and shortly thereafter was recognised to be maser emission. In spite of this 15 year history of H 2 O observations, the problem of interpreting such strong H 2 O masers as W49 and Orion is still very acute. Not one of the models now available can explain in an unconstrained fashion why a very large maser flux can emanate from clouds of such small size. Whereas some models proposed to explain OH masers have retained their plausibility under the pressure of new observations, H 2 O models have not. The author outlines the background of the H 2 O problem, stating that the strongest of the masers discovered are still not satisfactorily explained today. (Auth.)

  17. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.

  18. High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608

    Science.gov (United States)

    Şahin, T.

    2018-01-01

    We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.

  19. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Philip; Neugent, Kathryn F. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601 La Serena (Chile); Hillier, D. John, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl, E-mail: hillier@pitt.edu [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2014-06-10

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs in the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.

  20. A magnetic study of spotted UV Ceti flare stars and related late-type dwarfs

    Science.gov (United States)

    Vogt, S. S.

    1980-09-01

    A multichannel photoelectric Zeeman analyzer has been used to investigate the magnetic nature of the spotted UV Ceti flare stars. Magnetic observations were obtained on a sample of 19 program objects, of which 5 were currently spotted dKe-dMe stars, 7 were normal dK-dM stars, 7 were UV Ceti flare stars, and 1 was a possible post-T Tauri star. Contrary to most previously published observations and theoretical expectations, no magnetic fields were detected on any of these objects from either the absorption lines or the H-alpha emission line down to an observational uncertainty level of 100-160 gauss (standard deviation).

  1. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  2. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  3. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    Science.gov (United States)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-05-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  4. Observational tests for the evolution of massive stars in nearby galaxies

    International Nuclear Information System (INIS)

    Leitherer, C.

    1990-01-01

    Population synthesis calculations applicable to the massive stellar content in nearby galaxies are presented. Stellar evolution calculations are combined with mass loss, model atmospheres with line blanketing, and a spectral type calibration to compute observable parameters of massive stars as a function of the star formation rate and the initial mass function slope. The number of O stars of given spectral types, the number of W-R stars, supernova rates, and fluxes of ionizing photons are predicted. Important constraints for the theories of stellar atmospheres and stellar evolution can be derived from observations if stellar number counts and ionizing flux data are available. 94 refs

  5. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    Science.gov (United States)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  6. A window on first-stars models from studies of dwarf galaxies and galactic halo stars

    Science.gov (United States)

    Venkatesan, Aparna

    2018-06-01

    Dwarf galaxies dominate the local universe by number and are predicted to be even more dominant at early times, with many having large star formation rates per unit mass. The cosmological role of dwarf galaxies in the metal enrichment and the reionization of the universe is an important but unresolved problem at present. Nearby low-mass galaxies are much more accessible observationally for detailed study and may be local analogs of the types of galaxies that hosted the first-light sources relevant for reionization. I will share recent results on UV studies of the escaping radiation from nearby low-mass starforming galaxies, as well as the tantalizing similarities in element abundance patterns between local dwarf galaxies and the latest data compilations on extremely metal-poor stars in galactic halos. I will highlight trends of interest in a variety of individual elements at values of [Fe/H] between -7 and -3, including alpha-elements, elements originating mostly in intermediate-mass stars, lithium, titanium, and r-process elements. These trends constrain not only models of the first stars and their supernovae, but provide a window into the physical conditions in early galaxies and when metal-free star formation may have ceased in the early universe.This work was supported by the University of San Francisco Faculty Development Fund, and NSF grant AST-1637339. We thank the Aspen Center for Physics, where some of this work was conducted, and which is supported by National Science Foundation grant PHY-1607611.

  7. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  8. Stellar Parameters and Radial Velocities of Hot Stars in the Carina Nebula

    Science.gov (United States)

    Hanes, Richard J.; McSwain, M. Virginia; Povich, Matthew S.

    2018-05-01

    The Carina Nebula is an active star-forming region in the southern sky that is of particular interest due to the presence of a large number of massive stars in a wide array of evolutionary stages. Here, we present the results of the spectroscopic analysis of 82 B-type stars and 33 O-type stars that were observed in 2013 and 2014. For 82 B-type stars without line blending, we fit model spectra from the Tlusty BSTAR2006 grid to the observed profiles of Hγ and He λλ4026, 4388, and 4471 to measure the effective temperatures, surface gravities, and projected rotational velocities. We also measure the masses, ages, radii, bolometric luminosities, and distances of these stars. From the radial velocities measured in our sample, we find 31 single lined spectroscopic binary candidates. We find a high dispersion of radial velocities among our sample stars, and we argue that the Carina Nebula stellar population has not yet relaxed and become virialized.

  9. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  10. Resonance line-profiles in galactic disk UV-bright stars

    International Nuclear Information System (INIS)

    Carrasco, L.; Costero, R.

    1987-01-01

    We have made a comparative analysis of UV resonance line-profiles in O-type stars members of young clusters and OB associations, with those of hot stars located away from sites of recent star formation (including ''runaway'' stars). The resonance line-profiles are found to be generally dominated by stellar winds that appear to depend mainly on the surface gravity and temperature of the star, and not on its mass. We also present the C IV, Si IV and N V resonance line-profiles for eleven stars not published in the previous two papers. The use of only the largest stellar wind velocity detectable in the resonance lines as a stellar population indicator, is disputed. (author)

  11. Convection and magnetism of solar-type stars (G and K)

    International Nuclear Information System (INIS)

    Do-Cao, Olivier Long

    2013-01-01

    This thesis aims at understanding the internal dynamics of solar-type stars and the origin of their magnetism. We will explore the complex nonlinear interactions between convection, rotation and magnetism conducting both 2D (STELEM code) and 3D (ASH code) numerical simulations. This dual approach will unveil the mechanisms and key parameters behind those physical processes. While the Sun has played a central role in previous studies, this work extends our knowledge to G and K stars. This manuscript is divided into 4 parts. The first one introduces the concepts behind internal stellar dynamics, and emphasizes the dynamo effect. Accurate observations of the Sun will be compared to stellar data, allowing us to determine what is specific to the Sun and what is generic for all stars. The second part reports the results obtained with the 2D STELEM code. This code allows us to study the generation and evolution of the large scale magnetic fields on a timescale comparable to the solar cycle period (11 years), giving us insight into the underlying dynamo processes at work. We show that the current solar models cannot reproduce the observations, when applied to rapidly rotating stars, unless we consider a turbulent pumping mechanism under specific conditions. Then, we have improved these kinematic models by taking into account the large scale magnetic field feedback on the longitudinal velocity component, called the Malkus Proctor effect. The models are now able to reproduce the solar torsional oscillations and can predict how their properties evolve with rotation rate. The third part focuses on 3D numerical simulations running on massively parallel supercomputers, using the ASH code. In contrast with the previously described code, ASH explicitly resolves the full MHD equations. We have studied (hydrodynamically) how the convective properties of G and K stars change as function of mass and rotation rate, first by considering the convective envelope alone, then by taking into

  12. Microwave emission from the coronae of late-type dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Gary, D. E.

    1983-01-01

    VLA microwave observations of 14 late-type dwarf and subgiant stars and binary systems are examined. In this extensive set of observations, four sources at 6 cm (Chi-1 Ori, UV Cet, YY Gem, and Wolf 630AB) were detected and low upper limits for the remaining stars were found. The microwave luminosities of the nondetected F-K dwarfs are as small as 0.01 those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiraling in magnetic fields of about 300 gauss if the source sizes are as large as R/R(asterisk) = 3-4. This would correspond to magnetic fields that are probably in the range 0.001-0.0001 gauss at the photospheric level. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons with effective temperature.

  13. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  14. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  15. An optical spectroscopic study of T Tauri stars. I. Photospheric properties

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Hillenbrand, Lynne A. [Caltech, MC105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-05-10

    Estimates of the mass and age of young stars from their location in the H-R diagram are limited by not only the typical observational uncertainties that apply to field stars, but also by large systematic uncertainties related to circumstellar phenomena. In this paper, we analyze flux-calibrated optical spectra to measure accurate spectral types and extinctions of 281 nearby T Tauri stars (TTSs). The primary advances in this paper are (1) the incorporation of a simplistic accretion continuum in optical spectral type and extinction measurements calculated over the full optical wavelength range and (2) the uniform analysis of a large sample of stars, many of which are well known and can serve as benchmarks. Comparisons between the non-accreting TTS photospheric templates and stellar photosphere models are used to derive conversions from spectral type to temperature. Differences between spectral types can be subtle and difficult to discern, especially when accounting for accretion and extinction. The spectral types measured here are mostly consistent with spectral types measured over the past decade. However, our new spectral types are one to two subclasses later than literature spectral types for the original members of the TW Hya Association (TWA) and are discrepant with literature values for some well-known members of the Taurus Molecular Cloud. Our extinction measurements are consistent with other optical extinction measurements but are typically 1 mag lower than near-IR measurements, likely the result of methodological differences and the presence of near-IR excesses in most CTTSs. As an illustration of the impact of accretion, spectral type, and extinction uncertainties on the H-R diagrams of young clusters, we find that the resulting luminosity spread of stars in the TWA is 15%-30%. The luminosity spread in the TWA and previously measured for binary stars in Taurus suggests that for a majority of stars, protostellar accretion rates are not large enough to

  16. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    Energy Technology Data Exchange (ETDEWEB)

    Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Riera, A. [Departament de Física I Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, E-08036 Barcelona (Spain); Raga, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 D.F. (Mexico); Kwitter, K. B., E-mail: balick@uw.edu, E-mail: angels.riera@upc.edu, E-mail: raga@nucleares.unam.mx, E-mail: pablo@nucleares.unam.mx, E-mail: kkwitter@williams.edu [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States)

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  17. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pecaut, Mark J.; Mamajek, Eric E. [University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627-0171 (United States)

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars stars are ∼250 K cooler than their MS counterparts. Lastly, we present (1) a modern T {sub eff}, optical/IR color, and BC sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  18. A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.

    2018-05-01

    We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.

  19. THE DISCOVERY OF A RARE WO-TYPE WOLF–RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia

    2012-01-01

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI λλ3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans as they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.

  20. A combinatorial interpretation of the $κ^{\\star}_{g}(n)$ coefficients

    DEFF Research Database (Denmark)

    Li, Thomas Jiaxian; M. Reidys, Christian

    2014-01-01

    Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $\\kappa^{\\star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result of this ......Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $\\kappa^{\\star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result...... of this paper is a combinatorial interpretation of $\\kappa^{\\star}_{g}(n)$. We show that these enumerate a class of unicellular maps, which correspond $1$-to-$2^{2g}$ to a specific type of trees, referred to as O-trees. We furthermore prove a two term recursion for $\\kappa^{\\star}_{g}(n)$ and that for any fixed...

  1. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    DEFF Research Database (Denmark)

    Howard, A.W.; Geoffrey, G.W.; Bryson, S.T.

    2012-01-01

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include...... a nearly complete set of detected planets as small as 2 R ⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability...... of transit, R /a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp planets down to 2 R...

  2. IUE and Einstein survey of late-type giant and supergiant stars and the dividing line

    Science.gov (United States)

    Haisch, Bernhard M.; Bookbinder, Jay A.; Maggio, A.; Vaiana, G. S.; Bennett, Jeffrey O.

    1990-01-01

    Results are presented on an IUE UV survey of 255 late-type G, K, and M stars, complementing the Maggio et al. (1990) Einstein X-ray survey of 380 late-type stars. The large data sample of X-ray and UV detections make it possible to examine the activity relationship between the X-ray and the UV emissions. The results confirm previous finding of a trend involving a steeply-dropping upper envelope of the transition region line fluxes, f(line)/f(V), as the dividing line is approached. This suggests that a sharp decrease in maximum activity accompanies the advancing spectral type, with the dividing line corresponding to this steep gradient region. The results confirm the rotation-activity connection for stars in this region of the H-R diagram.

  3. Asteroseismic modelling of the solar-type subgiant star β Hydri

    Science.gov (United States)

    Brandão, I. M.; Doğan, G.; Christensen-Dalsgaard, J.; Cunha, M. S.; Bedding, T. R.; Metcalfe, T. S.; Kjeldsen, H.; Bruntt, H.; Arentoft, T.

    2011-03-01

    Context. Comparing models and data of pulsating stars is a powerful way to understand the stellar structure better. Moreover, such comparisons are necessary to make improvements to the physics of the stellar models, since they do not yet perfectly represent either the interior or especially the surface layers of stars. Because β Hydri is an evolved solar-type pulsator with mixed modes in its frequency spectrum, it is very interesting for asteroseismic studies. Aims: The goal of the present work is to search for a representative model of the solar-type star β Hydri, based on up-to-date non-seismic and seismic data. Methods: We present a revised list of frequencies for 33 modes, which we produced by analysing the power spectrum of the published observations again using a new weighting scheme that minimises the daily sidelobes. We ran several grids of evolutionary models with different input parameters and different physics, using the stellar evolutionary code ASTEC. For the models that are inside the observed error box of β Hydri, we computed their frequencies with the pulsation code ADIPLS. We used two approaches to find the model that oscillates with the frequencies that are closest to the observed frequencies of β Hydri: (i) we assume that the best model is the one that reproduces the star's interior based on the radial oscillation frequencies alone, to which we have applied the correction for the near-surface effects; (ii) we assume that the best model is the one that produces the lowest value of the chi-square (χ2), i.e. that minimises the difference between the observed frequencies of all available modes and the model predictions, after all model frequencies are corrected for near-surface effects. Results: We show that after applying a correction for near-surface effects to the frequencies of the best models, we can reproduce the observed modes well, including those that have mixed mode character. The model that gives the lowest value of the χ2 is a post

  4. SPITZER VIEW OF YOUNG MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD H II COMPLEXES. II. N 159

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Chu, You-Hua; Gruendl, Robert A.; Seale, Jonathan P.; Testor, Gerard; Heitsch, Fabian; Meixner, Margaret; Sewilo, Marta

    2010-01-01

    The H II complex N 159 in the Large Magellanic Cloud is used to study massive star formation in different environments, as it contains three giant molecular clouds (GMCs) that have similar sizes and masses but exhibit different intensities of star formation. We identify candidate massive young stellar objects (YSOs) using infrared photometry, and model their spectral energy distributions to constrain mass and evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II sources. Our analysis suggests that there are massive embedded YSOs in N 159B, a maser source, and several ultracompact H II regions. Massive O-type YSOs are found in GMCs N 159-E and N 159-W, which are associated with ionized gas, i.e., where massive stars formed a few Myr ago. The third GMC, N 159-S, has neither O-type YSOs nor evidence of previous massive star formation. This correlation between current and antecedent formation of massive stars suggests that energy feedback is relevant. We present evidence that N 159-W is forming YSOs spontaneously, while collapse in N 159-E may be triggered. Finally, we compare star formation rates determined from YSO counts with those from integrated Hα and 24 μm luminosities and expected from gas surface densities. Detailed dissection of extragalactic GMCs like the one presented here is key to revealing the physics underlying commonly used star formation scaling laws.

  5. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  6. How massive the Wolf-Rayet stars are

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1981-01-01

    If the Wolf-Rayet stars are produced by the evolution of massive stars with mass loss (Paczynski 1967, Conti 1976) from O stars to WN stars and thereafter to WC stars, then we may expect to observe a correlation of decreasing mean masses in the same sense as the evolution. Information about the masses of WR stars are obtained from studies of binary systems with WR components. (Auth.)

  7. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Neugent, Kathryn F.; Massey, Philip [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States); Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

    2012-12-01

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans as they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.

  8. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J.H.M.M.; Snowden, S.L. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany, F.R.) Wisconsin Univ., Madison (USA))

    1990-09-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. 41 refs.

  9. Contributions of late-type dwarf stars to the soft X-ray diffuse background

    Science.gov (United States)

    Schmitt, J. H. M. M.; Snowden, S. L.

    1990-01-01

    Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law.

  10. LB 3459, an O-type subdwarf eclipsing binary system

    International Nuclear Information System (INIS)

    Kilkenny, D.; Penfold, J.E.; Hilditch, R.W.

    1979-01-01

    Four-colour photometry of the short-period eclipsing binary system LB 3459 confirms features seen in earlier less-detailed data. An analysis of all the observational data suggests the system to be an O-type subdwarf plus a hot white dwarf rather than two sdO stars. A value of 0.03 is obtained for the linear limb-darkening coefficient of the primary and estimates of the absolute magnitudes of the two components give a distance of 70 +- 25 pc for the system. The primary and secondary may have radii as small as 0.04 solar radius and 0.02 solar radius respectively, indicating a component separation of only 0.25 solar radius. Several unsolved problems connected with the nature and evolution of the LB 3459 system are noted. (author)

  11. Magnetic fields in O-, B- and A-type stars on the main sequence

    Directory of Open Access Journals (Sweden)

    Briquet Maryline

    2015-01-01

    Full Text Available In this review, the latest observational results on magnetic fields in main-sequence stars with radiative envelopes are summarised together with the theoretical works aimed at explaining them.

  12. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    International Nuclear Information System (INIS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-01-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems

  13. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, Baja California, 22800 México (Mexico); Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599 (United States); Miroshnichenko, A. S., E-mail: gag@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: zhar@astro.unam.mx [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States)

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  14. Water in star-forming regions with Herschel (WISH) : IV. A survey of low-J H2O line profiles toward high-mass protostars

    NARCIS (Netherlands)

    van der Tak, F. F. S.; Chavarria, L.; Herpin, F.; Wyrowski, F.; Walmsley, C. M.; van Dishoeck, E. F.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Kristensen, L. E.; Liseau, R.; Nisini, B.; Tafalla, M.

    Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with

  15. Infrared study of new star cluster candidates associated to dusty globules

    Science.gov (United States)

    Soto King, P.; Barbá, R.; Roman-Lopes, A.; Jaque, M.; Firpo, V.; Nilo, J. L.; Soto, M.; Minniti, D.

    2014-10-01

    We present results from a study of a sample of small star clusters associated to dusty globules and bright-rimmed clouds that have been observed under ESO/Chile public infrared survey Vista Variables in the Vía Láctea (VVV). In this short communication, we analyse the near-infrared properties of a set of four small clusters candidates associated to dark clouds. This sample of clusters associated to dusty globules are selected from the new VVV stellar cluster candidates developed by members of La Serena VVV Group (Barbá et al. 2014). Firstly, we are producing color-color and color-magnitude diagrams for both, cluster candidates and surrounding areas for comparison through PSF photometry. The cluster positions are determined from the morphology on the images and also from the comparison of the observed luminosity function for the cluster candidates and the surrounding star fields. Now, we are working in the procedures to establish the full sample of clusters to be analyzed and methods for subtraction of the star field contamination. These clusters associated to dusty globules are simple laboratories to study the star formation relatively free of the influence of large star-forming regions and populous clusters, and they will be compared with those clusters associated to bright-rimmed globules, which are influenced by the energetic action of nearby O and B massive stars.

  16. The distribution in luminosity of OB stars and evolutionary timescales

    International Nuclear Information System (INIS)

    Bisiacchi, F.; Carrasco, L.; Costero, R.; Firmani, C.; Rayo, J.F.

    1979-01-01

    The authors have obtained the observed fraction of supergiant (luminosity classes I and II), giant (III) and dwarf (IV-V) stars of spectral types B2 and earlier. The stellar sample used was formed with all the stars with bidimensional spectral classification listed in the Catalogue of Galactic O stars by Cruz-Gonzalez et al. (1974) , and unpublished compilation of BO and BO.5 stars by J. F. Rayo, and the B1-B2 stars listed by Morgan et at. (1955). The results are listed together with the total number of stars considered in each spectral interval. A prominent conclusion is drawn from the table: The fractions remain approximately constant all over the spectral range considered. (Auth.)

  17. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the HR diagram

    NARCIS (Netherlands)

    Briquet, M.; Hubrig, S.; Cat, P. de; Aerts, C.C.; North, P.; Schöller, M.

    2007-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods: We carry out a comparative study

  18. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  19. A line driven Rayleigh-Taylor-type instability in hot stars

    International Nuclear Information System (INIS)

    Nelson, G.D.; Hearn, A.G.

    1978-01-01

    The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de

  20. Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    Directory of Open Access Journals (Sweden)

    Lampens P.

    2015-01-01

    Full Text Available We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1 the star is an (undetected binary or multiple system, or 2 the star is a g-mode pulsator (i.e. a genuine hybrid, or 3 the star’s atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very high rotation, which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample.

  1. Profile of He I lambda5876 in the P-Cygni-type of star HD 152408

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1975-01-01

    The blue-shifted absorption component of the P-Cygni profile at He I lambda 5876 in HD 152408 (O8: Iafpe) has been found to be extremely broad, extending -1000 km sec -1 from the emission maximum. This unusual profile is probably due to overpopulation of the lower level of lambda 5876, which permits it to form throughout a greater extent of the expanding atmosphere than most other lines. This observation confirms Hutchings' identification of very large velocities in the blue-violet spectrum of HD 152408, and in particular his interpretation of a similar feature at He I lambda 3889, which is metastable. The lambda 5876 profile in HD 152408 is compared to those in the similar but less extreme P-Cygni star HD 151804 (O8 Iaf), and in the Wolf-Rayet star HD 151932 (WN7-A). The similarity between the absorption components in HD 152408 and the WN star is striking

  2. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    International Nuclear Information System (INIS)

    Jennings, Jeff; Levesque, Emily M.

    2016-01-01

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  3. H α AS A LUMINOSITY CLASS DIAGNOSTIC FOR K- AND M-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Jeff [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Levesque, Emily M., E-mail: emsque@uw.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2016-04-20

    We have identified the H α absorption feature as a new spectroscopic diagnostic of luminosity class in K- and M-type stars. From high-resolution spectra of 19 stars with well-determined physical properties (including effective temperatures and stellar radii), we measured equivalent widths for H α and the Ca ii triplet and examined their dependence on both luminosity class and stellar radius. H α shows a strong relation with both luminosity class and radius that extends down to late M spectral types. This behavior in H α has been predicted as a result of the density-dependent overpopulation of the metastable 2s level in hydrogen, an effect that should become dominant for Balmer line formation in non-LTE conditions. We conclude that this new metallicity-insensitive diagnostic of luminosity class in cool stars could serve as an effective means of discerning between populations such as Milky Way giants and supergiant members of background galaxies.

  4. IUE observations of variability in winds from hot stars

    Science.gov (United States)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  5. Microwave emission from the coronae of late-type dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Linsky, J.L.; Gary, D.E.

    1983-11-15

    We present VLA microwave observatios of 14 late-type dwarf and subgiant stars ad binary systems. In this extensive set of observations we detected four sources at 6 cm (chi/sup 1/ Ori, UV Cet, YY Gem, and Wolf 630AB) and found low upper limits for the remaining stars. The microwave luminosities of the nondetected F--K dwarfs are as small as 10/sup -2/ those of the dMe stars. The detected emission is slowly variable in all cases and is consistent with gyroresonant emission from thermal electrons spiralig in magnetic fields of about 300 gauss if the source sizes are as large as R/R/sub asterisk/roughly-equal3--4. This would correspond to magnetic fields that are probably in the range 10/sup 3/--10/sup 4/ gauss at the photospheric level. These photospheric field strengths are somewhat larger than have been observed so far in G--K dwarfs. An alternative mechanism is gyrosynchrotron emission from a relatively small number of electrons (only 10/sup -3/ the number of ambient electrons) with effective temperature, T/sub eff/>10/sup 8/ K. This mechanism is consistent with much smaller and presumably more realistic source sizes. Observations of YY gem dMle+dMle) at a number of phase are consistent with maximum but variable microwave flux at the same phase as miximum plage and central meridian passage of a large starspot of the secondary star. If confirmed by subsequent observations, this provides the first direct evidence that the emission process is magnetic in character on dMe stars.

  6. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  7. Dependence of the velocity ellipsoid for nearby stars upon metallicity and spectral type

    International Nuclear Information System (INIS)

    Suchkov, A.A.

    1983-01-01

    For nearby dwarf stars the ratios of the dispersions in the velocity components along the axes of a rectangular galactic coordinate system depend on spectral type and chemical composition (metal abundance). Relationships are established which could provide clues to such problems as whether the component populations of the Galaxy are relaxing to a steady state and how stars come to be formed with differing mass at different times

  8. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  9. First ultraviolet observations of the transition regions of X-ray bright solar-type stars in the Pleiades

    Science.gov (United States)

    Caillault, J.-P.; Vilhu, O.; Linsky, J. L.

    1990-01-01

    Results are reported from A UV study of the transition regions of two X-ray-bright solar-type stars from the Pleiades, in an attempt to extend the main sequence age baseline for the transition-region activity-age relation over more than two orders of magnitude. However, no emission lines were detected from either star; the upper limits to the fluxes are consistent with previously determined saturation levels, but do not help to further constrain evolutionary models.

  10. Compact, low-loss and broadband photonic crystal circulator based on a star-type ferrite rod

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    Full Text Available We propose and investigate a compact, low-loss and broadband circulator based on a star-type ferrite rod in two-dimensional square-lattice photonic crystals. Only one ferrite rod is required to be inserted in our structure. Firstly, the performances of circulator based on the star-type, circle, and square ferrite rod are compared, showing that the circulator with the star-type ferrite rod performs better than the other two ones. And then, based on the star-type ferrite rod circulator, four cases of improvement, in which the background rods around the center ferrite rod are replaced respectively by the backward-triangle, forward-triangle, backward-semicircle, and forward-semicircle rods, are investigated to modulate the coupling between the center magneto-optical micro-cavity and the corresponding waveguides. The results show that, with proper parameters, all the four cases can greatly improve the output properties of the circulator, and different cases have its own advantages. The mechanism behind these improvements is also discussed. Finite-element method is used to calculate the characteristics of the circulator and Nelder-Mead optimization method is employed to obtain the optimized parameters. The ideas presented here are useful for designing broadband, low insertion loss, and high-isolation circulators which have potential application in integrated photonic crystal devices. Keywords: Photonic crystals, Circulator, Magneto-optical material, Photonic crystal waveguides

  11. The fluorine destruction in stars: First experimental study of the 19F(p,α)16O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.

    2012-01-01

    The 19 F(p,α) 16 O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E cm ∼ 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the 2 H( 19 F,α 16 O)n reaction. The TH measurement of the α 0 channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  12. Spectral Analysis of the sdO Standard Star Feige 34

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  13. The VLT-FLAMES Tarantula Survey. XVIII. Classifications and radial velocities of the B-type stars

    NARCIS (Netherlands)

    Evans, C.J.; Kennedy, M.B.; Dufton, P.L.; Howarth, I.D.; Walborn, N.R.; Markova, N.; Clark, J.S.; de Mink, S.E.; de Koter, A.; Dunstall, P.R.; Hénault-Brunet, V.; Maíz Apellániz, J.; McEvoy, C.M.; Sana, H.; Simón-Díaz, S.; Taylor, W.D.; Vink, J.S.

    2015-01-01

    We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are

  14. DISCOVERY OF A LOW-MASS COMPANION TO THE SOLAR-TYPE STAR TYC 2534-698-1

    International Nuclear Information System (INIS)

    Kane, Stephen R.; Mahadevan, Suvrath; Sivarani, Thirupathi; Cochran, William D.; Street, Rachel A.; Henry, Gregory W.; Williamson, Michael H.

    2009-01-01

    Brown dwarfs and low-mass stellar companions are interesting objects to study since they occupy the mass region between deuterium and hydrogen burning. We report here the serendipitous discovery of a low-mass companion in an eccentric orbit around a solar-type main-sequence star. The stellar primary, TYC 2534-698-1, is a G2V star that was monitored both spectroscopically and photometrically over the course of several months. Radial velocity observations indicate a minimum mass of 0.037 M sun and an orbital period of ∼103 days for the companion. Photometry outside of the transit window shows the star to be stable to within ∼6 millimags. The semimajor axis of the orbit places the companion in the 'brown dwarf desert' and we discuss potential follow-up observations that could constrain the mass of the companion.

  15. Infrared spectroscopy of four carbon stars with 9.8 micron emission from silicate grains

    International Nuclear Information System (INIS)

    Lambert, D.L.; Smith, V.V.; Hinkle, K.H.

    1990-01-01

    High-resolution K band and low resolution 4 micron spectra were obtained for four carbon stars showing IR emission by silicate grains. The results of the analysis of the K band spectra show that they are J-type stars. These results, together with published spectral classifications, show that all known carbon stars with a silicate emission feature are J-type stars. The 4 micron spectra are very similar to the spectra of classical J-type carbon stars, and do not show SiO bands that might come from a M giant companion. A binary model with a luminous M giant companion as a source of the silicate grain is rejected. It is proposed that the silicate grains formed from gas ejecta at or before the He-core flash, and that the flash initiates severe mixing, leading to the star's conversion to a J-type carbon star. The ejecta are stored in an accretion disk around a low mass unevolved companion. If it can be shown that the hypothesized accretion disk is stable and may be heated adequately, this binary model appears to account for these peculiar carbon stars. 41 refs

  16. O-C analysis of the pulsating subdwarf B star PG 1219 + 534

    Science.gov (United States)

    Otani, Tomomi; Stone-Martinez, Alexander; Oswalt, Terry D.; Morello, Claudia; Moss, Adam; Singh, Dana; Sampson, Kenneth; DeAbreu, Caila; Khan, Aliyah; Seepersad, Austin; Shaikh, Mehvesh; Wilson, Linda

    2017-01-01

    PG 1219 + 534 (KY Uma) is a subdwarf B pulsating star with multiple periodicities between 120 - 175 s. So far, the most promising theory for the origin of subdwarf B (sdB) stars is that they result from binary mass transfer near the Helium Flash stage of evolution. The observations of PG 1219 +534 reported here are part of our program to constrain this evolutional theory by searching for companions and determining orbital separations around sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion or planet. If the star emits a periodic signal like pulsations, its orbital motion around the system’s center of mass causes periodic changes in the light pulse arrival times. PG 1219 + 534 was monitored for 90 hours during 2010-1 and 2016 using the 0.9m SARA-KP telescope at Kitt Peak National Observatory (KPNO), Arizona, and the 0.8 m Ortega telescope at Florida Institute of Technology in Melbourne. In this poster we present our time-series photometry and O-C analysis of this data.

  17. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  18. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  19. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    International Nuclear Information System (INIS)

    Joner, Michael D.; Hintz, Eric G.

    2015-01-01

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hα index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature

  20. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Michael D.; Hintz, Eric G., E-mail: joner@byu.edu, E-mail: hintz@byu.edu [Department of Physics and Astronomy, Brigham Young University, N283 ESC, Provo, UT 84602 (United States)

    2015-12-15

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hα index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature.

  1. Near infrared multicolor photometry of late type stars with the balloon borne astronomical telescope BAT-1

    International Nuclear Information System (INIS)

    Kodaira, Keiichi; Tanaka, Wataru; Nakada, Yoshikazu; Watanabe, Tetsuya; Onaka, Takashi

    1979-01-01

    A new star follower has been developed for observing the near infrared emission of late type stars. The sensor of the follower consists of a semicircular rotating sector and a photomultiplier. The practical accuracy of the angle of tracing was about 1 minute. A photometer was installed at the focus point of the main telescope. The infrared photometer consists of a filter turret, a chopper, an infrared detector and a synchronous amplifier. Five flights of balloons were made since September 13, 1974. The height of the flights was about 25 km. The type of observed spectra ranges from A0 to M6. The results of analysis was compared with the atmospheric model by Tsuji. The physical parameters, such as effective temperature, logarithm of surface gravity and velocity of turbulent flow, of late type stars (K5 - M6) were determined. (Kato, T.)

  2. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    Science.gov (United States)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  3. Adubação nitrogenada na implantação e na formação de pomares de caramboleira Nitrogen fertilization at establishment and development of star fruit orchard

    Directory of Open Access Journals (Sweden)

    Renata Moreira Leal

    2007-08-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da adubação nitrogenada na implantação e na formação de um pomar de caramboleira (Averrhoa carambola L., cv. B-10, e na acidificação do Latossolo Vermelho eutroférrico típico. O delineamento experimental adotado foi o de blocos ao acaso, com cinco tratamentos, que corresponderam a diferentes doses de nitrogênio (uréia. Na implantação, as doses utilizadas foram zero, 30, 60, 90 e 120 g por planta de N e no 1º, 2º e 3º anos experimentais, utilizou-se o dobro, o triplo e o quádruplo das doses iniciais. A adubação nitrogenada de formação, a partir do segundo ano de experimentação, promove diminuição significativa do pH, aumento da acidez potencial e diminuição das concentrações de potássio, cálcio e magnésio, soma de bases e saturação por bases do solo. Caramboleiras sem adubação nitrogenada apresentam menor teor foliar de N em relação às adubadas, e não floresceram até o terceiro ano de experimentação. No terceiro ano de experimentação, doses entre 110 e 180 g por planta de N proporcionam o melhor crescimento da caramboleira, o maior teor foliar de N, leitura SPAD e produção.The objective of this work was to study the effect of nitrogen fertilization at establishment and development of star fruit (Averrhoa carambola L., cv. B-10, orchads and the acidification of Eutrustox soil. The experiment design was in randomized blocks, comprising five treatments corresponding to different nitrogen (urea rates, with four replications. At the plant establishment, N rates were zero, 30, 60, 90 and 120 g plant-1 of N and, at the 1st, 2nd and 3rd years of experimentation, two fold, three fold and four fold of initial rate. Nitrogen fertilizer on star fruit at establishment, after the second year of experiment, result in significant pH reduction which increase potential acidity and decrease potassium, calcium and magnesium concentrations, as well as the sum of bases and

  4. New radio detections of early-type pre-main-sequence stars

    Science.gov (United States)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  5. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  6. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  7. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  8. Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective

    Science.gov (United States)

    Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.

    2018-05-01

    Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.

  9. A model of SNR evolution for an O-star in a cloudy ISM

    International Nuclear Information System (INIS)

    Shull, P. Jr.

    1988-01-01

    The authors present an analytical model of SNR evolution in a cloudy interstellar medium for a single progenitor star of spectral type 05 V. The model begins with the progenitor on the zero-age main sequence, includes the effects of the star's wind and ionizing photons, and ends with the SNR's assimilation by the ISM. The authors assume that the ISM consists of atomic clouds, molecular clouds, and a hot intercloud phase. The type of SNR that results bears a strong resemblance to N63A in the Large Magellanic Cloud

  10. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  11. Building Blocks of Dust and Large Organic Molecules: a Coordinated Laboratory and Astronomical Study of AGB Stars

    Science.gov (United States)

    McCarthy, Michael C.; Gottlieb, Carl A.; Cernicharo, Jose

    2017-06-01

    The increased sensitivity and angular resolution of high-altitude ground-based interferometers in the sub-millimeter band has enabled the physics and chemistry of carbon- and oxygen-rich evolved stars to be re-examined at an unprecedented level of detail. Observations of rotational lines in the inner envelope - the region within a few stellar radii of the central star where the molecular seeds of dust are formed - allows one to critically assess models of dust growth. Interferometric observations of the outer envelope provide stringent tests of neutral and ionized molecule formation. All of the astronomical studies are crucially dependent on precise laboratory measurements of the rotational spectra of new species and of vibrationally excited levels of known molecules and their rare isotopic species. By means of a closely coordinated laboratory and astronomical program, a number of exotic species including the disilicon carbide SiCSi, titanium oxides TiO and TiO_2, and carbon chain anions ranging from CN^- to C_8H^- have recently been observed in evolved stars. This talk will provide overview of these findings, and how they impact current models of the ``chemical laboratories'' of evolved stars. Ongoing laboratory studies of small silicon-bearing molecules such as H_2SiO_2 and vibrationally excited SiC_2 will be highlighted.

  12. STATISTICAL PROPERTIES OF GALACTIC δ SCUTI STARS: REVISITED

    International Nuclear Information System (INIS)

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P.

    2013-01-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  13. On the kinematics of O and B stars

    International Nuclear Information System (INIS)

    Byl, J.; Ovenden, M.W.

    1978-01-01

    The radial velocities of about 1000 O and B stars, Cepheids, and open clusters are incompatible with the hypothesis that the observed local compression of the galactic velocity field is the result of a ''global'' expansion with R decreasing with increasing projected galactocentric distance R, when the parameters of the global velocity field are evaluated by least-squares fitting to the observed radial velocities.The coefficients of local compression are entirely removed if to each star is attributed a radial (R) velocity component -a cos psi and a transverse (not =lambda) velocity component a/sub lambda/sinpsi, where psi is the phase, at the position of the star, in a global logarithmic spiral density-wave pattern of multiplicity m and pitch angel i. These velocity components are in addition to the velocity determined from the angular velocity of galactic rotation omega-bar (R). The method of solution enables R 0 , i, and psi 0 (the phase at the position of the Sun) to be determined. The best fit occurs with the following values of the parameters, with m=2: R 0 =10.4 +- 0.5 kpc, i=4 0 .2 +- 0 0 .2, psi 0 =165 0 +- 2 0 , omega-bar 0 '=-2.99 +- 0.08 km s -1 kpc -2 , omega-bar 0 ''=+0.78 +- 0.08 km s -1 kpc -3 , a/sub R/=+3.6 +- 0.4 km s -1 , alambda=+4.7 +- 0.6 km s -1 .The calculated phases of the stars and the values of a/sub R/ and a/sub lambda/ are consistent with the physical constraints on the density-wave theory.The addition of the density-wave velocity components explains the discrepancies found in the determination of R 0 by the method of Feast and Shuttleworth, and Trumpler and Weaver

  14. Numerical models of protoneutron stars and type-II supernovae - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    The results of recent multi-dimensional simulations of type-II supernovae are reviewed. They show that convective instabilities in the collapsed stellar core might play an important role already during the first second after the formation of the supernovae shock. Convectively unstable situations occur below and near the neutrinosphere as well as in the neutrino-heated region between the nascent neutron star and the supernova shock after the latter has stalled at a radiums of typically 100-200 km. While convective overturn in the layer of neutrino energy deposition clearly helps the explosion to develop and potentially provides an explanation of strong mantle and envelope mixing, asphericities, and non-uniform {sup 56}Ni distribution observed in supernova SN 1987A, its presence and importance depends on the strength of the neutrino heating and thus on the size of the neutrino fluxes from the neutrino star. Convection in the hot-bubble region can only be developed if the growth timescale of the instabilities and the heating timescale are both shorter than the accretion timescale of the matter advected through the stagnant shock. For too small neutrino luminosities this requirement is not fulfilled and convective activity cannot develop, leading to very weak explosions or even fizzling models, just as in the one-dimensional situations. Convectively enhanced neutrino luminosities from the protoneutron star can therefore provide an essential condition for the explosion of the star. Very recent two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate and confirm the possibility that Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star within less than one second and can lead to an increase of the neutrino fluxes by up to a factor of two. (author) 9 figs., refs.

  15. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  16. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  17. Inter-Division IV/V WG on Active OB Stars

    NARCIS (Netherlands)

    Owocki, S.; Aerts, C.; Fabregat, J.; Gies, D.; Henrichs, H.F.; McDavid, D.; Porter, J.; Rivinius, T.; Peters, G.; Stefl, S.

    2007-01-01

    Our group studies active early-type (OB) stars, with historical focus on classical Be stars, but extending in recent years to include Slowly Pulsating B-stars (SPB), Beta-Cephei stars, the strongly magnetic Bp stars, Luminous Blue Vairiable (LBV) stars, and B[e] stars. An overall goal is to

  18. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  19. New radio detections of early-type pre-main-sequence stars

    International Nuclear Information System (INIS)

    Skinner, S.L.; Brown, A.; Linsky, J.L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out. 32 refs

  20. Ultraviolet radiation from F and K stars and implications for planetary habitability

    Science.gov (United States)

    Kasting, J. F.; Whittet, D. C.; Sheldon, W. R.

    1997-01-01

    Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.

  1. Photometric studies of two W UMa type variables in the field of distant open cluster NGC 6866

    International Nuclear Information System (INIS)

    Joshi, Yogesh Chandra; Joshi, Santosh; Jagirdar, Rukmini

    2016-01-01

    We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC 6866. Although these systems, namely ID487 and ID494, were reported by Joshi et al., a detailed study of these stars has not been carried out before. The orbital periods of these stars are found to be 0.415110±0.000001 day and 0.366709±0.000004 day, respectively. Based on the photometric and infrared colors, we find their respective spectral types to be K0 and K3. The photometric light variations of both stars show the O'Connell effect which can be explained by employing a dark spot on the secondary components. The V and I band light curves are analyzed using the Wilson-Devinney (WD) code and relations given by Gazeas which yield radii and masses for the binary components of star ID487 of R 1 = 1.24 ± 0.01 R ⊙ , R 2 = 1.11 ± 0.02 R ⊙ , and M 1 = 1.24 ± 0.02 M ⊙ , M 2 = 0.96 ± 0.05 M ⊙ and for star ID494 of R 1 = 1.22±0.02R ⊙ , R 2 = 0.81±0.01 R ⊙ , and M 1 = 1.20±0.06 M ⊙ , M 2 = 0.47±0.01 M ⊙ . (paper)

  2. Discovery of a New Dusty B[E] Star in the Small Magellanic Cloud

    Science.gov (United States)

    Wisniewski, John P.; Bjorkman, Karen S.; Bjorkman, Jon E.; Clampin, Mark

    2007-01-01

    We present new optical spectroscopic and Spitzer IRAC photometric observations of a B-type star in the SMC cluster NGC 346, NGC 346:KWBBe 200. We detect numerous Fe II, [O I], [Fe II], as well as strong P-Cygni profile H I emission lines in its optical spectrum. The star's near-IR color and optical to IR SED clearly indicate the presence of an infrared excess, consistent with the presence of gas and warm, T -800 K, circumstellar dust. Based on a crude estimate of the star's luminosity and the observed spectroscopic line profile morphologies, we find that the star is likely to be a B-type supergiant. We suggest that NGC 346:KWBBe 200 is a newly discovered B[e] supergiant star, and represents the fifth such object to be identified in the SMC.

  3. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  4. Chemical Composition of Young Stars in the Leading Arm of the Magellanic System

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Zhao, Gang [Key Lab. of Optical Astronomy, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012 Beijing (China); Moni Bidin, Christian [Instituto de Astronomía, Universidad Católica del Norte, Av. Angomos 0610, Antofagasta (Chile); Casetti-Dinescu, Dana I. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Méndez, Réne A. [Departamento de Astronomia Universidad de Chile, Camino El Observatorio #1515, Las Condes, Santiago (Chile); Girard, Terrence M. [14 Dunn Rd, Hamden, Connecticut, CT 06518 (United States); Korchagin, Vladimir I. [Institute of Physics, Southern Federal University, Stachki st/194, 344090, Rostov-on-Don (Russian Federation); Vieira, Katherine; Van Altena, William F. [Centro de Investigaciones de Astronomiá, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-02-01

    Chemical abundances of eight O- and B-type stars are determined from high-resolution spectra obtained with the MIKE instrument on the Magellan 6.5 m Clay telescope. The sample is selected from 42 candidates for membership in the Leading Arm (LA) of the Magellanic System. Stellar parameters are measured by two independent grids of model atmospheres and analysis procedures, confirming the consistency of the stellar parameter results. Abundances of seven elements (He, C, N, O, Mg, Si, and S) are determined for the stars, as are their radial velocities and estimates of distances and ages. Among the seven B-type stars analyzed, the five that have radial velocities compatible with membership of the LA have an average [Mg/H] of −0.42 ± 0.16, significantly lower than the average of the remaining two, [Mg/H] = −0.07±0.06, which are kinematical members of the Galactic disk. Among the five LA members, four have individual [Mg/H] abundance compatible with that in the LMC. Within errors, we cannot exclude the possibility that one of these stars has an [Mg/H] consistent with the more metal-poor, SMC-like material. The remaining fifth star has an [Mg/H] close to Milky Way values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ∼50–70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. V {sub LSR} of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies.

  5. Spectroscopic monitoring of bright A-F type candidate hybrid stars discovered by the Kepler mission

    Science.gov (United States)

    Lampens, Patricia; Frémat, Y.; Vermeylen, Lore; De Cat, Peter; Dumortier, Louis; Sódor, Ádám; Sharka, Marek; Bognár, Zsófia

    2018-04-01

    We report on a study of 250 optical spectra for 50 bright A/F-type candidate hybrid pulsating stars from the Kepler field. Most of the spectra have been collected with the high-resolution spectrograph HERMES attached to the Mercator telescope, La Palma. We determined the radial velocities (RVs), projected rotational velocities, fundamental atmospheric parameters and provide a classification based on the appearance of the cross-correlation profiles and the behaviour of the RVs with time in order to find true hybrid pulsators. Additionally, we also detected new spectroscopic binary and multiple systems in our sample and determined the fraction of spectroscopic systems. In order to be able to extend this investigation to the fainter A-F type candidate hybrid stars, various high-quality spectra collected with 3-4 m sized telescopes suitably equipped with a high-resolution spectrograph and furthermore located in the Northern hemisphere would be ideal. This programme could be done using the new instruments installed at the Devasthal Observatory.

  6. A New Photometric Study of Ap and Am Stars in the Infrared

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. S.; Liu, J. Y.; Shan, H. G., E-mail: chenps@ynao.ac.cn [Yunnan Observatories and Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-05-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e., in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  7. A New Photometric Study of Ap and Am Stars in the Infrared

    International Nuclear Information System (INIS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-01-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e., in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  8. A BINARY ORBIT FOR THE MASSIVE, EVOLVED STAR HDE 326823, A WR+O SYSTEM PROGENITOR

    International Nuclear Information System (INIS)

    Richardson, N. D.; Gies, D. R.; Williams, S. J.

    2011-01-01

    The hot star HDE 326823 is a candidate transition-phase object that is evolving into a nitrogen-enriched Wolf-Rayet star. It is also a known low-amplitude, photometric variable with a 6.123 day period. We present new, high- and moderate-resolution spectroscopy of HDE 326823, and we show that the absorption lines show coherent Doppler shifts with this period while the emission lines display little or no velocity variation. We interpret the absorption line shifts as the orbital motion of the apparently brighter star in a close, interacting binary. We argue that this star is losing mass to a mass gainer star hidden in a thick accretion torus and to a circumbinary disk that is the source of the emission lines. HDE 326823 probably belongs to a class of objects that produce short-period WR+O binaries.

  9. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    Science.gov (United States)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  10. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    Science.gov (United States)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  11. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    Science.gov (United States)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  12. Origin of the early-type R stars: a binary-merger solution to a century-old problem?

    NARCIS (Netherlands)

    Izzard, R.G.; Jeffery, C.S.; Lattanzio, J.C.

    2007-01-01

    The early-R stars are carbon-rich K-type giants. They are enhanced in C12, C13 and N14, have approximately solar oxygen, magnesium isotopes, s-process and iron abundances, have the luminosity of core-helium burning stars, are not rapid rotators, are members of the Galactic thick disk and, most

  13. Massive runaway stars in the Large Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the

  14. The influence of H2O line blanketing on the spectra of cool dwarf stars

    Science.gov (United States)

    Allard, F.; Hauschildt, P. H.; Miller, S.; Tennyson, J.

    1994-01-01

    We present our initial results of model atmosphere calculations for cool M dwarfs using an opacity sampling method and a new list of H2O lines. We obtain significantly improved fits to the infrared spectrum of the M dwarf VB10 when compared to earlier models. H2O is by far the dominant opacity source in cool stars. To illustrate this, we show the Rosseland mean of the total extinction under various assumptions. Our calculations demonstrate the importance of a good treatment of the water opacities in cool stars and the improvements possible by using up-to-date data for the water line absorption.

  15. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    Science.gov (United States)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  16. Spectrographic study of λ 4200 silicon particular stars

    International Nuclear Information System (INIS)

    Didelon, Pierre

    1983-01-01

    This research thesis reports a spectrographic study of sample of particular stars belonging to the Si(II) λ 4200 subgroup which builds up the hot end of conventional 'Ap,Bp' stars. Twenty snapshots taken at the Haute-Provence observatory have been studied and compared with the observation of 17 standard stars. All these snapshots have been digitalised and processed. This allowed the identification of lines which indicated the presence of gallium and the absence of manganese which contradicts the close correlation between these elements that was generally admitted. An inexplicable and until now non observed duplication of Si(II) lines has also been observed. The problem of spectral classification of these stars has been studied. In order to study the concerned stars without calculation of atmospheric models, a comparative method between group stars and reference stars has been used. Results are discussed and seem to indicate an erratic and non-correlated behaviour of light elements (C, Mg, Ca, Si), and a presence of heavier elements (Ga, Sr) and rare earths (Eu, Gd) only when elements of the iron peak are stronger [fr

  17. TIME-DEPENDENT NONEXTENSIVITY ARISING FROM THE ROTATIONAL EVOLUTION OF SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J. R. P.; Nepomuceno, M. M. F.; Soares, B. B.; De Freitas, D. B., E-mail: joseronaldo@uern.br [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró-RN (Brazil)

    2013-11-01

    Nonextensive formalism is a generalization of the Boltzmann-Gibbs statistics. In this formalism, the entropic index q is a quantity characterizing the degree of nonextensivity and is interpreted as a parameter of long-memory or long-range interactions between the components of the system. Since its proposition in 1988, this formalism has been applied to investigate a wide variety of natural phenomena. In stellar astrophysics, a theoretical distribution function based on nonextensive formalism (q distributions) has been successfully applied to reproduce the distribution of stellar radial and rotational velocity data. In this paper, we investigate the time variation of the entropic index q obtained from the distribution of rotation, Vsin i, for a sample of 254 rotational data for solar-type stars from 11 open clusters aged between 35.5 Myr and 2.6 Gyr. As a result, we have found an anti-correlation between the entropic index q and the age of clusters, and that the distribution of rotation Vsin i for these stars becomes extensive for an age greater than about 170 Myr. Assuming that the parameter q is associated with long-memory effects, we suggest that the memory of the initial angular momentum of solar-type stars can be scaled by the entropic index q. We also propose a physical link between the parameter q and the magnetic braking of stellar rotation.

  18. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  19. Relation between radio luminosity and rotation for late-type stars

    International Nuclear Information System (INIS)

    Stewart, R.T.; Innis, J.L.; Slee, O.B.; Nelson, G.J.; Wright, A.E.

    1988-01-01

    A relation is found between peak radio luminosities measured at 8 GHz and the rotational velocity of 51 late-type F, G, and K stars (including the sun). The sample includes both single stars and active components of close binary systems, with equatorial surface velocities ranging from 1 to 100 km/s. A gyrosynchrotron source model originally developed to explain solar microwave bursts could explain the relation. The main parameter depending on rotation rate is the filling factor, i.e., the fraction of the stellar surface and corona occupied by intense magnetic fields. As the rotation speed increases, the scale size of the coronal structures emitting microwave gyrosynchrotron radiation increases, and there is a corresponding increase in the area of the surface covered by intense starspot magnetic fields. However, the peak magnetic field of the starspots probably does not increase significantly above observed sunspot values. 47 references

  20. The chemical composition of three Lambda Bootis stars

    International Nuclear Information System (INIS)

    Venn, K.A.; Lambert, D.L.

    1990-01-01

    Abundance analyses are reported for three certain members (Lambda Boo, 29 Cyg, Pi1 Ori) of the class of rapidly rotating, metal-poor A-type stars known as Lambda Bootis stars. Model atmosphere analysis of high-resolution, high signal-to-noise spectra shows that the metal deficiencies are more severe than previously reported: Fe/H = -2.0, -1.8, -1.3 for Lambda Boo, 29 Cyg, and Pi1 Ori, respectively. Other metals (Mg, Ca, Ti, and Sr) are similarly underabundant, with Na often having a smaller underabundance. C, N, O, and S have near-solar abundances. Vega is shown to be a mild Lambda Boo star. The abundance anomalies of the Lambda Boo stars resemble those found for the interstellar gas in which the metals are depleted through formation of interstellar grains. It is suggested that the Lambda Boo stars are created when circumstellar (or interstellar) gas is separated from the grains and accreted by the star. The bulk of the interstellar grains comprises a circumstellar cloud or disk that is detectable by its infrared radiation. 67 refs

  1. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  2. Predicting the Detectability of Oscillations in Solar-type Stars Observed by Kepler

    DEFF Research Database (Denmark)

    Chaplin, William J.; Kjeldsen, Hans; Bedding, Timothy R.

    2011-01-01

    Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here,...

  3. Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA

    Science.gov (United States)

    Wong, Ka Tat

    2018-04-01

    Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.

  4. Spectra of late type dwarf stars of known abundance for stellar population models

    Science.gov (United States)

    Oconnell, R. W.

    1990-01-01

    The project consisted of two parts. The first was to obtain new low-dispersion, long-wavelength, high S/N IUE spectra of F-G-K dwarf stars with previously determined abundances, temperatures, and gravities. To insure high quality, the spectra are either trailed, or multiple exposures are taken within the large aperture. Second, the spectra are assembled into a library which combines the new data with existing IUE Archive data to yield mean spectral energy distributions for each important type of star. My principal responsibility is the construction and maintenance of this UV spectral library. It covers the spectral range 1200-3200A and is maintained in two parts: a version including complete wavelength coverage at the full spectral resolution of the Low Resolution cameras; and a selected bandpass version, consisting of the mean flux in pre-selected 20A bands. These bands are centered on spectral features or continuum regions of special utility - e.g. the C IV lambda 1550 or Mg II lambda 2800 feature. In the middle-UV region, special emphasis is given to those features (including continuum 'breaks') which are most useful in the study of F-G-K star spectra in the integrated light of old stellar populations.

  5. Structure of the atmosphere of late-type stars

    International Nuclear Information System (INIS)

    Straume, Ya.I.

    1976-01-01

    A method of calculation of model atmospheres of late-type stars is described. The model atmospheres have been constructed for effective temperature Tsub(e)=2500, 3000, 3500, 4000, 4500 and 5785 K at solar chemical composition and surface gravities log g = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0 based on LTE and a plane-parallel horizontally homogeneous structure. Opacity due to H, H - and H 2 - was taken into account. The equation of state includes 10 metals and H 2 , H 2 - and H 2 + molecules. The results are compared with those published elsewhere. A satisfactory agreement is obtained for Tsub(e) > 3000 K

  6. Luminous carbon star in Canis Major OB1

    International Nuclear Information System (INIS)

    Herbst, W.; Racine, R.; Richer, H.B.

    1977-01-01

    The fact that W CMa illuminates a reflection nebula is used to argue that it is spatially associated with the CMa OBl/CMa Rl complex. An apparent cluster around the carbon star is found to consist primarly of field stars, although a few probable late B-type members of CMa OBl are identified. On the basis of its likely association with CMa OBl, a luminosity for W CMa is derived. The values M/sub v/ = -4.7 and M/sub bol/ = - 7.2 are found. It seems likely that the progenitor of W CMa was an O-type member of CMa OBl with a mass greater than 20 M/sub solar/ and a main-sequence lifetime less than 3 x 10 6 years

  7. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  8. Extensions of the Wilson-Bappu effect among very luminous stars

    International Nuclear Information System (INIS)

    Stencel, R.E.

    1978-01-01

    Wilson and Bappu (1957) published their observational correlation of Msub(v) and the logarithm of the full width at half maximum of the CaII K-line central emission for G, K and M stars. The accuracy makes the approach valuable for late-type supergiants since other methods suffer from comparable errors. However, for F through M supergiants (Ia, O), circumstellar absorption obscures the chromospheric K-line core emission and excludes such objects from the Wilson-Bappu correlation. The author reports on a new class of emission lines in late-type giant and supergiant spectra that exhibit Msub(v) correlated widths, yet are detectable among the brightest stars. (Auth.)

  9. News on the X-ray emission from hot subdwarf stars

    Directory of Open Access Journals (Sweden)

    Palombara Nicola La

    2017-12-01

    Full Text Available In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star, as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  10. Photometry of Southern Hemisphere red dwarf stars

    Science.gov (United States)

    Weistrop, D.

    1980-01-01

    Results are presented for a photometric investigation of a spectroscopically selected sample of red dwarf stars in the Southern Hemisphere. Absolute magnitudes and distances for the stars are estimated from broadband red colors. Three stars which may be subluminous are identified, as are several stars which may be within 25 pc. The tangential velocity and velocity dispersion of the sample are similar to values found in other studies of nearby late-type stars.

  11. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  12. Shells around stars

    International Nuclear Information System (INIS)

    Olnon, F.M.

    1977-01-01

    This thesis deals with optically visible stars surrounded by gas and dust and hot enough to ionize the hydrogen atoms in their envelopes. The ionized gas emits radio continuum radiation by the thermal Bremsstrahlung mechanism. Cool giant stars that show radio line emission from molecules in their circumstellar envelopes are discussed. Under favourable conditions the so-called maser effect gives rise to very intense emission lines. Up till now seven different maser transitions have been found in the envelopes of cool giants. Four of these lines from OH, H 2 O and SiO are studied here. Each of them originates in a different layer so that these lines can be used to probe the envelope. The profile of a maser line gives information about the velocity structure of the region where it is formed

  13. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bryson, Stephen T.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jenkins, Jon M.; Van Cleve, Jeffrey; Caldwell, Douglas A. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Dunham, Edward W. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Latham, David W.; Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University (Denmark); Christensen-Dalsgaard, Jorgen, E-mail: howard@astro.berkeley.edu [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); and others

    2012-08-01

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an

  14. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, C.; Kanaan, S.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso. Av. Gran Bretana 1111, Valparaíso (Chile); Jones, C. E.; Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-06-10

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {sub ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

  15. The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae

    Science.gov (United States)

    Smartt, S. J.; Eldridge, J. J.; Crockett, R. M.; Maund, J. R.

    2009-05-01

    We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is mmin = 8.5+1-1.5Msolar and the maximum mass for II-P progenitors is mmax = 16.5 +/- 1.5Msolar, assuming a Salpeter initial mass function holds for the progenitor population (in the range Γ = -1.35+0.3-0.7). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25Msolar and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30Msolar. The reason we have not detected any high-mass red supergiant progenitors above 17Msolar is unclear, but we estimate that it is statistically significant at 2.4σ confidence. Two simple reasons for this could be that we have systematically

  16. Hot subluminous stars: Highlights from the MUCHFUSS and Kepler missions

    Directory of Open Access Journals (Sweden)

    Geier S.

    2013-03-01

    Full Text Available Research into hot subdwarf stars is progressing rapidly. We present recent important discoveries. First we review the knowledge about magnetic fields in hot subdwarfs and highlight the first detection of a highly-magnetic, helium-rich sdO star. We briefly summarize recent discoveries based on Kepler light curves and finally introduce the closest known sdB+WD binary discovered by the MUCHFUSS project and discuss its relevance as a progenitor of a double-detonation type Ia supernova.

  17. Infrared (1.4-4.1μm) spectra of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Williams, P.M.

    1982-01-01

    The spectra of a variety of Wolf-Rayet stars have been observed with approximately 1% spectral resolution in the 1.4-4.1μm region using UKIRT. Strong lines due to ions of helium and carbon are observed and their relative strengths discussed. The He I singlet at 2.058μm is anomalously strong relative to other He I lines in WC stars and is responsible for the difference in the (H-K) colours of WN and WC stars. Emission line corrections to H, K and L magnitudes of different types are discussed. The Sanduleak O VI star ST 3 shows very strong C IV lines like the WC5 stars but not the strong He I. (Auth.)

  18. X-ray stars observed in LAMOST spectral survey

    Science.gov (United States)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  19. A STATISTICAL RECONSTRUCTION OF THE PLANET POPULATION AROUND KEPLER SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Silburt, Ari; Wu, Yanqin; Gaidos, Eric

    2015-01-01

    Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4 R ⊕ ) planets and their distributions with radius and orbital period. We analyze 76,711 solar-type (0.8 < R * /R ☉ < 1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an ''iterative simulation'' technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lower numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46 ± 0.03. The occurrence is ∼0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the ''habitable zone'' (defined as 1-2 R ⊕ , 0.99-1.7 AU for solar-twin stars) as 6.4 −1.1 +3.4 %. Our results largely agree with those of Petigura et al., although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star

  20. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  1. Star-shaped ZnO/Ag hybrid nanostructures for enhanced photocatalysis and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R.S., E-mail: grsandrade@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Nascimento, Cristiane C. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Federal Institute of Education, Science and Technology of Sergipe, Glória Campus, Nossa Senhora da Glória, SE (Brazil); Lima, Zenon M. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); Teixeira-Neto, Erico [LNNano − Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP (Brazil); Costa, Luiz P. [Postgraduate Program in Industrial Biochemistry, Tiradentes University, Aracaju, SE (Brazil); ITPS − Technological and Research Institute of Sergipe, Aracaju, SE (Brazil); Gimenez, Iara F. [Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE (Brazil); Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE (Brazil)

    2017-03-31

    Highlights: • A new and simple one-pot method for preparing star-shaped ZnO particles was reported. • ZnO particles were decorated with Ag nanoparticles (SNPs) by a photodeposition method. • The presence of SNC{sup −} ions on ZnO surface prevented uncontrollable growth of SNPs. • ZnO/Ag particles showed plasmon-enhanced photocatalytic activity toward an AZO dye. • SNP improved 16 times the antibacterial activity of ZnO toward 4 bacterial strains. - Abstract: Zinc oxide (ZnO) particles with a star-shaped morphology have been synthesized by a novel and simple room-temperature method and decorated with silver nanoparticles (SNPs) for enhanced photocatalysis and bactericide applications. The presence of thiourea during the precipitation of ZnO in alkaline conditions allowed the control of morphological features (e.g. average size and shape) and the surface functionalization with thiocyanate ions (SCN{sup −}). SNPs were deposited into the ZnO surface by a photoreduction method and their sizes could be easily controlled by changing the ZnO/AgNO{sub 3} ratio. The presence of SCN{sup −} on the semiconductor surface prevents uncontrollable growth of Ag nanoparticles into different morphologies and high degrees of polydispersity. XRD, SEM, TEM, FTIR, UV-vis-NIR and PL were employed for characterizing the structure, morphology and optical properties of the as-obtained pure and hybrid nanostructures. Finally, the hybrid ZnO/Ag particles have shown plasmon-enhanced performance for applications in photocatalysis and antibacterial activity compared to the pure ZnO counterpart. In this work, evaluation of the photodegradation of an aqueous methylene blue solution under UV-A irradiation and the antibacterial activity toward 4 bacterial strains, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300, ATCC 25923 and ATCC 33591) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853).

  2. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    International Nuclear Information System (INIS)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-01-01

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 ± 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  3. SEARCHING FOR NEW YELLOW SYMBIOTIC STARS: POSITIVE IDENTIFICATION OF StHα63

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Pereira, C. B.; Alvarez-Candal, A. [Observatório Nacional/MCTI, Rua Gen. José Cristino, 77, 20921-400, Rio de Janeiro (Brazil); Miranda, L. F., E-mail: nobar.baella@gmail.com, E-mail: claudio@on.br, E-mail: alvarez@on.br, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía- CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2016-04-15

    Yellow symbiotic stars are useful targets for probing whether mass transfer has happened in their binary systems. However, the number of known yellow symbiotic stars is very scarce. We report spectroscopic observations of five candidate yellow symbiotic stars that were selected by their positions in the 2MASS (J − H) versus (H − K{sub s}) diagram and which were included in some emission-line catalogs. Among the five candidates, only StHα63 is identified as a new yellow symbiotic star because of its spectrum and its position in the [TiO]{sub 1}–[TiO]{sub 2} diagram, which indicates a K4–K6 spectral type. In addition, the derived electron density (∼10{sup 8.4} cm{sup −3}) and several emission-line intensity ratios provide further support for that classification. The other four candidates are rejected as symbiotic stars because three of them actually do not show emission lines and the fourth one only Balmer emission lines. We also found that the WISE W3–W4 index clearly separates normal K-giants from yellow symbiotic stars and therefore can be used as an additional tool for selecting candidate yellow symbiotic stars.

  4. SPITZER SAGE-SMC INFRARED PHOTOMETRY OF MASSIVE STARS IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Bonanos, A. Z.; Lennon, D. J.; Massa, D. L.

    2010-01-01

    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE-SMC survey database, for which we present uniform photometry from 0.3to24 μm in the UBVIJHK s +IRAC+MIPS24 bands. We compare the color-magnitude diagrams and color-color diagrams to those of stars in the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 μm in the SMC are a few very luminous hypergiants, four B-type stars with peculiar, flat spectral energy distributions, and all three known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in our SMC catalog, respectively, when compared to the LMC catalog, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A and F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.

  5. The Be-test in the Li-rich star #1657 of NGC 6397: evidence for Li-flash in RGB stars?

    Science.gov (United States)

    Pasquini, L.; Koch, A.; Smiljanic, R.; Bonifacio, P.; Modigliani, A.

    2014-03-01

    Context. The Li-rich turn-off star recently discovered in the old, metal-poor globular cluster NGC 6397 could represent the smoking gun for some fundamental, but very rare episode of Li enrichment in globular clusters and in the early Galaxy. Aims: We aim to understand the nature of the Li enrichment by performing a spectroscopic analysis of the star, in particular of its beryllium (Be) abundance, and by investigating its binary nature. Methods: We used the VLT/UVES spectrograph to observe the near UV region where the Be ii resonance doublet and the NH bands are located. We also re-analyzed an archival Magellan/MIKE spectra for C and O abundance determination. Results: We could not detect the Be ii lines and derive an upper limit of log (Be/H) contaminated by telluric absorptions but is consistent with [O/Fe] ~ 0.5. Combining the UVES and Mike data, we could not detect any variation in the radial velocity greater than 0.95 kms-1 over 8 years. Conclusions: The chemical composition of the star strongly resembles that of "first generation" NGC 6397 stars, with the huge Li as the only deviating abundance. Not detecting Be rules out two possible explanations of the Li overabundance: capture of a substellar body and spallation caused by a nearby type II SNe. Discrepancies are also found with respect to other accretion scenarios, except for contamination by the ejecta of a star that has undergone the RGB Li-flash. This is at present the most likely possibility for explaining the extraordinary Li enrichment of this star. Based on observations collected at ESO, VLT, Chile, Proposal 091.D-0198(A).

  6. Search for bright stars with infrared excess

    Energy Technology Data Exchange (ETDEWEB)

    Raharto, Moedji, E-mail: moedji@as.itb.ac.id [Astronomy Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Bright stars, stars with visual magnitude smaller than 6.5, can be studied using small telescope. In general, if stars are assumed as black body radiator, then the color in infrared (IR) region is usually equal to zero. Infrared data from IRAS observations at 12 and 25μm (micron) with good flux quality are used to search for bright stars (from Bright Stars Catalogues) with infrared excess. In magnitude scale, stars with IR excess is defined as stars with IR color m{sub 12}−m{sub 25}>0; where m{sub 12}−m{sub 25} = −2.5log(F{sub 12}/F{sub 25})+1.56, where F{sub 12} and F{sub 25} are flux density in Jansky at 12 and 25μm, respectively. Stars with similar spectral type are expected to have similar color. The existence of infrared excess in the same spectral type indicates the existence of circum-stellar dust, the origin of which is probably due to the remnant of pre main-sequence evolution during star formation or post AGB evolution or due to physical process such as the rotation of those stars.

  7. The incidence of stellar mergers and mass gainers among massive stars

    International Nuclear Information System (INIS)

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-01-01

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8 −4 +9 % of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30 −15 +10 % of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  8. Star-shaped ladder-type ter(p-phenylene)s for efficient multiphoton absorption.

    Science.gov (United States)

    Guo, Lei; Li, King Fai; Wong, Man Shing; Cheah, Kok Wai

    2013-05-04

    Star-shaped ladder-type ter(p-phenylene)s exhibit remarkably efficient multiphoton absorption properties with 2PA cross-section up to 2579 GM at 700 nm and 3PA cross-section up to 3.35 × 10(-76) cm(6) s(2) in the femtosecond regime for a blue-emissive molecule despite having such a short π-conjugated framework.

  9. Elemental abundances of mercury-manganese stars and the population 2-type star HD 109995

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1985-02-01

    Ultraviolet and optical data for the Hg-Mn stars Coronae Borealis and Cancri is being combined with data for the field-horizontal-branch population II star HD 109995 in order to derive the element abundances in their photospheres. Data collected by IUE is being utilized

  10. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  11. The WO Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    Sanduleak (1971) has listed five stars, not apparently associated with planetary nebulae, which show very strong O VI 3811.34 A emission. He pointed out that two of them are in the Magellanic Clouds and have absolute magnitudes comparable to those of classical (Population I) Wolf-Rayet stars. O VI emission is known to occur in some classical Wolf-Rayet stars, but not with the extreme strength shown by the Sanduleak stars. The authors have obtained absolute optical spectrophotometry (3100 - 7400 A) of all five of these stars, using the UCL Image Photon Counting System and RGO Spectrograph on the Anglo-Australian Telescope. Their relative flux distributions are shown. Inspection shows that Sand 1 is very lightly reddened, Sand 2 and 3 have intermediate reddening, and Sand 4 and 5 are heavily reddened. IUE ultraviolet spectrophotometry has been obtained of the first three stars; Sand 4 and 5 are too heavily reddened for IUE spectra to be feasible. (Auth.)

  12. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind [Cal. State Univ., Fullerton, Fullerton, CA (United States); Neff, James E.; Steele, Patricia A. [College of Charleston, Charleston, SC (United States); Gray, Richard O. [Appalachian State Univ., Boone, NC (United States); Corbally, Christopher J. [Vatican Observatory, Tucson, AZ (United States)

    2016-04-15

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.

  13. UTILIZING SYNTHETIC UV SPECTRA TO EXPLORE THE PHYSICAL BASIS FOR THE CLASSIFICATION OF LAMBDA BOÖTIS STARS

    International Nuclear Information System (INIS)

    Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind; Neff, James E.; Steele, Patricia A.; Gray, Richard O.; Corbally, Christopher J.

    2016-01-01

    Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars

  14. NEW X-RAY DETECTIONS OF WNL STARS

    International Nuclear Information System (INIS)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-01-01

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L x ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v ∞ ). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L x with wind luminosity L wind = (1/2)M-dot v 2 ∞ , suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  15. NEW X-RAY DETECTIONS OF WNL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space and Solar-Terrestrial Research Institute, Moskovska str. 6, Sofia-1000 (Bulgaria); Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland); Sokal, Kimberly R., E-mail: Stephen.Skinner@colorado.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  16. Spectroscopic survey of Kepler stars - II. FIES/NOT observations of A- and F-type stars

    DEFF Research Database (Denmark)

    Niemczura, E.; Polinska, M.; Murphy, S. J.

    2017-01-01

    to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined...... obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature....

  17. Spectroscopic studies of O-type binaries. IV. HD 165052 and Hd 167771

    International Nuclear Information System (INIS)

    Morrison, N.D.; Conti, P.S.

    1978-01-01

    HD 165052, O6.5 V, and HD 167771, 07.5 III ((f)), are double-lined binaries with periods of six and four days, respectively, and velocity semiamplitudes near 100 km s -1 . In our spectroscopic orbital analysis, we investigated the effect of correcting the measured radial velocities for pair blending. The derived velocity amplitudes are increased by roughly 7%, and hence the minimum masses increase by 20%--255. The raw data lead to minimum masses, m sin 3 i, between 2 and 3 mD/sub sun/. Since normal O stars are thought to have masses greater than 20 m/sub sun/, the orbits must be highly inclined to the line of sight. From the luminosities and effective temperatures we derived stellar radii. For HD 167771, the requirement that neither component over fill it Roche lobe implies that each has a mass in the neighborhood of 30m/sub sun/ or larger

  18. Flares on a Bp Star

    Science.gov (United States)

    Mullan, D. J.

    2009-09-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  19. FLARES ON A Bp STAR

    International Nuclear Information System (INIS)

    Mullan, D. J.

    2009-01-01

    Two large X-ray flares have been reported from the direction of a magnetic B2p star (σ Ori E). Sanz-Forcada et al. have suggested that the flares did not occur on the B2p star but on a companion of late spectral type. A star which is a candidate for a late-type flare star near σ Ori E has recently been identified by Bouy et al. However, based on the properties of the flares, and based on a recent model of rotating magnetospheres, we argue that, rather than attributing the two flares to a late-type dwarf, it is a viable hypothesis that the flares were magnetic phenomena associated with the rotating magnetosphere of the B2p star itself.

  20. The VLT-FLAMES Tarantula Survey. XXII. Multiplicity properties of the B-type stars

    NARCIS (Netherlands)

    Dunstall, P.R.; Dufton, P.L.; Sana, H.; Evans, C.J.; Howarth, I.D.; Simón-Díaz, S.; de Mink, S.E.; Langer, N.; Maíz Apellániz, J.; Taylor, W.D.

    2015-01-01

    We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate relative radial velocities from the helium and metal

  1. infrared spectra of T Tau stars and related objects

    International Nuclear Information System (INIS)

    Shanin, G.I.; Shevchenko, V.S.; Shcherbakov, A.G.

    1975-01-01

    Four T Tau stars and related objects (RY Tau, T Tau, AB Aur and V1057 Cyg) have been included in the authors' spectroscopic programme since 1973. The present paper is concerned with the spectroscopic observations made at the Crimea with the single stage image tube S1. Tentative atomic line identifications are given for programme stars. Ca II and O I emission line equivalent widths and profiles are presented for RY Tau, T Tau and AB Aur. The lambda 10830 A line of neutral helium has shown P Cyg-type features for T Tau and V 1057 Cyg. (Auth.)

  2. Small angle neutron scattering study on star di-block copolymers

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2006-01-01

    Determining structural properties, phase transitions and stability of polymer mixtures is very important to produce new materials with desired and interesting properties. Small Angle Neutron Scattering Technique (SANS) has been one of the most powerful and intensely used methods for the characterization of polymers for last decades, m this study, we use a model based on Gaussian Random Phase Approximation (RPA) to describe Star Di-block Copolymers (SDC) mixtures with homo-polymers. We could able to predict the miscibility and phase transitions of the various mixtures along with their structure factors, producing a thermodynamic picture of the system. Also the results suggest that scattering intensity will be dictated by the structure factor of the core or shell parts of star polymer only, which depends on the homo-polymer type of the mixture

  3. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  4. Prospects for asteroseismology of rapidly rotating B-type stars

    OpenAIRE

    Saio, Hideyuki

    2013-01-01

    In rapidly rotating stars Coriolis forces and centrifugal deformations modify the properties of oscillations; the Coriolis force is important for low-frequency modes, while the centrifugal deformation affects mainly p-modes. Here, we discuss properties of g- and r-mode oscillations in rotating stars. Predicted frequency spectra of high-order g-modes (and r-modes) excited in rapidly rotating stars show frequency groupings associated with azimuthal order $m$. We compare such properties with obs...

  5. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction 15 O(α, γ) 19 Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the 15 O(α, γ) 19 Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations

  6. Chemical Compositions of Young Stars in the Leading Arm of the Magellanic System

    Science.gov (United States)

    Zhang, L.; Moni Bidin, C.; Casetti-Dinescu, D. I.; Mendez, R. A.; Girard, T. M.; Korchagin, V. I.; Vieira, K.; van Altena, W. F.; Zhao, G.

    2017-07-01

    Seven element abundances (He, C, N, O, Mg, Si, and S) and kinematics were determined for eight O-/B- type stars, based on high resolution spectra taken with the MIKE instrument on the Magellan 6.5m Clay telescope (program ID: CN2014A-057). The sample is selected from 42 candidates Casetti-Dinescu et al.(2014, ApJL, 784, L37) of membership in the Leading Arm (LA) of the Magellanic System. After investigating the relationship between abundances and kinematics parameters, we found that five stars have kinematics compatible with LA membership, i.e. RV>100kms-1. For the five possible LA member stars, Mg abundance is significantly lower than that of the remaining two that are kinematical members of the Galactic disk, and is more close to the LMC values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ˜ 50-70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. VLSR of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies (McClure-Griffiths et al.2008, ApJ, 673, L143). Our abundance and kinematic results for the LA member stars demonstrate that parts of the LA are hydrodynamically interacting with the gaseous Galactic disk, forming young stars that are chemically distinct from those in the Galactic disk. These results can provide constraints to future models for the Magellanic leading material.

  7. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  8. Avaliação de diferentes tipos de atmosferas modificadas na vida útil de carambolas minimamente processadas Evaluation of different types of modified atmosphere in cold storage of star fruits minimally processed

    Directory of Open Access Journals (Sweden)

    Leandro Camargo Neves

    2006-12-01

    qualidade durante o AR. Assim, esse tratamento proporcionou adequado controle microbiológico e manutenção das características de qualidade por 18 dias para as carambolas minimamente processadas.This work aimed to evaluate the potential of cold storage of star fruits cv. Golden Star, minimally processed, by using different types of packing, for the analysis of the modified passive atmosphere. The fruits harvested in nature-green stage showed green-yellowish coloration, soluble solids (SS an average of 6,8 ºBrix and an average mass of 185g . Before the treatments were set, the fruits had been selected, cleaned in solution of NaOCl at 10 mg. L-1, cooled for 12 hours at 15 ± 0,5 °C, cut transversally, and cleaned in solution of NaOCl at 10 mg. L-1, for 3 minutes. After, the pieces in form of stars had been displayed in rigid polystyrene trays, with capacity for 250g, and coated with the following materials: T1: perforated film plastic of low density polyethylene (LDPE, with 0,006 mm; T2: polyolephinic plastic film with anti-fog of DuPont® (AGF, with 0,015mm; T3: polyolephinic plastic film of Dupont® (HF, with 0,015 mm; T4: LDPE plastic film, with 0,060 mm; T5: LDPE plastic film, with 0,080 mm; T6: polypropylene plastic film (PP, with 0,022 mm and T7: rigid polyethylene terephtalat tray (PET, with capacity for 500 mL, with cover of the same material. The treatments had been conditioned in refrigerating chamber at 12 ± 0,5 °C and 90 ± 3% of R.U., for 18 days. At the end, it was not observed significant difference in the tested treatments in the analysis of soluble solids (SS and titratable acidity (TA. The biggest microbiological activity and the greater pH had been detected in the fruits packed in LDPE films with 6 µm, AGF and HF with 15µm from Dupont. However, the fruits conditioned in packing PET had shown the biggest contents of ascorbic acid. In the same way, only in PET packing was obtained an efficient atmospheric modification in the point of maintaining the

  9. Massive Stars as Progenitors of Supernovae and GRBs

    NARCIS (Netherlands)

    Langer, N.; van Marle, A.J.; Poelarends, A.J.T.; Yoon, S.C.

    2007-01-01

    The evolutionary fate of massive stars in our Milky Way is thought to be reasonably well understood: stars above ˜ 8 M_o produce neutron stars and supernovae, while those above ˜ 20...30 M_o are presumed to form black holes. At metallicities below that of the SMC, however, our knowledge becomes

  10. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    Science.gov (United States)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  11. STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Salim, Samir; Rich, R. Michael

    2010-01-01

    In recent years, an argument has been made that a high fraction of early-type galaxies (ETGs) in the local universe experience low levels (∼ sun yr -1 ) of star formation (SF) that causes strong excess in UV flux, yet leaves the optical colors red. Many of these studies were based on Galaxy Evolution Explorer imaging of Sloan Digital Sky Survey (SDSS) galaxies (z ∼ 0.1), and were thus limited by its 5'' FWHM. Poor UV resolution left other possibilities for UV excess open, such as the old populations or an active galactic nucleus (AGN). Here, we study high-resolution far-ultraviolet HST/ACS images of optically quiescent early-type galaxies with strong UV excess. The new images show that three-quarters of these moderately massive (∼5 x 10 10 M sun ) ETGs shows clear evidence of extended SF, usually in form of wide or concentric UV rings, and in some cases, striking spiral arms. SDSS spectra probably miss these features due to small fiber size. UV-excess ETGs have on average less dust and larger UV sizes (D > 40 kpc) than other green-valley galaxies, which argues for an external origin for the gas that is driving the SF. Thus, most of these galaxies appear 'rejuvenated' (e.g., through minor gas-rich mergers or intergalactic medium accretion). For a smaller subset of the sample, the declining SF (from the original internal gas) cannot be ruled out. SF is rare in very massive early-types (M * > 10 11 M sun ), a possible consequence of AGN feedback. In addition to extended UV emission, many galaxies show a compact central source, which may be a weak, optically inconspicuous AGN.

  12. Stellar model chromospheres. IX - Chromospheric activity in dwarf stars

    Science.gov (United States)

    Kelch, W. L.; Worden, S. P.; Linsky, J. L.

    1979-01-01

    High-resolution Ca II K line profiles are used to model the upper photospheres and lower chromospheres of eight main-sequence stars ranging in spectral type from F0 to M0 and exhibiting different degrees of chromospheric activity. The model chromospheres are studied as a function of spectral type and activity for stars of similar spectral type in order to obtain evidence of enhanced nonradiative heating in the upper-photospheric models and in the ratio of minimum temperature at the base of the chromosphere to effective temperature, a correlation between activity and temperature in the lower chromospheres, and a correlation of the width at the base of the K-line emission core and at the K2 features with activity. Chromospheric radiative losses are estimated for the modelled stars and other previously analyzed main-sequence stars. The results obtained strengthen the argument that dMe flare stars exhibit fundamentally solar-type activity but on an increased scale.

  13. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  14. THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION IN z ∼ 0.1 GREEN VALLEY EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Fang, Jerome J.; Faber, S. M.; Salim, Samir; Graves, Genevieve J.; Rich, R. Michael

    2012-01-01

    UV observations in the local universe have uncovered a population of early-type galaxies with UV flux consistent with low-level recent or ongoing star formation. Understanding the origin of such star formation remains an open issue. We present resolved UV-optical photometry of a sample of 19 Sloan Digital Sky Survey (SDSS) early-type galaxies at z ∼ 0.1 drawn from the sample originally selected by Salim and Rich to lie in the bluer part of the green valley in the UV-optical color-magnitude diagram as measured by the Galaxy Evolution Explorer (GALEX). Utilizing high-resolution Hubble Space Telescope (HST) far-UV imaging provides unique insight into the distribution of UV light in these galaxies, which we call ''extended star-forming early-type galaxies'' (ESF-ETGs) because of extended UV emission that is indicative of recent star formation. The UV-optical color profiles of all ESF-ETGs show red centers and blue outer parts. Their outer colors require the existence of a significant underlying population of older stars in the UV-bright regions. An analysis of stacked SDSS spectra reveals weak LINER-like emission in their centers. Using a cross-matched SDSS DR7/GALEX GR6 catalog, we search for other green valley galaxies with similar properties to these ESF-ETGs and estimate that ≈13% of dust-corrected green valley galaxies of similar stellar mass and UV-optical color are likely ESF-candidates, i.e., ESF-ETGs are not rare. Our results are consistent with star formation that is gradually declining in existing disks, i.e., the ESF-ETGs are evolving onto the red sequence for the first time, or with rejuvenated star formation due to accreted gas in older disks provided that the gas does not disrupt the structure of the galaxy and the resulting star formation is not too recent and bursty. ESF-ETGs may typify an important subpopulation of galaxies that can linger in the green valley for up to several Gyrs, based on their resemblance to nearby gas-rich green valley

  15. Eclipses and dust formation by WC9 type Wolf-Rayet stars

    Science.gov (United States)

    Williams, P. M.

    2014-12-01

    Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.

  16. Astrochemical evolution along star formation: Overview of the IRAM Large Program ASAI

    Science.gov (United States)

    Lefloch, Bertrand; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Codella, C.; Fuente, A.; Kahane, C.; López-Sepulcre, A.; Tafalla, M.; Vastel, C.; Caux, E.; González-García, M.; Bianchi, E.; Gómez-Ruiz, A.; Holdship, J.; Mendoza, E.; Ospina-Zamudio, J.; Podio, L.; Quénard, D.; Roueff, E.; Sakai, N.; Viti, S.; Yamamoto, S.; Yoshida, K.; Favre, C.; Monfredini, T.; Quitián-Lara, H. M.; Marcelino, N.; Roberty, H. Boechat; Cabrit, S.

    2018-04-01

    Evidence is mounting that the small bodies of our Solar System, such as comets and asteroids, have at least partially inherited their chemical composition from the first phases of the Solar System formation. It then appears that the molecular complexity of these small bodies is most likely related to the earliest stages of star formation. It is therefore important to characterize and to understand how the chemical evolution changes with solar-type protostellar evolution. We present here the Large Program "Astrochemical Surveys At IRAM" (ASAI). Its goal is to carry out unbiased millimeter line surveys between 80 and 272 GHz of a sample of ten template sources, which fully cover the first stages of the formation process of solar-type stars, from prestellar cores to the late protostellar phase. In this article, we present an overview of the surveys and results obtained from the analysis of the 3 mm band observations. The number of detected main isotopic species barely varies with the evolutionary stage and is found to be very similar to that of massive star-forming regions. The molecular content in O- and C- bearing species allows us to define two chemical classes of envelopes, whose composition is dominated by either a) a rich content in O-rich complex organic molecules, associated with hot corino sources, or b) a rich content in hydrocarbons, typical of Warm Carbon Chain Chemistry sources. Overall, a high chemical richness is found to be present already in the initial phases of solar-type star formation.

  17. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  18. DO R CORONAE BOREALIS STARS FORM FROM DOUBLE WHITE DWARF MERGERS?

    Energy Technology Data Exchange (ETDEWEB)

    Staff, Jan. E.; Clayton, Geoffrey C.; Tohline, Joel E. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States); Menon, Athira; Herwig, Falk [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Even, Wesley; Fryer, Chris L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Motl, Patrick M. [Department of Science, Mathematics and Informatics, Indiana University Kokomo, Kokomo, IN 46904-9003 (United States); Geballe, Tom [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Pignatari, Marco [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2012-09-20

    A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WDs) in a binary. The observed ratio of {sup 16}O/{sup 18}O for RCB stars is in the range of 0.3-20 much smaller than the solar value of {approx}500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He WD. We present the results of five three-dimensional hydrodynamic simulations of the merger of a double WD system where the total mass is 0.9 M{sub Sun} and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with q {approx}< 0.7 a feature around the merged stars where the temperatures and densities are suitable for forming {sup 18}O. However, more {sup 16}O is being dredged up from the C- and O-rich accretor during the merger than the amount of {sup 18}O that is produced. Therefore, on the dynamical timescale over which our hydrodynamics simulation runs, an {sup 16}O/{sup 18}O ratio of {approx}2000 in the 'best' case is found. If the conditions found in the hydrodynamic simulations persist for 10{sup 6} s the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to {approx}4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two WDs remains a strong candidate for the formation of these enigmatic stars.

  19. Photometric and polarimetric variability and mass-loss rate of the massive binary Wolf-Rayet star HDE 311884 (WN6 + 05: V)

    International Nuclear Information System (INIS)

    Moffat, A.F.J.; Drissen, L.; Robert, C.; Lamontagne, R.; Coziol, R.

    1990-01-01

    Photometric and polarimetric monitoring of the Wolf-Rayet (W-R) + O-type binary system HDE 311884 = WR 47 over many orbital cycles shows the clear effects of phase-dependent electron scattering of O-star light as the orbiting O companion shines through varying column density of W-R stellar wind material. In contrast to this wind-type eclipse, the stars themselves do not quite eclipse. Both photometry and polarimetry give a consistent estimate of the mass-loss rate of the W-R component: at about 0.00003 solar mass/yr. The orbital inclination, i = 70 deg, along with the previously published velocity orbit, yields high masses: M(WN6) = 48 solar masses and M(O5:V) = 57 solar masses. 33 refs

  20. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    Science.gov (United States)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  1. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  2. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    Energy Technology Data Exchange (ETDEWEB)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania (Italy); Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Catania, Italy and Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania (Italy)

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  3. Fractional Yields Inferred from Halo and Thick Disk Stars

    Science.gov (United States)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  4. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    Far from the galactic suburbs where the Sun resides, a cluster of stars in the nucleus of the Milky Way orbits a supermassive black hole. Can chemical abundance measurements help us understand the formation history of the galactic center nuclear star cluster?Studying Stellar PopulationsMetallicity distributions for stars in the inner two degrees of the Milky Way (blue) and the central parsec (orange). [Do et al. 2018]While many galaxies host nuclear star clusters, most are too distant for us to study in detail; only in the Milky Way can we resolve individual stars within one parsec of a supermassive black hole. The nucleus of our galaxy is an exotic and dangerous place, and its not yet clear how these stars came to be where they are were they siphoned off from other parts of the galaxy, or did they form in place, in an environment rocked by tidal forces?Studying the chemical abundances of stars provides a way to separate distinct stellar populations and discern when and where these stars formed. Previous studies using medium-resolution spectroscopy have revealed that many stars within the central parsec of our galaxy have very high metallicities possibly higher than any other region of the Milky Way. Can high-resolution spectroscopy tell us more about this unusual population of stars?Spectral Lines on DisplayTuan Do (University of California, Los Angeles, Galactic Center Group) and collaborators performed high-resolution spectroscopic observations of two late-type giant starslocated half a parsec from the Milky Ways supermassive black hole.Comparison of the observed spectra of the two galactic center stars (black) with synthetic spectra with low (blue) and high (orange) [Sc/Fe] values. Click to enlarge. [Do et al. 2018]In order to constrain the metallicities of these stars, Do and collaborators compared the observed spectra to a grid of synthetic spectra and used a spectral synthesis technique to determine the abundances of individual elements. They found that

  5. Asteroseismology of solar-type stars with Kepler: III. Ground-based data

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Molenda-Żakowicz , J.

    2010-01-01

    We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler Asteroseis......We report on the ground-based follow-up program of spectroscopic and photometric observations of solar-like asteroseismic targets for the Kepler space mission. These stars constitute a large group of more than a thousand objects which are the subject of an intensive study by the Kepler...

  6. Abundances of the elements in sharp-lined early-type stars from IUE high-dispersion spectrograms; 2, the nitrogen deficiency in mercury- manganese stars

    CERN Document Server

    Roby, S W; Adelman, S J

    1999-01-01

    For pt.I see ibid., vol.419, no.1, p.276-85 (1993). The authors determine nitrogen abundances from co-added IUE high-dispersion SWP spectrograms of four HgMn stars and five normal or superficially normal main-sequence B and A stars. They find N deficiencies in the HgMn stars greater than previously reported (depletion factors of 135-400 relative to the Sun). N abundance discrepancies from UV and IR studies of normal stars are discussed in light of possible non-LTE effects. Their data set for their sample of HgMn stars (observed with a consistent strategy to maximize the benefits of co-additions) is an improvement over the single or few images previously used to derive N abundances for most of these stars. (37 refs).

  7. EFFECTS OF FOSSIL MAGNETIC FIELDS ON CONVECTIVE CORE DYNAMOS IN A-TYPE STARS

    International Nuclear Information System (INIS)

    Featherstone, Nicholas A.; Toomre, Juri; Browning, Matthew K.; Brun, Allan Sacha

    2009-01-01

    The vigorous magnetic dynamo action achieved within the convective cores of A-type stars may be influenced by fossil magnetic fields within their radiative envelopes. We study such effects through three-dimensional simulations that model the inner 30% by radius of a 2 M sun A-type star, capturing the convective core and a portion of the overlying radiative envelope within our computational domain. We employ the three-dimensional anelastic spherical harmonic code to model turbulent dynamics within a deep rotating spherical shell. The interaction between a fossil field and the core dynamo is examined by introducing a large-scale magnetic field into the radiative envelope of a mature A star dynamo simulation. We find that the inclusion of a twisted toroidal fossil field can lead to a remarkable transition in the core dynamo behavior. Namely, a super-equipartition state can be realized in which the magnetic energy built by dynamo action is 10-fold greater than the kinetic energy of the convection itself. Such strong-field states may suggest that the resulting Lorentz forces should seek to quench the flows, yet we have achieved super-equipartition dynamo action that persists for multiple diffusion times. This is achieved by the relative co-alignment of the flows and magnetic fields in much of the domain, along with some lateral displacements of the fastest flows from the strongest fields. Convection in the presence of such strong magnetic fields typically manifests as 4-6 cylindrical rolls aligned with the rotation axis, each possessing central axial flows that imbue the rolls with a helical nature. The roll system also possesses core-crossing flows that couple distant regions of the core. We find that the magnetic fields exhibit a comparable global topology with broad, continuous swathes of magnetic field linking opposite sides of the convective core. We have explored several poloidal and toroidal fossil field geometries, finding that a poloidal component is essential

  8. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  9. A new interferometric study of four exoplanet host stars: θ Cygni, 14 Andromedae, υ Andromedae and 42 Draconis

    Science.gov (United States)

    Ligi, R.; Mourard, D.; Lagrange, A. M.; Perraut, K.; Boyajian, T.; Bério, Ph.; Nardetto, N.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-09-01

    Context. Since the discovery of the first exoplanet in 1995 around a solar-type star, the interest in exoplanetary systems has kept increasing. Studying exoplanet host stars is of the utmost importance to establish the link between the presence of exoplanets around various types of stars and to understand the respective evolution of stars and exoplanets. Aims: Using the limb-darkened diameter (LDD) obtained from interferometric data, we determine the fundamental parameters of four exoplanet host stars. We are particularly interested in the F4 main-sequence star, θ Cyg, for which Kepler has recently revealed solar-like oscillations that are unexpected for this type of star. Furthermore, recent photometric and spectroscopic measurements with SOPHIE and ELODIE (OHP) show evidence of a quasi-periodic radial velocity of ~150 days. Models of this periodic change in radial velocity predict either a complex planetary system orbiting the star, or a new and unidentified stellar pulsation mode. Methods: We performed interferometric observations of θ Cyg, 14 Andromedae, υ Andromedae and 42 Draconis for two years with VEGA/CHARA (Mount Wilson, California) in several three-telescope configurations. We measured accurate limb darkened diameters and derived their radius, mass and temperature using empirical laws. Results: We obtain new accurate fundamental parameters for stars 14 And, υ And and 42 Dra. We also obtained limb darkened diameters with a minimum precision of ~1.3%, leading to minimum planet masses of Msini = 5.33 ± 0.57, 0.62 ± 0.09 and 3.79 ± 0.29 MJup for 14 And b, υ And b and 42 Dra b, respectively. The interferometric measurements of θ Cyg show a significant diameter variability that remains unexplained up to now. We propose that the presence of these discrepancies in the interferometric data is caused either by an intrinsic variation of the star or an unknown close companion orbiting around it. Based on interferometric observations with the VEGA

  10. Aspectos morfológicos de folhas na diferenciação de variedades de carambola Morphological aspects of leaves in differentiation of varieties of star fruit

    Directory of Open Access Journals (Sweden)

    Renata Aparecida de Andrade

    2007-08-01

    Full Text Available Em certas espécies vegetais, a distinção entre variedades pode ser realizada com base em aspectos morfológicos das folhas, o que permite a diferenciação mesmo quando não apresentam flores e/ou frutos. O presente trabalho foi realizado objetivando a distinção entre variedades de caramboleira (Averrhoa carambola L. através de aspectos foliares. Foram avaliadas quatro variedades de caramboleira: Arkin, B-10, Golden Star e Hart, com quatro repetições de 10 folhas cada. Pelos resultados obtidos no presente trabalho, conclui-se que há diferenças morfológicas foliares entre as variedades de caramboleira, permitindo a sua distinção, especialmente em condições de viveiro.In some vegetable species, the distinction among varieties can be done based on morphological aspects of the leaves that allow the differentiation even when they do not have flowers and/or fruits. The aim of this work was to differentiate the varieties of star fruit (Averrhoa carambola L. by foliar aspects. It was evaluated four varieties of star fruit: Arkin, B-10, Golden Star and Hart, with four replications containing 10 leaves in each one. The results obtained showed that exist morphological foliar differences among the varieties of star fruit, being permitted the distinction, especially in nursery conditions.

  11. Study on the flare stars in the Taurus region

    International Nuclear Information System (INIS)

    Khodzhaev, A.S.

    1986-01-01

    The results of the search of flare stars and their photometric, Hsub(α)-spectroscopic and statistical study in the Taurus are presented. By means of photographic observations carried out during 1980-1984, 92 new flare stars were discovered, 13 of which are known Orion Population variables, and 16 repeated flare-ups among 13 known flare stars. Spatial distribution of these stars was considered and the problem of their membership was discussed. Comparative analysis of the data of flare stars in the Taurus with that of other systems has been carried out. The Herzsprung-Russel and two-colour (U-B, B-V) diagrams for the Taurus flare stars are similar to the diagrams of stellar clusters and associations (Pleiades, Orion etc.). The estimated total number of flare stars in this region is larger than 500

  12. Random forest classification of stars in the Galactic Centre

    Science.gov (United States)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  13. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  14. On the Relation of Silicates and SiO Maser in Evolved Stars

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicate emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.

  15. The origin of carbon revisited: winds of carbon-stars

    International Nuclear Information System (INIS)

    Mattsson, L

    2008-01-01

    Chemical evolution models, differing in the nucleosynthesis prescriptions (yields) for carbon, nitrogen and oxygen, have been computed for the Milky Way and Andromeda (NGC 224). All models fit the observed O/H gradients well and reproduce the main characteristics of the gas distributions, but they are also designed to do so. The N/O gradient for NGC 224 cannot be reproduced without ad hoc modifications to the yields and a similar result is obtained for the Milky Way N/O gradient, although in the latter case the slopes of the gradients obtained with unmodified yields are consistent with the observed gradient. For the C/O gradients (obtained from B stars) the results are inconclusive. The C/Fe, N/Fe, O/Fe versus Fe/H, as well as C/O versus O/H trends predicted by the models for the solar neighbourhood were compared with stellar abundances from the literature. For O/Fe versus Fe/H, all models fit the data, but for C/Fe, N/Fe versus Fe/H and C/O versus O/H, only modified sets of yields provide good fits. Since in the best-fit model, the yields were modified such that carbon should be primarily produced in low-mass stars, it is quite possible that in every environment where the peak of star formation happened a few Gyr back in time, the winds of carbon stars are responsible for most of the carbon enrichment, although models with a significant contribution from high-mass stars cannot be ruled out. In the solar neighbourhood, almost two-thirds of the carbon in the interstellar medium may come from carbon stars. Finally, the challenges met by stellar evolution and nucleosynthesis modelling due to this 'carbon star hypothesis' for the origin of carbon are discussed. It is suggested that a mass-loss prescription where the mass-loss rate depends on the carbon excess may act as a self-regulating mechanism for how much carbon a carbon star can deliver to the interstellar medium.

  16. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  17. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Franx, Marijn; Holden, Bradford P.; Illingworth, Garth D.; Kelson, Daniel D.; Van der Wel, Arjen

    2012-01-01

    We utilize for the first time Hubble Space Telescope Advanced Camera for Surveys imaging to examine the structural properties of galaxies in the rest-frame U – V versus V – J diagram (i.e., the UVJ diagram) using a sample at 0.6 ☉ >10.25). The use of the UVJ diagram as a tool to distinguish quiescent galaxies from star-forming galaxies (SFGs) is becoming more common due to its ability to separate red quiescent galaxies from reddened SFGs. Quiescent galaxies occupy a small and distinct region of UVJ color space and we find most of them to have concentrated profiles with high Sérsic indices (n > 2.5) and smooth structure characteristic of early-type systems. SFGs populate a broad but well-defined sequence of UVJ colors and are comprised of objects with a mix of Sérsic indices. Interestingly, most UVJ-selected SFGs with high Sérsic indices also display structure due to dust and star formation typical of the n < 2.5 SFGs and late-type systems. Finally, we find that the position of an SFG on the sequence of UVJ colors is determined to a large degree by the mass of the galaxy and its inclination. Systems that are closer to edge-on generally display redder colors and lower [O II]λ3727 luminosity per unit mass as a consequence of the reddening due to dust within the disks. We conclude that the two main features seen in UVJ color space correspond closely to the traditional morphological classes of early- and late-type galaxies.

  18. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Guinan, E. F., E-mail: cuntz@uta.edu, E-mail: edward.guinan@villanova.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2016-08-10

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.

  19. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    International Nuclear Information System (INIS)

    Cuntz, M.; Guinan, E. F.

    2016-01-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.

  20. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    Science.gov (United States)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  1. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  2. Magnetic fields in beta Cep, SPB, and Be stars

    OpenAIRE

    Schoeller, M.; Hubrig, S.; Briquet, M.; Ilyin, I.

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic fi...

  3. Produção de mudas de caramboleiras 'B-10' e 'Golden Star': II - marcha de absorção e acúmulo de nutrientes

    Directory of Open Access Journals (Sweden)

    Danilo Eduardo Rozane

    2011-12-01

    Full Text Available A participação do Brasil no mercado externo de frutas tem aumentado consideravelmente e com potencial para crescer ainda mais. A constante ascensão dos dados de exportação brasileira é resultado da combinação de avanços tecnológicos do setor produtivo e de acesso a novos mercados consumidores. A caramboleira apresenta-se como uma excelente opção de cultivo de frutas exóticas, com grande potencial para atender ao mercado interno e às exportações. Assim, objetivou-se avaliar a marcha de absorção e de acúmulo de nutrientes em mudas de caramboleiras cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star' e, como subparcelas, cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L com solução nutritiva (pH=5,5 ± 0,5, com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes, determinaram-se a marcha de absorção, o acúmulo de nutrientes e os índices nutricionais. Não houve diferenças no acúmulo de nutrientes entre as mudas de caramboleira de ambas as cultivares, sendo a ordem decrescente dos nutrientes em cada muda de 'B-10', no final do período experimental: N > K > Ca > Mg > S > P > Fe > Mn > B > Cu > Zn. Para a 'Golden Star', a ordem foi: N > K > Ca > Mg > P > S > Fe > Mn > B > Cu > Zn. Para as duas cultivares, o acúmulo médio foi maior nas folhas > caule > raízes. O período de maior exigência para 'B-10' foi entre 208 - 233 e, para 'Golden Star', entre 233 - 283 dias após o transplantio. As diferentes taxas de acumulação líquida dos nutrientes, nos diferentes órgãos da caramboleira, nem sempre acompanharam a taxa de acumulação de nutrientes do

  4. The evolution of the lithium abundances of solar-type stars. I. The Hyades and Coma Berenices clusters

    International Nuclear Information System (INIS)

    Sonderblom, D.R.; Oey, M.S.; Johnson, D.R.H.; Stone, R.P.S.

    1990-01-01

    High-resolution, high signal-to-noise spectra of the lithium region at 6708 A in 28 solar-type stars of the Hyades and Coma Berenices clusters are reported. Given an observational uncertainty of less than about 5 mA in W-lambda (Li), no significant scatter about the mean relation was seen for most stars. However, there are several stars that have anomalous abundances. Two of them fall well below the mean relation, and appear to have no distinctive qualities that might account for their low Li. Two others are close binaries and have significantly greater than average Li. A means by which close binaries might preserve Li is suggested, and Li depletion timescales for stars near the zero-age main sequence (ZAMS) are estimated by comparing the Hyades to the Pleiades. This comparison indicates that Li depletion for stars near 1 solar mass starts on the ZAMS, not before, and that depletion occurs at a much slower rate after the age of the Hyades than before. 87 refs

  5. VizieR Online Data Catalog: Magnetic early B-type stars. I. (Shultz+, 2018)

    Science.gov (United States)

    Shultz, M.; Wade, G. A.; Rivinius, Th.; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; Mimes Collaboration; Binamics Collaboration

    2018-03-01

    Longitudinal magnetic field measurements of early B-type stars derived from 1) least-squares deconvolution profiles extracted from high-resolution spectropolarimetric data (ESPaDOnS, Narval, HARPSpol), using masks consisting of metallic lines, metallic + He lines, individual chemical elements, as well as single-line H measurements; and 2) from single-line low-resolution spectropolarimetric observations with dimaPol. (3 data files).

  6. Variable stars in the field of open cluster NGC 2126

    International Nuclear Information System (INIS)

    Liu Shunfang; Wu Zhenyu; Zhang Xiaobin; Wu Jianghua; Ma Jun; Jiang Zhaoji; Chen Jiansheng; Zhou Xu

    2009-01-01

    We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z o-dot , age log(t) = 8.95, distance modulus (m - M) 0 = 10.34 and reddening value E (B - V) = 0.55 mag.

  7. Distance of the Pleiades cluster and the calibration of photometric luminosities for early-type stars

    International Nuclear Information System (INIS)

    Eggen, O.J.

    1986-01-01

    An examination of the lower main-sequence (mode-A) stars in the Pleiades cluster suggests an Fe/H abundance ratio between 0.0 and 0.1 dex with a resulting modulus of 5.65 + or - 0.1 mag, and fundamental defects in the calculation of Balona and Shobbrook (1984), with an adopted modulus of 5.50 mag, are discussed. It is suggested that the ZAMS of Balona and Shobbrook, and of Mermilliod (1981), are too bright due to their assumption that the color-luminosity arrays of such clusters as the Pleiades represent isochrones, leading to uncertainties in the ZAMS, particularly with respect to slope. Several recently published photometric luminosity calibrations for early-type stars may be incorrect due to their failing to recognize the probable presence of at least two evolutionary modes and the apparent absence of ZAMS stars near the sun. 34 references

  8. Studying RR Lyrae Stars in M4 with K2

    Science.gov (United States)

    Kuehn, Charles A.; Drury, Jason; Moskalik, Pawel

    2017-01-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomena, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During its campaign 2, K2 observed the globular cluster M4, providing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. We present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in the two observed RRc stars. In three RRab stars we have found the Blazhko effect with periods of 16.6 days, 22.4 days, and 44.5 days.

  9. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    Energy Technology Data Exchange (ETDEWEB)

    Tellis, Nathaniel K.; Marcy, Geoffrey W., E-mail: Nate.tellis@gmail.com [Astronomy Department, University of California, Berkeley, CA 94720 (United States)

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  10. A New Species of Sexually Dimorphic Brittle Star of the Genus Ophiodaphne (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Tominaga, Hideyuki; Hirose, Mamiko; Igarashi, Hikaru; Kiyomoto, Masato; Komatsu, Miéko

    2017-08-01

    We describe a new species of sexually dimorphic brittle star, Ophiodaphne spinosa, from Japan associated with the irregular sea urchin, Clypeaster japonicus based on its external morphology, and phylogenetic analyses of mitochondrial COI (cytochrome c oxidase subunit I). Females of this new species of Ophiodaphne are characterized mainly by the presence of wavy grooves on the surface of the radial shields, needle-like thorns on the oral skeletal jaw structures, and a low length-to-width ratio of the jaw angle in comparison with those of type specimens of its Ophiodaphne congeners: O. scripta, O. materna, and O. formata. A tabular key to the species characteristics of Ophiodaphne is provided. Phylogenetic analyses indicate that the new species of Ophiodaphne, O. scripta, and O. formata are monophyletic. Our results indicate that the Japanese Ophiodaphne include both the new species and O. scripta, and that there are four Ophiodaphne species of sexually dimorphic brittle stars with androphorous habit.

  11. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    of measuring very low Li abundances in O-rich AGB stars due to the presence of TiO bands and (2) the fact that many, relatively massive (M > 3 M sun ) K- and M-type giants may remain Li-rich, not evolving to the C-rich stages. Efficient extra mixing on the AGB is instead typical of very low masses (M ∼ sun ). It also characterizes CJ stars, where it produces Li and reduces F and the carbon isotope ratio, as observed in these peculiar objects.

  12. The O-type eclipsing binary SZ Camelopardalis revisited

    Czech Academy of Sciences Publication Activity Database

    Mayer, P.; Drechsel, H.; Kubát, Jiří; Šlechta, Miroslav

    2010-01-01

    Roč. 524, Dec (2010), A1/1-A1/5 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : eclipsing binaries * early-type stars * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  13. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  14. VizieR Online Data Catalog: Vatican Emission-line stars (Coyne+ 1974-1983)

    Science.gov (United States)

    Coyne, G. V.; Lee, T. A.; de Graeve, E.; Wisniewski, W.; Corbally, C.; Otten, L. B.; MacConnell, D. J.

    2009-10-01

    The survey represents a search for Hα emission-line stars, and was conducted with a 12{deg} objective prism on the Vatican Schmidt telescope. The Vatican Emission Stars (VES) survey covers the galactic plane (|b|II/246), IRAS point source catalog (II/125), MSX6C (V/114), CMC14 (I/304), GSC-2.3 (I/305), UCAC2 (I/289). Cross-identifications are also supplied with HD/BD/GCVS names, and with Dearborn catalog of red stars (II/68). Many of the stars in the first four papers are not early-type emission-line stars, but instead M giants, where the sharp TiO bandhead at 6544{AA} was mistaken for H-{alpha} emission on the objective-prism plates. Based on the revision of paper V and a later list prepared by Jack MacConnell, a column identifies the "non H-alpha" stars explicitly. The links with the Dearborn, IRAS, and MSX catalogues help identify the red stars. These and other identifications and comments are given in the remarks at the end of each line, or in longer notes in a separate file, indicated by an asterisk (*) next to the star number. (3 data files).

  15. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  16. The velocity field of the outer Galaxy in the southern hemisphere. III. Determination of distances to 0, B, and A type stars in the Walraven photometric system

    International Nuclear Information System (INIS)

    Brand, J.; Wouterloot, J.G.A.

    1988-01-01

    We have used the Walraven photometric system (V BLUW) to derive distances to stars of spectral type earlier than A7 (T eff > 8000 K). We discuss the method and its accuracy, using it on member stars of (open) clusters with spectral types between 06 and A7. To obtain the weighted average distance modulus of a cluster, a weighting scheme is derived, based on the propagation of measurement errors in the distance modulus of a star as a function of its magnitude, T eff , and colour. The average uncertainty in a cluster distance modulus is 0. m 13 (6% in distance). For a single, normal star (i.e. one without spectral peculiarities), the average deviation from the mean-cluster distance modulus is about 0. m 5 (25% in distance). A comparison with the literature shows that previous distance determinations, using different techniques, of the clusters studied here agree within 0. m 36 (18% in distance) with ours. For three clusters, Upper-Scorpius, NGC 3293, and IC 2944, a star-by-star comparison is made with published data. Although the average cluster distance moduli are equal within the uncertainties, the moduli of the individual stars can differ up to about 2 m . These differences are the consequence of the adopted absolute magnitude calibrations, and/or a slightly different spectral classification for the cluster stars between the VBLUW results and the literature. The latter are comparable to the variations in classification found in the literature, and are therefore within the resolution of the methods used to derive distances. A semi-empirical ZAMS relation for the Walraven system for spectral types from 0 to K is given

  17. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  18. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    Energy Technology Data Exchange (ETDEWEB)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita [Indian Institute of Space Science and Technology, Trivandrum 695547 (India); Ghosh, Swarna K.; Ishwara Chandra, C. H., E-mail: swagat.12@iist.ac.in [National Centre For Radio Astrophysics, Pune 411007 (India)

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {sub ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  19. Studying coherent scattering in the CP stars atmospheres

    Science.gov (United States)

    Fišák, J.; Kubát, J.; Krtička, J.

    2018-01-01

    Chemically peculiar stars form a very interesting class of stars which frequently show variability. The variability is probably caused by the uneven surface distribution of chemical elements. Some elements are overabundant and some elements are underabundant compared to the solar chemical composition. In the case of chemically overabundant composition some of the rare photon-atom processes can be more important than in the atmospheres of stars with solar chemical composition. We study the importance of Rayleigh scattering by helium.

  20. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Science.gov (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.

    2017-12-01

    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  1. X-rays from Wolf-Rayet stars observed by the Einstein observatory

    International Nuclear Information System (INIS)

    Sanders, W.T.; Cassinelli, J.P.; Hucht, K.A. van der

    1982-01-01

    Preliminary results of three X-ray surveys are presented. Out of a sample of 20 stars, X-rays were detected from four Wolf-Rayet stars and two O8f + stars. The detected stars have about the same mean value as O stars for the X-ray to total luminosity ratio, Lsub(x)/L = 10 -7 , but exhibit a much larger variation about the mean. The spectral energy distributions are also found to be like that of O stars in that they do not exhibit large attenuation of X-rays softer than 1 keV. This indicates that for both the O stars and WR stars much of the X-ray emission is coming from hot wisps or shocks in the outer regions of the winds and not from a thin source at the base of the wind. The general spectral shape and flux level place severe restrictions on models that attribute the lack of hydrogen emission lines to extremely high temperatures of the gas in the wind. (Auth.)

  2. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  3. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, D.; Winckel, H. Van [Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D bus 2401, B-3001 Leuven (Belgium); Wood, P. R.; Asplund, M.; Karakas, A. I. [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lattanzio, J. C. [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia)

    2017-02-10

    Post-asymptotic giant branch (post-AGB) stars are known to be chemically diverse. In this paper we present the first observational evidence of a star that has failed the third dredge-up (TDU). J005252.87-722842.9 is an A-type ( T {sub eff} = 8250 ± 250 K) luminous (8200 ± 700 L {sub ⊙}) metal-poor ([Fe/H] = −1.18 ± 0.10) low-mass ( M {sub initial} ≈ 1.5–2.0 M {sub ⊙}) post-AGB star in the Small Magellanic Cloud. Through a systematic abundance study, using high-resolution optical spectra from UVES, we found that this likely post-AGB object shows an intriguing photospheric composition with no confirmed carbon-enhancement (upper limit of [C/Fe] < 0.50) nor enrichment of s -process elements. We derived an oxygen abundance of [O/Fe] = 0.29 ± 0.1. For Fe and O, we took the effects of nonlocal thermodynamic equilibrium into account. We could not derive an upper limit for the nitrogen abundance as there are no useful nitrogen lines within our spectral coverage. The chemical pattern displayed by this object has not been observed in single or binary post-AGBs. Based on its derived stellar parameters and inferred evolutionary state, single-star nucleosynthesis models predict that this star should have undergone TDU episodes while on the AGB, and it should be carbon enriched. However, our observations are in contrast with these predictions. We identify two possible Galactic analogs that are likely to be post-AGB stars, but the lack of accurate distances (hence luminosities) to these objects does not allow us to confirm their post-AGB status. If they have low luminosities, then they are likely to be dusty post-RGB stars. The discovery of J005252.87-722842.9 reveals a new stellar evolutionary channel whereby a star evolves without any TDU episodes.

  4. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    International Nuclear Information System (INIS)

    Ansdell, Megan; Baranec, Christoph; Gaidos, Eric; Mann, Andrew W.; Lépine, Sebastien; James, David; Buccino, Andrea; Mauas, Pablo; Petrucci, Romina; Law, Nicholas M.; Riddle, Reed

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law

  5. BINARY STARS WITH COMPONENTS OF SOLAR TYPE: 25 ORBITS AND SYSTEM MASSES

    International Nuclear Information System (INIS)

    Docobo, J. A.; Ling, J. F.

    2009-01-01

    Revised orbits and system masses are presented for the following 25 visual double stars: WDS 00593-0040 (A 1902), WDS 00596-0111 (A 1903 AB), WDS 01023+0552 (A 2003), WDS 01049+3649 (A 1515), WDS 01234+5809 (STF 115 AB), WDS 02399+0009 (A 1928), WDS 03310+2937 (A 983), WDS 06573-3530 (I 65), WDS 07043-0303 (A 519), WDS 08267+2432 (A 1746 BC), WDS 10585+1711 (A 2375), WDS 11308+4117 (STT 234), WDS 15370+6426 (HU 1168), WDS 16044-1122 (STF 1998 AB), WDS 16283-1613 (RST 3950), WDS 17324+2848 (A 352), WDS 18466+3821 (HU 1191), WDS 19039+2642 (A 2992), WDS 19055+3352(HU 940), WDS 19282-1209 (SCJ 22), WDS 19487+1504 (A 1658), WDS 22400+0113 (A 2099), WDS 23506-5142 (SLR 14), WDS 23518-0637 (A 2700), and WDS 23529-0309 (FIN 359). In all of these systems, at least one component is of solar type. Total system masses were calculated in each case from the orbital period and semiaxis major together with the Hipparcos parallax, except in the cases for which there are no Hipparcos data or when these values are not precise. Other orbital and physical properties of these stars are also discussed. This paper is the second of three collating the revised double star orbits we have calculated in the past 15 yr.

  6. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Baranec, Christoph [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lépine, Sebastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Buccino, Andrea; Mauas, Pablo; Petrucci, Romina [Instituto de Astronomía y Física del Espacio, C1428EHA Buenos Aires (Argentina); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  7. High temperature studies on scheelite and zircon type ThGeO4

    International Nuclear Information System (INIS)

    Patwe, S.J.; Achary, S.N.; Tyagi, A.K.

    2008-01-01

    The detailed structural analyses of two polymorphs of ThGeO 4 , namely, zircon (stable) and scheelite (metastable) types have been carried out from the in situ high temperature X-ray diffraction studies. Though both the polymorphs show positive thermal expansion, the coefficient of volume thermal expansion of scheelite modification is almost double of that for zircon modification. The anisotropies in thermal expansion behaviors are also different for the two modifications. The differences in thermal expansion behaviors have been explained from the differences in structural arrangements and anisotropy of the ThO 8 polyhedra in these two modifications. (author)

  8. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  9. Time-dependent mass loss from hot stars with and without radiative driving

    International Nuclear Information System (INIS)

    Castor, J.I.; Owocki, S.P.; Rybicki, G.B.

    1988-01-01

    A numerical hydrodynamics code is used to investigate two aspects of the winds of hot stars. The first is the question of the instability of the massive radiatively-driven wind of an O star that is caused by the line shape mechanism: modulation of the radiation force by velocity fluctuations. The evolution of this instability is studied in a model O star wind, and is found, /ital modulo/ some numerical uncertainty, to lead to wave structures that are compatible with observations of wind instabilities. The other area of investigation is of main-sequence B star winds. Attempts were made to simulate a radiatively-driven and a pulsation-driven wind in a B star, but in each case the wind turned out to be very weak. It is argued that the pulsation-driven wind model is not likely to apply to B stars. 28 refs., 11 figs

  10. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  11. NEW LUMINOUS ON SPECTRA FROM THE GALACTIC O-STAR SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: rbarba@dfuls.cl, E-mail: sota@iaa.es [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2016-04-15

    Two new ON supergiant spectra (bringing the total known to seven) and one new ONn giant (total of this class now eight) are presented; they have been discovered by the Galactic O-Star Spectroscopic Survey. These rare objects represent extremes in the mixing of CNO-cycled material to the surfaces of evolved, late-O stars, by uncertain mechanisms in the first category but likely by rotation in the second. The two supergiants are at the hot edge of the class, which is a selection effect from the behavior of defining N iii and C iii absorption blends, related to the tendency toward emission (Of effect) in the former. An additional N/C criterion first proposed by Bisiacchi et al. is discussed as a means to alleviate that effect, and it is relevant to the two new objects. The entire ON supergiant class is discussed; they display a fascinating diversity of detail undoubtedly related to the complexities of their extended atmospheres and winds that are sensitive to small differences in physical parameters, as well as to binary effects in some cases. Serendipitously, we have found significant variability in the spectrum of a little-known hypergiant with normal N, C spectra selected as a comparison for the anomalous objects. In contrast to the supergiants, the ONn spectra are virtual (nitrogen)-carbon copies of one another except for the degrees of line broadening, which emphasizes their probable unique origin and hence amenability to definitive astrophysical interpretation.

  12. PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS-A FIRST LOOK

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug; Gilliland, Ronald L.; Dupree, Andrea K.; Latham, David W.; Meibom, Soeren; Howell, Steve; Brown, Tim

    2010-01-01

    The Kepler mission provides an exciting opportunity to study the light curves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from very similar to rather different stellar properties, at a wide variety of ages. Although Kepler data are in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main-sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid-K spectral types.

  13. Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars

    Science.gov (United States)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-12-01

    Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.

  14. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. MAGNETIC GRAIN TRAPPING AND THE HOT EXCESSES AROUND EARLY-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, G. H.; Gáspár, András; Ballering, N. P., E-mail: grieke@as.arizona.edu, E-mail: agaspar@as.arizona.edu, E-mail: ballerin@email.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-01-10

    A significant fraction of main sequence stars observed interferometrically in the near-infrared have slightly extended components that have been attributed to very hot dust. To match the spectrum appears to require the presence of large numbers of very small (<200 nm in radius) dust grains. However, particularly for the hotter stars, it has been unclear how such grains can be retained close to the star against radiation pressure force. We find that the expected weak stellar magnetic fields are sufficient to trap nm-sized dust grains in epicyclic orbits for a few weeks or longer, sufficient to account for the hot excess emission. Our models provide a natural explanation for the requirement that the hot excess dust grains be smaller than 200 nm. They also suggest that magnetic trapping is more effective for rapidly rotating stars, consistent with the average vsini measurements of stars with hot excesses being larger (at ∼2σ) than those for stars without such excesses.

  16. Direction of Wolf-Rayet stars in a very powerful far-infrared galaxy - Direct evidence for a starburst

    International Nuclear Information System (INIS)

    Armus, L.; Heckman, T.M.; Miley, G.K.

    1988-01-01

    Spectra covering the wavelength range 4476-7610 A are presented for the powerful far-infrared galaxy IRAS 01003-2238. The broad emission band centered at a rest wavelength of roughly 4660 A, and other broad weaker features are interpreted, as arising from the combined effect of approximately 100,000 late Wolf-Rayet stars of the WN subtype. This represents perhaps the most direct evidence to date for the presence of a large number of hot massive stars in the nucleus of a very powerful far-infrared galaxy. The high number of Wolf-Rayet stars in relation to the number of O-type stars may be interpreted as arguing against continuous steady state star formation in 01003-2238, in favor of a recent burst of star formation occurring approximately 100 million yrs ago. 24 references

  17. Supernovae from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1986-01-01

    Wolf-Rayet stars are known to originate from the most massive stars. Under the assumption that these stripped stars explode at the end of their evolution through the same instability mechanism as type II supernovae, we calculate their light curve. The latter is found to be quite similar to the typical SN I light curves but is fainter by about 2 magnitudes. A detailed study of its shape leads to identify the WR supernovae with the SNIp (or SNIb) subclass. The more massive WR stars should explode via the e + e - pair production mechanism, with negligible 56 Ni formation. Their rather dim light curve is predicted to have a ∼ 2 month plateau and afterwards a very sharp decline. A delayed manifestation of such an event might be the Cas A remnant

  18. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  19. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  20. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  1. NICER observations of highly magnetized neutron stars: Initial results

    Science.gov (United States)

    Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team

    2018-01-01

    The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.

  2. NuSTAR observations of heavily obscured quasars at z ~ 0.5

    DEFF Research Database (Denmark)

    Lansbury, G. B.; Alexander, D. M.; Del Moro, A.

    2014-01-01

    We present NuSTAR hard X-ray observations of three Type 2 quasars at z ≈ 0.4-0.5, optically selected from the Sloan Digital Sky Survey. Although the quasars show evidence for being heavily obscured, Compton-thick systems on the basis of the 2-10 keV to [O III] luminosity ratio and multiwavelength...

  3. The first symbiotic stars from the LAMOST survey

    International Nuclear Information System (INIS)

    Li, Jiao; Chen, Xue-Fei; Han, Zhan-Wen; Mikołajewska, Joanna; Luo, A-Li; Wu, Yue; Yang, Ming; Rebassa-Mansergas, Alberto; Hou, Yong-Hui; Wang, Yue-Fei; Zhang, Yong

    2015-01-01

    Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star. (paper)

  4. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  5. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    Science.gov (United States)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  6. Near ultraviolet spectra of a group of early-type stars with Balmer emission

    Energy Technology Data Exchange (ETDEWEB)

    Ringuelet, A E [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1980-08-01

    In the near ultraviolet region some absorption features in B stars are easily recognizable as criteria for assigning luminosity class. In the same region the characteristics displayed by Be stars suggest higher luminosities than in the photographic region. It appears that Fe II 2538-2548 A should be useful for studying the outer layers of stellar atmospheres.

  7. Near ultraviolet spectra of a group of early-type stars with Balmer emission

    International Nuclear Information System (INIS)

    Ringuelet, A.E.

    1980-01-01

    In the near ultraviolet region some absorption features in B stars are easily recognizable as criteria for assigning luminosity class. In the same region the characteristics displayed by Be stars suggest higher luminosities than in the photographic region. It appears that Fe II 2538-2548 A should be useful for studying the outer layers of stellar atmospheres. (author)

  8. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  9. Chemical Compositions of Stars in the Globular Cluster NGC 3201: Tracers of Multi-Epoch Star Formation

    Science.gov (United States)

    Simmerer, Jennifer A.; Ivans, I. I.; Filler, D.

    2012-01-01

    The retrograde halo globular cluster NGC 3201 contains stars of substantially different iron abundance ([Fe/H]), a property that puts it at odds with the vast majority of the Galactic cluster system. Though its unusual orbit prompted speculation that NGC 3201 was the remnant of a captured object, much like the multi-metallicity globular cluster Omega Centauri, NGC 3201 is much less massive than Omega Centauri and all of the other halo globular clusters that have internal metallicity variations. We present the abundances of 21 elements in 24 red giant branch stars in NGC 3201 based on high-resolution (R 40,000), high signal-to-noise (S/N 70) spectra. We find that the detailed abundance pattern of NGC 3201 is unique amongst multi-metallicity halo clusters. Unlike M22, Omega Centauri, and NGC 1851, neither metal-poor nor metal-rich stars show any evidence of s-process enrichment (a product of the advanced evolution of low- and intermediate-mass stars). We find that while Na, O, and Al vary from star to star as is typical in globular clusters, there is no systematic difference between the abundance pattern in the metal-poor cluster stars and that of the metal-rich cluster stars. Furthermore, we find that the metallicity variations in NGC 3201 are independent of the well-known Na-O anticorrelation, which separates it from every other multi-metallicity cluster. In the context of a multi-episode star formation model, this implies that NGC 3201 began life with the [Fe/H] variations we measure now.

  10. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  11. The origin of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Doom, C.

    1987-01-01

    The paper reviews the origin of Wolf-Rayet (WR) stars, with emphasis on the so-called Population I WR stars which are associated with the young and luminous stellar population. A description is given of the observational characteristics i.e. classification, luminosities composition, etc. of WR stars. The origin and evolution of WR stars is described, including the single, binary, subtypes and ratio WR/O. The interaction of the WR stars with their environment is discussed with respect to the energy deposition and composition anomalies. A brief account of the discovery of WR stars in other galaxies is given. Finally, some of the main issues in the research into the structure and evolution of WR stars are outlined. (U.K.)

  12. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  13. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Science.gov (United States)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  14. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    International Nuclear Information System (INIS)

    Theodorakis, P E; Avgeropoulos, A; Freire, J J; Kosmas, M; Vlahos, C

    2007-01-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results

  15. Collaborative Research of Open Star Clusters Alisher S. Hojaev

    Indian Academy of Sciences (India)

    Some spectra of the young star candidates with dispersion 50 and 200 Å/mm were .... Color-magnitude diagram for o band and o band minus i band for stars in the region of NGC ... Statistical analysis for open cluster parameters investigation.

  16. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  17. Star-type oscillatory networks with generic Kuramoto-type coupling: A model for "Japanese drums synchrony"

    Science.gov (United States)

    Vlasov, Vladimir; Pikovsky, Arkady; Macau, Elbert E. N.

    2015-12-01

    We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra.

  18. Formas particulares de comunicação em blogs nerd/geek: expressões linguísticas relacionadas às produções das franquias Star Wars e Star Trek

    Directory of Open Access Journals (Sweden)

    Angela Dillmann Nunes Bicca

    2014-11-01

    Full Text Available Diversos blogs produzidos por integrantes de grupos culturais juvenis nerd/geek têm posto em circulação expressões linguísticas que assumem significados particulares para essas ‘tribos urbanas’, orquestrando os processos por meio dos quais suas identidades têm sido discursivamente produzidas. Nesta perspectiva, partindo das discussões promovidas pelos estudos culturais de vertente pós-estruturalista, e compreendendo os blogs como espaços de produção de saber, atentamos para os modos como expressões advindas das séries de filmes Star Wars e Star Trek são requeridas nos blogs para criar modos particulares de comunicação nerd/geek. Para desenvolver as análises, selecionamos sete blogs disponíveis na Internet, dentre um conjunto de 97 examinados nos meses de setembro e outubro de 2013. Excertos retirados dos blogs foram discutidos a partir do conceito de representação cultural, indicando que expressões, tais como ‘padawan’, ‘que a força esteja com vocês’ e ‘vida longa e prospera’, designam, respectivamente, sujeitos aprendizes e formas de despedida em situações nas quais um grande desafio está por ser assumido.

  19. Photometric Variability of the Be Star Population

    International Nuclear Information System (INIS)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia; Bjorkman, J. E.; Bjorkman, K. S.; Lund, Michael B.; Rodriguez, Joseph E.; Stassun, Keivan G.; Stevens, Daniel J.; James, David J.; Kuhn, Rudolf B.; Siverd, Robert J.; Beatty, Thomas G.

    2017-01-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10 years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.

  20. Photometric Variability of the Be Star Population

    Energy Technology Data Exchange (ETDEWEB)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Bjorkman, J. E.; Bjorkman, K. S. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606-3390 (United States); Lund, Michael B.; Rodriguez, Joseph E.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Stevens, Daniel J. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); James, David J. [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Kuhn, Rudolf B. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2017-06-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10 years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.

  1. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  2. Early-Type Galaxy Star Formation Histories in Different Environments

    Science.gov (United States)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  3. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Pecaut, Mark J.; Mamajek, Eric E.; Bubar, Eric J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2012-02-20

    We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types {approx}F4 and {approx}F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type {approx}A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of {approx}2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 {+-} 1 {+-} 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known

  4. Evolution of variable stars

    International Nuclear Information System (INIS)

    Becker, S.A.

    1986-08-01

    Throughout the domain of the H R diagram lie groupings of stars whose luminosity varies with time. These variable stars can be classified based on their observed properties into distinct types such as β Cephei stars, δ Cephei stars, and Miras, as well as many other categories. The underlying mechanism for the variability is generally felt to be due to four different causes: geometric effects, rotation, eruptive processes, and pulsation. In this review the focus will be on pulsation variables and how the theory of stellar evolution can be used to explain how the various regions of variability on the H R diagram are populated. To this end a generalized discussion of the evolutionary behavior of a massive star, an intermediate mass star, and a low mass star will be presented. 19 refs., 1 fig., 1 tab

  5. On the rutile alpha-PbO"2-type phase boundary of TiO"2

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Jiang, Jianzhong

    1999-01-01

    The high-pressure, high-temperature phase quilibria of TiO"2 have been studied with special emphasis on the rutile and alpha-PbO"2-type phases. It is found that the phase boundary, when plotted in a pressure-temperature diagram, changes from having a negative to having a positive slope...... with increasing temperature at about 6GPa and 850^oC. For nanophase material, the phase boundary is shifted towards lower pressure. The room-temperature bulk moduli are 210(120)GPa, 258(8)GPa and 290(20)GPa for rutile, the alpha-PbO"2-type phase and the baddeleyite-type phase, respectively....

  6. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  7. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    International Nuclear Information System (INIS)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.; Sewiło, M.; Vijh, U. P.; Terrazas, M.; Meixner, M.

    2015-01-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S 3 MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  8. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    Energy Technology Data Exchange (ETDEWEB)

    Polsdofer, Elizabeth; Marengo, M. [Iowa State University, Department of Physics and Astronomy, 12 Physics Hall, Ames, Iowa 50011 (United States); Seale, J.; Sewiło, M. [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Vijh, U. P.; Terrazas, M. [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606 (United States); Meixner, M., E-mail: empolsdofer@gmail.com [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. An error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.

  9. On the origin of high-velocity runaway stars

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  10. THE A-X INFRARED BANDS OF ALUMINUM OXIDE IN STARS: SEARCH AND NEW DETECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D. P. K.; Mathew, Blesson; Ashok, N. M. [Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 380009 (India); Varricatt, W. P. [Joint Astronomy Centre, 660 N. Aohoku Place, University Park, Hilo, Hawaii, HI 96720 (United States); Launila, O., E-mail: orion@prl.res.in [KTH-AlbaNova, Applied Physics, Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2012-07-01

    We describe a search for the A-X infrared bands of AlO with a view toward better understanding the characteristics of this radical. These bands are infrequently encountered in astronomical sources but surprisingly were very prominent in the spectra of two well-known, novalike variables (V838 Mon and V4332 Sgr) thereby motivating us to explore the physical conditions necessary for their excitation. In this study, we present the detection of A-X bands in the spectra of 13 out of 17 stars, selected on the basis of their J - K colors as potential candidates for detection of these bands. The majority of the AlO detections are in asymptotic giant branch (AGB) stars, viz., nine OH/IR stars, two Mira variables, and two bright infrared sources. Our study shows that the A-X bands are fairly prevalent in sources with low temperature and O-rich environments. Interesting variation in the strength of the AlO bands in one of the sources (IRAS 18530+0817) is reported and the cause for this is examined. Possible applications of the present study are discussed in terms of the role of AlO in alumina dust formation, the scope for estimating the radioactive {sup 26}Al content in AGB stars from the A-X bands, and providing possible targets for further mm/radio studies of AlO which has recently been discovered at millimeter wavelengths.

  11. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  12. THE INFLUENCE OF UNCERTAINTIES IN THE 15O(α, γ)19Ne REACTION RATE ON MODELS OF TYPE I X-RAY BURSTS

    International Nuclear Information System (INIS)

    Davids, Barry; Cyburt, Richard H.; Jose, Jordi; Mythili, Subramanian

    2011-01-01

    We present a Monte Carlo calculation of the astrophysical rate of the 15 O(α, γ) 19 Ne reaction based on an evaluation of published experimental data. By considering the likelihood distributions of individual resonance parameters derived from measurements, estimates of upper and lower limits on the reaction rate at the 99.73% confidence level are derived in addition to the recommended, median value. These three reaction rates are used as input for three separate calculations of Type I X-ray bursts (XRBs) using spherically symmetric, hydrodynamic simulations of an accreting neutron star. In this way the influence of the 15 O(α, γ) 19 Ne reaction rate on the peak luminosity, recurrence time, and associated nucleosynthesis in models of Type I XRBs is studied. Contrary to previous findings, no substantial effect on any of these quantities is observed in a sequence of four bursts when varying the reaction rate between its lower and upper limits. Rather, the differences in these quantities are comparable to the burst-to-burst variations with a fixed reaction rate, indicating that uncertainties in the 15 O(α, γ) 19 Ne reaction rate do not strongly affect the predictions of this Type I XRB model.

  13. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  14. POST T-Tauri Stars in Galactic Clusters

    Science.gov (United States)

    Haro, G.

    1983-08-01

    There is a number of theoretical and observational reasons to support a view of star formation and evolution as a continuous process which covers a rather long period of time, On the other hand, it can be stressed that some particular evolutionary stages are confined to relatively short lengths of time. On a purely observational basis, it seems quite evident that the typical and most "advanced" T Tauri phenomenon in a given star -and consequently its extreme spectroscopic and photometric characteristics- manifest itself during an extremely short period of time in relation to the whole evolutionary process for intermediate and late type stars. Without doubt the extreme or advanced" features of a T Tauri object tend to diminish in periods of only -in most cases- a few million years. However, a considerably longer time is required for the process of weakening or apparent total disappearance of the most persistent T Tauri features. Nevertheless, among other problems, there emerges one of fundamental importance: can we arrive to an acceptable definition of a bon T Tauri star? In the present work we repeat our attempt to define what can characterize an "advanced" T Tauri-type star or the minimum spectroscopic and photometric features required to classify a young star within the family that unmistakably includes all typical T Tauri objects. At the same time, and following the trends of modern astronomy, we try to demonstrate that certain T Tauri-type stars evolve, during different periods of time and that, although they lose mass and their most conspicuous spectroscopic characteristics, they can still be described as what Herbig calls "post-T Tauri" stars, keeping some remnants of their primitive spectroscopic and photometric features. Several years ago, we stressed that in the great majority of T Tauri stars it seems that the time required for the diminishing or even apparent disappearance of the last typical T Tauri vestiges depends on the mass or on the observable

  15. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  16. A survey for southern delta Scuti variable stars

    International Nuclear Information System (INIS)

    McInally, C.J.; Austin, R.R.D.

    1978-01-01

    Twenty-nine field stars have been tested photoelectrically for short-period variability. Eighteen of these stars have spectral types between A2 and F5 and are not Am stars; of these, six have been discovered to be variable and one is a suspected variable. HD 185969, with a period of 0.361 day, has the longest known period for a star of the delta Scuti type. The predominance of discovered variables with amplitudes close to the detection limit is suggestive of most stars in the instability strip being pulsators. (author)

  17. Stellar Feedback in Massive Star-Forming Regions

    Science.gov (United States)

    Baldwin, Jack; Pellegrini, Eric; Ferland, Gary; Murray, Norm; Hanson, Margaret

    2008-02-01

    Star formation rates and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study in the two nearest giant star-forming regions to nail down the physics that produces the 10-20 parsec bubbles seen to surround young massive clusters in the Milky Way. This will determine if and how the clusters disrupt their natal giant molecular clouds (GMCs). Here we request 4 nights on the Blanco telescope to obtain dense grids of optical long-slit spectra criss-crossing each nebula. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3000 different spots in each nebula. From this we can determine a number of dynamically important quantities, such as the gas density and temperature, hence pressure in and around these bubbles. These quantities can be compared to the dynamical (gravitationally induced) pressure, and the radiation pressure. All can be employed in dynamical models for the evolution of a GMC under the influence of an embedded massive star cluster. This research will elucidate the detailed workings of the star-forming regions which dominate the star formation rate in the Milky Way, and also will steadily improve our calibration and understanding of more distant, less well-resolved objects such as ULIRGS, Lyman break, and submillimeter galaxies.

  18. Motion-blurred star acquisition method of the star tracker under high dynamic conditions.

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wei, Minsong

    2013-08-26

    The star tracker is one of the most promising attitude measurement devices used in spacecraft due to its extremely high accuracy. However, high dynamic performance is still one of its constraints. Smearing appears, making it more difficult to distinguish the energy dispersive star point from the noise. An effective star acquisition approach for motion-blurred star image is proposed in this work. The correlation filter and mathematical morphology algorithm is combined to enhance the signal energy and evaluate slowly varying background noise. The star point can be separated from most types of noise in this manner, making extraction and recognition easier. Partial image differentiation is then utilized to obtain the motion parameters from only one image of the star tracker based on the above process. Considering the motion model, the reference window is adopted to perform centroid determination. Star acquisition results of real on-orbit star images and laboratory validation experiments demonstrate that the method described in this work is effective and the dynamic performance of the star tracker could be improved along with more identified stars and guaranteed position accuracy of the star point.

  19. Fluorine Abundances of AGB Stars in Stellar Clusters

    Science.gov (United States)

    Hren, A.; Lebzelter, T.; Aringer, B.; Hinkle, K. H.; Nowotny, W.

    2015-08-01

    We have measured the abundance of fluorine, [F/Fe], in a number of AGB stars in stellar clusters have correlated the results with their C/O ratios. This allows us to investigate the change in the fluorine abundance along the evolution on the giant branch. The target list includes primarily O-rich stars in three LMC globular clusters - NGC 1806, NGC 1846 and NGC 1978 - as well as Rup 106 and 47 Tuc in our Galaxy. The observational data were obtained with the PHOENIX spectrograph, and the COMA code was used for modelling the synthetic spectra. Within individual clusters, we find consistent [F/Fe] values at similar C/O for most of our target stars.

  20. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  1. IRAS colors of carbon stars - An optical spectroscopic test

    International Nuclear Information System (INIS)

    Cohen, M.; Wainscoat, R.J.; Walker, H.J.; Volk, K.; Schwartz, D.E.

    1989-01-01

    Optical spectra are obtained of 57 photographic counterparts to IRAS sources not previously studied spectroscopically, and expected on the basis of their IRAS colors to be M or C type stars. Confirmed carbon stars are found only in a restricted range of 12-25 index, and constitute a striking vertical sequence in the 12-25-60 micron color-color diagram. This sequence is in accord with evolutionary models for AGB stars that convert M into C stars by dredge-up, and follow loops in the color-color plane. Optically visible and optically invisible carbon stars occupy different color-color locations consistent with their representations of different evolutionary states in the life of relatively low-mass stars. 16 refs

  2. Flaring red dwarf stars: news from Crimea

    International Nuclear Information System (INIS)

    Gershberg, Roald E

    1998-01-01

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium λ 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  3. Flaring red dwarf stars: news from Crimea

    Energy Technology Data Exchange (ETDEWEB)

    Gershberg, Roald E [Crimean Astrophysical Observatory, Nauchnyi, Crimea (Ukraine)

    1998-08-31

    Important phenomena are briefly described which have recently been discovered in the Crimean studies of flaring red dwarf stars believed to be the most common type of variable stars in the Galaxy. These phenomena include (i) long-lived radiation from a blueshifted component in the ionized-helium {lambda} 4686 A emission line in the active state of one such star, (ii) a long-lived absorption component in the stellar flare light curves with a lifetime exceeding that of the conventional flare emission, and (iii) solarcycle-like activity periodicity of the star EV Lac, whose mass is only 0.3 solar masses. In theoretical terms, a red dwarf star spot model is constructed which, in contrast to the commonly accepted model, agrees well with the solar spot picture. (physics of our days)

  4. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  5. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  6. VLBA Scientists Study Birth of Sunlike Stars

    Science.gov (United States)

    1999-06-01

    , by measuring the Doppler shift in the wavelength of these emissions, astronomers can determine the speed at which the gas is moving. In an object known as S106FIR, 2,000 light-years away in the constellation Cygnus, a team of Japanese and U.S. VLBA observers led by Ray Furuya, a graduate student from Japan's Nobeyama Radio Observatory, has tracked the motion of material outward in the jet. This object, embedded in a dense cloud of molecular gas, the material from which the star is forming, shows maser spots moving in two directions as the jets emerge from both poles of the accretion disk. "The water masers are the only way we can detect the outflow from this young star," Furuya said. The VLBA observations can discern details as small as half the distance from the Earth to the Sun. "We can see outflow on scales the size of our Solar System. We think this object is one of the youngest protostars known," Furuya said. In another object, dubbed IRAS 16293-2422, in the constellation Ophiuchus, astronomers believe the water masers clearly show the outflowing jets of a young star and may be tracing the accretion disk as well. The young star is one of a pair of stars in a binary system some 500 light-years distant. The water-vapor masers are seen around only one of the pair, however. "In this system, we see outflow in the jet and also an elliptical ring of masers that may be part of the accretion disk," said Wootten, leader of the team observing this object. "The VLBA is showing us details as small as the size of Mercury's orbit around the Sun, a great help in understanding the physics going on there," Wootten said. A team composed largely of astronomers from the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, also used the VLBA to study water masers in a young stellar object 2,500 light-years away in Cepheus. This team sees maser spots moving in opposite directions away from the young star on scales of ten times the diameter of the solar system, presumably

  7. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri

    International Nuclear Information System (INIS)

    Teske, Johanna K.; Cunha, Katia; Schuler, Simon C.; Griffith, Caitlin A.; Smith, Verne V.

    2013-01-01

    The super-Earth exoplanet 55 Cnc e, the smallest member of a five-planet system, has recently been observed to transit its host star. The radius estimates from transit observations, coupled with spectroscopic determinations of mass, provide constraints on its interior composition. The composition of exoplanetary interiors and atmospheres are particularly sensitive to elemental C/O ratio, which to first order can be estimated from the host stars. Results from a recent spectroscopic study analyzing the 6300 Å [O I] line and two C I lines suggest that 55 Cnc has a carbon-rich composition (C/O = 1.12 ± 0.09). However, oxygen abundances derived using the 6300 Å [O I] line are highly sensitive to a Ni I blend, particularly in metal-rich stars such as 55 Cnc ([Fe/H] =0.34 ± 0.18). Here, we further investigate 55 Cnc's composition by deriving the carbon and oxygen abundances from these and additional C and O absorption features. We find that the measured C/O ratio depends on the oxygen lines used. The C/O ratio that we derive based on the 6300 Å [O I] line alone is consistent with the previous value. Yet, our investigation of additional abundance indicators results in a mean C/O ratio of 0.78 ± 0.08. The lower C/O ratio of 55 Cnc determined here may place this system at the sensitive boundary between protoplanetary disk compositions giving rise to planets with high (>0.8) versus low (<0.8) C/O ratios. This study illustrates the caution that must applied when determining planet host star C/O ratios, particularly in cool, metal-rich stars.

  8. Direct Imaging Discovery of a "Super-Jupiter" around the Late B-type Star κ And

    NARCIS (Netherlands)

    Carson, J.; et al., [Unknown; Thalmann, C.

    2013-01-01

    We present the direct imaging discovery of an extrasolar planet, or possible low-mass brown dwarf, at a projected separation of 55 ± 2 AU (1.''058 ± 0.''007) from the B9-type star κ And. The planet was detected with Subaru/HiCIAO during the SEEDS survey and confirmed as a bound companion via common

  9. A-type central stars of planetary nebulae. 2. The central stars of NGC 2346, He 2-36 and NGC 3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1978-12-01

    Spectrograms, scanner, uvby and ANS ultraviolet measurements of the central stars of NGC 2346, He 2-36 and NGC 3132 are analysed. The observations suggest that the first one is a foreground horizontal-branch star, and the second is above the horizontal branch, presumably in a rapid evolutionary phase. Both objects are probably variable. The central star of NGC 3132 is a slightly evolved main-sequence star with a hot visual companion. The evolutionary status of this system is briefly discussed.

  10. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    Science.gov (United States)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  11. On hot and cool stars, spectroscopic investigations in the ultraviolet

    International Nuclear Information System (INIS)

    Hucht, K.A. van der.

    1978-01-01

    Measured ultraviolet stellar spectra are compared with theoretically synthesised spectra. Three A-type and some B-type stars have been observed. The expanding outer layers of cool giants and supergiants are dealt with. K-type and M-type stars are discussed. The problem of the continuous energy distribution of Wolf-Tayet stars derived from observations is considered. (C.F.)

  12. X-ray studies of coeval star samples. II. The Pleiades cluster as observed with the Einstein Observatory

    International Nuclear Information System (INIS)

    Micela, G.; Sciortino, S.; Vaiana, G.S.; Harnden, F.R. Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs

  13. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    Science.gov (United States)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  14. Ultraviolet spectrophotometry of some stars in the Orion OBI association

    International Nuclear Information System (INIS)

    Oganesyan, R.Kh.; Gasparyan, K.G.

    1980-01-01

    The results of measurements of 56 short wavelength spectra of 22 stars in the Orion OBI association obtained by means of the space observatory Orion-2 are presented. The absolute energy distribution in their continuum is obtained. The measured energy distributions in the spectra of B-type stars in the region 2150-3700 A are in good agreement with the theoretical blocking model developed by Van Citters and Morton, and those of two A-type stars with Kurucz model. It has been found that for several B-type Orion stars there exists some discrepancy between the spectral type and their effective temperature, the last one being higher than for MK spectral types. The depression in the continuous spectra of A-type stars can be explained by the blocking effect

  15. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  16. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  17. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  18. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-01-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  19. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK, 73019 (United States)

    2017-04-10

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  20. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.